1
|
Kinsella JA, Debant M, Parsonage G, Morley LC, Bajarwan M, Revill C, Foster R, Beech DJ. Pharmacology of PIEZO1 channels. Br J Pharmacol 2024; 181:4714-4732. [PMID: 39402010 DOI: 10.1111/bph.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
PIEZO1 is a eukaryotic membrane protein that assembles as trimers to form calcium-permeable, non-selective cation channels with exquisite capabilities for mechanical force sensing and transduction of force into effect in diverse cell types that include blood cells, endothelial cells, epithelial cells, fibroblasts and stem cells and diverse systems that include bone, lymphatics and muscle. The channel has wide-ranging roles and is considered as a target for novel therapeutics in ailments spanning cancers and cardiovascular, dental, gastrointestinal, hepatobiliary, infectious, musculoskeletal, nervous system, ocular, pregnancy, renal, respiratory and urological disorders. The identification of PIEZO1 modulators is in its infancy but useful experimental tools emerged for activating, and to a lesser extent inhibiting, the channels. Elementary structure-activity relationships are known for the Yoda series of small molecule agonists, which show the potential for diverse physicochemical and pharmacological properties. Intriguing effects of Yoda1 include the stimulated removal of excess cerebrospinal fluid. Despite PIEZO1's broad expression, opportunities are suggested for selective positive or negative modulation without intolerable adverse effects. Here we provide a focused, non-systematic, narrative review of progress with this pharmacology and discuss potential future directions for research in the area.
Collapse
Affiliation(s)
- Jacob A Kinsella
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
| | - Marjolaine Debant
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Gregory Parsonage
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Lara C Morley
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Muath Bajarwan
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | | | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Liu X, Thistlethwaite S, Kholiya R, Pierscianowski J, Saliba KJ, Auclair K. Chemical synthesis and enzymatic late-stage diversification of novel pantothenate analogues with antiplasmodial activity. Eur J Med Chem 2024; 280:116902. [PMID: 39423490 DOI: 10.1016/j.ejmech.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
The emergence of resistance to nearly every therapeutic agent directed against malaria-causing Plasmodium parasites emphasises the dire need for new antimalarials. Despite their high potency and low cytotoxicity in vitro, the clinical use of pantothenamides is hindered by pantetheinase-mediated hydrolysis in human serum. We herein report the chemical synthesis and biological activity of a new series of pantothenamide analogues in which the labile amide group is replaced with an isoxazole ring. In addition, we utilised, for the first time, enzymatic late-stage diversification to generate additional isoxazole-containing pantothenamide-mimics. Thirteen novel isoxazole-containing pantothenamide-mimics were generated, several of which display nanomolar antiplasmodial activity against Plasmodium falciparum and are non-toxic to human cells in vitro. Although the derivatives generated via late-stage diversification are less potent than the parent compounds, the most potent still exerted its activity via a mechanism that interferes with the pantothenate-utilising process and appears to be nontoxic to human cells. This increases the appeal of using late-stage diversification to modify pantothenamide-mimics, potentially leading to compounds with improved antiplasmodial and/or pharmacological properties.
Collapse
Affiliation(s)
- Xiangning Liu
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Sian Thistlethwaite
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 0B8
| | - Rohit Kholiya
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 0B8
| | | | - Kevin J Saliba
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 0B8.
| |
Collapse
|
3
|
Withers-Martinez C, Lidumniece E, Hackett F, Collins CR, Taha Z, Blackman MJ, Jirgensons A. Peptidic Boronic Acid Plasmodium falciparum SUB1 Inhibitors with Improved Selectivity over Human Proteasome. J Med Chem 2024; 67:13033-13055. [PMID: 39051854 PMCID: PMC7616463 DOI: 10.1021/acs.jmedchem.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Plasmodium falciparum subtilisin-like serine protease 1 (PfSUB1) is essential for egress of invasive merozoite forms of the parasite, rendering PfSUB1 an attractive antimalarial target. Here, we report studies aimed to improve drug-like properties of peptidic boronic acid PfSUB1 inhibitors including increased lipophilicity and selectivity over human proteasome (H20S). Structure-activity relationship investigations revealed that lipophilic P3 amino acid side chains as well as N-capping groups were well tolerated in retaining PfSUB1 inhibitory potency. At the P1 position, replacing the methyl group with a carboxyethyl substituent led to boralactone PfSUB1 inhibitors with remarkably improved selectivity over H20S. Combining lipophilic end-capping groups with the boralactone reduced the selectivity over H20S. However, compound 4c still showed >60-fold selectivity versus H20S and low nanomolar PfSUB1 inhibitory potency. Importantly, this compound inhibited the growth of a genetically modified P. falciparum line expressing reduced levels of PfSUB1 13-fold more efficiently compared to a wild-type parasite line.
Collapse
Affiliation(s)
| | | | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Zahie Taha
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | | |
Collapse
|
4
|
Ribeiro Franco PI, do Carmo Neto JR, Guerra RO, Ferreira da Silva PE, Braga YLL, Nunes Celes MR, de Menezes LB, Miguel MP, Machado JR. Melatonin: A look at protozoal and helminths. Biochimie 2024; 219:96-109. [PMID: 37541568 DOI: 10.1016/j.biochi.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Melatonin is a pleiotropic neurohormone found in different animal, plant, and microorganism species. It is a product resulting from tryptophan metabolism in the pineal gland and is widely known for its ability to synchronize the circadian rhythm to antitumor functions in different types of cancers. The molecular mechanisms responsible for its immunomodulatory, antioxidant and cytoprotective effects involve binding to high-affinity G protein-coupled receptors and interactions with intracellular targets that modulate signal transduction pathways. In vitro and in vivo studies have reported the therapeutic potential of melatonin in different infectious and parasitic diseases. In this review, the protective and pathophysiological roles of melatonin in fighting protozoan and helminth infections and the possible mechanisms involved against these stressors will be discussed.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - José Rodrigues do Carmo Neto
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rhanoica Oliveira Guerra
- Departamento de Biologia Celular, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Priscilla Elias Ferreira da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Yarlla Loyane Lira Braga
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Mara Rúbia Nunes Celes
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Liliana Borges de Menezes
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil; Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marina Pacheco Miguel
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil; Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
5
|
Devi G, Gorki V, Walter NS, Sivangula S, Sobhia ME, Jachak S, Puri R, Kaur S. Exploring the efficacy of ethnomedicinal plants of Himalayan region against the malaria parasite. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117394. [PMID: 37967777 DOI: 10.1016/j.jep.2023.117394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plasmodium falciparum multi-drug resistant (MDR) strains are a great challenge to global health care. This predicament implies the urgent need to discover novel antimalarial drugs candidate from alternative natural sources. The Himalaya constitute a rich repository of medicinal plants which have been used traditionally in the folklore medicine since ages and having no scientific evidence for their activity. Crambe kotschyana Boiss. and Eremurus himalaicus Baker are used for their antipyretic and hepatoprotective properties in Kinnaur district of Himachal Pradesh, India. AIM OF THE STUDY This study would investigate the antiplasmodial efficacy of C. kotschyana and E. himalaicus extracts, their fractions and active components using in vitro, in vivo and in silico approaches to provide a scientific insight into their activity. METHODS The methanol extracts of C. kotschyana (CKME) and E. himalaicus (EHME) were prepared by maceration followed by fractionation using ethyl acetate. The isolation of flavonoid glycosides isorhamnetin-3, 7-di-O-glucoside from C. kotschyana and luteolin-6-C-glucoside (isoorientin) from E. himalaicus was carried out by antiplasmodial activity-guided isolation. In vitro antimalarial activity was assessed by WHO method while in vitro cytotoxicity was ascertained employing the MTT assay. Molecular docking and molecular dynamics simulation were performed using the Glide module of Schrödinger Software and Gromacs-2022 software package respectively. In vivo curative activity was assessed by Ryley and Peters method. RESULTS The methanol extracts of both the plants illustrated the best antiplasmodial activity followed by the ethyl acetate fractions. Iso-orientin (IC50 6.49 μg/ml) and Isorhamnetin-3,7-di-O-glucoside (IC50 9.22 μg/ml) illustrated considerable in vitro activity even against P. falciparum resistant strain. Extracts/fractions as well as the isolated compounds were found to be non-toxic with CC50 > 640 μg/ml. Molecular docking studies were performed with these 2 O-glucosides against four malaria targets to understand the binding pose of these molecules and the results suggested that these molecules have selectivity for lactate dehydrogenase enzyme. CKME and EHME exhibited curative activity in vivo along with increase in Mean Survival Time of mice. CONCLUSION The research delineated the scientific evidence that both the therapeutic herbs possessed antimalarial activity and notably, bioactive compounds responsible to exhibit the antimalarial activity have been isolated, identified and characterized. Further studies are underway to assess the antiplasmodial efficacy of isolated compounds alone and in combination with standard antimalarials.
Collapse
Affiliation(s)
- Geeta Devi
- Ethnobotany and Medicinal Plant Laboratory, Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Varun Gorki
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Neha Sylvia Walter
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Srikanth Sivangula
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S Nagar, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S Nagar, Punjab, India
| | - Sanjay Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Richa Puri
- Ethnobotany and Medicinal Plant Laboratory, Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Ponce-Cusi R, Bravo L, Paez KJ, Pinto JA, Pilco-Ferreto N. Host-Pathogen Interaction: Biology and Public Health. Methods Mol Biol 2024; 2751:3-18. [PMID: 38265706 DOI: 10.1007/978-1-0716-3617-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Interactions between host and pathogenic microorganisms are common in nature and have a significant impact on host health, often leading to several types of infections. These interactions have evolved as a result of the ongoing battle between the host's defense mechanisms and the pathogens' invasion strategies. In this chapter, we will explore the evolution of host-pathogen interactions, explore their molecular mechanisms, examine the different stages of interaction, and discuss the development of pharmacological treatments. Understanding these interactions is crucial for improving public health, as it enables us to develop effective strategies to prevent and control infectious diseases. By gaining insights into the intricate dynamics between pathogens and their hosts, we can work towards reducing the burden of such diseases on society.
