1
|
Tasci I, Baygin M, Barua PD, Hafeez-Baig A, Dogan S, Tuncer T, Tan RS, Acharya UR. Black-white hole pattern: an investigation on the automated chronic neuropathic pain detection using EEG signals. Cogn Neurodyn 2024; 18:2193-2210. [PMID: 39555288 PMCID: PMC11564719 DOI: 10.1007/s11571-024-10078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 11/19/2024] Open
Abstract
Electroencephalography (EEG) signals provide information about the brain activities, this study bridges neuroscience and machine learning by introducing an astronomy-inspired feature extraction model. In this work, we developed a novel feature extraction function, black-white hole pattern (BWHPat) which dynamically selects the most suitable pattern from 14 options. We developed BWHPat in a four-phase feature engineering model, involving multileveled feature extraction, feature selection, classification, and cortex map generation. Textural and statistical features are extracted in the first phase, while tunable q-factor wavelet transform (TQWT) aids in multileveled feature extraction. The second phase employs iterative neighborhood component analysis (INCA) for feature selection, and the k-nearest neighbors (kNN) classifier is applied for classification, yielding channel-specific results. A new cortex map generation model highlights the most active channels using median and intersection functions. Our BWHPat-driven model consistently achieved over 99% classification accuracy across three scenarios using the publicly available EEG pain dataset. Furthermore, a semantic cortex map precisely identifies pain-affected brain regions. This study signifies the contribution to EEG signal classification and neuroscience. The BWHPat pattern establishes a unique link between astronomy and feature extraction, enhancing the understanding of brain activities.
Collapse
Affiliation(s)
- Irem Tasci
- Department of Neurology, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Mehmet Baygin
- Department of Computer Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum, Turkey
| | - Prabal Datta Barua
- School of Business (Information System), University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Abdul Hafeez-Baig
- School of Management and Enterprise, University of Southern Queensland, Toowoomba, QLD Australia
| | - Sengul Dogan
- Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
| | - Turker Tuncer
- Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - U. Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
| |
Collapse
|
2
|
Xian H, Guo H, Liu YY, Zhang JL, Hu WC, Yu MJ, Zhao R, Xie RG, Zhang H, Cong R. Peripheral BDNF Regulates Somatosensory-Sympathetic Coupling in Brachial Plexus Avulsion-Induced Neuropathic Pain. Neurosci Bull 2023; 39:1789-1806. [PMID: 37335428 PMCID: PMC10661543 DOI: 10.1007/s12264-023-01075-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/19/2023] [Indexed: 06/21/2023] Open
Abstract
Brachial plexus avulsion (BPA) is a combined injury involving the central and peripheral nervous systems. Patients with BPA often experience severe neuropathic pain (NP) in the affected limb. NP is insensitive to the existing treatments, which makes it a challenge to researchers and clinicians. Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction, which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP. However, the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear. In this study, through using a novel BPA C7 root avulsion mouse model, we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased, and the markers of sympathetic nervous system activity including α1 and α2 adrenergic receptors (α1-AR and α2-AR) also increased after BPA. The phenomenon of superexcitation of the sympathetic nervous system, including hypothermia and edema of the affected extremity, was also observed in BPA mice by using CatWalk gait analysis, an infrared thermometer, and an edema evaluation. Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice. Further, intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice. In another branch experiment, we also found the elevated expression of BDNF, TrκB, TH, α1-AR, and α2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry. Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP. This study also opens a novel analgesic target (BDNF) in the treatment of this pain with fewer complications, which has great potential for clinical transformation.
Collapse
Affiliation(s)
- Hang Xian
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Huan Guo
- Pain and Related Diseases Research Laboratory, Medical College of Shantou University, Shantou, 515041, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- School of Life Science and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Jian-Lei Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
- The Sixth Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Ming-Jun Yu
- The Tenth Squadron of the Third Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Rui Zhao
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China.
| | - Hang Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Rui Cong
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Pinto NC, de MVP, Ferreira NL, Braga NA, Aldred A, Gomes G, Freire GMG, Ashmawi HA, Chacur M. Customized Photobiomodulation Modulates Pain and Alters Thermography Pattern in Patients with Knee Osteoarthritis: A Randomized Double-Blind Pilot Study. Photobiomodul Photomed Laser Surg 2022; 40:698-707. [DOI: 10.1089/photob.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nathali Cordeiro Pinto
- Bright Photomedicine Ltd., São Paulo, Brazil
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Victor Pires de
- Bright Photomedicine Ltd., São Paulo, Brazil
- Department of Physics, Federal University of Ceará (UFC), Fortaleza, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Nathalia Lopes Ferreira
- Departamento de Anatomia, Laboratório de Neuroanatomia Funcional da Dor, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Biofísica, Laboratório de Neuroendocrinologia do Estresse, Edifício de Ciências Biomédicas, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Natalia Almeida Braga
- Departamento de Anatomia, Laboratório de Neuroanatomia Funcional da Dor, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre Aldred
- Department of Science and R&D, Predikta Soluções em Pesquisa, São Paulo, Brazil
| | - Guilherme Gomes
- Department of Science and R&D, Predikta Soluções em Pesquisa, São Paulo, Brazil
- Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, Brazil
| | | | - Hazem Adel Ashmawi
- Anesthesiology Department, Faculdade; de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marucia Chacur
- Departamento de Anatomia, Laboratório de Neuroanatomia Funcional da Dor, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Pathophysiological and Neuroplastic Changes in Postamputation and Neuropathic Pain: Review of the Literature. Plast Reconstr Surg Glob Open 2022; 10:e4549. [PMID: 36187278 PMCID: PMC9521753 DOI: 10.1097/gox.0000000000004549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/05/2022] [Indexed: 10/24/2022]
Abstract
Despite advancements in surgical and rehabilitation strategies, extremity amputations are frequently associated with disability, phantom limb sensations, and chronic pain. Investigation into potential treatment modalities has focused on the pathophysiological changes in both the peripheral and central nervous systems to better understand the underlying mechanism in the development of chronic pain in persons with amputations. Methods Presented in this article is a discussion outlining the physiological changes that occur in the peripheral and central nervous systems following amputation. In this review, the authors examine the molecular and neuroplastic changes occurring in the nervous system, as well as the state-of-the-art treatment to help reduce the development of postamputation pain. Results This review summarizes the current literature regarding neurological changes following amputation. Development of both central sensitization and neuronal remodeling in the spinal cord and cerebral cortex allows for the development of neuropathic and phantom limb pain postamputation. Recently developed treatments targeting these pathophysiological changes have enabled a reduction in the severity of pain; however, complete resolution remains elusive. Conclusions Changes in the peripheral and central nervous systems following amputation should not be viewed as separate pathologies, but rather two interdependent mechanisms that underlie the development of pathological pain. A better understanding of the physiological changes following amputation will allow for improvements in therapeutic treatments to minimize pathological pain caused by amputation.
Collapse
|
5
|
Li H, Li X, Wang J, Gao F, Wiech K, Hu L, Kong Y. Pain-related reorganization in the primary somatosensory cortex of patients with postherpetic neuralgia. Hum Brain Mapp 2022; 43:5167-5179. [PMID: 35751551 PMCID: PMC9812237 DOI: 10.1002/hbm.25992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 01/15/2023] Open
Abstract
Studies on functional and structural changes in the primary somatosensory cortex (S1) have provided important insights into neural mechanisms underlying several chronic pain conditions. However, the role of S1 plasticity in postherpetic neuralgia (PHN) remains elusive. Combining psychophysics and magnetic resonance imaging (MRI), we investigated whether pain in PHN patients is linked to S1 reorganization as compared with healthy controls. Results from voxel-based morphometry showed no structural differences between groups. To characterize functional plasticity, we compared S1 responses to noxious laser stimuli of a fixed intensity between both groups and assessed the relationship between S1 activation and spontaneous pain in PHN patients. Although the intensity of evoked pain was comparable in both groups, PHN patients exhibited greater activation in S1 ipsilateral to the stimulated hand. Pain-related activity was identified in contralateral superior S1 (SS1) in controls as expected, but in bilateral inferior S1 (IS1) in PHN patients with no overlap between SS1 and IS1. Contralateral SS1 engaged during evoked pain in controls encoded spontaneous pain in patients, suggesting functional S1 reorganization in PHN. Resting-state fMRI data showed decreased functional connectivity between left and right SS1 in PHN patients, which scaled with the intensity of spontaneous pain. Finally, multivariate pattern analyses (MVPA) demonstrated that BOLD activity and resting-state functional connectivity of S1 predicted within-subject variations of evoked and spontaneous pain intensities across groups. In summary, functional reorganization in S1 might play a key role in chronic pain related to PHN and could be a potential treatment target in this patient group.
Collapse
Affiliation(s)
- Hong Li
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaoyun Li
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Jiyuan Wang
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Fei Gao
- Department of Pain MedicinePeking University People's HospitalBeijingChina
| | - Katja Wiech
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Li Hu
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| |
Collapse
|
6
|
Mercan A, Uzun ST, Keles S, Hacibeyoglu G, Yilmaz R, Reisli R. Immunological mechanism of postherpetic neuralgia and effect of pregabalin treatment on the mechanism: a prospective single-arm observational study. Korean J Pain 2021; 34:463-470. [PMID: 34593664 PMCID: PMC8494950 DOI: 10.3344/kjp.2021.34.4.463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Although neuropathic pain is a severe and common pain, its pathophysiology has not been elucidated yet. Studies in recent years have focused on the immune system's role in the pathogenesis of neuropathic pain. The aim of this study was to investigate the role of immunological mechanisms in neuropathic pain and the effect of pregabalin by measuring immunological marker levels in peripheral blood before and after pregabalin treatment in postherpetic neuralgia (PHN) patients with neuropathic pain. METHODS Forty patients diagnosed with PHN were included in the study. CD4, T follicular cells (Tfh: CD4+CXCR5+PD1+), Th17 (CD4+CCR6+ and CD4+IL17A+), regulatory T cells (Treg: CD4+ CD25+foxp3+), Th1 (CD4+ CXCR3+ and CD4+ IFN-γ+) and Th2 (CD4+ IL-4+) cell ratios were measured in peripheral blood samples before treatment and after 3 months of treatment. RESULTS When immunological marker and inflammation parameter levels were compared before and after treatment, the helper T cell ratio (CD3+, CD4+) was 30.28 ± 12.27% before treatment and 34.93 ± 11.70% after treatment, so there was a statistically significant increase (P = 0.028). Th17 was 4.75 ± 5.02% before treatment and 5.80 ± 3.13% after treatment, and there was a statistically significant increase (P = 0.036). CONCLUSIONS Immunological mechanisms play an essential role in the pathogenesis of neuropathic pain, immunologically based treatment approach will be the critical point of treatment.
