1
|
Radfar S, Sheikh M, Akhavantabib A, Heidari A, Ghasemi M, Naghavi M, Ghanbari R, Zibadi F, Jamshidi B, Alizadeh A. Application of a porous zirconium-based MOF nanoplate as an affinity ECL platform for the detection of protein kinase activity and inhibitor screening. Talanta 2025; 287:127675. [PMID: 39923669 DOI: 10.1016/j.talanta.2025.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Abnormal kinase expression affects phosphorylation in the human body, which is associated with numerous diseases, including cancer, diabetes mellitus, and Alzheimer's disease. In this study, we synthesized a highly stable, two-dimensional, luminescence-functionalized metal-organic framework with remarkable electrochemiluminescence (ECL) by immobilizing 9,10-Di(p-carboxyphenyl) anthracene (dca) on a zirconium cluster (dca-Zr₁₂) via a strong coordination bond between -COO⁻ and Zr⁴⁺. This novel and simple platform relies on the highly specific identification of phosphate molecules by the ultra-thin dca-Zr₁₂ nanoplate through carboxylate-Zr⁴⁺-phosphate chemistry. The ferrocene-labeled peptide substrate (Fc-S-Peptide) was phosphorylated in the presence of protein kinase A (PKA) and adenosine 5'-triphosphate (ATP), and the resulting phosphopeptide could subsequently be precisely captured by the zirconium sites of the dca-Zr12-modified electrode and, eventually, quench the ECL and gain a signal-off state. This rapid and simple detection strategy was successfully employed to measure PKA activity, with a detection limit as low as 0.35 mU mL-1. Based on the results, it exhibited high selectivity and can be applied for screening PKA inhibitors. The technique was subsequently applied to detect protein kinase activity in drug-stimulated MCF-7 cell lysates, demonstrating its potential for kinase-related investigations. Further, this platform could identify the activity of other kinase types with universal applicability.
Collapse
Affiliation(s)
- Sasan Radfar
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Milad Sheikh
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Amirreza Akhavantabib
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Amirhossein Heidari
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Milad Ghasemi
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohammadreza Naghavi
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Reza Ghanbari
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Esfahan, Iran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Jamshidi
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - Abdolhamid Alizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, 1993893973, Iran.
| |
Collapse
|
2
|
Hu H, Zhang Y, Yu Y, Liu D, Dong Z, Chen G. Phosphoproteomic analysis of X-ray-irradiated planarians provides novel insights into the DNA damage response. Int J Biol Macromol 2025; 299:140129. [PMID: 39842578 DOI: 10.1016/j.ijbiomac.2025.140129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Phosphorylation plays a crucial role in the cellular response to radiation and cancer therapies, yet phosphoproteomics studies in planarians remain underexplored despite the organism's remarkable regenerative capacities. This study utilized advanced ion mobility mass spectrometry for 4D-label-free quantitative proteomics to identify phosphorylation sites associated with irradiation in planarians. A total of 33,284 phosphorylation sites from 15,505 phosphorylated peptides and 4710 unique phosphoproteins were identified. In the sub-lethal dose irradiation group, 1695 phosphoproteins with 3483 phosphorylation sites exhibited significant changes, while exposure to lethal doses of radiation led to significant changes in 2308 phosphoproteins with 6112 phosphorylation sites, including many kinases, transcription factors, and cytoskeletal proteins. Functional enrichment analysis revealed that the altered phosphoproteins were primarily involved in transcription, RNA biosynthesis, mRNA processing regulation, and spliceosomal complex assembly. Functional validation of five differentially phosphorylated proteins revealed that their depletion impaired stem cell regeneration after irradiation by disrupting DNA repair, suggesting that these proteins are critical to planarian biology and their radiation response. By identifying the phosphorylation state and specific sites of planarian proteins, our study lays the foundation for further research on protein phosphorylation in the radiation-induced DNA damage response. In addition, our findings provide preliminary insights into the role of calnexin, a protein involved in interacting with newly synthesized N-linked glycoproteins, in planarians.