Collapse
Affiliation(s)
- Richard Ponce-Cusi
- Escuela Profesional de Medicina, Facultad de Ciencias de la Salud, Universidad Nacional de Moquegua, Moquegua, Peru.
| | - Leny Bravo
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Kevin J Paez
- Escuela Profesional de Medicina Humana - Filial Ica, Universidad Privada San Juan Bautista, Ica, Peru
| | - Joseph A Pinto
- Escuela Profesional de Medicina Humana - Filial Ica, Universidad Privada San Juan Bautista, Ica, Peru
| | - Nesstor Pilco-Ferreto
- Unidad de Posgrado. Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| |
Collapse
|
7
|
González JEH, Salas-Sarduy E, Alvarez LH, Valiente PA, Arni RK, Pascutti PG. Three Decades of Targeting Falcipains to Develop Antiplasmodial Agents: What have we Learned and What can be Done Next? Curr Med Chem 2024; 31:2234-2263. [PMID: 37711130 DOI: 10.2174/0929867331666230913165219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Malaria is a devastating infectious disease that affects large swathes of human populations across the planet's tropical regions. It is caused by parasites of the genus Plasmodium, with Plasmodium falciparum being responsible for the most lethal form of the disease. During the intraerythrocytic stage in the human hosts, malaria parasites multiply and degrade hemoglobin (Hb) using a battery of proteases, which include two cysteine proteases, falcipains 2 and 3 (FP-2 and FP-3). Due to their role as major hemoglobinases, FP-2 and FP-3 have been targeted in studies aiming to discover new antimalarials and numerous inhibitors with activity against these enzymes, and parasites in culture have been identified. Nonetheless, cross-inhibition of human cysteine cathepsins remains a serious hurdle to overcome for these compounds to be used clinically. In this article, we have reviewed key functional and structural properties of FP-2/3 and described different compound series reported as inhibitors of these proteases during decades of active research in the field. Special attention is also paid to the wide range of computer-aided drug design (CADD) techniques successfully applied to discover new active compounds. Finally, we provide guidelines that, in our understanding, will help advance the rational discovery of new FP-2/3 inhibitors.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
- Department of Pharmaceutical Sciences, UZA II, University of Vienna, Vienna, 1090, Austria
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo Ugalde, Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | | | - Pedro Alberto Valiente
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | | | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Shepherd RA, Earp CE, Cank KB, Raja HA, Burdette J, Maher SP, Marin AA, Ruberto AA, Mai SL, Darveaux BA, Kyle DE, Pearce CJ, Oberlies NH. Sheptide A: an antimalarial cyclic pentapeptide from a fungal strain in the Herpotrichiellaceae. J Antibiot (Tokyo) 2023; 76:642-649. [PMID: 37731043 PMCID: PMC10602849 DOI: 10.1038/s41429-023-00655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
As part of ongoing efforts to isolate biologically active fungal metabolites, a cyclic pentapeptide, sheptide A (1), was discovered from strain MSX53339 (Herpotrichiellaceae). The structure and sequence of 1 were determined primarily by analysis of 2D NMR and HRMS/MS data, while the absolute configuration was assigned using a modified version of Marfey's method. In an in vitro assay for antimalarial potency, 1 displayed a pEC50 value of 5.75 ± 0.49 against malaria-causing Plasmodium falciparum. Compound 1 was also tested in a counter screen for general cytotoxicity against human hepatocellular carcinoma (HepG2), yielding a pCC50 value of 5.01 ± 0.45 and indicating a selectivity factor of ~6. This makes 1 the third known cyclic pentapeptide biosynthesized by fungi with antimalarial activity.
Collapse
Affiliation(s)
- Robert A Shepherd
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Cody E Earp
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Kristof B Cank
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Joanna Burdette
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Steven P Maher
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Adriana A Marin
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Anthony A Ruberto
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Sarah Lee Mai
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | | | - Dennis E Kyle
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | | | - Nicholas H Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
9
|
Avery VM. Malaria high-content imaging, where to next? Trends Parasitol 2023; 39:718-719. [PMID: 37500332 DOI: 10.1016/j.pt.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
High-content imaging has produced greater insights into the complexities of cell biology. The ability to characterise specific phenotypes, as demonstrated by Rosenthal and Ng, provides a powerful tool for elucidating mechanisms of action and resistance, illustrating that high-content imaging in malaria research is only limited by our creativity.
Collapse
Affiliation(s)
- Vicky M Avery
- Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, Qld 4111, Australia; School of Environment & Sciences, Griffith Sciences, Griffith University, Nathan, Qld 4111, Australia.
| |
Collapse
|
10
|
Kovada V, Withers-Martinez C, Bobrovs R, Ce̅rule H, Liepins E, Grinberga S, Hackett F, Collins CR, Kreicberga A, Jiménez-Díaz MB, Angulo-Barturen I, Rasina D, Suna E, Jaudzems K, Blackman MJ, Jirgensons A. Macrocyclic Peptidomimetic Plasmepsin X Inhibitors with Potent In Vitro and In Vivo Antimalarial Activity. J Med Chem 2023; 66:10658-10680. [PMID: 37505188 PMCID: PMC10424242 DOI: 10.1021/acs.jmedchem.3c00812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 07/29/2023]
Abstract
The Plasmodium falciparum aspartic protease plasmepsin X (PMX) is essential for the egress of invasive merozoite forms of the parasite. PMX has therefore emerged as a new potential antimalarial target. Building on peptidic amino alcohols originating from a phenotypic screening hit, we have here developed a series of macrocyclic analogues as PMX inhibitors. Incorporation of an extended linker between the S1 phenyl group and S3 amide led to a lead compound that displayed a 10-fold improved PMX inhibitory potency and a 3-fold improved half-life in microsomal stability assays compared to the acyclic analogue. The lead compound was also the most potent of the new macrocyclic compounds in in vitro parasite growth inhibition. Inhibitor 7k cleared blood-stage P. falciparum in a dose-dependent manner when administered orally to infected humanized mice. Consequently, lead compound 7k represents a promising orally bioavailable molecule for further development as a PMX-targeting antimalarial drug.
Collapse
Affiliation(s)
- Vadims Kovada
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | | | - Raitis Bobrovs
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Hele̅na Ce̅rule
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Edgars Liepins
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | | | - Fiona Hackett
- Malaria
Biochemistry Laboratory, The Francis Crick
Institute, London NW1 1AT, United
Kingdom
| | - Christine R. Collins
- Malaria
Biochemistry Laboratory, The Francis Crick
Institute, London NW1 1AT, United
Kingdom
| | | | - María Belén Jiménez-Díaz
- The
Art of Discovery SL, Biscay Science and Technology Park, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Iñigo Angulo-Barturen
- The
Art of Discovery SL, Biscay Science and Technology Park, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Dace Rasina
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Edgars Suna
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | | | - Michael J. Blackman
- Malaria
Biochemistry Laboratory, The Francis Crick
Institute, London NW1 1AT, United
Kingdom
- Faculty
of Infectious and Tropical Diseases, London
School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
11
|
Rahmasari FV, Asih PBS, Rozi IE, Wangsamuda S, Risandi R, Dewayanti FK, Permana DH, Syahrani L, Prameswari HD, Basri HH, Bustos MDG, Charunwatthana P, Dondorp AM, Imwong M, Syafruddin D. Evolution of genetic markers for drug resistance after the introduction of dihydroartemisinin-piperaquine as first-line anti-malarial treatment for uncomplicated falciparum malaria in Indonesia. Malar J 2023; 22:231. [PMID: 37553646 PMCID: PMC10410932 DOI: 10.1186/s12936-023-04658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine has been Indonesia's first-line anti-malarial treatment since 2008. Annual therapeutic efficacy studies (TES) done in the last 12 years showed continued high treatment efficacy in uncomplicated Plasmodium falciparum malaria. Although these studies did not show evidence for artemisinin resistance, a slight increase in Late Treatment Failure was observed over time. It is highlight to explore the evolution of genetic markers for ACT partner drug resistance since adopting DHA-PPQ. METHODS Dry blood spots were identified from a mass blood survey of uncomplicated falciparum malaria patients (N = 50) in Sumba from 2010 to 2018. Analysis of genotypic profile (N = 51) and a Therapeutic Efficacy Study (TES) from Papua (N = 142) from 2020 to 2021, 42-day follow-up. PCR correction using msp1, msp2, and glurp was used to distinguish recrudescence and reinfection. Parasite DNA from DBSs was used for genotyping molecular markers for antimalaria drug resistance, including in Pfk13, pfcrt, and pfmdr1, as well as gene copy number variation in pfpm2/3 and pfmdr1. RESULTS The study revealed the absence of SNPs associated with ART resistance and several novel SNPs such as L396F, I526V, M579I and N537S (4.25%). In Sumba, the mutant haplotype SDD of pfmdr1 was found in one-third of the isolates, while only 8.9% in Papua. None of the pfcrt mutations linked to piperaquine resistance were observed, but 71% of isolates had pfcrt I356L. Amplification of the pfpm2/3 genes was in Sumba (17.02%) and Papua (13.7%), while pfmdr1 copy number prevalence was low (3.8%) in both areas. For the TES study, ten recurrences of infection were observed on days 28, 35, and 42. Late parasitological failure (LPF) was observed in 10/117 (8.5%) subjects by microscopy. PCR correction revealed that all nine cases were re-infections and one was confirmed as recrudescence. CONCLUSION This study revealed that DHA-PPQ is still highly effective against P. falciparum. The genetic architecture of the parasite P. falciparum isolates during 2010-2021 revealed single copy of Pfpm2 and pfmdr1 were highly prevalent. The slight increase in DHA-PPQ LTF alerts researchers to start testing other ACTs as alternatives to DHA-PPQ for baseline data in order to get a chance of achieving malaria elimination wants by 2030.
Collapse
Affiliation(s)
- Farindira Vesti Rahmasari
- Graduate Programme in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
- Department of Parasitology, School of Medicine, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia
| | - Puji Budi Setia Asih
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Ismail Ekoprayitno Rozi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Suradi Wangsamuda
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Rifqi Risandi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Farahana Kresno Dewayanti
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Dendi Hadi Permana
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Lepa Syahrani
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | | | - Herdiana H Basri
- World Health Organization, Country Office for Indonesia, Jakarta, Indonesia
| | | | - Prakaykaew Charunwatthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Din Syafruddin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
- Department of Parasitology, Faculty of Medicine, The University of Hasanuddin, Makassar, Indonesia
| |
Collapse
|
12
|
B Henry N, Soulama I, S Sermé S, Bolscher JM, T G Huijs T, S Coulibaly A, Sombié S, Ouédraogo N, Diarra A, Zongo S, Guelbéogo WM, Nébié I, Sirima SB, Tiono AB, Pietro A, Collins KA, Dechering KJ, Bousema T. Assessment of the transmission blocking activity of antimalarial compounds by membrane feeding assays using natural Plasmodium falciparum gametocyte isolates from West-Africa. PLoS One 2023; 18:e0284751. [PMID: 37494413 PMCID: PMC10370769 DOI: 10.1371/journal.pone.0284751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/07/2023] [Indexed: 07/28/2023] Open
Abstract
Antimalarial drugs that can block the transmission of Plasmodium gametocytes to mosquito vectors would be highly beneficial for malaria elimination efforts. Identifying transmission-blocking drugs currently relies on evaluation of their activity against gametocyte-producing laboratory parasite strains and would benefit from a testing pipeline with genetically diverse field isolates. The aims of this study were to develop a pipeline to test drugs against P. falciparum gametocyte field isolates and to evaluate the transmission-blocking activity of a set of novel compounds. Two assays were designed so they could identify both the overall transmission-blocking activity of a number of marketed and experimental drugs by direct membrane feeding assays (DMFA), and then also discriminate between those that are active against the gametocytes (gametocyte killing or sterilizing) or those that block development in the mosquito (sporontocidal). These DMFA assays used venous blood samples from naturally infected Plasmodium falciparum gametocyte carriers and locally reared Anopheles gambiae s.s. mosquitoes. Overall transmission-blocking activity was assessed following a 24 hour incubation of compound with gametocyte infected blood (TB-DMFA). Sporontocidal activity was evaluated following addition of compound directly prior to feeding, without incubation (SPORO-DMFA); Gametocyte viability was retained during 24-hour incubation at 37°C when gametocyte infected red blood cells were reconstituted in RPMI/serum. Methylene-blue, MMV693183, DDD107498, atovaquone and P218 showed potent transmission-blocking activity in the TB-DMFA, and both atovaquone and the novel antifolate P218 were potent inhibitors of sporogonic development in the SPORO-DMA. This work establishes a pipeline for the integral use of field isolates to assess the transmission-blocking capacity of antimalarial drugs to block transmission that should be validated in future studies.