Collapse
Affiliation(s)
- Aysel Mercan
- Department of Anesthesiology and Reanimation, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Sema Tuncer Uzun
- Division of Algology, Department of Anesthesiology and Reanimation, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Department of Pediatric Health, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Gulcin Hacibeyoglu
- Department of Anesthesiology and Reanimation, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Resul Yilmaz
- Department of Anesthesiology and Reanimation, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Ruhiye Reisli
- Division of Algology, Department of Anesthesiology and Reanimation, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| |
Collapse
|
7
|
Tang Y, Ren C, Wang M, Dai G, Xiao Y, Wang S, Han F, Chen G. Altered gray matter volume and functional connectivity in patients with herpes zoster and postherpetic neuralgia. Brain Res 2021; 1769:147608. [PMID: 34343527 DOI: 10.1016/j.brainres.2021.147608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Numerous neuroimaging studies on postherpetic neuralgia (PHN) and herpes zoster (HZ) have revealed abnormalities in brain structure/microstructure and function. However, few studies have focused on changes in gray matter (GM) volume and intrinsic functional connectivity (FC) in the transition from HZ to PHN. This study combined voxel-based morphometry and FC analysis methods to investigate GM volume and FC differences in 28 PHN patients, 25 HZ patients, and 21 well-matched healthy controls (HCs). Compared to HCs, PHN patients exhibited a reduction in GM volume in the bilateral putamen. Compared with HZ patients, PHN patients showed decreased GM volume in the left parahippocampal gyrus, putamen, anterior cingulate cortex, and right caudate and increased GM volume in the right thalamus. However, no regions with significant GM volume changes were found between the HZ and HC groups. Correlation analysis revealed that GM volume in the right putamen was positively associated with illness duration in PHN patients. Furthermore, lower FCs between the right putamen and right middle frontal gyrus/brainstem were observed in PHN patients than in HCs. These results indicate that aberrant GM volumes and FC in several brain regions, especially in the right putamen, are closely associated with chronification from HZ to PHN; moreover, these changes profoundly affect multiple dimensions of pain processing. These findings may provide new insights into the pathophysiological mechanisms of PHN.
Collapse
Affiliation(s)
- Yu Tang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Changhe Ren
- Department of Pain, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Maohua Wang
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guidong Dai
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yan Xiao
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fugang Han
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Guangxiang Chen
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
8
|
Investigation of Neuropathology after Nerve Release in Chronic Constriction Injury of Rat Sciatic Nerve. Int J Mol Sci 2021; 22:ijms22094746. [PMID: 33947104 PMCID: PMC8125611 DOI: 10.3390/ijms22094746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Peripheral compressive neuropathy causes significant neuropathic pain, muscle weakness and prolong neuroinflammation. Surgical decompression remains the gold standard of treatment but the outcome is suboptimal with a high recurrence rate. From mechanical compression to chemical propagation of the local inflammatory signals, little is known about the distinct neuropathologic patterns and the genetic signatures after nerve decompression. In this study, controllable mechanical constriction forces over rat sciatic nerve induces irreversible sensorimotor dysfunction with sustained local neuroinflammation, even 4 weeks after nerve release. Significant gene upregulations are found in the dorsal root ganglia, regarding inflammatory, proapoptotic and neuropathic pain signals. Genetic profiling of neuroinflammation at the local injured nerve reveals persistent upregulation of multiple genes involving oxysterol metabolism, neuronal apoptosis, and proliferation after nerve release. Further validation of the independent roles of each signal pathway will contribute to molecular therapies for compressive neuropathy in the future.
Collapse
|
9
|
Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021; 139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is globally considered as one of the most debilitating disorders, which interferes with daily activities and life of the affected patients. Despite many developments in related recognizing and treating procedures, post-SCI neuropathic pain (NP) is still a clinical challenge for clinicians with no distinct treatments. Accordingly, a comprehensive search was conducted in PubMed, Medline, Scopus, Web of Science, and national database (SID and Irandoc). The relevant articles regarding signaling pathways, therapeutic targets and pharmacotherapy of post-SCI pain were also reviewed. Data were collected with no time limitation until November 2020. The present study provides the findings on molecular mechanisms and therapeutic targets, as well as developing the critical signaling pathways to introduce novel neuroprotective treatments of post-SCI pain. From the pathophysiological mechanistic point of view, post-SCI inflammation activates the innate immune system, in which the immune cells elicit secondary injuries. So, targeting the critical signaling pathways for pain management in the SCI population has significant importance in providing new treatments. Indeed, several receptors, ion channels, excitatory neurotransmitters, enzymes, and key signaling pathways could be used as therapeutic targets, with a pivotal role of n-methyl-D-aspartate, gamma-aminobutyric acid, and inflammatory mediators. The current review focuses on conventional therapies, as well as crucial signaling pathways and promising therapeutic targets for post-SCI pain to provide new insights into the clinical treatment of post-SCI pain. The need to develop innovative delivery systems to treat SCI is also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Lee GJ, Kim SA, Kim YJ, Oh SB. Naloxone-induced analgesia mediated by central kappa opioid system in chronic inflammatory pain. Brain Res 2021; 1762:147445. [PMID: 33766518 DOI: 10.1016/j.brainres.2021.147445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Opioids, which are widely used for the treatment of chronic pain, have an analgesic effect by mainly activating mu-opioid receptor (MOR). Paradoxically, a high dose of naloxone, non-selective opioid receptor antagonist, is also known to induce analgesia, but the underlying mechanism remains unclear. Since kappa-opioid receptor (KOR) and dynorphin (KOR ligand) have been implicated in the naloxone-induced analgesia, we aimed to elucidate its mechanism by focusing on the kappa-opioid system in the brain under inflammatory pain condition. Systemic administration of naloxone (10 mg/kg, i.p.) decreased spontaneous pain behaviors only in complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model but not in the formalin-induced acute pain model. Immunohistochemistry analysis in the CFA model revealed both a significant decrease in MOR expression and an increase in prodynorphin density in the central nucleus of theamygdala (CeA) and nucleus accumbens (NAc) but not in other brain areas. Systemic administration of KOR antagonist (norbinaltorphimine, nor-BNI 10 mg/kg) also decreased spontaneous pain behaviors in the CFA model. Furthermore, microinjection of both naloxone and nor-BNI into NAc and CeA significantly reduced spontaneous chronic pain behavior. Taken together, our results suggest that naloxone-induced analgesia may be mediated by blocking facilitated kappa-opioid systems in the NAc and CeA.
Collapse
Affiliation(s)
- Grace J Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Shin Ae Kim
- Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yea Jin Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
An Investigation of the Molecular Mechanisms Underlying the Analgesic Effect of Jakyak-Gamcho Decoction: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6628641. [PMID: 33343676 PMCID: PMC7732394 DOI: 10.1155/2020/6628641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Herbal drugs have drawn substantial interest as effective analgesic agents; however, their therapeutic mechanisms remain to be fully understood. To address this question, we performed a network pharmacology study to explore the system-level mechanisms that underlie the analgesic activity of Jakyak-Gamcho decoction (JGd; Shaoyao-Gancao-Tang in Chinese and Shakuyaku-Kanzo-To in Japanese), an herbal prescription consisting of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fischer. Based on comprehensive information regarding the pharmacological and chemical properties of the herbal constituents of JGd, we identified 57 active chemical compounds and their 70 pain-associated targets. The JGd targets were determined to be involved in the regulation of diverse biological activities as follows: calcium- and cytokine-mediated signalings, calcium ion concentration and homeostasis, cellular behaviors of muscle and neuronal cells, inflammatory response, and response to chemical, cytokine, drug, and oxidative stress. The targets were further enriched in various pain-associated signalings, including the PI3K-Akt, estrogen, ErbB, neurotrophin, neuroactive ligand-receptor interaction, HIF-1, serotonergic synapse, JAK-STAT, and cAMP pathways. Thus, these data provide a systematic basis to understand the molecular mechanisms underlying the analgesic activity of herbal drugs.
Collapse
|
12
|
Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 2020; 81:101079. [PMID: 33259854 DOI: 10.1016/j.plipres.2020.101079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.
Collapse
|
13
|
Basheer A, Kirubakaran R, Tan K, Vishnu VY, Fialho D. Disease-modifying therapy for HIV-related distal symmetrical polyneuropathy (including antiretroviral toxic neuropathy). Hippokratia 2020. [DOI: 10.1002/14651858.cd013716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aneesh Basheer
- Department of Medicine; Pondicherry Institute of Medical Sciences; Pondicherry India
| | - Richard Kirubakaran
- Cochrane South Asia, Prof. BV Moses Centre for Evidence-Informed Healthcare and Health Policy; Christian Medical College; Vellore India
| | - Kevin Tan
- National Neuroscience Institute; Singapore Singapore
| | - Venugopalan Y Vishnu
- Department of Neurology; All India Institute of Medical Sciences; New Delhi India
| | - Doreen Fialho
- Department of Clinical Neurophysiology; King's College Hospital; London UK
| |
Collapse
|
14
|
Lysophosphatidic Acid Receptor 1- and 3-Mediated Hyperalgesia and Hypoalgesia in Diabetic Neuropathic Pain Models in Mice. Cells 2020; 9:cells9081906. [PMID: 32824296 PMCID: PMC7465054 DOI: 10.3390/cells9081906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022] Open
Abstract
Lysophosphatidic acid (LPA) signaling is known to play key roles in the initiation and maintenance of various chronic pain models. Here we examined whether LPA signaling is also involved in diabetes-induced abnormal pain behaviors. The high-fat diet (HFD) showing elevation of blood glucose levels and body weight caused thermal, mechanical hyperalgesia, hypersensitivity to 2000 or 250 Hz electrical-stimulation and hyposensitivity to 5 Hz stimulation to the paw in wild-type (WT) mice. These HFD-induced abnormal pain behaviors and body weight increase, but not elevated glucose levels were abolished in LPA1−/− and LPA3−/− mice. Repeated daily intrathecal (i.t.) treatments with LPA1/3 antagonist AM966 reversed these abnormal pain behaviors. Similar abnormal pain behaviors and their blockade by daily AM966 (i.t.) or twice daily Ki16425, another LPA1/3 antagonist was also observed in db/db mice which show high glucose levels and body weight. Furthermore, streptozotocin-induced similar abnormal pain behaviors, but not elevated glucose levels or body weight loss were abolished in LPA1−/− and LPA3−/− mice. These results suggest that LPA1 and LPA3 play key roles in the development of both type I and type II diabetic neuropathic pain.