Collapse
Affiliation(s)
- Huanhuan Hu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China; Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Yibing Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China
| | - Yanan Yu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China.
| |
Collapse
|
3
|
Li S, Lin J, Huang L, Hu S, Wang M, Sun W, Sun S. STK31 drives tumor immune evasion through STAT3-IL-6 mediated CD8 + T cell exhaustion. Oncogene 2025:10.1038/s41388-024-03271-2. [PMID: 40025230 DOI: 10.1038/s41388-024-03271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 03/04/2025]
Abstract
Dysregulations in protein kinases significantly contribute to the initiation, progression, and drug resistance in non-small cell lung cancer (NSCLC). Identification of novel oncogenic drivers within the human kinome is crucial for targeted therapy. In this study, we conducted a comprehensive analysis of the TCGA database and literature, pinpointing 16 candidate genes in lung cancer exhibiting frequent dysregulation and limited research. Our functional analysis revealed Serine/threonine kinase 31 (STK31) as a key player in driving tumor growth, in immune-competent mice, with minimal impact in nude mice. Further investigations unveiled upregulation of STK31 led to CD8+ T cell exhaustion. Mechanistically, STK31 induced CD8+ T cell exhaustion through the signal transducer and activator of transcription 3 (STAT3) - interleukin 6 (IL-6) signaling pathway. Direct interaction between STK31 and STAT3 activated the transcription of downstream oncogenic targets, such as IL-6, facilitating immune escape. Moreover, STK31 exhibited elevated expression levels in lung cancer tissues compared to adjacent tissues and displayed a significant correlation with poor prognosis in lung cancer patients. This study defines a critical role of STK31 in promoting immune escape through STAT3 activation, positioning it as a promising therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Shasha Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Histology and Embryology, Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Jiaming Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojie Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingwei Wang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Li J, Gong X. Harnessing pre-trained models for accurate prediction of protein-ligand binding affinity. BMC Bioinformatics 2025; 26:55. [PMID: 39962390 PMCID: PMC11834573 DOI: 10.1186/s12859-025-06064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The binding between proteins and ligands plays a crucial role in the field of drug discovery. However, this area currently faces numerous challenges. On one hand, existing methods are constrained by the limited availability of labeled data, often performing inadequately when addressing complex protein-ligand interactions. On the other hand, many models struggle to effectively capture the flexible variations and relative spatial relationships between proteins and ligands. These issues not only significantly hinder the advancement of protein-ligand binding research but also adversely affect the accuracy and efficiency of drug discovery. Therefore, in response to these challenges, our study aims to enhance predictive capabilities through innovative approaches, providing more reliable support for drug discovery efforts. METHODS This study leverages a pre-trained model with spatial awareness to enhance the prediction of protein-ligand binding affinity. By perturbing the structures of small molecules in a manner consistent with physical constraints and employing self-supervised tasks, we improve the representation of small molecule structures, allowing for better adaptation to affinity predictions. Meanwhile, our approach enables the identification of potential binding sites on proteins. RESULTS Our model demonstrates a significantly higher correlation coefficient in binding affinity predictions. Extensive evaluation on the PDBBind v2019 refined set, CASF, and Merck FEP benchmarks confirms the model's robustness and strong generalization across diverse datasets. Additionally, the model achieves over 95% in classification ROC for binding site identification, underscoring its high accuracy in pinpointing protein-ligand interaction regions. CONCLUSION This research presents a novel approach that not only enhances the accuracy of binding affinity predictions but also facilitates the identification of binding sites, showcasing the potential of pre-trained models in computational drug design. Data and code are available at https://github.com/MIALAB-RUC/SableBind .
Collapse
Affiliation(s)
- Jiashan Li
- Institute for Mathematical Sciences, School of Mathematics, Renmin University of China, 59 Zhongguancun Street, Beijing, 100872, China
| | - Xinqi Gong
- Institute for Mathematical Sciences, School of Mathematics, Renmin University of China, 59 Zhongguancun Street, Beijing, 100872, China.