Collapse
Affiliation(s)
- Noëlie B Henry
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Institut de Recherche en Sciences de la Santé (IRSS)/CNRST, Ouagadougou, Burkina Faso
| | - Samuel S Sermé
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | | | - Aboubacar S Coulibaly
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Salif Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Nicolas Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Wamdaogo M Guelbéogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa Nébié
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | | | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alano Pietro
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Katharine A Collins
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherland
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherland
| |
Collapse
|
13
|
Gehlot P, Vyas VK. Recent advances on patents of Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) inhibitors as antimalarial agents. Expert Opin Ther Pat 2023; 33:579-596. [PMID: 37942637 DOI: 10.1080/13543776.2023.2280596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Pyrimidine nucleotides are essential for the parasite's growth and replication. Parasites have only a de novo pathway for the biosynthesis of pyrimidine nucleotides. Dihydroorotate dehydrogenase (DHODH) enzyme is involved in the rate-limiting step of the pyrimidine biosynthesis pathway. DHODH is a biochemical target for the discovery of new antimalarial agents. AREA COVERED This review discussed the development of patented PfDHODH inhibitors published between 2007 and 2023 along with their chemical structures and activities. EXPERT OPINION PfDHODH enzyme is involved in the rate-limiting fourth step of the pyrimidine biosynthesis pathway. Thus, inhibition of PfDHODH using species-selective inhibitors has drawn much attention for treating malaria because they inhibit parasite growth without affecting normal human functions. Looking at the current scenario of antimalarial drug resistance with most of the available antimalarial drugs, there is a huge need for targeted newer agents. Newer agents with unique mechanisms of action may be devoid of drug toxicity, adverse effects, and the ability of parasites to quickly gain resistance, and PfDHODH inhibitors can be those newer agents. Many PfDHODH inhibitors were patented in the past, and the dependency of Plasmodium on de novo pyrimidine provided a new approach for the development of novel antimalarial agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
14
|
Kreutzfeld O, Tumwebaze PK, Okitwi M, Orena S, Byaruhanga O, Katairo T, Conrad MD, Rasmussen SA, Legac J, Aydemir O, Giesbrecht D, Forte B, Campbell P, Smith A, Kano H, Nsobya SL, Blasco B, Duffey M, Bailey JA, Cooper RA, Rosenthal PJ. Susceptibility of Ugandan Plasmodium falciparum Isolates to the Antimalarial Drug Pipeline. Microbiol Spectr 2023; 11:e0523622. [PMID: 37158739 PMCID: PMC10269555 DOI: 10.1128/spectrum.05236-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the ex vivo drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P. falciparum ABC transporter I family member 1, acetyl-CoA synthetase, cytochrome b, dihydroorotate dehydrogenase, elongation factor 2, lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, plasmepsin X, prodrug activation and resistance esterase, and V-type H+ ATPase of 998 fresh P. falciparum clinical isolates collected in eastern Uganda from 2015 to 2022. Drug susceptibilities were assessed by 72-h growth inhibition (half-maximum inhibitory concentration [IC50]) assays using SYBR green. Field isolates were highly susceptible to lead antimalarials, with low- to midnanomolar median IC50s, near values previously reported for laboratory strains, for all tested compounds. However, outliers with decreased susceptibilities were identified. Positive correlations between IC50 results were seen for compounds with shared targets. We sequenced genes encoding presumed targets to characterize sequence diversity, search for polymorphisms previously selected with in vitro drug pressure, and determine genotype-phenotype associations. We identified many polymorphisms in target genes, generally in <10% of isolates, but none were those previously selected in vitro with drug pressure, and none were associated with significantly decreased ex vivo drug susceptibility. Overall, Ugandan P. falciparum isolates were highly susceptible to 19 compounds under development as next-generation antimalarials, consistent with a lack of preexisting or novel resistance-conferring mutations in circulating Ugandan parasites. IMPORTANCE Drug resistance necessitates the development of new antimalarial drugs. It is important to assess the activities of compounds under development against parasites now causing disease in Africa, where most malaria cases occur, and to determine if mutations in these parasites may limit the efficacies of new agents. We found that African isolates were generally highly susceptible to the 19 studied lead antimalarials. Sequencing of the presumed drug targets identified multiple mutations in these genes, but these mutations were generally not associated with decreased antimalarial activity. These results offer confidence that the activities of the tested antimalarial compounds now under development will not be limited by preexisting resistance-mediating mutations in African malaria parasites.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- University of California, San Francisco, San Francisco, California, USA
| | | | - Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Melissa D. Conrad
- University of California, San Francisco, San Francisco, California, USA
| | | | - Jennifer Legac
- University of California, San Francisco, San Francisco, California, USA
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Peter Campbell
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Alasdair Smith
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Hiroki Kano
- Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Mbye H, Bojang F, Jaiteh FK, Jawara A, Njie B, Correa S, D'Alessandro U, Amambua-Ngwa A. Stepwise in vitro screening of MMV pathogen box compounds against Plasmodium falciparum to identify potent antimalarial candidates. Int J Parasitol Drugs Drug Resist 2023; 22:81-87. [PMID: 37329848 PMCID: PMC10394470 DOI: 10.1016/j.ijpddr.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
Development of resistance to deployed antimalarial drugs is inevitable and needs prompt and continuous discovery of novel candidate drugs. Therefore, the antimalarial activity of 125 compounds from the Medicine for Malaria Ventures (MMV) pathogen box was determined. Combining standard IC50 and normalised growth rate inhibition (GR50) analyses, we found 16 and 22 compounds had higher potencies than CQ respectively. Seven compounds with relatively high potencies (low GR50 and IC50) against P. falciparum 3D7 were further analysed. Three of these were tested on 10 natural P. falciparum isolates from The Gambia using our newly developed parasite survival rate assay (PSRA). According to the IC50, GR50 and PSRA analyses, compound MMV667494 was most potent and highly cytotoxic to parasites. MMV010576 was slow acting but more potent than dihydroartemisinin (DHA) 72 h after exposure. MMV634140 was potent against the laboratory-adapted 3D7 isolate, but 4 out of 10 natural Gambian isolates survived and replicated slowly despite 72 h of exposure to the compound, suggesting potential drug tolerance and risk of resistance development. These results emphasise the usefulness of in vitro testing as a starting point for drug discovery. Improved approaches to data analyses and the use of natural isolates will facilitate the prioritisation of compounds for further clinical development.
Collapse
Affiliation(s)
- Haddijatou Mbye
- Medical Research Council at London School of Hygiene and Tropical Medicine, Fajara, P. O. Box 273, Banjul, the Republic of the Gambia; West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, P. O Box LG 54, Accra, Ghana
| | - Fatoumata Bojang
- Medical Research Council at London School of Hygiene and Tropical Medicine, Fajara, P. O. Box 273, Banjul, the Republic of the Gambia
| | - Fatou Kene Jaiteh
- Medical Research Council at London School of Hygiene and Tropical Medicine, Fajara, P. O. Box 273, Banjul, the Republic of the Gambia
| | - Aminata Jawara
- Medical Research Council at London School of Hygiene and Tropical Medicine, Fajara, P. O. Box 273, Banjul, the Republic of the Gambia
| | - Bekai Njie
- Medical Research Council at London School of Hygiene and Tropical Medicine, Fajara, P. O. Box 273, Banjul, the Republic of the Gambia
| | - Simon Correa
- Medical Research Council at London School of Hygiene and Tropical Medicine, Fajara, P. O. Box 273, Banjul, the Republic of the Gambia
| | - Umberto D'Alessandro
- Medical Research Council at London School of Hygiene and Tropical Medicine, Fajara, P. O. Box 273, Banjul, the Republic of the Gambia
| | - Alfred Amambua-Ngwa
- Medical Research Council at London School of Hygiene and Tropical Medicine, Fajara, P. O. Box 273, Banjul, the Republic of the Gambia.
| |
Collapse
|
16
|
Umumararungu T, Nkuranga JB, Habarurema G, Nyandwi JB, Mukazayire MJ, Mukiza J, Muganga R, Hahirwa I, Mpenda M, Katembezi AN, Olawode EO, Kayitare E, Kayumba PC. Recent developments in antimalarial drug discovery. Bioorg Med Chem 2023; 88-89:117339. [PMID: 37236020 DOI: 10.1016/j.bmc.2023.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Although malaria remains a big burden to many countries that it threatens their socio-economic stability, particularly in the countries where malaria is endemic, there have been great efforts to eradicate this disease with both successes and failures. For example, there has been a great improvement in malaria prevention and treatment methods with a net reduction in infection and mortality rates. However, the disease remains a global threat in terms of the number of people affected because it is one of the infectious diseases that has the highest prevalence rate, especially in Africa where the deadly Plasmodium falciparum is still widely spread. Methods to fight malaria are being diversified, including the use of mosquito nets, the target candidate profiles (TCPs) and target product profiles (TPPs) of medicine for malarial venture (MMV) strategy, the search for newer and potent drugs that could reverse chloroquine resistance, and the use of adjuvants such as rosiglitazone and sevuparin. Although these adjuvants have no antiplasmodial activity, they can help to alleviate the effects which result from plasmodium invasion such as cytoadherence. The list of new antimalarial drugs under development is long, including the out of ordinary new drugs MMV048, CDRI-97/78 and INE963 from South Africa, India and Novartis, respectively.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Jean Baptiste Nyandwi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Raymond Muganga
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Innocent Hahirwa
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Alain Nyirimigabo Katembezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Egide Kayitare
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Pierre Claver Kayumba
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
17
|
Pal K, Raza MK, Legac J, Rahman A, Manzoor S, Bhattacharjee S, Rosenthal PJ, Hoda N. Identification, in-vitro anti-plasmodial assessment and docking studies of series of tetrahydrobenzothieno[2,3-d]pyrimidine-acetamide molecular hybrids as potential antimalarial agents. Eur J Med Chem 2023; 248:115055. [PMID: 36621136 DOI: 10.1016/j.ejmech.2022.115055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
Malaria is the most lethal parasitic infections in the world. To address the emergence of drug resistance to current antimalarials, here we report the design and synthesis of new series of tetrahydrobenzothieno[2,3-d]pyrimidine-acetamide hybrids by using multicomponent Petasis reaction as the key step and evaluated in vitro for their antimalarial effectiveness. The structure of all the compounds were confirmed by NMR Spectroscopy and mass spectrometry. Most of the compounds showed potent antimalarial activity against both CQ-sensitive (3D7) and CQ-resistant (W2) strains. A8, A5, and A4 are the most potent compounds that showed excellent anti-plasmodial activity against CQ-resistant strain in the nanomolar range with IC50 values 55.7 nM, 60.8 nM, and 68.0 nM respectively. To assess the parasite selectivity, the in vitro cytotoxicity of selected compounds (A3-A6, A8) was tested against HPL1D cells, demonstrating low cytotoxicity with high selectivity indices. Furthermore, these compounds were also evaluated on two additional human cancerous cell lines (A549 and MDA-MB-231), confirming their anticancer effectiveness. The in vitro hemolysis assay also showed the non-toxicity of these compounds on normal uninfected human RBCs. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The in silico ADMET profiling also revealed promising physicochemical and pharmacokinetic parameters for the most active hybrids, which provide strong vision for further development of potential antimalarials.
Collapse
Affiliation(s)
- Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Abdur Rahman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
18
|
Identifying inhibitors of β-haematin formation with activity against chloroquine-resistant Plasmodium falciparum malaria parasites via virtual screening approaches. Sci Rep 2023; 13:2648. [PMID: 36788274 PMCID: PMC9929333 DOI: 10.1038/s41598-023-29273-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
The biomineral haemozoin, or its synthetic analogue β-haematin (βH), has been the focus of several target-based screens for activity against Plasmodium falciparum parasites. Together with the known βH crystal structure, the availability of this screening data makes the target amenable to both structure-based and ligand-based virtual screening. In this study, molecular docking and machine learning techniques, including Bayesian and support vector machine classifiers, were used in sequence to screen the in silico ChemDiv 300k Representative Compounds library for inhibitors of βH with retained activity against P. falciparum. We commercially obtained and tested a prioritised set of inhibitors and identified the coumarin and iminodipyridinopyrimidine chemotypes as potent in vitro inhibitors of βH and whole cell parasite growth.