Collapse
|
15
|
The Delayed-Onset Mechanical Pain Behavior Induced by Infant Peripheral Nerve Injury Is Accompanied by Sympathetic Sprouting in the Dorsal Root Ganglion. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9165475. [PMID: 32626770 PMCID: PMC7315272 DOI: 10.1155/2020/9165475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 11/19/2022]
Abstract
Background Sympathetic sprouting in the dorsal root ganglion (DRG) following nerve injuries had been proved to induce adult neuropathic pain. However, it is unclear whether the abnormal sprouting occurs in infant nerve injury. Methods L5 spinal nerve ligation (SNL) or sham surgery was performed on adult rats and 10-day-old pups, and mechanical thresholds and heat hyperalgesia were analyzed on 3, 7, 14, 28, and 56 postoperative days. Tyrosine hydroxylase-labeled sympathetic fibers were observed at each time point, and 2 neurotrophin receptors (p75NTR and TrkA) were identified to explore the mechanisms of sympathetic sprouting. Results Adult rats rapidly developed mechanical and heat hyperalgesia from postoperative day 3, with concurrent sympathetic sprouting in DRG. In contrast, the pup rats did not show a significantly lower mechanical threshold until postoperative day 28, at which time the sympathetic sprouting became evident in the DRG. No heat hyperalgesia was presented in pup rats at any time point. There was a late expression of glial p75NTR in DRG of pups from postoperative day 28, which was parallel to the occurrence of sympathetic sprouting. The expression of TrkA did not show such a postoperative syncing change. Conclusion The delayed-onset mechanical allodynia in the infant nerve lesion was accompanied with parallel sympathetic sprouting in DRG. The late parallel expression of glial p75NTR injury may play an essential role in this process, which provides novel insight into the treatment of delayed adolescent neuropathic pain.
Collapse
|
16
|
Zhang Y, Cao S, Yuan J, Song G, Yu T, Liang X. Functional and Structural Changes in Postherpetic Neuralgia Brain Before and Six Months After Pain Relieving. J Pain Res 2020; 13:909-918. [PMID: 32440196 PMCID: PMC7210030 DOI: 10.2147/jpr.s246745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Multimodal magnetic resonance imaging (MRI) was used to detect whether 6 months after pain relieving, the structural and functional abnormalities in the brain of postherpetic neuralgia (PHN) patients are changeable. Methods Fifteen successfully treated PHN patients were enrolled; the brain activity and structural abnormalities were detected and compared before and 6 months after treatment. The functional parameters were evaluated with resting-state functional MRI technique, i.e., the regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuation (fALFF). Structural changes were detected with voxel-based morphometry (VBM) and diffusion kurtosis imaging (DKI). Results Six months after pain relieving, PHN brain showed different ReHo and fALFF values in the frontal lobe, caudate, supramarginal gyrus, anterior cingulate cortex (ACC), cuneus, middle temporal gyrus, and cerebellum. In addition, VBM intensity in the cerebellum increased; DKI values decreased in the thalamus and increased in the temporal lobe after successful treatment. Conclusion Six months after pain relieving, functional and structural changes exist in PHN brain. Changes in some differential areas in PHN brain, such as ACC, frontal lobe, thalamus, and temporal lobe indicate that the central plasticity may be reversible after chronic pain relieving.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563002, Guizhou, People's Republic of China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, People's Republic of China
| | - Song Cao
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, People's Republic of China.,Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Jie Yuan
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, People's Republic of China.,Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Ganjun Song
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, People's Republic of China.,Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, People's Republic of China
| | - Xiaoli Liang
- Department of Anesthesiology, Zunyi Medical University, Zunyi 563002, Guizhou, People's Republic of China
| |
Collapse
|
17
|
Ueda H. LPA receptor signaling as a therapeutic target for radical treatment of neuropathic pain and fibromyalgia. Pain Manag 2019; 10:43-53. [PMID: 31852400 DOI: 10.2217/pmt-2019-0036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the first discovery that the bioactive lipid, lysophosphatidic acid (LPA) and LPA1 receptor signaling play a role in the initiation of neuropathic pain (NeuP), accumulated reports have supported the original findings and extended the study toward possible therapeutic applications. The present review describes beneficial roles of LPA receptor signaling in a variety of chronic pain, such as peripheral NeuP induced by nerve injury, chemotherapy and diabetes, central NeuP induced by cerebral ischemia with hemorrhage and spinal cord injury, and fibromyalgia-like wide spread pain induced by repeated cold, psychological and muscular acidic stress. Emerging mechanistic findings are the feed-forward amplification of LPA production through LPA1, LPA3 and microglia and the evidence for maintenance of chronic pain by LPA receptor signaling.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Zhang G, Liu N, Zhu C, Ma L, Yang J, Du J, Zhang W, Sun T, Niu J, Yu J. Antinociceptive effect of isoorientin against neuropathic pain induced by the chronic constriction injury of the sciatic nerve in mice. Int Immunopharmacol 2019; 75:105753. [DOI: 10.1016/j.intimp.2019.105753] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
|
19
|
Tan X, Ma L, Yuan J, Zhang D, Wang J, Zhou W, Cao S. Intravenous infusion of lidocaine enhances the efficacy of conventional treatment of postherpetic neuralgia. J Pain Res 2019; 12:2537-2545. [PMID: 31686896 PMCID: PMC6709377 DOI: 10.2147/jpr.s213128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/06/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Postherpetic neuralgia (PHN) is one kind of severe neuropathic pain which currently cannot be effectively cured. Recent researches suggest that intravenous infusion of lidocaine has a therapeutic effect on neuropathic pain such as PHN; however, the optimal dose and frequency of lidocaine infusion and the effectiveness and safety of this treatment in PHN patients still needs more clinical research. The aim of this study was to evaluate the therapeutic effects of daily intravenous lidocaine infusion on the outcome of the routine treatment of PHN. METHODS Sixty PHN patients were randomly divided into two groups: 1) control group (Control), treated with conventional therapies, such as antiepileptic pills, analgesics, neurotrophic medicines, paravertebral spinal nerve block and physiotherapy; 2) lidocaine group (Lido) received daily infusion of lidocaine (4 mg/kg) besides the conventional treatments. If the pain is not controlled sufficiently, additional tramadol is given and the average consumption of tramadol is calculated. Pain intensity was assessed before and after each infusion, and the number of breakthrough pain in the last 24 hrs were recorded. The incidence of adverse reactions related to intravenous lidocaine infusion was recorded. RESULTS For five consecutive days, numeric rating scale (NRS) scores were significantly decreased after 1 hr of intravenous infusion of lidocaine. Compared with Control, the NRS scores and the frequency of breakthrough pain in the Lido were significantly reduced. In addition, the extra tramadol consumption in the Lido was significantly lower than that in the Control, and the average hospital stay of patients in Lido was decreased. However, anxiety and depression scores showed no difference between Lido and Control. CONCLUSION Daily intravenous lidocaine (4 mg/kg for 5 days) enhanced the outcome of PHN treatment, reduced the amount of analgesic medicine and shortened the length of hospital stay with no obvious adverse side effects.
Collapse
Affiliation(s)
- Xinran Tan
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Lulin Ma
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Jie Yuan
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi563000, People’s Republic of China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Dexin Zhang
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Jie Wang
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Wenjing Zhou
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi563000, People’s Republic of China
| | - Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi563000, People’s Republic of China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi563000, People’s Republic of China
| |
Collapse
|
20
|
Cao J, Hou J, Ping J, Cai D. Advances in developing novel therapeutic strategies for Alzheimer's disease. Mol Neurodegener 2018; 13:64. [PMID: 30541602 PMCID: PMC6291983 DOI: 10.1186/s13024-018-0299-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's Disease (AD), the most prevalent neurodegenerative disease of aging, affects one in eight older Americans. Nearly all drug treatments tested for AD today have failed to show any efficacy. There is a great need for therapies to prevent and/or slow the progression of AD. The major challenge in AD drug development is lack of clarity about the mechanisms underlying AD pathogenesis and pathophysiology. Several studies support the notion that AD is a multifactorial disease. While there is abundant evidence that amyloid plays a role in AD pathogenesis, other mechanisms have been implicated in AD such as tangle formation and spread, dysregulated protein degradation pathways, neuroinflammation, and loss of support by neurotrophic factors. Therefore, current paradigms of AD drug design have been shifted from single target approach (primarily amyloid-centric) to developing drugs targeted at multiple disease aspects, and from treating AD at later stages of disease progression to focusing on preventive strategies at early stages of disease development. Here, we summarize current strategies and new trends of AD drug development, including pre-clinical and clinical trials that target different aspects of disease (mechanism-based versus non-mechanism based, e.g. symptomatic treatments, lifestyle modifications and risk factor management).
Collapse
Affiliation(s)
- Jiqing Cao
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| | - Jianwei Hou
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jing Ping
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| | - Dongming Cai
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Lin YT, Chen JC. Dorsal Root Ganglia Isolation and Primary Culture to Study Neurotransmitter Release. J Vis Exp 2018. [PMID: 30346383 DOI: 10.3791/57569] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dorsal root ganglia (DRG) contain cell bodies of sensory neurons. This type of neuron is pseudo-unipolar, with two axons that innervate peripheral tissues, such as skin, muscle and visceral organs, as well as the spinal dorsal horn of the central nervous system. Sensory neurons transmit somatic sensation, including touch, pain, thermal, and proprioceptive sensations. Therefore, DRG primary cultures are widely used to study the cellular mechanisms of nociception, physiological functions of sensory neurons, and neural development. The cultured neurons can be applied in studies involving electrophysiology, signal transduction, neurotransmitter release, or calcium imaging. With DRG primary cultures, scientists may culture dissociated DRG neurons to monitor biochemical changes in single or multiple cells, overcoming many of the limitations associated with in vivo experiments. Compared to commercially available DRG-hybridoma cell lines or immortalized DRG neuronal cell lines, the composition and properties of the primary cells are much more similar to sensory neurons in tissue. However, due to the limited number of cultured DRG primary cells that can be isolated from a single animal, it is difficult to perform high-throughput screens for drug targeting studies. In the current article, procedures for DRG collection and culture are described. In addition, we demonstrate the treatment of cultured DRG cells with an agonist of neuropeptide FF receptor type 2 (NPFFR2) to induce the release of peptide neurotransmitters (calcitonin gene-related peptide (CRGP) and substance P (SP)).