| |
Collapse
|
5
|
Skinner KA, Fisher TD, Lee A, Su T, Forte E, Sanchez A, Caldwell MA, Kelleher NL. Next-Generation Protein Sequencing and individual ion mass spectrometry enable complementary analysis of interleukin-6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637157. [PMID: 39975277 PMCID: PMC11839055 DOI: 10.1101/2025.02.07.637157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The vast complexity of the proteome currently overwhelms any single analytical technology in capturing the full spectrum of proteoform diversity. In this study, we evaluated the complementarity of two cutting-edge proteomic technologies-single-molecule protein sequencing and individual ion mass spectrometry-for analyzing recombinant human IL-6 (rhIL-6) at the amino acid, peptide, and intact proteoform levels. For single-molecule protein sequencing, we employ the recently released Platinum® instrument. Next-Generation Protein Sequencing™ (NGPS™) on Platinum utilizes cycles of N-terminal amino acid recognizer binding and aminopeptidase cleavage to enable parallelized sequencing of single peptide molecules. We found that NGPS produces single amino acid coverage of multiple key regions of IL-6, including two peptides within helices A and C which harbor residues that reportedly impact IL-6 function. For top-down proteoform evaluation, we use individual ion mass spectrometry (I2MS), a highly parallelized orbitrap-based charge detection MS platform. Single ion detection of gas-phase fragmentation products (I2MS2) gives significant sequence coverage in key regions in IL-6, including two regions within helices B and D that are involved in IL-6 signaling. Together, these complementary technologies deliver a combined 52% sequence coverage, offering a more complete view of IL-6 structural and functional diversity than either technology alone. This study highlights the synergy of complementary protein detection methods to more comprehensively cover protein segments relevant to biological interactions.
Collapse
Affiliation(s)
| | - Troy D. Fisher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
| | - Andrew Lee
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Taojunfeng Su
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, United States
| | - Aniel Sanchez
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
| | - Michael A. Caldwell
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
van Bergen W, Nederstigt AE, Heck AJR, Baggelaar MP. Site-Specific Competitive Kinase Inhibitor Target Profiling Using Phosphonate Affinity Tags. Mol Cell Proteomics 2025; 24:100906. [PMID: 39826875 PMCID: PMC11889359 DOI: 10.1016/j.mcpro.2025.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
Protein kinases are prime targets for drug development due to their involvement in various cancers. However, selective inhibition of kinases, while avoiding off-target effects remains a significant challenge for the development of protein kinase inhibitors. Activity-based protein profiling (ABPP), in combination with pan-kinase activity-based probes (ABPs) and mass spectrometry-based proteomics, enables the identification of kinase drug targets. Here, we extend existing ABPP strategies for kinase profiling with a site-specific analysis, allowing for protein kinase inhibitor target engagement profiling with amino acid specificity. The site-specific approach involves highly efficient enrichment of ABP-labeled peptides, resulting in a less complex peptide matrix, straightforward data analysis, and the screening of over ∼100 kinase active sites in a single LC-MS analysis. The complementary use of both trypsin and pepsin in parallel to generate the ABP-labeled peptides considerably expanded the coverage of kinases and pinpoint the exact binding sites. Using the site-specific strategy to examine the on- and off-targets of the Ephrin receptor (Eph) B4 inhibitor NVP-BHG712 showed binding to EphA2 with an IC50 of 17 nM and EphB4 with an IC50 of 20 nM. Next to the known targets, EphA2 and EphB4, NVP-BHG712 bound to the discoidin domain-containing receptor 1 with an IC50 of 2.1 nM, suggesting that a discoidin domain-containing receptor 1-targeting regio-isomer of NVP-BHG712 was used. The promiscuity of XO44 toward ATP-binding pockets on nonkinase proteins facilitated the screening of additional off-target sites, revealing inosine-5'-monophosphate dehydrogenase 2 as a putative off-target. Expanding the search to other amino acids revealed that XO44, in addition to 745 lysines, also covalently linked 715 tyrosines, which significantly expands the competitive ABPP search space and highlights the added value of the site-specific method. Therefore, the presented approach, which can be fully automated with liquid handling platforms, provides a straightforward, valuable new approach for competitive site-specific kinase inhibitor target profiling.
Collapse
Affiliation(s)
- Wouter van Bergen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, CH, The Netherlands; Netherlands Proteomics Center, Utrecht, CH, The Netherlands
| | - Anneroos E Nederstigt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, CH, The Netherlands; Netherlands Proteomics Center, Utrecht, CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, CH, The Netherlands; Netherlands Proteomics Center, Utrecht, CH, The Netherlands
| | - Marc P Baggelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, CH, The Netherlands; Netherlands Proteomics Center, Utrecht, CH, The Netherlands.