Collapse
|
19
|
Yahiya S, Saunders CN, Hassan S, Straschil U, Fischer OJ, Rueda-Zubiaurre A, Haase S, Vizcay-Barrena G, Famodimu MT, Jordan S, Delves MJ, Tate EW, Barnard A, Fuchter MJ, Baum J. A novel class of sulphonamides potently block malaria transmission by targeting a Plasmodium vacuole membrane protein. Dis Model Mech 2023; 16:dmm049950. [PMID: 36715290 PMCID: PMC9934914 DOI: 10.1242/dmm.049950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 01/31/2023] Open
Abstract
Phenotypic cell-based screens are critical tools for discovering candidate drugs for development, yet identification of the cellular target and mode of action of a candidate drug is often lacking. Using an imaging-based screen, we recently discovered an N-[(4-hydroxychroman-4-yl)methyl]-sulphonamide (N-4HCS) compound, DDD01035881, that blocks male gamete formation in the malaria parasite life cycle and subsequent transmission of the parasite to the mosquito with nanomolar activity. To identify the target(s) of DDD01035881, and of the N-4HCS class of compounds more broadly, we synthesised a photoactivatable derivative, probe 2. Photoaffinity labelling of probe 2 coupled with mass spectrometry identified the 16 kDa Plasmodium falciparum parasitophorous vacuole membrane protein Pfs16 as a potential parasite target. Complementary methods including cellular thermal shift assays confirmed that the parent molecule DDD01035881 stabilised Pfs16 in lysates from activated mature gametocytes. Combined with high-resolution, fluorescence and electron microscopy data, which demonstrated that parasites inhibited with N-4HCS compounds phenocopy the targeted deletion of Pfs16 in gametocytes, these data implicate Pfs16 as a likely target of DDD01035881. This finding establishes N-4HCS compounds as being flexible and effective starting candidates from which transmission-blocking antimalarials can be developed in the future.
Collapse
Affiliation(s)
- Sabrina Yahiya
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Charlie N. Saunders
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Sarah Hassan
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Ursula Straschil
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Oliver J. Fischer
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Ainoa Rueda-Zubiaurre
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Silvia Haase
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Mufuliat Toyin Famodimu
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Sarah Jordan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Michael J. Delves
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Anna Barnard
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Matthew J. Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 OBZ, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
20
|
Afzal S, Yadav AK, Poonia AK, Choure K, Yadav AN, Pandey A. Antimicrobial therapeutics isolated from algal source: retrospect and prospect. Biologia (Bratisl) 2023; 78:291-305. [PMID: 36159744 PMCID: PMC9486765 DOI: 10.1007/s11756-022-01207-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023]
Abstract
In the last few decades, attention on new natural antimicrobial compounds has arisen due to a change in consumer preferences and the increase in the number of resistant microorganisms. Algae are defined as photosynthetic organisms that demonstrate a wide range of adaptability to adverse environmental conditions like temperature extremes, photo-oxidation, high or low salinity, and osmotic stress. Algae are primarily known to produce large amounts of secondary metabolite against various kinds of pathogenic microbes. Among these algae, micro and microalgae of river, lake, and algae of oceanic origin have been reported to have antimicrobial activity against the bacteria and fungi of pathogenic nature. Various polar and non- polar extracts of micro- and macro algae have been used for the suppression of these pathogenic fungi. Apart from these, certain algal derivatives have also been isolated from these having antibacterial and antifungal potential. Among the bioactive molecules of algae, polysaccharides, sulphated polysaccharides, phyco-cyanobilins polyphenols, lectins, proteins lutein, vitamin E, B12 and K1, peptides, polyunsaturated fatty acids and pigments can be highlighted. In the present review, we will discuss the biological activity of these derived compounds as antifungal/ antibacterial agents and their most promising applications. A brief outline is also given for the prospects of these isolated phytochemicals and using algae as therapeutic in the dietary form. We have also tried to answer whether alga-derived metabolites can serve as potential therapeutics for the treatment of SARS-CoV-2 like viral infections too.
Collapse
Affiliation(s)
- Shadma Afzal
- Department of Biotechnology, Motilal Nehru national Institute of Technology Allahabad, Prayagraj, UP India
| | - Alok Kumar Yadav
- Department of Biotechnology, Motilal Nehru national Institute of Technology Allahabad, Prayagraj, UP India
| | - Anuj Kumar Poonia
- University Institute of Biotechnology , Chandigarh University, Chandigarh, Punjab India
| | - Kamlesh Choure
- Faculty of Life Science and Technology, Department of Biotechnology, AKS University, Satna, MP India
| | - Ajar Nath Yadav
- Department of Biotechnology, Eternal University, Baru Sahib Sirmour, HP India
| | - Ashutosh Pandey
- Faculty of Life Science and Technology, Department of Biotechnology, AKS University, Satna, MP India
| |
Collapse
|
21
|
Vidal-Diniz AT, Guimarães HN, Garcia GM, Braga ÉM, Richard S, Grabe-Guimarães A, Mosqueira VCF. Polyester Nanocapsules for Intravenous Delivery of Artemether: Formulation Development, Antimalarial Efficacy, and Cardioprotective Effects In Vivo. Polymers (Basel) 2022; 14:polym14245503. [PMID: 36559869 PMCID: PMC9786304 DOI: 10.3390/polym14245503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Artemether (ATM) is an effective antimalarial drug that also has a short half-life in the blood. Furthermore, ATM is also cardiotoxic and is associated with pro-arrhythmogenic risks. We aimed to develop a delivery system enabling the prolonged release of ATM into the blood coupled with reduced cardiotoxicity. To achieve this, we prepared polymeric nanocapsules (NCs) from different biodegradable polyesters, namely poly(D,L-lactide) (PLA), poly-ε-caprolactone (PCL), and surface-modified NCs, using a monomethoxi-polyethylene glycol-block-poly(D,L-lactide) (PEG5kDa-PLA45kDa) polymer. Using this approach, we were able to encapsulate high yields of ATM (>85%, 0−4 mg/mL) within the oily core of the NCs. The PCL-NCs exhibited the highest percentage of ATM loading as well as a slow release rate. Atomic force microscopy showed nanometric and spherical particles with a narrow size dispersion. We used the PCL NCs loaded with ATM for biological evaluation following IV administration. As with free-ATM, the ATM-PCL-NCs formulation exhibited potent antimalarial efficacy using either the “Four-day test” protocol (ATM total at the end of the 4 daily doses: 40 and 80 mg/kg) in Swiss mice infected with P. berghei or a single low dose (20 mg/kg) of ATM in mice with higher parasitemia (15%). In healthy rats, IV administration of single doses of free-ATM (40 or 80 mg/kg) prolonged cardiac QT and QTc intervals and induced both bradycardia and hypotension. Repeated IV administration of free-ATM (four IV doses at 20 mg/kg every 12 h for 48 h) also prolonged the QT and QTc intervals but, paradoxically, induced tachycardia and hypertension. Remarkably, the incorporation of ATM in ATM-PCL-NCs reduced all adverse effects. In conclusion, the encapsulation of ATM in biodegradable polyester NCs reduces its cardiovascular toxicity without affecting its antimalarial efficacy.
Collapse
Affiliation(s)
- Alessandra Teixeira Vidal-Diniz
- School of Pharmacy, Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Homero Nogueira Guimarães
- Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Giani Martins Garcia
- School of Pharmacy, Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Érika Martins Braga
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Sylvain Richard
- CNRS, INSERM, Université de Montpellier, 34295 Montpellier, France
- PhyMedExp, CHU Arnaud de Villeneuve 371, Avenue du Doyen Gaston Giraud, CEDEX 05, 34295 Montpellier, France
- Correspondence: (S.R.); (V.C.F.M.)
| | - Andrea Grabe-Guimarães
- School of Pharmacy, Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Vanessa Carla Furtado Mosqueira
- School of Pharmacy, Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
- Correspondence: (S.R.); (V.C.F.M.)
| |
Collapse
|
22
|
Zhou B, Yue JM. Natural products are the treasure pool for antimalarial agents. Natl Sci Rev 2022; 9:nwac112. [PMID: 36440452 PMCID: PMC9691342 DOI: 10.1093/nsr/nwac112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 10/05/2023] Open
Abstract
Despite the success in malaria control, it remains a life-threatening infectious disease due mainly to the persistent emergence of drug resistance. Sharpened insight into the historical achievements and current trends in antimalarial drug discovery provides more hopes and advantages on natural products for the development of the next antimalarial treatment.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| |
Collapse
|
23
|
Lu H, Batey RA. Total synthesis of chaiyaphumines A-D: A case study comparing macrolactonization and macrolactamization approaches. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Chopin N, Bosson J, Iikawa S, Picot S, Bienvenu AL, Lavoignat A, Bonnot G, Riou M, Beaugé C, Guillory V, Biot C, Pilet G, Chessé M, Davioud-Charvet E, Elhabiri M, Bouillon JP, Médebielle M. Evaluation of ferrocenyl-containing γ-hydroxy-γ-lactam-derived tetramates as potential antiplasmodials. Eur J Med Chem 2022; 243:114735. [PMID: 36122550 DOI: 10.1016/j.ejmech.2022.114735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/05/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
Abstract
A series of ferrocenyl-containing γ-hydroxy-γ-lactam tetramates were prepared in 2-3 steps through ring opening-ring closure (RORC) process of γ-ylidene-tetronate derivatives in the presence of ferrocenyl alkylamines. The compounds were screened in vitro for their antiplasmodial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (W2) clones of P. falciparum, displaying activity in the range of 0.12-100 μM, with generally good resistance index. The most active ferrocene in these series exhibited IC50 equal to 0.09 μM (3D7) and 0.12 μM (W2). The low cytotoxicity of the ferrocenyl-containing γ-hydroxy-γ-lactam tetramates against Human Umbilical Vein Endothelial (HUVEC) cell line demonstrated selective antiparasitic activity. The redox properties of these ferrocene-derived tetramates were studied and physico-biochemical studies evidenced that these derivatives can exert potent antimalarial activities via a mechanism distinct from ferroquine.