Collapse
Affiliation(s)
- Ya-Tin Lin
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University; Healthy Aging Research Center, Chang Gung University; Neuroscience Research Center, Chang Gung Memorial Hospital;
| |
Collapse
|
22
|
Klusch A, Gorzelanny C, Reeh PW, Schmelz M, Petersen M, Sauer SK. Local NGF and GDNF levels modulate morphology and function of porcine DRG neurites, In Vitro. PLoS One 2018; 13:e0203215. [PMID: 30260982 PMCID: PMC6160011 DOI: 10.1371/journal.pone.0203215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/16/2018] [Indexed: 11/26/2022] Open
Abstract
Nerve terminals of primary sensory neurons are influenced by their environment through target derived trophic factors, like nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF). In mice, subpopulations of DRG neurons express receptors either for NGF or GDNF and therefore differentially respond to these neurotrophic factors. We probed neurite endings from porcine DRG neurons cultured in either NGF or GDNF and examined their shape, elongation and stimulus-evoked CGRP release. A compartmentalized culture system was employed allowing spatial separation of outgrown neurites from their somata and use of different growth factors in the compartments. We show that neurites of GDNF cultured somata extend into lateral compartments without added growth factor, unlike neurites of NGF cultured ones. Neurites of NGF cultured somata extend not only into NGF- but also into GDNF-containing compartments. GDNF at the site of terminals of NGF responsive somata led to a strong neurite arborization and formation of large growth cones, compared to neurites in medium with NGF. Functionally, we could detect evoked CGRP release from as few as 7 outgrown neurites per compartment and calculated release per mm neurite length. CGRP release was detected both in neurites from NGF and GDNF cultured somata, suggesting that also the latter ones are peptidergic in pig. When neurites of NGF cultured somata were grown in GDNF, capsaicin evoked a lower CGRP release than high potassium, compared to those grown in NGF. Our experiments demonstrate that the compartmented culture chamber can be a suitable model to assess neurite properties from trophic factor specific primary sensory neurons. With this model, insights into mechanisms of gain or loss of function of specific nociceptive neurites may be achieved.
Collapse
Affiliation(s)
- Andreas Klusch
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Peter W. Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marlen Petersen
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Susanne K. Sauer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
23
|
da Silva Oliveira VR, Cury DP, Yamashita LB, Esteca MV, Watanabe IS, Bergmann YF, Toniolo EF, Dale CS. Photobiomodulation induces antinociception, recovers structural aspects and regulates mitochondrial homeostasis in peripheral nerve of diabetic mice. JOURNAL OF BIOPHOTONICS 2018; 11:e201800110. [PMID: 29749025 DOI: 10.1002/jbio.201800110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a nervous disorder caused by diabetes mellitus, affecting about 50% of patients in clinical medicine. Chronic pain is one of the major and most unpleasant symptoms developed by those patients, and conventional available treatments for the neuropathy, including the associated pain, are still unsatisfactory and benefit only a small number of patients. Photobiomodulation (PBM) has been gaining clinical acceptance once it is able to promote early nerve regeneration resulting in significant improvement in peripheral nerves disabilities. In this work, the effects of PBM (660 nm, 30 mW, 1.6 J/cm2 , 0.28 cm2 , 15 s in a continuous frequency) on treating DPN-induced pain and nerve damage were evaluated in an experimental model of diabetic-neuropathy induced by streptozotocin in mice. PBM-induced antinociception in neuropathic-pain mice was dependent on central opioids release. After 21 consecutive applications, PBM increased nerve growth factor levels and induced structural recovery increasing mitochondrial content and regulating Parkin in the sciatic nerve of DPN-mice. Taking together, these data provide new insights into the mechanisms involved in the effects of PBM-therapy emphasizing its therapeutic potential in the treatment of DPN.
Collapse
Affiliation(s)
- Victória R da Silva Oliveira
- Laboratory of Neuromodulation of Experimental Pain, Department of Anatomy, University of São Paulo, São Paulo, Brazil
| | - Diego P Cury
- Laboratory of Ultrastructure of Cells and Tissues, Department of Anatomy, University of São Paulo, São Paulo, Brazil
| | - Laura B Yamashita
- Laboratory of Neuromodulation of Experimental Pain, Department of Anatomy, University of São Paulo, São Paulo, Brazil
| | - Marcos V Esteca
- Laboratory of Cellular and Tissue Biology, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Ii-Sei Watanabe
- Laboratory of Ultrastructure of Cells and Tissues, Department of Anatomy, University of São Paulo, São Paulo, Brazil
| | - Yoko Fee Bergmann
- Laboratory of Neuromodulation of Experimental Pain, Department of Anatomy, University of São Paulo, São Paulo, Brazil
| | - Elaine F Toniolo
- Laboratory of Neuromodulation of Experimental Pain, Department of Anatomy, University of São Paulo, São Paulo, Brazil
- Univeristy City of São Paulo, Medical School, São Paulo, Brazil
| | - Camila S Dale
- Laboratory of Neuromodulation of Experimental Pain, Department of Anatomy, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Shenoy PA, Kuo A, Khan N, Gorham L, Nicholson JR, Corradini L, Vetter I, Smith MT. The Somatostatin Receptor-4 Agonist J-2156 Alleviates Mechanical Hypersensitivity in a Rat Model of Breast Cancer Induced Bone Pain. Front Pharmacol 2018; 9:495. [PMID: 29867498 PMCID: PMC5962878 DOI: 10.3389/fphar.2018.00495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
In the majority of patients with breast cancer in the advanced stages, skeletal metastases are common, which may cause excruciating pain. Currently available drug treatments for relief of breast cancer-induced bone pain (BCIBP) include non-steroidal anti-inflammatory drugs and strong opioid analgesics along with inhibitors of osteoclast activity such as bisphosphonates and monoclonal antibodies such as denosumab. However, these medications often lack efficacy and/or they may produce serious dose-limiting side effects. In the present study, we show that J-2156, a somatostatin receptor type 4 (SST4 receptor) selective agonist, reverses pain-like behaviors in a rat model of BCIBP induced by unilateral intra-tibial injection of Walker 256 breast cancer cells. Following intraperitoneal administration, the ED50 of J-2156 for the relief of mechanical allodynia and mechanical hyperalgesia in the ipsilateral hindpaws was 3.7 and 8.0 mg/kg, respectively. Importantly, the vast majority of somatosensory neurons in the dorsal root ganglia including small diameter C-fibers and medium-large diameter fibers, that play a crucial role in cancer pain hypersensitivities, expressed the SST4 receptor. J-2156 mediated pain relief in BCIBP-rats was confirmed by observations of a reduction in the levels of phosphorylated extracellular signal-regulated kinase (pERK), a protein essential for central sensitization and persistent pain, in the spinal dorsal horn. Our results demonstrate the potential of the SST4 receptor as a pharmacological target for relief of BCIBP and we anticipate the present work to be a starting point for further mechanism-based studies.
Collapse
Affiliation(s)
- Priyank A Shenoy
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nemat Khan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Louise Gorham
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Janet R Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Laura Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Hong S, Gu L, Zhou F, Liu J, Huang M, Jiang J, He L, Gong H, Zeng X. Altered functional connectivity density in patients with herpes zoster and postherpetic neuralgia. J Pain Res 2018; 11:881-888. [PMID: 29740216 PMCID: PMC5931198 DOI: 10.2147/jpr.s154314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose The aim of this study was to explore intrinsic functional connectivity patterns in patients with herpes zoster (HZ) and postherpetic neuralgia (PHN). Patients and methods Thirty-three right-handed HZ patients (13 males; mean age 57.15±9.30 years), 22 right-handed PHN patients (9 males; mean age 66.13±6.77 years), and 28 well-matched healthy controls (HC) (9 males; mean age 54.21±7.72 years) underwent resting-state functional magnetic resonance imaging for intrinsic functional connectivity analyses. Functional connectivity density (FCD) was calculated and compared among the PHN, HZ, and HC groups. In addition, the Pearson correlation coefficient was calculated to compare various clinical indices in the regions with abnormal FCD values. Results Compared with the HC, both HZ and PHN patients showed significantly decreased FCD in the precuneus, and patients with HZ displayed significantly increased FCD in the brainstem/limbic lobe/parahippocampalgyrus, whereas patients with PHN displayed significantly increased FCD in the hippocampus (correlation thresholds r=0.25, voxel level of P<0.01 and Gaussian random field theory at a cluster level of P<0.05). However, the FCD was not significantly different between the PHN and HZ patients. Furthermore, the decreased FCD in the precuneus was positively correlated with the visual analog scale score in the PHN group (r=0.672; P=0.001). Conclusion Decreased connectivity of the precuneus occurred in both HZ and PHN patients, indicating a disrupted default-mode network. Furthermore, in the HZ group (initial stage of the virus infection), hyperconnectivity was observed in systems involved in pain transmission and interpretation, but hyperconnectivity only occurred in the hippocampus in the PHN group (neuropathic pain stage).