| |
Collapse
|
7
|
Kong D, Zhang A, Li L, Yuan ZF, Fu Y, Wu L, Mishra A, High AA, Peng J, Wang X. A computational tool to infer enzyme activity using post-translational modification profiling data. Commun Biol 2025; 8:103. [PMID: 39838083 PMCID: PMC11751189 DOI: 10.1038/s42003-025-07548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Enzymes play a pivotal role in orchestrating complex cellular responses to external stimuli and environmental changes through signal transduction pathways. Despite their crucial roles, measuring enzyme activities is typically indirect and performed on a smaller scale, unlike protein abundance measured by high-throughput proteomics. Moreover, it is challenging to derive the activity of enzymes from proteome-wide post-translational modification (PTM) profiling data. To address this challenge, we introduce enzyme activity inference with structural equation modeling under the JUMP umbrella (JUMPsem), a novel computational tool designed to infer enzyme activity using PTM profiling data. We demonstrate that the JUMPsem program enables estimating kinase activities using phosphoproteome data, ubiquitin E3 ligase activities from the ubiquitinome, and histone acetyltransferase (HAT) activities based on the acetylome. In addition, JUMPsem is capable of establishing novel enzyme-substrate relationships through searching motif sequences. JUMPsem outperforms widely used kinase activity tools, such as IKAP and KSEA, in terms of the number of kinases and the computational speed. The JUMPsem program is scalable and publicly available as an open-source R package and user-friendly web-based R/Shiny app. Collectively, JUMPsem provides an improved tool for inferring protein enzyme activities, potentially facilitating targeted drug development.
Collapse
Affiliation(s)
- Dehui Kong
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aijun Zhang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ling Li
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Long Wu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
8
|
O'Boyle B, Yeung W, Lu JD, Katiyar S, Yaron-Barir TM, Johnson JL, Cantley LC, Kannan N. Atlas of the Bacterial Serine-Threonine Kinases expands the functional diversity of the kinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632604. [PMID: 39868133 PMCID: PMC11760699 DOI: 10.1101/2025.01.12.632604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Bacterial serine-threonine protein kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity. They are evolutionarily related to the druggable eukaryotic STKs. However, an incomplete knowledge of how bacterial STKs differ from their eukaryotic counterparts and how they have diverged to regulate diverse bacterial signaling functions presents a bottleneck in targeting them for drug discovery efforts. Here, we classified over 300,000 bacterial STK sequences from the NCBI RefSeq non-redundant and UniProt protein databases into 35 canonical and seven non-canonical (pseudokinase) families based on the patterns of evolutionary constraints in the conserved catalytic domain and flanking regulatory domains. Through statistical comparisons, we identified distinguishing features of bacterial STKs, including a distinctive arginine residue in a regulatory helix (C-Helix) that dynamically couples ATP and substrate binding lobes of the kinase domain. Biochemical and peptide-library screens demonstrated that constrained residues contribute to substrate specificity and kinase activation in the Mycobacterium tuberculosis kinase PknB. Collectively, these findings open new avenues for investigating bacterial STK functions in cellular signaling and for the development of selective bacterial STK inhibitors.
Collapse
|
9
|
Hu J, Hu S, Xia M, Zheng K, Zhang X. Drug-target binding affinity prediction based on power graph and word2vec. BMC Med Genomics 2025; 18:9. [PMID: 39806396 PMCID: PMC11730168 DOI: 10.1186/s12920-024-02073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Drug and protein targets affect the physiological functions and metabolic effects of the body through bonding reactions, and accurate prediction of drug-protein target interactions is crucial for drug development. In order to shorten the drug development cycle and reduce costs, machine learning methods are gradually playing an important role in the field of drug-target interactions. RESULTS Compared with other methods, regression-based drug target affinity is more representative of the binding ability. Accurate prediction of drug target affinity can effectively reduce the time and cost of drug retargeting and new drug development. In this paper, a drug target affinity prediction model (WPGraphDTA) based on power graph and word2vec is proposed. CONCLUSIONS In this model, the drug molecular features in the power graph module are extracted by a graph neural network, and then the protein features are obtained by the Word2vec method. After feature fusion, they are input into the three full connection layers to obtain the drug target affinity prediction value. We conducted experiments on the Davis and Kiba datasets, and the experimental results showed that WPGraphDTA exhibited good prediction performance.
Collapse
Affiliation(s)
- Jing Hu
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China.
- Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan, China.