Collapse
Affiliation(s)
- Nicolas Chopin
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France
| | - Julien Bosson
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France
| | - Shinya Iikawa
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France
| | - Stéphane Picot
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France; Institut de Parasitologie et Mycologie Médicale, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Anne-Lise Bienvenu
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France; Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Adeline Lavoignat
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France
| | - Guillaume Bonnot
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France
| | - Mickael Riou
- INRAE, UE-1277 Plateforme d'Infectiologie Expérimentale (PFIE), Centre Val de Loire, Nouzilly, France
| | - Corinne Beaugé
- INRAE, UE-1277 Plateforme d'Infectiologie Expérimentale (PFIE), Centre Val de Loire, Nouzilly, France
| | - Vanaïque Guillory
- INRAE, UE-1277 Plateforme d'Infectiologie Expérimentale (PFIE), Centre Val de Loire, Nouzilly, France; INRAE, UMR-1282 Infectiologie et Santé Publique (ISP), Centre Val de Loire - Université de Tours, Nouzilly, France
| | - Christophe Biot
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Guillaume Pilet
- Univ. Lyon, Université Lyon 1, CNRS, LMI, UMR 5615, Villeurbanne, France
| | - Matthieu Chessé
- UMR 7042 Université de Strasbourg‒CNRS‒UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Elisabeth Davioud-Charvet
- UMR 7042 Université de Strasbourg‒CNRS‒UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Mourad Elhabiri
- UMR 7042 Université de Strasbourg‒CNRS‒UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France.
| | - Jean-Philippe Bouillon
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA Rouen, CNRS, Mont Saint-Aignan, France.
| | - Maurice Médebielle
- Univ. Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Villeurbanne, France.
| |
Collapse
|
25
|
Clements RL, Morano AA, Navarro FM, McGee JP, Du EW, Streva VA, Lindner SE, Dvorin JD. Identification of basal complex protein that is essential for maturation of transmission-stage malaria parasites. Proc Natl Acad Sci U S A 2022; 119:e2204167119. [PMID: 35972967 PMCID: PMC9407223 DOI: 10.1073/pnas.2204167119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a global driver of morbidity and mortality. To generate new antimalarials, one must elucidate the fundamental cell biology of Plasmodium falciparum, the parasite responsible for the deadliest cases of malaria. A membranous and proteinaceous scaffold called the inner membrane complex (IMC) supports the parasite during morphological changes, including segmentation of daughter cells during asexual replication and formation of transmission-stage gametocytes. The basal complex lines the edge of the IMC during segmentation and likely facilitates IMC expansion. It is unknown, however, what drives IMC expansion during gametocytogenesis. We describe the discovery of a basal complex protein, PfBLEB, which we find to be essential for gametocytogenesis. Parasites lacking PfBLEB harbor defects in IMC expansion and are unable to form mature gametocytes. This article demonstrates a role for a basal complex protein outside of asexual division, and, importantly, highlights a potential molecular target for the ablation of malaria transmission.
Collapse
Affiliation(s)
- Rebecca L. Clements
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
| | - Alexander A. Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
| | - Francesca M. Navarro
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
| | - James P. McGee
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Biochemistry and Molecular Biology, the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802
| | - Esrah W. Du
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
| | - Vincent A. Streva
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
26
|
Rathod GK, Jain M, Sharma KK, Das S, Basak A, Jain R. New structural classes of antimalarials. Eur J Med Chem 2022; 242:114653. [PMID: 35985254 DOI: 10.1016/j.ejmech.2022.114653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/19/2022]
Abstract
Malaria remains a major vector borne disease claiming millions of lives worldwide due to infections caused by Plasmodium sp. Discovery and development of antimalarial drugs have previously been dominated majorly by single drug therapy. The malaria parasite has developed resistance against first line and second line antimalarial drugs used in the single drug therapy. This has drawn attention to find ways to alleviate the disease burden supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has now mandated the revision of the current antimalarial pharmacotherapy. Research efforts of the past decade led to the discovery and identification of several new structural classes of antimalarial agents with improved biological attributes over the older ones. The following is a comprehensive review, addressed to the new structural classes of heterocyclic and natural compounds that have been identified during the last decade as antimalarial agents. Some of the classes included herein contain one or more pharmacophores amalgamated into a single bioactive scaffold as antimalarial agents, which act upon the conventional and novel targets.
Collapse
Affiliation(s)
- Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Meenakshi Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Samarpita Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Ahana Basak
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
27
|
Omagha R, Idowu ET, Alimba CG, Otubanjo OA, Oyibo WA, Agbaje EO. In vivo antiplasmodial activities and acute toxicity assessment of two plant cocktail extracts commonly used among Southwestern Nigerians. J Parasit Dis 2022; 46:343-353. [PMID: 35692481 PMCID: PMC9177911 DOI: 10.1007/s12639-021-01450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
Discovering and developing the desired antimalarials continue to be a necessity especially due to treatment failures, drug resistance, limited availability and affordability of antimalarial drugs and costs especially in poor malarial endemic countries. This study investigated the efficacies of two plant cocktails; CtA and CtB, selected based on their traditional usage. Efficacies of the cocktail extracts, chloroquine and pyrimethamine against Plasmodium berghei berghei were evaluated in mice using the suppressive, curative and prophylactic test models, after oral and intraperitoneal acute toxicity determination of the plant cocktails in accordance with Lorke's method. Data was analyzed using SPSS software version 23.0 with level of significance set at P < 0.05. The median lethal dose was determined to be higher than 5000 mg/kg body weight orally for both CtA and CtB; and 316.23 mg/kg body weight intraperitoneally for CtA. Each cocktail exhibited high dose dependent Plasmodium berghei berghei inhibition which was 96.95% and 99.13% in the CtA800 mg/kg and CtB800 mg/kg doses in the curative groups respectively, 96.46% and 78.62% for CtA800mg/kg and CtB800mg/kg doses in the suppressive groups respectively, as well as 65.05% and 88.80% for CtA800mg/kg and CtB800mg/kg doses in the prophylactic groups respectively. Throughout the observation periods, the standard drugs, chloroquine phosphate and pyrimethamine maintained higher inhibitions up to 100%. These findings demonstrate that CtA and CtB possess good antimalarial abilities and calls for their development and standardization as effective and readily available antimalarial options. The acute toxicity results obtained underscore the importance of obtaining information on toxicities of medicinal plant remedies before their administration in both humans and animals.
Collapse
Affiliation(s)
- Rachel Omagha
- Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | | | | | | | - Wellington Aghoghovwia Oyibo
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria
| | - Esther Oluwatoyin Agbaje
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria
| |
Collapse
|
28
|
de Haan F, Boon WPC, Amaratunga C, Dondorp AM. Expert perspectives on the introduction of Triple Artemisinin-based Combination Therapies (TACTs) in Southeast Asia: a Delphi study. BMC Public Health 2022; 22:864. [PMID: 35490212 PMCID: PMC9055751 DOI: 10.1186/s12889-022-13212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triple Artemisinin-based Combination Therapies (TACTs) are being developed as a response to artemisinin and partner drug resistance in Southeast Asia. However, the desirability, timing and practical feasibility of introducing TACTs in Southeast Asia is subject to debate. This study systematically assesses perspectives of malaria experts towards the introduction of TACTs as first-line treatment for uncomplicated falciparum malaria in Southeast Asia. METHODS A two-round Delphi study was conducted. In the first round, 53 malaria experts answered open-ended questions on what they consider the most important advantages, disadvantages, and implementation barriers for introducing TACTs in Southeast Asia. In the second round, the expert panel rated the relevance of each statement on a 5-point Likert scale. RESULTS Malaria experts identified 15 advantages, 15 disadvantages and 13 implementation barriers for introducing TACTs in Southeast Asia in the first round of data collection. In the second round, consensus was reached on 13 advantages (8 perceived as relevant, 5 as not-relevant), 12 disadvantages (10 relevant, 2 not-relevant), and 13 implementation barriers (all relevant). Advantages attributed highest relevance related to the clinical and epidemiological rationale of introducing TACTs. Disadvantages attributed highest relevance related to increased side-effects, unavailability of fixed-dose TACTs, and potential cost increases. Implementation barriers attributed highest relevance related to obtaining timely regulatory approval, timely availability of fixed-dose TACTs, and generating global policy support for introducing TACTs. CONCLUSIONS The study provides a structured oversight of malaria experts' perceptions on the major advantages, disadvantages and implementation challenges for introducing TACTs in Southeast Asia, over current practices of rotating ACTs when treatment failure is observed. The findings can benefit strategic decision making in the battle against drug-resistant malaria.
Collapse
Affiliation(s)
- Freek de Haan
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3484 CB, Utrecht, the Netherlands.
| | - Wouter P C Boon
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3484 CB, Utrecht, the Netherlands
| | - Chanaki Amaratunga
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi DistrictBangkok, 10400, Thailand
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi DistrictBangkok, 10400, Thailand
| |
Collapse
|
29
|
Moehrle JJ. Development of New Strategies for Malaria Chemoprophylaxis: From Monoclonal Antibodies to Long-Acting Injectable Drugs. Trop Med Infect Dis 2022; 7:tropicalmed7040058. [PMID: 35448833 PMCID: PMC9024890 DOI: 10.3390/tropicalmed7040058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Drug discovery for malaria has traditionally focused on orally available drugs that kill the abundant, parasitic blood stage. Recently, there has also been an interest in injectable medicines, in the form of monoclonal antibodies (mAbs) with long-lasting plasma half-lives or long-lasting depot formulations of small molecules. These could act as prophylactic drugs, targeting the sporozoites and other earlier parasitic stages in the liver, when the parasites are less numerous, or as another intervention strategy targeting the formation of infectious gametocytes. Generally speaking, the development of mAbs is less risky (costly) than small-molecule drugs, and they have an excellent safety profile with few or no off-target effects. Therefore, populations who are the most vulnerable to malaria, i.e., pregnant women and young children would have access to such new treatments much faster than is presently the case for new antimalarials. An analysis of mAbs that were successfully developed for oncology illustrates some of the feasibility aspects, and their potential as affordable drugs in low- and middle-income countries.
Collapse
Affiliation(s)
- Joerg J Moehrle
- Integrated Sciences, R&D, Medicines for Malaria Venture, Route de Pré Bois 20, CH-1215 Geneva 15, Switzerland
| |
Collapse
|
30
|
Belardinelli JM, Verma D, Li W, Avanzi C, Wiersma CJ, Williams JT, Johnson BK, Zimmerman M, Whittel N, Angala B, Wang H, Jones V, Dartois V, de Moura VCN, Gonzalez-Juarrero M, Pearce C, Schenkel AR, Malcolm KC, Nick JA, Charman SA, Wells TNC, Podell BK, Vennerstrom JL, Ordway DJ, Abramovitch RB, Jackson M. Therapeutic efficacy of antimalarial drugs targeting DosRS signaling in Mycobacterium abscessus. Sci Transl Med 2022; 14:eabj3860. [PMID: 35196022 DOI: 10.1126/scitranslmed.abj3860] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A search for alternative Mycobacterium abscessus treatments led to our interest in the two-component regulator DosRS, which, in Mycobacterium tuberculosis, is required for the bacterium to establish a state of nonreplicating, drug-tolerant persistence in response to a variety of host stresses. We show here that the genetic disruption of dosRS impairs the adaptation of M. abscessus to hypoxia, resulting in decreased bacterial survival after oxygen depletion, reduced tolerance to a number of antibiotics in vitro and in vivo, and the inhibition of biofilm formation. We determined that three antimalarial drugs or drug candidates, artemisinin, OZ277, and OZ439, can target DosS-mediated hypoxic signaling in M. abscessus and recapitulate the phenotypic effects of genetically disrupting dosS. OZ439 displayed bactericidal activity comparable to standard-of-care antibiotics in chronically infected mice, in addition to potentiating the activity of antibiotics used in combination. The identification of antimalarial drugs as potent inhibitors and adjunct inhibitors of M. abscessus in vivo offers repurposing opportunities that could have an immediate impact in the clinic.