Collapse
Affiliation(s)
- Shunda Hong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lili Gu
- Department of Pain, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jiaqi Liu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Laichang He
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
26
|
|
27
|
Kiguchi N, Kobayashi D, Saika F, Matsuzaki S, Kishioka S. Pharmacological Regulation of Neuropathic Pain Driven by Inflammatory Macrophages. Int J Mol Sci 2017; 18:ijms18112296. [PMID: 29104252 PMCID: PMC5713266 DOI: 10.3390/ijms18112296] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain can have a major effect on quality of life but current therapies are often inadequate. Growing evidence suggests that neuropathic pain induced by nerve damage is caused by chronic inflammation. Upon nerve injury, damaged cells secrete pro-inflammatory molecules that activate cells in the surrounding tissue and recruit circulating leukocytes to the site of injury. Among these, the most abundant cell type is macrophages, which produce several key molecules involved in pain enhancement, including cytokines and chemokines. Given their central role in the regulation of peripheral sensitization, macrophage-derived cytokines and chemokines could be useful targets for the development of novel therapeutics. Inhibition of key pro-inflammatory cytokines and chemokines prevents neuroinflammation and neuropathic pain; moreover, recent studies have demonstrated the effectiveness of pharmacological inhibition of inflammatory (M1) macrophages. Nicotinic acetylcholine receptor ligands and T helper type 2 cytokines that reduce M1 macrophages are able to relieve neuropathic pain. Future translational studies in non-human primates will be crucial for determining the regulatory mechanisms underlying neuroinflammation-associated neuropathic pain. In turn, this knowledge will assist in the development of novel pharmacotherapies targeting macrophage-driven neuroinflammation for the treatment of intractable neuropathic pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| |
Collapse
|
28
|
Warendorf J, Vrancken AFJE, van Schaik IN, Hughes RAC, Notermans NC. Drug therapy for chronic idiopathic axonal polyneuropathy. Cochrane Database Syst Rev 2017; 6:CD003456. [PMID: 28631805 PMCID: PMC6481404 DOI: 10.1002/14651858.cd003456.pub3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chronic idiopathic axonal polyneuropathy (CIAP) is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, CIAP reduces quality of life. CIAP is diagnosed in 10% to 25% of people referred for evaluation of polyneuropathy. There is a need to gather and review emerging evidence on treatments, as the number of people affected is likely to increase in ageing populations. This is an update of a review first published in 2004 and previously updated in 2006, 2008, 2011 and 2013. OBJECTIVES To assess the effects of drug therapy for chronic idiopathic axonal polyneuropathy for reducing disability and ameliorating neurological symptoms and associated impairments, and to assess any adverse effects of treatment. SEARCH METHODS In July 2016, we searched Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews in the Cochrane Library, MEDLINE, Embase, and the Web of Science. We searched two trials registries for ongoing trials. We also handsearched the reference lists of relevant articles, reviews and textbooks identified electronically, and we would have contacted authors and other experts in the field to identify additional studies if this seemed useful. SELECTION CRITERIA We sought all randomised or quasi-randomised (alternate or other systematic treatment allocation) trials that examined the effects of any drug therapy in people with CIAP at least one year after the onset of treatment. People with CIAP had to fulfil the following criteria: age 40 years or older, distal sensory or sensorimotor polyneuropathy, absence of systemic or other neurological disease, chronic clinical course not reaching a nadir in less than two months, exclusion of any recognised cause of the polyneuropathy by medical history taking, clinical or laboratory investigations, and electrophysiological studies in agreement with axonal polyneuropathy, without evidence of demyelinating features. The primary outcome was the proportion of participants with a significant improvement in disability. Secondary outcomes were change in the mean disability score, change in the proportion of participants who make use of walking aids, change in the mean Medical Research Council sum score, degree of pain relief and/or reduction of other positive sensory symptoms, change in the proportion of participants with pain or other positive sensory symptoms, and frequency of adverse effects. DATA COLLECTION AND ANALYSIS Two review authors independently reviewed the results of the literature search and extracted details of trial methodology and outcome data of all potentially relevant trials. MAIN RESULTS We identified 39 studies and assessed them for possible inclusion in the review, but we excluded all of them because of insufficient quality or lack of relevance. We summarised evidence from non-randomised studies in the Discussion. AUTHORS' CONCLUSIONS Even though CIAP has been clearly described and delineated, no adequate randomised or quasi-randomised controlled clinical treatment trials have been performed. In their absence there is no proven efficacious drug therapy.
Collapse
Affiliation(s)
- Janna Warendorf
- Brain Center Rudolf Magnus, University Medical Center UtrechtDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyUtrechtNetherlands
| | - Ivo N van Schaik
- Academic Medical Centre, University of AmsterdamDepartment of NeurologyMeibergdreef 9PO Box 22700AmsterdamNetherlands1100 DE
| | - Richard AC Hughes
- National Hospital for Neurology and NeurosurgeryMRC Centre for Neuromuscular DiseasesPO Box 114Queen SquareLondonUKWC1N 3BG
| | - Nicolette C Notermans
- Brain Center Rudolf Magnus, University Medical Center UtrechtDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
29
|
Yu LN, Sun LH, Wang M, Yan M. Research progress of the role and mechanism of extracellular signal-regulated protein kinase 5 (ERK5) pathway in pathological pain. J Zhejiang Univ Sci B 2017; 17:733-741. [PMID: 27704743 DOI: 10.1631/jzus.b1600188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1 (MAPK1), is an important member of ERK family, which is a subfamily of the large MAPK family. ERK5 is expressed in many tissues, including the dorsal root ganglion (DRG) neurons and the spinal cord. In this review, we focus on elaborating ERK5-associated pathway in pathological pain, in which the ERK5/CREB (cyclic adenosine monophosphate (cAMP)-response element-binding protein) pathway plays a crucial role in the transduction of pain signal and contributes to pain hypersensitivity. ERK5 activation in the spinal dorsal horn occurs mainly in microglia. The activation of ERK5 can be mediated by N-methyl-D-aspartate (NMDA) receptors. We also elaborate the relationship between ERK5 activation and nerve growth factor-tyrosine kinase A (NGF-TrkA), and the connection between ERK5 activation and brain-derived neurotrophic factor (BDNF) in pathological pain in detail.
Collapse
Affiliation(s)
- Li-Na Yu
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li-Hong Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221000, China
| | - Min Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221000, China
| | - Min Yan
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221000, China
| |
Collapse
|
30
|
Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 2017; 158:543-559. [PMID: 28301400 PMCID: PMC5359791 DOI: 10.1097/j.pain.0000000000000831] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide found primarily in the C and Aδ sensory fibers arising from the dorsal root and trigeminal ganglia, as well as the central nervous system. Calcitonin gene-related peptide was found to play important roles in cardiovascular, digestive, and sensory functions. Although the vasodilatory properties of CGRP are well documented, its somatosensory function regarding modulation of neuronal sensitization and of enhanced pain has received considerable attention recently. Growing evidence indicates that CGRP plays a key role in the development of peripheral sensitization and the associated enhanced pain. Calcitonin gene-related peptide is implicated in the development of neurogenic inflammation and it is upregulated in conditions of inflammatory and neuropathic pain. It is most likely that CGRP facilitates nociceptive transmission and contributes to the development and maintenance of a sensitized, hyperresponsive state not only of the primary afferent sensory neurons but also of the second-order pain transmission neurons within the central nervous system, thus contributing to central sensitization as well. The maintenance of a sensitized neuronal condition is believed to be an important factor underlying migraine. Recent successful clinical studies have shown that blocking the function of CGRP can alleviate migraine. However, the mechanisms through which CGRP may contribute to migraine are still not fully understood. We reviewed the role of CGRP in primary afferents, the dorsal root ganglion, and in the trigeminal system as well as its role in peripheral and central sensitization and its potential contribution to pain processing and to migraine.
Collapse
|
31
|
Neural Mobilization Treatment Decreases Glial Cells and Brain-Derived Neurotrophic Factor Expression in the Central Nervous System in Rats with Neuropathic Pain Induced by CCI in Rats. Pain Res Manag 2017; 2017:7429761. [PMID: 28420943 PMCID: PMC5380850 DOI: 10.1155/2017/7429761] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 01/05/2023]
Abstract
Background. Glial cells are implicated in the development of chronic pain and brain-derived neurotropic factor (BDNF) released from activated microglia contributes to the nociceptive transmission. Neural mobilization (NM) technique is a method clinically effective in reducing pain sensitivity. Here we examined the involvement of glial cells and BDNF expression in the thalamus and midbrain after NM treatment in rats with chronic constriction injury (CCI). CCI was induced and rats were subsequently submitted to 10 sessions of NM, every other day, beginning 14 days after CCI. Thalamus and midbrain were analyzed for glial fibrillary acidic protein (GFAP), microglial cell OX-42, and BDNF using Immunohistochemistry and Western blot assays. Results. Thalamus and midbrain of CCI group showed increases in GFAP, OX-42, and BDNF expression compared with control group and, in contrast, showed decreases in GFAP, OX-42, and BDNF after NM when compared with CCI group. The decreased immunoreactivity for GFAP, OX-42, and BDNF in ventral posterolateral nucleus in thalamus and the periaqueductal gray in midbrain was shown by immunohistochemistry. Conclusions. These findings may improve the knowledge about the involvement of astrocytes, microglia, and BDNF in the chronic pain and show that NM treatment, which alleviates neuropathic pain, affects glial cells and BDNF expression.
Collapse
|
32
|
Ding YQ, Xie WZ, Qi JG. Regenerative peripheral neuropathic pain: novel pathological pain, new therapeutic dimension. Rev Neurosci 2017; 28:65-76. [PMID: 27664772 DOI: 10.1515/revneuro-2016-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/07/2016] [Indexed: 01/02/2023]
Abstract
AbstractAfter peripheral nerve damage, injured or stressed primary sensory neurons (PSNs) transmitting pathological pain (pathopain) sensitize central nervous system (CNS) neural circuits and determine behavioral phenotypes of peripheral neuropathic pain (PNP). Therefore, phenotypic profiling of pathopain-transmitting PSNs is vital for probing and discovering PNP conditions. Following peripheral nerve injuries (PNIs), PNP might be potentially transmitted by distinct classes of damaged or stressed PSNs, such as axotomized PSNs without regeneration (axotomy-non-regenerative neurons), axotomized PSNs with accurate regeneration (axotomy-regenerative neurons), and spared intact PSNs adjacent to axotomized neurons (axotomy-spared neurons). Both axotomy-non-regenerative neurons and axotomy-spared neurons have been definitely shown to participate in specific PNP transmission. However, whether axotomy-regenerative neurons could transmit PNP with unique features has remained unclear. Recent studies in rodent models of axonotmesis have clearly demonstrated that axotomy-regenerative neurons alone transmit persistent pathological pain with unique behavioral phenotypes. In this review, we exclusively review this novel category of PNP, reasonably term it ‘regenerative peripheral neuropathic pain’, and finally discuss its potential clinical significance as a new therapeutic dimension for PNIs beyond nerve regeneration.
Collapse
|
33
|
Zhao W, Wang Y, Fang Q, Wu J, Gao X, Liu H, Cao L, An J. Changes in neurotrophic and inflammatory factors in the cerebrospinal fluid of patients with postherpetic neuralgia. Neurosci Lett 2017; 637:108-113. [DOI: 10.1016/j.neulet.2016.11.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/18/2016] [Accepted: 11/20/2016] [Indexed: 12/22/2022]
|
34
|
Klinedinst NJ, Resnick B, Yerges-Armstrong LM, Dorsey SG. The Interplay of Genetics, Behavior, and Pain with Depressive Symptoms in the Elderly. THE GERONTOLOGIST 2016; 55 Suppl 1:S67-77. [PMID: 26055783 DOI: 10.1093/geront/gnv015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE OF STUDY About 25% of older adults suffer from depressive symptoms. Commonly studied candidate genes associated with depression include those that influence serotonin (SLC6A4), dopamine (COMT), or neuroplasticity (BDNF, NTRK3). However, the majority of candidate gene studies do not consider the interplay of genetics, demographic, clinical, and behavioral factors and how they jointly contribute to depressive symptoms among older adults. The purpose of this study was to gain a more comprehensive understanding of depressive symptoms among older adults. DESIGN AND METHODS In this descriptive study, demographic, behavioral, and clinical characteristics (age, gender, comorbidities, volunteering, physical activity, pain, and fear of falling) were obtained via interview of 114 residents in a continuing care retirement community. Peripheral whole blood was collected for DNA extraction. We examined common single nucleotide polymorphisms (SNPs) in the aforementioned genes using path analyses. RESULTS SNPs in the NTRK3 gene, pain, physical activity, and fear of falling were directly associated with depressive symptoms in older adults. Those who had polymorphisms in the NTRK3 gene, pain, fear of falling, and were less physically active were more likely to exhibit depressive symptoms. None of the SNPs in SLC6A4, COMT, or BDNF genes were significantly associated with depressive symptoms. IMPLICATIONS Our use of a path analysis to examine a biopsychosocial model of depressive symptoms provided the opportunity to describe a comprehensive clinical picture of older adults at risk for depressive symptoms. Thus, interventions could be implemented to identify older adults at risk for depressive symptoms.