- Institute of Big Data Science and Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | - Shuo Hu
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Minghao Xia
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Kangxing Zheng
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Xiaolong Zhang
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China.
- Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan, China.
- Institute of Big Data Science and Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Sander P, Schwalm MP, Krämer A, Elson L, Rasch A, Masberg B, Selig R, Sievers-Engler A, Lämmerhofer M, Müller S, Knapp S, Albrecht W, Laufer SA. Design, Synthesis, and Biochemical Evaluation of Novel MLK3 Inhibitors: A Target Hopping Example. J Med Chem 2025; 68:674-694. [PMID: 39681301 DOI: 10.1021/acs.jmedchem.4c02552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The human kinome has tremendous medical potential. In the past decade, mixed-lineage protein kinase 3 (MLK3) has emerged as an interesting and druggable target in oncogenic signaling. The important role of MLK3 has been demonstrated in several types of cancer. In a target hopping example we started with the focal adhesion kinase (FAK) inhibitor PF-431396 (10), which shows off-target activity toward MLK3. We were able to develop highly active compounds in the single digit nanomolar range for MLK3. Furthermore, we achieved a dramatic shift in selectivity from FAK to MLK3. Here we present a new chemical class of MLK3 inhibitors, including our lead compound 37 with an outstanding IC50 value of <1 nM in a biochemical MLK3 assay while simultaneously exhibiting kinome-wide selectivity.
Collapse
Affiliation(s)
- Pascal Sander
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Martin P Schwalm
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz, Heidelberg 69120, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Alexander Rasch
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Benedikt Masberg
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard-Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Roland Selig
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
- HepaRegeniX GmbH, Eisenbahnstraße 63, Tuebingen 72072, Germany
| | - Adrian Sievers-Engler
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard-Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Michael Lämmerhofer
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard-Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz, Heidelberg 69120, Germany
| | | | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
- Cluster of Excellence "Image Guided and Functionally Instructed Tumor Therapies" (iFIT), Eberhard Karls University of Tuebingen, Tuebingen 72076, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Tuebingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| |
Collapse
|
11
|
Zhang M, Zhang Y, Dong K, Lin J, Cui X, Zhang Y. Identification of Critical Phosphorylation Sites Enhancing Kinase Activity With a Bimodal Fusion Framework. Mol Cell Proteomics 2025; 24:100889. [PMID: 39617062 PMCID: PMC11774822 DOI: 10.1016/j.mcpro.2024.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
Phosphorylation is an indispensable regulatory mechanism in cells, with specific sites on kinases that can significantly enhance their activity. Although several such critical phosphorylation sites (phos-sites) have been experimentally identified, many more remain to be explored. To date, no computational method exists to systematically identify these critical phos-sites on kinases. In this study, we introduce PhoSiteformer, a transformer-inspired foundational model designed to generate embeddings of phos-sites using phosphorylation mass spectrometry data. Recognizing the complementary insights offered by protein sequence data and phosphorylation mass spectrometry data, we developed a classification model, CSPred, which employs a bimodal fusion strategy. CSPred combines embeddings from PhoSiteformer with those from the protein language model ProtT5. Our approach successfully identified 77 critical phos-sites on 58 human kinases. Two of these sites, T517 on PKG1 and T735 on PRKD3, have been experimentally verified. This study presents the first systematic and computational approach to identify critical phos-sites that enhance kinase activity.