Collapse
Affiliation(s)
- Juan Manuel Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Crystal J Wiersma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Nicholas Whittel
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Bhanupriya Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Han Wang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Vinicius C N de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Camron Pearce
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Alan R Schenkel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, USA.,Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, USA.,Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | - Diane J Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
31
|
Wainwright CL, Teixeira MM, Adelson DL, Buenz EJ, David B, Glaser KB, Harata-Lee Y, Howes MJR, Izzo AA, Maffia P, Mayer AM, Mazars C, Newman DJ, Nic Lughadha E, Pimenta AM, Parra JA, Qu Z, Shen H, Spedding M, Wolfender JL. Future Directions for the Discovery of Natural Product-Derived Immunomodulating Drugs. Pharmacol Res 2022; 177:106076. [PMID: 35074524 DOI: 10.1016/j.phrs.2022.106076] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology, with contributions from a Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Natural Products in Health, Robert Gordon University, Aberdeen, UK.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil.
| | - David L Adelson
- Molecular & Biomedical Science, University of Adelaide, Australia.
| | - Eric J Buenz
- Nelson Marlborough Institute of Technology, New Zealand.
| | - Bruno David
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | - Keith B Glaser
- AbbVie Inc., Integrated Discovery Operations, North Chicago, USA.
| | - Yuka Harata-Lee
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Melanie-Jayne R Howes
- Royal Botanic Gardens Kew, Richmond, Surrey, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, UK.
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy.
| | - Pasquale Maffia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Alejandro Ms Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, IL, USA.
| | - Claire Mazars
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | | | | | - Adriano Mc Pimenta
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - John Aa Parra
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zhipeng Qu
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Hanyuan Shen
- Molecular & Biomedical Science, University of Adelaide, Australia
| | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
32
|
Li G, Lou M, Qi X. A brief overview of classical natural product drug synthesis and bioactivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01341f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript briefly overviewed the total synthesis and structure–activity relationship studies of eight classical natural products, which emphasizes the important role of total synthesis in natural product-based drug development.
Collapse
Affiliation(s)
- Gen Li
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Mingliang Lou
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies. Pharmaceutics 2021; 13:pharmaceutics13122189. [PMID: 34959470 PMCID: PMC8706932 DOI: 10.3390/pharmaceutics13122189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs' target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them.
Collapse
|
34
|
Bheemanaboina RRY, de Souza ML, Gonzalez ML, Mahmood SU, Eck T, Kreiss T, Aylor SO, Roth A, Lee P, Pybus BS, Colussi DJ, Childers WE, Gordon J, Siekierka JJ, Bhanot P, Rotella DP. Discovery of Imidazole-Based Inhibitors of Plasmodium falciparum cGMP-Dependent Protein Kinase. ACS Med Chem Lett 2021; 12:1962-1967. [PMID: 34917261 DOI: 10.1021/acsmedchemlett.1c00540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
The discovery of new targets for the treatment of malaria, in particular those aimed at the pre-erythrocytic stage in the life cycle, advanced with the demonstration that orally administered inhibitors of Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) could clear infection in a murine model. This enthusiasm was tempered by unsatisfactory safety and/or pharmacokinetic issues found with these chemotypes. To address the urgent need for new scaffolds, this paper presents initial structure-activity relationships in an imidazole scaffold at four positions, representative in vitro ADME, hERG characterization, and cell-based antiparasitic activity. This series of PfPKG inhibitors has good in vitro PfPKG potency, low hERG activity, and cell-based antiparasitic activity against multiple Plasmodium species that appears to be correlated with the in vitro potency.
Collapse
Affiliation(s)
- Rammohan R. Yadav Bheemanaboina
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Mariana Laureano de Souza
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Mariana Lozano Gonzalez
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Shams Ul Mahmood
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Tyler Eck
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Tamara Kreiss
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Samantha O. Aylor
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Patricia Lee
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Brandon S. Pybus
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Dennis J. Colussi
- Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Wayne E. Childers
- Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - John Gordon
- Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - John J. Siekierka
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren Street, Newark, New Jersey 07103, United States
| | - David P. Rotella
- Department of Chemistry and Biochemistry and Sokol Institute of Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
35
|
Lacy K, Schaefer KA, Scheitrum DP, Klein EY. The economic value of genetically engineered mosquitoes as a Malaria control strategy depends on local transmission rates. Biotechnol J 2021; 17:e2100373. [PMID: 34873849 DOI: 10.1002/biot.202100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/05/2022]
Abstract
This paper assesses the economic value of genetically engineered (GE) Anopheles gambiae mosquitoes as a malaria control strategy. We use an epidemiological-economic model of malaria transmission to evaluate this technology for a range of village-level transmission settings. In each setting, we evaluate public health outcomes following introduction of GE mosquitoes relative to a "status quo" baseline scenario. We also assess results both in contrast to-and in combination with-a Mass Drug Administration (MDA) strategy. We find that-in low transmission settings-the present value (PV) public health benefits of GE mosquito release are substantial, both relative to status quo dynamics and MDA. In contrast, in high transmission settings, the release of GE mosquitoes may increase steady-state infection rates. Our results indicate that there are substantial policy complementarities when GE mosquito release is combined with local MDA-the combined control strategy can lead to local eradication.
Collapse
Affiliation(s)
- Katherine Lacy
- Department of Economics, University of Nevada, Reno, USA
| | - K Aleks Schaefer
- Department of Agricultural Economics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Daniel P Scheitrum
- Department of Agricultural and Resource Economics, University of Arizona, Tucson, USA
| | - Eili Y Klein
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, USA.,Center for Disease Dynamics, Economics and Policy, Washington, DC, USA
| |
Collapse
|
36
|
Ghoghari AM, Patel HV, Nayak NN, Mansuri TH, Pillai SM, Jain MR, Patel HB, Kansagra K, Resta ID, Möhrle J, Parmar DV. Simultaneous estimation of ZY-19489 and its active metabolite ZY-20486 in human plasma using LC-MS/MS, a novel antimalarial compound. Bioanalysis 2021; 13:1761-1777. [PMID: 34779650 DOI: 10.4155/bio-2021-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: ZY-19489 is a new antimalarial drug candidate and selective LC-MS/MS method was established for estimation of ZY-19489 and its metabolite in human plasma. Materials & methods: LLE was employed for extraction, mass spectrometric quantification performed using positive ionization mode and DCP-IMP was used as an internal standard. The chromatographic separation was achieved using mobile phase 5 mM ammonium formate in water and 0.1% v/v ammonia solution in methanol:acetonitrile (90:10% v/v) and column Agilent Zorbex Extended C18, 3.5 μm, 100 × 4.6 mm with a 6-min run time. Results: The calibration curve of ZY-19489 was linear over range 1-500 ng/ml and 2-200 ng/ml for metabolite. Assay was reproducible, selective and devoid of matrix effect. Conclusion: The validated assay was implemented for clinical sample analysis derived from healthy human subjects and parasitemia-induced subjects.
Collapse
Affiliation(s)
- Ashok M Ghoghari
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Harilal V Patel
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Nisarg N Nayak
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Tariq H Mansuri
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Soma M Pillai
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Mukul R Jain
- Bioanalytical Laboratory, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Hardik B Patel
- Clinical Research, Zydus Research Centre, Ahmedabad, Gujarat, India
| | - Kevin Kansagra
- Clinical Research, Zydus Research Centre, Ahmedabad, Gujarat, India
| | | | - Jörg Möhrle
- Medicines for Malaria Venture, Geneva, Switzerland
| | | |
Collapse
|
37
|
Nerlich C, Epalle NH, Seick P, Beitz E. Discovery and Development of Inhibitors of the Plasmodial FNT-Type Lactate Transporter as Novel Antimalarials. Pharmaceuticals (Basel) 2021; 14:1191. [PMID: 34832972 PMCID: PMC8624176 DOI: 10.3390/ph14111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Plasmodium spp. malaria parasites in the blood stage draw energy from anaerobic glycolysis when multiplying in erythrocytes. They tap the ample glucose supply of the infected host using the erythrocyte glucose transporter 1, GLUT1, and a hexose transporter, HT, of the parasite's plasma membrane. Per glucose molecule, two lactate anions and two protons are generated as waste that need to be released rapidly from the parasite to prevent blockage of the energy metabolism and acidification of the cytoplasm. Recently, the missing Plasmodium lactate/H+ cotransporter was identified as a member of the exclusively microbial formate-nitrite transporter family, FNT. Screening of an antimalarial compound selection with unknown targets led to the discovery of specific and potent FNT-inhibitors, i.e., pentafluoro-3-hydroxy-pent-2-en-1-ones. Here, we summarize the discovery and further development of this novel class of antimalarials, their modes of binding and action, circumvention of a putative resistance mutation of the FNT target protein, and suitability for in vivo studies using animal malaria models.
Collapse
Affiliation(s)
| | | | | | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany; (C.N.); (N.H.E.); (P.S.)
| |
Collapse
|
38
|
Synthesis and Structure-Activity Relationships of New 2-Phenoxybenzamides with Antiplasmodial Activity. Pharmaceuticals (Basel) 2021; 14:ph14111109. [PMID: 34832891 PMCID: PMC8625693 DOI: 10.3390/ph14111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
The 2-phenoxybenzamide 1 from the Medicines for Malaria Venture Malaria Box Project has shown promising multi-stage activity against different strains of P. falciparum. It was successfully synthesized via a retrosynthetic approach. Subsequently, twenty-one new derivatives were prepared and tested for their in vitro activity against blood stages of the NF54 strain of P. falciparum. Several insights into structure-activity relationships were revealed. The antiplasmodial activity and cytotoxicity of compounds strongly depended on the substitution pattern of the anilino partial structure as well as on the size of substituents. The diaryl ether partial structure had further impacts on the activity. Additionally, several physicochemical and pharmacokinetic parameters were calculated (log P, log D7.4 and ligand efficiency) or determined experimentally (passive permeability and CYP3A4 inhibition). The tert-butyl-4-{4-[2-(4-fluorophenoxy)-3-(trifluoromethyl)benzamido]phenyl}piperazine-1-carboxylate possesses high antiplasmodial activity against P. falciparum NF54 (PfNF54 IC50 = 0.2690 µM) and very low cytotoxicity (L-6 cells IC50 = 124.0 µM) resulting in an excellent selectivity index of 460. Compared to the lead structure 1 the antiplasmodial activity was improved as well as the physicochemical and some pharmacokinetic parameters.
Collapse
|
39
|
Synthesis and Anticancer Activity of 11-azaartemisinin Derivatives Bearing 1,2,3-triazole Moiety. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03019-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Gupta M, Kumar S, Kumar R, Kumar A, Verma R, Darokar MP, Rout P, Pal A. Inhibition of heme detoxification pathway in malaria parasite by 3-hydroxy-11-keto-β-boswellic acid isolated from Boswellia serrata. Biomed Pharmacother 2021; 144:112302. [PMID: 34678731 DOI: 10.1016/j.biopha.2021.112302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Malaria eradication is still a major global health problem in developing countries, which has been of more concern ever since the malaria parasite has developed resistance against frontline antimalarial drugs. Historical evidence proves that the plants possess a major resource for the development of novel anti-malarial drugs. In the present study, the bioactivity guided fractionation of the oleogum-resin of Boswellia serrata Roxb. yielded the optimum activity in the ethyl acetate fraction with an IC50 of 22 ± 3.9 μg/mL and 26.5 ± 4.5 μg/mL against chloroquine sensitive (NF54) and resistant (K1) strains of Plasmodium falciparum respectively. Further, upon fractionation, the ethyl acetate fraction yielded four major compounds, of which 3-Hydroxy-11-keto-β-boswellic acid (KBA) was found to be the most potent with IC50 values 4.5 ± 0.60 µg/mL and 6.25 ± 1.02 μg/mL against sensitive and resistant strains respectively. KBA was found to inhibit heme detoxification pathways, one of the most common therapeutic targets, which probably lead to an increase in reactive oxygen species (ROS) and nitric oxide (NO) detrimental to P. falciparum. Further, the induced intracellular oxidative stress affected the macromolecules in terms of DNA damage, increased lipid peroxidation, protein carbonylation as well as loss of mitochondrial membrane potential. However, it did not exhibit any cytotoxic effect in VERO cells. Under in vivo conditions, KBA exhibited a significant reduction in parasitemia, retarding the development of anaemia, resulting in an enhancement of the mean survival time in Plasmodium yoelii nigeriensis (chloroquine-resistant) infected mice. Further, KBA did not exhibit any abnormality in serum biochemistry of animals that underwent acute oral toxicity studies at 2000 mg/kg body weight.