Collapse
|
35
|
Mayorga AJ, Wang S, Kelly KM, Thipphawong J. Efficacy and safety of fulranumab as monotherapy in patients with moderate to severe, chronic knee pain of primary osteoarthritis: a randomised, placebo- and active-controlled trial. Int J Clin Pract 2016; 70:493-505. [PMID: 27238963 DOI: 10.1111/ijcp.12807] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIMS The efficacy and safety of monotherapy with fulranumab, a monoclonal antibody that neutralises human nerve growth factor (NGF), was evaluated compared with placebo and an active comparator, controlled-release (CR) oxycodone, in patients with moderate to severe chronic knee pain of primary osteoarthritis (OA). METHODS In this phase-2, double-blind (DB), double-dummy, placebo- and active-controlled study, patients (40-80 years) were randomised (1:1:1:1) to placebo, fulranumab 3 or 9mg every 4 weeks (Q4 wk), or oxycodone CR twice-daily. Primary efficacy end-point: responder rates based on percent improvement in average osteoarthritis-related pain intensity (OAPI) scores from baseline to week-12 or when Food and Drug Administration (FDA) put a clinical hold on all anti-NGF trials, whichever was earlier. Secondary efficacy end-points: average OAPI score (week-16), Western Ontario and McMaster Osteoarthritis Index Global Score and subscales (pain, physical function, stiffness), and Patient Global Assessment. RESULTS As of an FDA clinical hold on all anti-NGF trials, only 196/300 patients were randomised and 33% (65/196) had completed 12 weeks of the 16-week DB phase. Responders were patients who did not withdraw and whose pain improved. Responder rates were not significantly different between fulranumab treatment groups (3mgQ4wk: 71%, p = 0.739; 9mgQ4wk: 80%, p = 0.843) and placebo (77%), whereas, oxycodone CR (56%) had significantly lower responder rates in comparison to both fulranumab (3mgQ4wk: p = 0.008; 9mgQ4wk: p = 0.012) and placebo (p = 0.0021). Secondary efficacy results were consistent with primary. None of the joint replacements (four in three patients) were adjudicated as rapidly progressing OA/osteonecrosis. CONCLUSION Low sample size because of early termination make interpretation of this study difficult, but fulranumab monotherapy resulted in significantly better pain relief and function compared with oxycodone CR (but not against placebo) and was generally well-tolerated. TRIAL REGISTRATION ClinicalTrials.gov: NCT01094262.
Collapse
Affiliation(s)
- A J Mayorga
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | - S Wang
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | - K M Kelly
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | - J Thipphawong
- Janssen Research & Development, LLC, Fremont, CA, USA
| |
Collapse
|
36
|
Kim JS, Ahmadinia K, Li X, Hamilton JL, Andrews S, Haralampus CA, Xiao G, Sohn HM, You JW, Seo YS, Stein GS, Wijnen AJV, Kim SG, Im HJ. Development of an Experimental Animal Model for Lower Back Pain by Percutaneous Injury-Induced Lumbar Facet Joint Osteoarthritis. J Cell Physiol 2015; 230:2837-47. [PMID: 25858171 PMCID: PMC4516599 DOI: 10.1002/jcp.25015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 01/07/2023]
Abstract
We report generation and characterization of pain-related behavior in a minimally invasive facet joint degeneration (FJD) animal model in rats. FJD was produced by a non-open percutaneous puncture-induced injury on the right lumbar FJs at three consecutive levels. Pressure hyperalgesia in the lower back was assessed by measuring the vocalization response to pressure from a force transducer. After hyperalgesia was established, pathological changes in lumbar FJs and alterations of intervertebral foramen size were assessed by histological and imaging analyses. To investigate treatment options for lumber FJ osteoarthritis-induced pain, animals with established hyperalgesia were administered with analgesic drugs, such as morphine, a selective COX-2 inhibitor, a non-steroidal anti-inflammatory drug (NSAID) (ketorolac), or pregabalin. Effects were assessed by behavioral pain responses. One week after percutaneous puncture-induced injury of the lumbar FJs, ipsilateral primary pressure hyperalgesia developed and was maintained for at least 12 weeks without foraminal stenosis. Animals showed decreased spontaneous activity, but no secondary hyperalgesia in the hind paws. Histopathological and microfocus X-ray computed tomography analyses demonstrated that the percutaneous puncture injury resulted in osteoarthritis-like structural changes in the FJs cartilage and subchondral bone. Pressure hyperalgesia was completely reversed by morphine. The administration of celecoxib produced moderate pain reduction with no statistical significance while the administration of ketorolac and pregabalin produced no analgesic effect on FJ osteoarthritis-induced back pain. Our animal model of non-open percutanous puncture-induced injury of the lumbar FJs in rats shows similar characteristics of low back pain produced by human facet arthropathy.
Collapse
Affiliation(s)
- Jae-Sung Kim
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju 501-759, Republic of Korea
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kasra Ahmadinia
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Xin Li
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - John L Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Chris A. Haralampus
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Guozhi Xiao
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Hong-Moon Sohn
- Department of Orthopaedic Surgery, School of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Jae-Won You
- Department of Orthopaedic Surgery, School of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Yo-Seob Seo
- Department of Oral & Maxillofacial Radiology, School of Dentistry, Chosun University, Gwangju 501-759, Republic of Korea
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont Medical School, Burlington, VT, USA
| | - Andre J Van Wijnen
- Departments of Orthopedic Surgery & Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN
| | - Su-Gwan Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 501-759, Republic of Korea
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Internal Medicine Section of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois, Chicago, IL 60612, USA
- Jesse Brown Veterans Affairs, Chicago, IL 60612
| |
Collapse
|
37
|
Kobayashi T, Yamauchi K, Matsuura Y, Kuniyoshi K, Takahashi K, Ohtori S. The Effects of Generally Administered Anti-Nerve Growth Factor Receptor (p75NTR) Antibody on Pain-Related Behavior, Dorsal Root Ganglia, and Spinal Glia Activation in a Rat Model of Brachial Plexus Avulsion. J Hand Surg Am 2015; 40:2017-25. [PMID: 26321458 DOI: 10.1016/j.jhsa.2015.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/12/2015] [Accepted: 06/12/2015] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the effect of intraperitoneal administration of an anti-p75 neurotrophin receptor (p75NTR) antibody on reducing neuropathic pain in a rat model of brachial plexus avulsion (BPA). METHODS We randomly assigned 40 male Wistar rats to 4 groups. In the BPA group, the C8-T1 roots were avulsed from the spinal cord at the lower trunk level, and saline was administered intraperitoneally. In the anti-p75NTR groups, 1 μL or 50 μL anti-p75NTR antibody was administered intraperitoneally after avulsion. In the sham-operated group, the lower trunk level was exposed, and saline was administered intraperitoneally. Mechanical hyperalgesia and pain-induced walking patterns were measured using von Frey filaments and CatWalk gait analysis at various time points until 15 days after administration. At 3 and 15 days after administration, sensory neurons involved in pain perception and satellite glial cells in the ipsilateral C7 dorsal root ganglia were immunolabeled with antibodies against calcitonin gene-related peptide and glial fibrillary acidic protein (GFAP), respectively. At both time points, microglial and astrocyte activation, indicative of spinal pain transmission, were immunohistochemically examined in the ipsilateral dorsal horn of the spinal cord (C7) using anti-ionized calcium-binding adaptor molecule 1 and anti-GFAP antibodies, respectively. RESULTS The gait pattern was significantly improved in both anti-p75NTR groups compared with the BPA group. There were significantly fewer calcitonin gene-related peptide-immunoreactive (IR) neurons, neurons encircled by GFAP-IR satellite glial cells, and GFAP-IR astrocytes in both anti-p75NTR groups compared with the BPA group at both time points. Fewer ionized calcium-binding adaptor molecule 1-IR microglia were quantified in both anti-p75NTR groups compared with the BPA group, but this was only significant at 15 days after administration. CONCLUSIONS Systemic application of the p75NTR inhibitory antibody suppressed neuropathic pain after BPA. CLINICAL RELEVANCE p75NTR may be a potential therapeutic target for the clinical treatment of neuropathic pain in BPA injury.
Collapse
Affiliation(s)
- Tomoko Kobayashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Kazuyo Yamauchi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Matsuura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuki Kuniyoshi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhisa Takahashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
38
|
Abstract
UNLABELLED Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are highly homologous yet distinct components of signal transduction pathways known to regulate cell survival and function. Recent evidence indicates an isoform-specific role for ERK2 in pain processing and peripheral sensitization. However, the function of ERK2 in primary sensory neurons has not been directly tested. To dissect the isoform-specific function of ERK2 in sensory neurons, we used mice with Cre-loxP-mediated deletion of ERK2 in Nav1.8(+) sensory neurons that are predominantly nociceptors. We find that ERK2, unlike ERK1, is required for peripheral sensitization and cold sensation. We also demonstrate that ERK2, but not ERK1, is required to preserve epidermal innervation in a subset of peptidergic neurons. Additionally, deletion of both ERK isoforms in Nav1.8(+) sensory neurons leads to neuron loss not observed with deletion of either isoform alone, demonstrating functional redundancy in the maintenance of sensory neuron survival. Thus, ERK1 and ERK2 exhibit both functionally distinct and redundant roles in sensory neurons. SIGNIFICANCE STATEMENT ERK1/2 signaling affects sensory neuron function and survival. However, it was not clear whether ERK isoform-specific roles exist in these processes postnatally. Previous work from our laboratory suggested either functional redundancy of ERK isoforms or a predominant role for ERK2 in pain; however, the tools to discriminate between these possibilities were not available at the time. In the present study, we use new genetic knock-out lines to demonstrate that ERK2 in sensory neurons is necessary for development of inflammatory pain and for postnatal maintenance of peptidergic epidermal innervation. Interestingly, postnatal loss of both ERK isoforms leads to a profound loss of sensory neurons. Therefore, ERK1 and ERK2 display both functionally distinct and redundant roles in sensory neurons.