Collapse
Affiliation(s)
- Menghuan Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yizhi Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Keqin Dong
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Jin Lin
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xingang Cui
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Yong Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
12
|
Attia MH, Lasheen DS, Samir N, Taher AT, Abdel-Aziz HA, Abou El Ella DA. Design, Synthesis and Molecular Modeling of Pyrazolo[1,5- a]pyrimidine Derivatives as Dual Inhibitors of CDK2 and TRKA Kinases with Antiproliferative Activity. Pharmaceuticals (Basel) 2024; 17:1667. [PMID: 39770509 PMCID: PMC11678221 DOI: 10.3390/ph17121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The increasing prevalence of drug resistance in cancer therapy underscores the urgent need for novel therapeutic approaches. Dual enzyme inhibitors, targeting critical kinases such as CDK2 and TRKA, represent a promising strategy. The goal of this investigation was to design, synthesize, and evaluate a set of pyrazolo[1,5-a]pyrimidine derivatives for their dual inhibition potential toward CDK2 and TRKA kinases, along with their potential antiproliferative against cancer cell lines. METHODS A set of pyrazolo[1,5-a]pyrimidine derivatives (6a-t, 11a-g, and 12) was synthesized and subjected to in vitro enzymatic assays to determine their inhibitory activity against CDK2 and TRKA kinases. Selected compounds were further assessed for antiproliferative effects across the set of 60 cell lines from the NCI, representing various human cancer types. Additionally, simulations of molecular docking were conducted to explore the modes of binding for the whole active compounds and compare them with known inhibitors. RESULTS Compounds 6t and 6s exhibited potent dual inhibitory activity, showing an IC50 = 0.09 µM and 0.23 µM against CDK2, and 0.45 µM against TRKA, respectively. These results were comparable to reference inhibitors ribociclib (CDK2, IC50 = 0.07 µM) and larotrectinib (TRKA, IC50 = 0.07 µM). Among the studied derivatives, compound 6n displayed a notable broad-spectrum anticancer activity, achieving a mean growth inhibition (GI%) of 43.9% across 56 cell lines. Molecular docking simulations revealed that the synthesized compounds adopt modes of binding similar to those of the lead inhibitors. Conclusions: In this study, prepared pyrazolo[1,5-a]pyrimidine derivatives demonstrated significant potential as dual CDK2/TRKA inhibitors, and showed potent anticancer activity toward diverse cancer cell lines. These findings highlight their potential as key compounds for the design of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Mohamed H. Attia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October 6 University (O6U), Giza 12585, Egypt
| | - Deena S. Lasheen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (D.S.L.); (N.S.)
| | - Nermin Samir
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (D.S.L.); (N.S.)
| | - Azza T. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), Giza 12585, Egypt
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Cairo 12622, Egypt;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Dalal A. Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (D.S.L.); (N.S.)
| |
Collapse
|
13
|
Hassan HM, Hamdan AM, Alattar A, Alshaman R, Bahattab O, Al-Gayyar MMH. Evaluating anticancer activity of emodin by enhancing antioxidant activities and affecting PKC/ADAMTS4 pathway in thioacetamide-induced hepatocellular carcinoma in rats. Redox Rep 2024; 29:2365590. [PMID: 38861483 PMCID: PMC11168332 DOI: 10.1080/13510002.2024.2365590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Emodin is a naturally occurring anthraquinone derivative with a wide range of pharmacological activities, including neuroprotective and anti-inflammatory activities. We aim to assess the anticancer activity of emodin against hepatocellular carcinoma (HCC) in rat models using the proliferation, invasion, and angiogenesis biomarkers. After induction of HCC, assessment of the liver impairment and the histopathology of liver sections were investigated. Hepatic expression of both mRNA and protein of the oxidative stress biomarkers, HO-1, Nrf2; the mitogenic activation biomarkers, ERK5, PKCδ; the tissue destruction biomarker, ADAMTS4; the tissue homeostasis biomarker, aggregan; the cellular fibrinolytic biomarker, MMP3; and of the cellular angiogenesis biomarker, VEGF were measured. Emodin increased the survival percentage and reduced the number of hepatic nodules compared to the HCC group. Besides, emodin reduced the elevated expression of both mRNA and proteins of all PKC, ERK5, ADAMTS4, MMP3, and VEGF compared with the HCC group. On the other hand, emodin increased the expression of mRNA and proteins of Nrf2, HO-1, and aggrecan compared with the HCC group. Therefore, emodin is a promising anticancer agent against HCC preventing the cancer prognosis and infiltration. It works through many mechanisms of action, such as blocking oxidative stress, proliferation, invasion, and angiogenesis.