Collapse
Affiliation(s)
- Madhuri Gupta
- Phytochemistry, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Ravi Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Ashish Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Riya Verma
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Mahendra Pandurang Darokar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Prashant Rout
- Phytochemistry, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India.
| | - Anirban Pal
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India.
| |
Collapse
|
41
|
Hernández González JE, Salas-Sarduy E, Hernández Alvarez L, Barreto Gomes DE, Pascutti PG, Oostenbrink C, Leite VBP. In silico identification of noncompetitive inhibitors targeting an uncharacterized allosteric site of falcipain-2. J Comput Aided Mol Des 2021; 35:1067-1079. [PMID: 34617191 DOI: 10.1007/s10822-021-00420-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/24/2021] [Indexed: 01/05/2023]
Abstract
Falcipain-2 (FP-2) is a Plasmodium falciparum hemoglobinase widely targeted in the search for antimalarials. FP-2 can be allosterically modulated by various noncompetitive inhibitors that have been serendipitously identified. Moreover, the crystal structures of two inhibitors bound to an allosteric site, termed site 6, of the homolog enzyme human cathepsin K (hCatK) suggest that the equivalent region in FP-2 might play a similar role. Here, we conduct the rational identification of FP-2 inhibitors through virtual screenings (VS) of compounds into several pocket-like conformations of site 6, sampled during molecular dynamics (MD) simulations of the free enzyme. Two noncompetitive inhibitors, ZINC03225317 and ZINC72290660, were confirmed using in vitro enzymatic assays and their poses into site 6 led to calculated binding free energies matching the experimental ones. Our results provide strong evidence about the allosteric inhibition of FP-2 through binding of small molecules to site 6, thus opening the way toward the discovery of new inhibitors against this enzyme.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas - Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, São José do Rio Preto, SP, CEP 15054-000, Brazil. .,Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofı́sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho - Universidade Federal do Rio de Janeiro (UFRJ), Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brazil. .,Institute for Molecular Modeling and Simulation, Department for Material Sciences and Process Engineering - University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190, Vienna, Austria.
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo Ugalde, Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires, Argentina
| | - Lilian Hernández Alvarez
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas - Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, São José do Rio Preto, SP, CEP 15054-000, Brazil
| | - Diego Enry Barreto Gomes
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofı́sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho - Universidade Federal do Rio de Janeiro (UFRJ), Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brazil.,Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora (UFJF), Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro São Pedro, Juiz de Fora, MG, CEP 36036-900, Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofı́sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho - Universidade Federal do Rio de Janeiro (UFRJ), Ave. Carlos Chagas Filho, 373, CCS-Bloco D sala 30, Cidade Universitária Ilha de Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brazil
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, Department for Material Sciences and Process Engineering - University of Natural Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Vitor B P Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas - Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, São José do Rio Preto, SP, CEP 15054-000, Brazil
| |
Collapse
|
42
|
Volpe-Zanutto F, Fonseca-Santos B, McKenna PE, Paredes AJ, Dávila JL, McCrudden MTC, Tangerina MMP, Ceccheto Figueiredo M, Vilegas W, Brisibe A, Akira D'Ávila M, Donnelly RF, Chorilli M, Foglio MA. Novel transdermal bioadhesive surfactant-based system for release and solubility improvement of antimalarial drugs artemether-lumefantrine. Biomed Mater 2021; 16. [PMID: 34544052 DOI: 10.1088/1748-605x/ac2885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/20/2021] [Indexed: 01/10/2023]
Abstract
Artemether (ART) and lumefantrine (LUM) are the gold standard antimalarial drugs used for the treatment of malaria in children and pregnant women. Typically, ART and LUM are delivered orally in the form of a combined tablet, however, the appropriateness of this route of administration for these drugs is questionable due to the poor absorption and therefore bioavailability observed unless administered alongside lipid-rich foods. Transdermal drug delivery in the form of a patch-type system has been identified as a viable alternative to the conventional tablet-based therapy. A novel, surfactant-based ART-LUM formulation (S3AL), developed for transdermal delivery, may eliminate the shortcomings associated with oral delivery; namely poor drug absorption which is caused by the inherently low solubility of ART and LUM. Moreover, by successfully delivering these antimalarials transdermally, first-pass metabolism will be avoided leading to enhanced drug bioavailability in both cases. The S3AL formulation contained ART and LUM at equal concentrations (2.5% w/w of each) as well as Procetyl® AWS (30% w/w), oleic acid (10% w/w), 1-methyl-2-pyrrolidone (10% w/w), and water (45% w/w). The addition of LUM to the formulation changed the system from a striae structure to a dark field structure when visualized by a polarized light microscope. Additionally, this system possessed higher viscosity and superior skin bioadhesion, as evidenced by mechanical characterization, when compared to a similar formulation containing ART alone. S3AL was also proven to be biocompatible to human keratinocyte cells. Finally,in vitrostudies demonstrated the propensity of S3AL for successful delivery via the transdermal route, with 2279 ± 295 µg cm-2of ART and 94 ± 13 µg cm-2of LUM having permeated across dermatomed porcine skin after 24 h, highlighting its potential as a new candidate for the treatment of malaria.
Collapse
Affiliation(s)
- Fabiana Volpe-Zanutto
- Graduate School of Bioscience and Technology of Bioactive Products, Biology Institute, University at Campinas, Campinas, Sao Paulo, Brazil.,School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Bruno Fonseca-Santos
- UNESP- University Estadual Paulista, Faculdade de Ciências Farmacêuticas, UNESP, Araraquara, Sao Paulo, Brazil.,Faculty of Pharmaceutical Science, University at Campinas, Campinas, Sao Paulo, Brazil
| | - Peter E McKenna
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | | | - José Luis Dávila
- Centre for Information Technology 'Renato Archer' (CTI), 3D Printing open lab-Laprint, Campinas, Sao Paulo, Brazil
| | | | | | | | - Wagner Vilegas
- UNESP- Univ Estadual Paulista, Instituto de Biociências, São Vicente, Sao Paulo, Brazil
| | | | - Marcos Akira D'Ávila
- School of Mechanical Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Marlus Chorilli
- UNESP- University Estadual Paulista, Faculdade de Ciências Farmacêuticas, UNESP, Araraquara, Sao Paulo, Brazil
| | - Mary Ann Foglio
- Faculty of Pharmaceutical Science, University at Campinas, Campinas, Sao Paulo, Brazil
| |
Collapse
|
43
|
Kreutzfeld O, Rasmussen SA, Ramanathan AA, Tumwebaze PK, Byaruhanga O, Katairo T, Asua V, Okitwi M, Orena S, Legac J, Conrad MD, Nsobya SL, Aydemir O, Bailey J, Duffey M, Bayles BR, Vaidya AB, Cooper RA, Rosenthal PJ. Associations between Varied Susceptibilities to PfATP4 Inhibitors and Genotypes in Ugandan Plasmodium falciparum Isolates. Antimicrob Agents Chemother 2021; 65:e0077121. [PMID: 34339273 PMCID: PMC8448140 DOI: 10.1128/aac.00771-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Among novel compounds under recent investigation as potential new antimalarial drugs are three independently developed inhibitors of the Plasmodium falciparum P-type ATPase (PfATP4): KAE609 (cipargamin), PA92, and SJ733. We assessed ex vivo susceptibilities to these compounds of 374 fresh P. falciparum isolates collected in Tororo and Busia districts, Uganda, from 2016 to 2019. Median IC50s were 65 nM for SJ733, 9.1 nM for PA92, and 0.5 nM for KAE609. Sequencing of pfatp4 for 218 of these isolates demonstrated many nonsynonymous single nucleotide polymorphisms; the most frequent mutations were G1128R (69% of isolates mixed or mutant), Q1081K/R (68%), G223S (25%), N1045K (16%), and D1116G/N/Y (16%). The G223S mutation was associated with decreased susceptibility to SJ733, PA92, and KAE609. The D1116G/N/Y mutations were associated with decreased susceptibility to SJ733, and the presence of mutations at both codons 223 and 1116 was associated with decreased susceptibility to PA92 and SJ733. In all of these cases, absolute differences in susceptibilities of wild-type (WT) and mutant parasites were modest. Analysis of clones separated from mixed field isolates consistently identified mutant clones as less susceptible than WT. Analysis of isolates from other sites demonstrated the presence of the G223S and D1116G/N/Y mutations across Uganda. Our results indicate that malaria parasites circulating in Uganda have a number of polymorphisms in PfATP4 and that modestly decreased susceptibility to PfATP4 inhibitors is associated with some mutations now present in Ugandan parasites.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- Department of Medicine, University of California, San Francisco, California, USA
| | | | - Aarti A. Ramanathan
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jennifer Legac
- Department of Medicine, University of California, San Francisco, California, USA
| | - Melissa D. Conrad
- Department of Medicine, University of California, San Francisco, California, USA
| | | | | | | | | | - Brett R. Bayles
- Dominican University of California, San Rafael, California, USA
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
44
|
Toviwek B, Phuangsawai O, Konsue A, Hannongbua S, Riley J, Mutter N, Anderson M, Webster L, Hallyburton I, Read KD, Gleeson MP. Preparation, biological & cheminformatics-based assessment of N 2,N 4-diphenylpyrimidine-2,4-diamine as potential Kinase-targeted antimalarials. Bioorg Med Chem 2021; 46:116348. [PMID: 34479064 DOI: 10.1016/j.bmc.2021.116348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
Twenty eight new N2,N4-diphenylpyrimidine-2,4-diamines have been prepared in order to expand our understanding of the anti-malarial SAR of the scaffold. The aim of the study was to make structural modifications to improve the overall potency, selectivity and solubility of the series by varying the anilino groups attached to the 2- and 4-position. We evaluated the activity of the compounds against Plasmodium falciparum (Pf) 3D7, cytotoxicity against HepG2, % inhibition at a panel of 10 human kinases, solubility, permeability and lipophilicity, and human and rat in vitro clearance. 11 was identified as a potent anti-malarial with an IC50 of 0.66 µM at the 3D7 strain and a selectivity (SI) of ~ 40 in terms of cytotoxicity against the HepG2 cell line. It also displayed low experimental logD7.4 (2.27), reasonable solubility (124 µg/ml), good metabolic stability, but low permeability. A proteo-chemometric workflow was employed to identify putative Pf targets of the most promising compounds. Ligand-based similarity searching of the ChEMBL database led to the identification of most probable human targets. These were then used as input for sequence-based searching of the Pf proteome. Homology modelling and molecular docking were used to evaluate whether compounds could indeed bind to these targets with valid binding modes. In vitro biological testing against close human analogs of these targets was subsequently undertaken. This allowed us to identify potential Pf targets and human anti-targets that could be exploited in future development.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Oraphan Phuangsawai
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Adchatawut Konsue
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jennifer Riley
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Nicole Mutter
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Mark Anderson
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Lauren Webster
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Irene Hallyburton
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kevin D Read
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - M Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
45
|
Structural characterization of the Plasmodium falciparum lactate transporter PfFNT alone and in complex with antimalarial compound MMV007839 reveals its inhibition mechanism. PLoS Biol 2021; 19:e3001386. [PMID: 34499638 PMCID: PMC8428694 DOI: 10.1371/journal.pbio.3001386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
Plasmodium falciparum, the deadliest causal agent of malaria, caused more than half of the 229 million malaria cases worldwide in 2019. The emergence and spreading of frontline drug-resistant Plasmodium strains are challenging to overcome in the battle against malaria and raise urgent demands for novel antimalarial agents. The P. falciparum formate-nitrite transporter (PfFNT) is a potential drug target due to its housekeeping role in lactate efflux during the intraerythrocytic stage. Targeting PfFNT, MMV007839 was identified as a lead compound that kills parasites at submicromolar concentrations. Here, we present 2 cryogenic-electron microscopy (cryo-EM) structures of PfFNT, one with the protein in its apo form and one with it in complex with MMV007839, both at 2.3 Å resolution. Benefiting from the high-resolution structures, our study provides the molecular basis for both the lactate transport of PfFNT and the inhibition mechanism of MMV007839, which facilitates further antimalarial drug design.