Collapse
|
39
|
Merighi A. Targeting the glial-derived neurotrophic factor and related molecules for controlling normal and pathologic pain. Expert Opin Ther Targets 2015; 20:193-208. [PMID: 26863504 DOI: 10.1517/14728222.2016.1085972] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Glial-derived neurotrophic factor (GDNF) and its family of ligands (GFLs) have several functions in the nervous system. As a survival factor for dopaminergic neurons, GDNF was used in clinical trials for Parkinson's disease. GFLs and their receptors are also potential targets for new pain-controlling drugs. Although molecules with analgesic activities in rodents mostly failed to be effective in translational studies, this potential should not be underestimated. AREAS COVERED The circuitry, molecular, and cellular mechanisms by which GFLs control nociception and their intervention in inflammatory and neuropathic pain are considered first. The problems related to effective GDNF delivery to the brain and the possibility to target the GFL receptor complex rather than its ligands are then discussed, also considering the use of non-peptidyl agonists. EXPERT OPINION In nociceptive pathways, an ideal drug should either: i) target the release of endogenous GFLs from large dense-cored vesicles (LGVs) by acting, for example, onto the phosphatidylinositol-3-phosphate [PtdIns(3)P] pool, which is sensitive to Ca(2+) modulation, or ii) target the GFL receptor complex. Besides XIB403, a tiol molecule that enhances GFRα family receptor signaling, existing drugs such as retinoic acid and amitriptyline should be considered for effective targeting of GDNF, at least in neuropathic pain. The approach of pain modeling in experimental animals is discussed.
Collapse
Affiliation(s)
- Adalberto Merighi
- a University of Turin, Department of Veterinary Sciences , Grugliasco, TO, Italy ;
| |
Collapse
|
40
|
Goodin BR, Anderson AJB, Freeman EL, Bulls HW, Robbins MT, Ness TJ. Intranasal Oxytocin Administration is Associated With Enhanced Endogenous Pain Inhibition and Reduced Negative Mood States. Clin J Pain 2015; 31:757-767. [PMID: 25370147 DOI: 10.1097/ajp.0000000000000166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study examined whether the administration of intranasal oxytocin was associated with pain sensitivity, endogenous pain inhibitory capacity, and negative mood states. MATERIALS AND METHODS A total of 30 pain-free, young adults each completed 3 laboratory sessions on consecutive days. The first session (baseline) assessed ischemic pain sensitivity, endogenous pain inhibition via conditioned pain modulation (CPM), and negative mood using the Profile of Mood States. CPM was tested on the dominant forearm and ipsilateral masseter muscle using algometry (test stimulus) and the cold pressor task (conditioning stimulus; nondominant hand). For the second and third sessions, participants initially completed the State-Trait Anxiety Inventory and then self-administered a single (40 IU/1 mL) dose of intranasal oxytocin or placebo in a randomized counterbalanced order. Thirty minutes postadministration, participants again completed the State-Trait Anxiety Inventory and repeated assessments of ischemic pain sensitivity and CPM followed by the Profile of Mood States. RESULTS Findings demonstrated that ischemic pain sensitivity did not significantly differ across the 3 study sessions. CPM at the masseter, but not the forearm, was significantly greater following administration of oxytocin compared to placebo. Negative mood was also significantly lower following administration of oxytocin compared to placebo. Similarly, anxiety significantly decreased following administration of oxytocin but not placebo. DISCUSSION This study incorporated a placebo-controlled, double-blind, within-subjects crossover design with randomized administration of intranasal oxytocin and placebo. The data suggest that the administration of intranasal oxytocin may augment endogenous pain inhibitory capacity and reduce negative mood states including anxiety.
Collapse
Affiliation(s)
- Burel R Goodin
- Departments of Psychology.,Anesthesiology, University of Alabama at Birmingham
| | | | | | | | | | | |
Collapse
|
41
|
Laste G, Ripoll Rozisky J, Caumo W, Lucena da Silva Torres I. Short- but not long-term melatonin administration reduces central levels of brain-derived neurotrophic factor in rats with inflammatory pain. Neuroimmunomodulation 2015; 22:358-64. [PMID: 25871298 DOI: 10.1159/000380912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To evaluate the effect of short- and long-term administration of melatonin on central brain-derived neurotrophic factor (BDNF) levels in rats with acute and chronic inflammatory pain. METHODS The animals were allocated to one of two experiments: experiment 1 or experiment 2. In experiment 1, all animals were injected with complete Freund's adjuvant (CFA) to induce inflammation and were randomly allocated to receiving melatonin (60 mg/kg) or vehicle. Injections were administered 1 h after CFA and once daily for 2 more days (for a total of 3 days of melatonin administration). In experiment 2, fifteen days after CFA injection, the animals were treated with melatonin (50 mg/kg) or vehicle for 8 days. The animals were killed by decapitation 24 h after the last melatonin or vehicle administration, and an ELISA assay was performed to detect BDNF expression in the spinal cord, brainstem, and prefrontal cortex of the rats in both groups. Data were analyzed using Student's t test and the results are expressed as means ± SEM. RESULTS In the first experiment, the BDNF levels of the melatonin group were reduced in the prefrontal cortex (Student's t test, p = 0.01) and increased in the spinal cord (Student's t test, p = 0.04). In experiment 2, BDNF levels were similar in both groups for all structures (Student's t test, p > 0.00 for all). A two-way ANOVA reveled a significant effect of structures (p = 0.0001) but not of treatment (p > 0.05). The prefrontal cortex presented higher BDNF levels than other structures (ANOVA/Student-Newman-Keuls test, p = 0.0001). Considering the relationship between BDNF levels in all three structures, we found an effect of central nervous system structures (p = 0.01) and an interaction between treatment and structures (p = 0.04). CONCLUSION The high spinal cord BDNF levels and the low prefrontal cortical BDNF levels observed in rats with acute CFA-induced inflammation following short-term melatonin administration may be related to the pain-modulating and neuroprotective effects of this protein. Long-term melatonin administration did not alter BDNF levels in chronic inflammation.
Collapse
Affiliation(s)
- Gabriela Laste
- Pain Pharmacology and Neuromodulation, Animal Models Laboratory, Pharmacology Department, Instituto de Cix00EA;ncias Bx00E1;sicas da Sax00FA;de, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | |
Collapse
|
42
|
Fukuda Y, Fukui T, Hikichi C, Ishikawa T, Murate K, Adachi T, Imai H, Fukuhara K, Ueda A, Kaplan AP, Mutoh T. Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res 2014; 1596:13-21. [PMID: 25454796 DOI: 10.1016/j.brainres.2014.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022]
Abstract
Activation of the high-affinity nerve growth factor (NGF) receptor Trk occurs through multiple processes consisted of translocation and clustering within the plasma membrane lipid rafts, dimerization and autophosphorylation. Here we found that a nonprotein extract of inflamed rabbit skin inoculated with vaccinia virus (Neurotropin(®)) enhanced efficiency of NGF signaling. In rat pheochromocytoma PC12 cells overexpressing Trk (PCtrk cells), Neurotropin augmented insufficient neurite outgrowth observed at suboptimal concentration of NGF (2ng/mL) in a manner depending on Trk kinase activity. Cellular exposure to Neurotropin resulted in an accumulation of Trk-GM1 complexes without affecting dimerization or phosphorylation states of Trk. Following NGF stimulation, Neurotropin significantly facilitated the time course of NGF-induced Trk autophosphorylation. These observations provide a unique mechanism controlling efficiency of NGF signaling, and raise the therapeutic potential of Neurotropin for various neurological conditions associated with neurotrophin dysfunction.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan; Division of Pulmonary and Critical Care Medicine, Allergy and Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Nippon-Zoki Pharmaceutical Co., Ltd., Osaka 564-0052, Japan
| | - Takao Fukui
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Chika Hikichi
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Tomomasa Ishikawa
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Kenichiro Murate
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takeshi Adachi
- Nippon-Zoki Pharmaceutical Co., Ltd., Osaka 564-0052, Japan
| | - Hideki Imai
- Nippon-Zoki Pharmaceutical Co., Ltd., Osaka 564-0052, Japan
| | - Koki Fukuhara
- The National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; Nippon-Zoki Pharmaceutical Co., Ltd., Osaka 564-0052, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Allen P Kaplan
- Division of Pulmonary and Critical Care Medicine, Allergy and Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tatsuro Mutoh
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
43
|
Lerch JK, Puga DA, Bloom O, Popovich PG. Glucocorticoids and macrophage migration inhibitory factor (MIF) are neuroendocrine modulators of inflammation and neuropathic pain after spinal cord injury. Semin Immunol 2014; 26:409-14. [DOI: 10.1016/j.smim.2014.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022]
|
44
|
Kayano T, Kitamura N, Moriya T, Kuwahara T, Komagiri Y, Toescu EC, Shibuya I. Chronic NGF treatment induces somatic hyperexcitability in cultured dorsal root ganglion neurons of the rat. Biomed Res 2014; 34:329-42. [PMID: 24389409 DOI: 10.2220/biomedres.34.329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Adult rat dorsal root ganglion (DRG) neurons cultured in the presence of 100-ng/mL NGF were reported to show spontaneous action potentials in the cell-attached recording. In this study, underlying mechanisms were examined in the whole-cell and outside-out voltage clamp recording. In 75% neurons with on-cell firing, transient inward current spikes were repetitively recorded in the voltage clamp mode at -50 mV in the whole-cell configuration (named "Isp"). Isp with stable amplitudes occurred in an all-or-none fashion, and was abolished by TTX (< 100 nM), lidocaine (< 1 mM) and a reduction of extracellular Na(+) (154 to 100 mM) in an all-or-none fashion, suggesting that Isp reflects spontaneous dicharges occurring at the loosely voltage-clamped regions. Isp was also observed in the excised outside-out patches and the kinetics and the sensitivity to TTX and lidocaine resembled those in the whole-cell. Spontaneous action potentials were also recorded in the current clamp mode. Small subthreshold spikes often preceded the action potentials. When the localized discharge affected a whole-somatic membrane potential to overcome a threshold, the action potential generated. These results indicate that the triggering sources of the action potential exist in the somatic membrane itself in NGF-treated DRG neurons.