Collapse
Affiliation(s)
- Hanan M. Hassan
- Dept. of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed M. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed M. H. Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
14
|
Bakalakou VA, Mavroidi B, Kalampaliki AD, Josselin B, Bach S, Skaltsounis AL, Marakos P, Pouli N, Pelecanou M, Myrianthopoulos V, Ruchaud S, Kostakis IK. The pyrazolo[4,3-c]pyrazole core as a novel and versatile scaffold for developing dual DYRK1A-CLK1 inhibitors targeting key processes of Alzheimer's disease pathology. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2024; 12:100193. [DOI: 10.1016/j.ejmcr.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Rosenthal KJ, Gordan JD, Scott JD. Protein kinase A and local signaling in cancer. Biochem J 2024; 481:1659-1677. [PMID: 39540434 DOI: 10.1042/bcj20230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Protein kinase A (PKA) is a basophilic kinase implicated in the modulation of many cell-signaling and physiological processes. PKA also contributes to cancer-relevant events such as growth factor action, cell cycle control, cell migration and tumor metabolism. Germline and somatic mutations in PKA, gene amplifications, and chromosome rearrangements that encode kinase fusions, are linked to a growing number of malignant neoplasms. Mislocalization of PKA by exclusion from A-Kinase Anchoring Protein (AKAP) signaling islands further underlies cancer progression. This article highlights the influence of AKAP signaling and local kinase action in selected hallmarks of cancer. We also feature the utility of kinase inhibitor drugs as frontline and future anti-cancer therapies.
Collapse
Affiliation(s)
- Kacey J Rosenthal
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| | - John D Gordan
- Department of Medicine (Hematology/Oncology), Quantitative Biosciences Institute, UCSF Helen Diller Family Cancer Center, 1700 4th St., San Francisco, CA 94143, U.S.A
| | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| |
Collapse
|
16
|
Zhang X, Feng Y, Gao F, Li T, Guo Y, Ge S, Wang N. Expression and clinical significance of U2AF homology motif kinase 1 in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:626-634. [PMID: 39129074 DOI: 10.1016/j.oooo.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE U2AF homology motif kinase 1 (UHMK1) is a newly discovered molecule that may have multiple functions. Recent studies have revealed that UHMK1 had aberrant expression in many tumors and was associated with tumor progression. However, UHMK1 was rarely reported in oral squamous cell carcinoma (OSCC). STUDY DESIGN In this study, Western blot, quantitative real-time polymerase chain reaction (PCR), and immunohistochemistry were used to detect the expression of UHMK1 in OSCC and peritumoral non-neoplastic tissues. Then, its relationship with clinicopathologic parameters was analyzed. The Kaplan-Meier method and Cox regression model were used to analyze the effects of UHMK1 expression on the prognosis and survival of OSCC patients. RESULTS Our results showed that UHMK1 had higher expression in OSCC tissues compared with in peritumoral non-neoplastic tissues, and its high expression was associated with high TNM stage and lymph node metastasis. High UHMK1 expression was related to short overall and disease-free survival times. Moreover, UHMK1 expression was identified as an independent prognostic factor that influences overall and disease-free survival of OSCC patients. CONCLUSIONS High expression of UHMK1 is associated with the poor prognosis of patients, and it can be used as a potential prognostic molecule for OSCC.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei Gao
- Deparment of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tongtong Li
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yan Guo
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shengyou Ge
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
17
|
Samanta S, Sk MF, Koirala S, Kar P. Dynamic Interplay of Loop Motions Governs the Molecular Level Regulatory Dynamics in Spleen Tyrosine Kinase: Insights from Molecular Dynamics Simulations. J Phys Chem B 2024; 128:10565-10580. [PMID: 39432460 DOI: 10.1021/acs.jpcb.4c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The spleen tyrosine kinase (Syk) is a key regulator in immune cell signaling and is linked to various mechanisms in cancer and neurodegenerative diseases. Although most computational research on Syk focuses on novel drug design, the molecular-level regulatory dynamics remain unexplored. In this study, we utilized 5 × 1 μs all-atom molecular dynamics simulations of the Syk kinase domain, examining it in combinations of activation segment phosphorylated/unphosphorylated (at Tyr525, Tyr526) and the "DFG"-Asp protonated/deprotonated (at Asp512) states to investigate conformational variations and regulatory dynamics of various loops and motifs within the kinase domain. Our findings revealed that the formation and disruption of several electrostatic interactions among residues within and near the activation segment likely influenced its dynamics. The protein structure network analysis indicated that the N-terminal and C-terminal anchors were stabilized by connections with the nearby stable helical regions. The P-loop showed conformational variation characterized by movements toward and away from the conserved "HRD"-motif. Additionally, there was a significant correlation between the movement of the β3-αC loop and the P-loop, which controls the dimensions of the adenine-binding cavity of the C-spine region. Overall, understanding these significant motions of the Syk kinase domain enhances our knowledge of its functional regulatory mechanism and can guide future research.