Collapse
|
46
|
Laleu B, Akao Y, Ochida A, Duffy S, Lucantoni L, Shackleford DM, Chen G, Katneni K, Chiu FCK, White KL, Chen X, Sturm A, Dechering KJ, Crespo B, Sanz LM, Wang B, Wittlin S, Charman SA, Avery VM, Cho N, Kamaura M. Discovery and Structure-Activity Relationships of Quinazolinone-2-carboxamide Derivatives as Novel Orally Efficacious Antimalarials. J Med Chem 2021; 64:12582-12602. [PMID: 34437804 DOI: 10.1021/acs.jmedchem.1c00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A phenotypic high-throughput screen allowed discovery of quinazolinone-2-carboxamide derivatives as a novel antimalarial scaffold. Structure-activity relationship studies led to identification of a potent inhibitor 19f, 95-fold more potent than the original hit compound, active against laboratory-resistant strains of malaria. Profiling of 19f suggested a fast in vitro killing profile. In vivo activity in a murine model of human malaria in a dose-dependent manner constitutes a concomitant benefit.
Collapse
Affiliation(s)
- Benoît Laleu
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Yuichiro Akao
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsuko Ochida
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Sandra Duffy
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan 4111, Queensland, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan 4111, Queensland, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Francis C K Chiu
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Xue Chen
- WuXi AppTec (Wuhan) Company Ltd., 666 Gaoxin Avenue, Donghu New Technology Development Area, Wuhan 430075, China
| | - Angelika Sturm
- TropIQ Health Sciences, Transistorweg 5-C02, 6534 AT Nijmegen, The Netherlands
| | - Koen J Dechering
- TropIQ Health Sciences, Transistorweg 5-C02, 6534 AT Nijmegen, The Netherlands
| | - Benigno Crespo
- Global Health, GlaxoSmithKline R&D, Tres Cantos, 28760, Madrid, Spain
| | - Laura M Sanz
- Global Health, GlaxoSmithKline R&D, Tres Cantos, 28760, Madrid, Spain
| | - Binglin Wang
- WuXi AppTec (Wuhan) Company Ltd., 666 Gaoxin Avenue, Donghu New Technology Development Area, Wuhan 430075, China
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan 4111, Queensland, Australia
| | - Nobuo Cho
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Kamaura
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
47
|
de Haan F, Bolarinwa OA, Guissou R, Tou F, Tindana P, Boon WPC, Moors EHM, Cheah PY, Dhorda M, Dondorp AM, Ouedraogo JB, Mokuolu OA, Amaratunga C. To what extent are the antimalarial markets in African countries ready for a transition to triple artemisinin-based combination therapies? PLoS One 2021; 16:e0256567. [PMID: 34464398 PMCID: PMC8407563 DOI: 10.1371/journal.pone.0256567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Triple artemisinin-based combination therapies (TACTs) are being developed as a response to artemisinin and partner drug resistance in the treatment of falciparum malaria in Southeast Asia. In African countries, where current artemisinin-based combination therapies (ACTs) are still effective, TACTs have the potential to benefit the larger community and future patients by mitigating the risk of drug resistance. This study explores the extent to which the antimalarial drug markets in African countries are ready for a transition to TACTs. METHODS A qualitative study was conducted in Nigeria and Burkina Faso and comprised in-depth interviews (n = 68) and focus group discussions (n = 11) with key actor groups in the innovation system of antimalarial therapies. RESULTS Evidence of ACT failure in African countries and explicit support for TACTs by the World Health Organization (WHO) and international funders were perceived important determinants for the market prospects of TACTs in Nigeria and Burkina Faso. At the country level, slow regulatory and implementation procedures were identified as potential barriers towards rapid TACTs deployment. Integrating TACTs in public sector distribution channels was considered relatively straightforward. More challenges were expected for integrating TACTs in private sector distribution channels, which are characterized by patient demand and profit motives. Finally, several affordability and acceptability issues were raised for which ACTs were suggested as a benchmark. CONCLUSION The market prospects of TACTs in Nigeria and Burkina Faso will depend on the demonstration of the added value of TACTs over ACTs, their advocacy by the WHO, the inclusion of TACTs in financial and regulatory arrangements, and their alignment with current distribution and deployment practices. Further clinical, health-economic and feasibility studies are required to inform decision makers about the broader implications of a transition to TACTs in African counties. The recent reporting of artemisinin resistance and ACT failure in Africa might change important determinants of the market readiness for TACTs.
Collapse
Affiliation(s)
- Freek de Haan
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | | | - Rosemonde Guissou
- Institut de Recherche en Sciences de la Sante, Bobo-Dioulasso, Burkina Faso
| | - Fatoumata Tou
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Paulina Tindana
- School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Wouter P. C. Boon
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Ellen H. M. Moors
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Phaik Yeong Cheah
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M. Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jean Bosco Ouedraogo
- Institut de Recherche en Sciences de la Sante, Bobo-Dioulasso, Burkina Faso
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | | | - Chanaki Amaratunga
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Bailey BL, Nguyen W, Ngo A, Goodman CD, Gancheva MR, Favuzza P, Sanz LM, Gamo FJ, Lowes KN, McFadden GI, Wilson DW, Laleu B, Brand S, Jackson PF, Cowman AF, Sleebs BE. Optimisation of 2-(N-phenyl carboxamide) triazolopyrimidine antimalarials with moderate to slow acting erythrocytic stage activity. Bioorg Chem 2021; 115:105244. [PMID: 34452759 DOI: 10.1016/j.bioorg.2021.105244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
Malaria is a devastating parasitic disease caused by parasites from the genus Plasmodium. Therapeutic resistance has been reported against all clinically available antimalarials, threatening our ability to control the disease and therefore there is an ongoing need for the development of novel antimalarials. Towards this goal, we identified the 2-(N-phenyl carboxamide) triazolopyrimidine class from a high throughput screen of the Janssen Jumpstarter library against the asexual stages of the P. falciparum parasite. Here we describe the structure activity relationship of the identified class and the optimisation of asexual stage activity while maintaining selectivity against the human HepG2 cell line. The most potent analogues from this study were shown to exhibit equipotent activity against P. falciparum multidrug resistant strains and P. knowlesi asexual parasites. Asexual stage phenotyping studies determined the triazolopyrimidine class arrests parasites at the trophozoite stage, but it is likely these parasites are still metabolically active until the second asexual cycle, and thus have a moderate to slow onset of action. Non-NADPH dependent degradation of the central carboxamide and low aqueous solubility was observed in in vitro ADME profiling. A significant challenge remains to correct these liabilities for further advancement of the 2-(N-phenyl carboxamide) triazolopyrimidine scaffold as a potential moderate to slow acting partner in a curative or prophylactic antimalarial treatment.
Collapse
Affiliation(s)
- Brodie L Bailey
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Anna Ngo
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | | | - Maria R Gancheva
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Paola Favuzza
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Laura M Sanz
- Global Health Pharma Research Unit, GlaxoSmithKline, Tres Cantos 28760, Spain
| | | | - Kym N Lowes
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Geoffrey I McFadden
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia; Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne 3004, Australia
| | - Benoît Laleu
- Medicines for Malaria Venture, Geneva 1215, Switzerland
| | - Stephen Brand
- Medicines for Malaria Venture, Geneva 1215, Switzerland
| | - Paul F Jackson
- Global Public Health, Janssen Pharmaceuticals, San Diego, CA, United States
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
49
|
Lande DH, Nasereddin A, Alder A, Gilberger TW, Dzikowski R, Grünefeld J, Kunick C. Synthesis and Antiplasmodial Activity of Bisindolylcyclobutenediones. Molecules 2021; 26:4739. [PMID: 34443327 PMCID: PMC8402075 DOI: 10.3390/molecules26164739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria is one of the most dangerous infectious diseases. Because the causative Plasmodium parasites have developed resistances against virtually all established antimalarial drugs, novel antiplasmodial agents are required. In order to target plasmodial kinases, novel N-unsubstituted bisindolylcyclobutenediones were designed as analogs to the kinase inhibitory bisindolylmaleimides. Molecular docking experiments produced favorable poses of the unsubstituted bisindolylcyclobutenedione in the ATP binding pocket of various plasmodial protein kinases. The synthesis of the title compounds was accomplished by sequential Friedel-Crafts acylation procedures. In vitro screening of the new compounds against transgenic NF54-luc P. falciparum parasites revealed a set of derivatives with submicromolar activity, of which some displayed a reasonable selectivity profile against a human cell line. Although the molecular docking studies suggested the plasmodial protein kinase PfGSK-3 as the putative biological target, the title compounds failed to inhibit the isolated enzyme in vitro. As selective submicromolar antiplasmodial agents, the N-unsubstituted bisindolylcyclobutenediones are promising starting structures in the search for antimalarial drugs, albeit for a rational development, the biological target addressed by these compounds has yet to be identified.
Collapse
Affiliation(s)
- Duc Hoàng Lande
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (A.N.); (R.D.)
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Arne Alder
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; (A.A.); (T.W.G.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Tim W. Gilberger
- Centre for Structural Systems Biology, 22607 Hamburg, Germany; (A.A.); (T.W.G.)
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (A.N.); (R.D.)
| | - Johann Grünefeld
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethoven straße 55, 38106 Braunschweig, Germany; (D.H.L.); (J.G.)
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| |
Collapse
|
50
|
Identification of 3,4-Dihydro-2 H,6 H-pyrimido[1,2- c][1,3]benzothiazin-6-imine Derivatives as Novel Selective Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase. Int J Mol Sci 2021; 22:ijms22137236. [PMID: 34281290 PMCID: PMC8268581 DOI: 10.3390/ijms22137236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Plasmodium falciparum's resistance to available antimalarial drugs highlights the need for the development of novel drugs. Pyrimidine de novo biosynthesis is a validated drug target for the prevention and treatment of malaria infection. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the oxidation of dihydroorotate to orotate and utilize ubiquinone as an electron acceptor in the fourth step of pyrimidine de novo biosynthesis. PfDHODH is targeted by the inhibitor DSM265, which binds to a hydrophobic pocket located at the N-terminus where ubiquinone binds, which is known to be structurally divergent from the mammalian orthologue. In this study, we screened 40,400 compounds from the Kyoto University chemical library against recombinant PfDHODH. These studies led to the identification of 3,4-dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine and its derivatives as a new class of PfDHODH inhibitor. Moreover, the hit compounds identified in this study are selective for PfDHODH without inhibition of the human enzymes. Finally, this new scaffold of PfDHODH inhibitors showed growth inhibition activity against P. falciparum 3D7 with low toxicity to three human cell lines, providing a new starting point for antimalarial drug development.
Collapse
|