Collapse
Affiliation(s)
- Tomohiko Kayano
- Laboratory of Veterinary Physiology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Raju HB, Englander Z, Capobianco E, Tsinoremas NF, Lerch JK. Identification of potential therapeutic targets in a model of neuropathic pain. Front Genet 2014; 5:131. [PMID: 24904634 PMCID: PMC4033210 DOI: 10.3389/fgene.2014.00131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/24/2014] [Indexed: 01/18/2023] Open
Abstract
Neuropathic pain (NP) is caused by damage to the nervous system, resulting in dysfunction and aberrant pain. The cellular functions (e.g., peripheral neuron spinal cord innervation, neuronal excitability) associated with NP often develop over time and are likely associated with gene expression changes. Gene expression studies on the cells involved in NP (e.g., sensory dorsal root ganglion neurons) are publically available; the mining of these studies may enable the identification of novel targets and the subsequent development of therapies that are essential for improving quality of life for the millions of individuals suffering with NP. Here we analyzed a publically available microarray dataset (GSE30165) in order to identify new RNAs (e.g., messenger RNA (mRNA) isoforms and non-coding RNAs) underlying NP. GSE30165 profiled gene expression in dorsal root ganglion neurons (DRG) and in sciatic nerve (SN) after resection, a NP model. Gene ontological analysis shows enrichment for sensory and neuronal processes. Protein network analysis demonstrates DRG upregulated genes typical to an injury and NP response. Of the top changing genes, 34 and 36% are associated with more than one protein coding isoform in the DRG and SN, respectively. The majority of genes are receptor and enzymes. We identified 15 long non-coding RNAs (lncRNAs) targeting these genes in LNCipedia.org, an online comprehensive lncRNA database. These RNAs represent new therapeutic targets for preventing NP development and this approach demonstrates the feasibility of data reanalysis for their identification.
Collapse
Affiliation(s)
- Hemalatha B Raju
- Center for Computational Science, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA ; Human Genetics and Genomics Graduate Program, University of Miami Miller School of Medicine Miami, FL, USA
| | - Zoe Englander
- Department of Biomedical Engineering, Duke University Durham, NC, USA
| | - Enrico Capobianco
- Center for Computational Science, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA ; Laboratory of Integrative Systems Medicine, National Research Council (CNR) Pisa, Italy
| | - Nicholas F Tsinoremas
- Center for Computational Science, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - Jessica K Lerch
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, The Ohio State University Columbus, OH, USA
| |
Collapse
|
46
|
Chen YW, Tzeng JI, Lin MF, Hung CH, Wang JJ. Forced treadmill running suppresses postincisional pain and inhibits upregulation of substance P and cytokines in rat dorsal root ganglion. THE JOURNAL OF PAIN 2014; 15:827-34. [PMID: 24854064 DOI: 10.1016/j.jpain.2014.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 04/07/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022]
Abstract
UNLABELLED Exercise causes a variety of psychophysical effects (eg, alterations in pain sensation). Tissue injury induces mediator releases in the spinal cord resulting in pain hypersensitivity; however, the contribution of the dorsal root ganglion (DRG) is poorly understood. In this study, we tested if forced treadmill running can attenuate postoperative pain and alter substance P (SP) or proinflammatory cytokine level in the DRG by using a rat model of skin/muscle incision and retraction (SMIR). We evaluated mechanical sensitivity to von Frey stimuli (6 and 15 g) and expression of SP, interleukin-1β, and interleukin-6 in the DRG of sham-operated sedentary rats, SMIR sedentary rats, sham-operated rats with forced treadmill running, and SMIR rats with forced treadmill running. At postoperative day 8, trained rats ran for 5 days per week for 4 weeks on a treadmill 70 minutes/d with an intensity of 18 m/min. On postoperative day 6, SMIR sedentary rats displayed a significant mechanical hypersensitivity that persisted until postoperative day 35. By comparison, SMIR-operated rats, which received forced treadmill running, exhibited a quick recovery from mechanical hypersensitivity. SMIR sedentary rats showed an upregulation of SP, interleukin-1β, and interleukin-6 in the DRG at postoperative days 14 and 28, whereas SMIR-operated rats receiving forced treadmill running reversed this upregulation at postoperative day 28. We concluded that forced treadmill running alleviated persistent postincisional pain caused by SMIR surgery. This appears to be protective against postoperative pain, which probably relates to the downturn in excess SP, interleukin-1β, and interleukin-6 in the DRG. PERSPECTIVE Controlling the expression of SP, interleukin-6, and interleukin-1β in the DRG can help manage postoperative pain. This finding could potentially help clinicians and physical therapists who seek to examine how exercise may attenuate postsurgical pain and its mechanism.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan; Department of Medical Research, Chi-Mei Medical Center, Yongkang, Tainan City, Taiwan
| | - Jann-Inn Tzeng
- Department of Food Sciences and Technology, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan; Department of Anesthesiology, Chi-Mei Medical Center, Yongkang, Tainan City, Taiwan
| | - Min-Fei Lin
- Institute & Department of Physical Therapy, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Hsia Hung
- Institute & Department of Physical Therapy, National Cheng Kung University, Tainan City, Taiwan.
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Yongkang, Tainan City, Taiwan
| |
Collapse
|
47
|
Santos FM, Grecco LH, Pereira MG, Oliveira ME, Rocha PA, Silva JT, Martins DO, Miyabara EH, Chacur M. The neural mobilization technique modulates the expression of endogenous opioids in the periaqueductal gray and improves muscle strength and mobility in rats with neuropathic pain. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2014; 10:19. [PMID: 24884961 PMCID: PMC4050394 DOI: 10.1186/1744-9081-10-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/15/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND The neural mobilization (NM) technique is a noninvasive method that has been proven to be clinically effective in reducing pain; however, the molecular mechanisms involved remain poorly understood. The aim of this study was to analyze whether NM alters the expression of the mu-opioid receptor (MOR), the delta-opioid receptor (DOR) and the Kappa-opioid receptor (KOR) in the periaqueductal gray (PAG) and improves locomotion and muscle force after chronic constriction injury (CCI) in rats. METHODS The CCI was imposed on adult male rats followed by 10 sessions of NM every other day, starting 14 days after the CCI injury. At the end of the sessions, the PAG was analyzed using Western blot assays for opioid receptors. Locomotion was analyzed by the Sciatic functional index (SFI), and muscle force was analyzed by the BIOPAC system. RESULTS An improvement in locomotion was observed in animals treated with NM compared with injured animals. Animals treated with NM showed an increase in maximal tetanic force of the tibialis anterior muscle of 172% (p < 0.001) compared with the CCI group. We also observed a decrease of 53% (p < 0.001) and 23% (p < 0.05) in DOR and KOR levels, respectively, after CCI injury compared to those from naive animals and an increase of 17% (p < 0.05) in KOR expression only after NM treatment compared to naive animals. There were no significant changes in MOR expression in the PAG. CONCLUSION These data provide evidence that a non-pharmacological NM technique facilitates pain relief by endogenous analgesic modulation.
Collapse
Affiliation(s)
- Fabio Martinez Santos
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo 05508-000 SP, Brazil
- Special Laboratory of Pain and Signaling, Butantan Institute, University of São Paulo, Av. Vital Brasil, 1500, Butantã 05503-900 SP, Brazil
- Department of Anatomy, Laboratory of Skeletal Muscle Plasticity, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, 05508-000 São Paulo, SP, Brazil
- Department of Health Sciences, University Nove de Julho, São Paulo, SP, Brazil
| | - Leandro Henrique Grecco
- Special Laboratory of Pain and Signaling, Butantan Institute, University of São Paulo, Av. Vital Brasil, 1500, Butantã 05503-900 SP, Brazil
| | - Marcelo Gomes Pereira
- Department of Anatomy, Laboratory of Skeletal Muscle Plasticity, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, 05508-000 São Paulo, SP, Brazil
| | - Mara Evany Oliveira
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo 05508-000 SP, Brazil
| | - Priscila Abreu Rocha
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo 05508-000 SP, Brazil
| | - Joyce Teixeira Silva
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo 05508-000 SP, Brazil
| | - Daniel Oliveira Martins
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo 05508-000 SP, Brazil
| | - Elen Haruka Miyabara
- Department of Anatomy, Laboratory of Skeletal Muscle Plasticity, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, 05508-000 São Paulo, SP, Brazil
| | - Marucia Chacur
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo 05508-000 SP, Brazil
| |
Collapse
|
48
|
Onofrj M, Ciccocioppo F, Varanese S, di Muzio A, Calvani M, Chiechio S, Osio M, Thomas A. Acetyl-L-carnitine: from a biological curiosity to a drug for the peripheral nervous system and beyond. Expert Rev Neurother 2014; 13:925-36. [DOI: 10.1586/14737175.2013.814930] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
The effect of Anti-NGF receptor (p75 Neurotrophin Receptor) antibodies on nociceptive behavior and activation of spinal microglia in the rat brachial plexus avulsion model. Spine (Phila Pa 1976) 2013; 38:E332-8. [PMID: 23324933 DOI: 10.1097/brs.0b013e318285ee20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN We measured the response of the behavior and spinal glial activation to anti-nerve growth factor receptor (p75 neurotrophin receptor [p75NTR]) antibodies in the rat brachial plexus avulsion (BPA) model. OBJECTIVE The aim of this study was to investigate the effect of anti-p75NTR antibodies on nociceptive behavior and activation of spinal microglia in the rat BPA model. SUMMARY OF BACKGROUND DATA Tanezumab (anti-nerve growth factor antibody) treatment is associated with pain reduction and improvement in function, but with several complications. METHODS Thirty male Wistar rats were used. In the BPA group, the C8-T1 roots were avulsed from the spinal cord with forceps at the lower trunk level and 10 μL of saline was applied locally (n = 10). In the anti-p75NTR group, the C8-T1 roots were avulsed and 10 μL of anti-p75NTR antibody was applied locally (n = 10). In a sham-operated group, the lower trunk was simply exposed (n = 10). Mechanical hyperalgesia and pain-induced walking patterns were measured using von Frey filaments (Stoelting, Wood Dale, IL) and the CatWalk gait analysis (Noldus Information Technology, the Netherlands) system every third day for 3 weeks. Activation of astrocytes and microglia was immunohistochemically examined in the spinal cord using anti-glial fibrillary acidic protein (GFAP) and anti-Iba1 antibodies both 7 and 21 days after surgery. RESULTS Animals in the BPA group displayed significant mechanical hyperalgesia that continued through day 21 compared with animals in the sham-operated group, and mechanical hyperalgesia in the anti-p75NTR group was significantly improved 6 days after the operation. Regarding pain-induced gait analysis via CatWalk, animals in the BPA group displayed a significantly greater pain-like gait pattern than the p75 group for up to 3 weeks. Levels of GFAP-immunoreactive astrocytes and Iba1-immunoreactive microglia in the anti-p75NTR group were significantly reduced compared with the BPA group. CONCLUSION Our results suggest that p75NTR contributes to neuropathic pain associated with BPA, and that inhibition of p75NTR reduces neuropathic pain. LEVEL OF EVIDENCE N/A.
Collapse
|
50
|
Eibl JK, Abdallah Z, Kennedy AE, Scott JA, Ross GM. Affinity Crosslinking of Y1036 to Nerve Growth Factor Identifies Pharmacological Targeting Domain for Small Molecule Neurotrophin Antagonists. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/nm.2013.44043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|