Collapse
Affiliation(s)
- Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| |
Collapse
|
18
|
Thirumalai Srinivasan S, Manikandan A, Manoj N, Dixit M, Vemparala S. Role of Tyrosine Phosphorylation in PTP-PEST. J Phys Chem B 2024; 128:10581-10592. [PMID: 39423851 DOI: 10.1021/acs.jpcb.4c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
We study the influence of tyrosine phosphorylation on PTP-PEST, a cytosolic protein tyrosine phosphatase. Utilizing a combination of experimental data and computational modeling, specific tyrosine sites, notably, Y64 and Y88, are identified for potential phosphorylation. Phosphorylation at these sites affects loop dynamics near the catalytic site, altering interactions among key residues and modifying the size of the binding pocket. This, in turn, impacts substrate binding, as indicated by changes in the binding energy. Our findings provide insights into the structural and functional consequences of tyrosine phosphorylation on PTP-PEST, enhancing our understanding of its effects on substrate binding and catalytic conformation.
Collapse
Affiliation(s)
| | - Amrutha Manikandan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Madhulika Dixit
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Satyavani Vemparala
- Homi Bhabha National Institute, Mumbai 400094, India
- The Institute of Mathematical Sciences, Chennai 600113, India
| |
Collapse
|
19
|
Srivastava P, Jha S, Singh SK, Vyas H, Sethupathi P, Nair RS, Ramachandran K, Rana B, Kumar S, Rana A. Protease activated receptor-1 regulates mixed lineage kinase-3 to drive triple-negative breast cancer tumorigenesis. Cancer Lett 2024; 603:217200. [PMID: 39222677 DOI: 10.1016/j.canlet.2024.217200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) is difficult to treat breast cancer subtype due to lack or insignificant expressions of targetable estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2). Therefore, finding a targetable protein or signaling pathway in TNBC would impact patient care. Here, we report that a member of the Mixed Lineage Kinase (MLK) family, MLK3, is an effector of G-protein-coupled protease-activated receptors 1 (PAR1) and targeting MLK3 by a small-molecule inhibitor prevented PAR1-mediated TNBC tumorigenesis. In silico and immunohistochemistry analysis of human breast tumors showed overexpression of PAR1 and MLK3 in TNBC tumors. Treating α-thrombin and PAR1 agonist increased MLK3 and JNK activities and induced cell migration in TNBC cells. The PAR1 positive/high (PAR1+/hi) population of TNBC cells showed aggressive tumor phenotype with increased MLK3 signaling. Moreover, combined inhibition of the PAR1 and MLK3 mitigated the TNBC tumor burden in preclinical TNBC models. Our data suggests that activation of the PAR1-MLK3 axis promotes TNBC tumorigenesis. Therefore, combinatorial therapy targeting MLK3 and PAR1 could effectively reduce TNBC tumor burden.
Collapse
Affiliation(s)
- Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Saket Jha
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Harsh Vyas
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Periannan Sethupathi
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kheerthivasan Ramachandran
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
20
|
Renne SL, Cammelli M, Santori I, Tassan-Mangina M, Samà L, Ruspi L, Sicoli F, Colombo P, Terracciano LM, Quagliuolo V, Cananzi FCM. True Mitotic Count Prediction in Gastrointestinal Stromal Tumors: Bayesian Network Model and PROMETheus (Preoperative Mitosis Estimator Tool) Application Development. J Med Internet Res 2024; 26:e50023. [PMID: 39437385 PMCID: PMC11538881 DOI: 10.2196/50023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/14/2024] [Accepted: 07/21/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GISTs) present a complex clinical landscape, where precise preoperative risk assessment plays a pivotal role in guiding therapeutic decisions. Conventional methods for evaluating mitotic count, such as biopsy-based assessments, encounter challenges stemming from tumor heterogeneity and sampling biases, thereby underscoring the urgent need for innovative approaches to enhance prognostic accuracy. OBJECTIVE The primary objective of this study was to develop a robust and reliable computational tool, PROMETheus (Preoperative Mitosis Estimator Tool), aimed at refining patient stratification through the precise estimation of mitotic count in GISTs. METHODS Using advanced Bayesian network methodologies, we constructed a directed acyclic graph (DAG) integrating pertinent clinicopathological variables essential for accurate mitotic count prediction on the surgical specimen. Key parameters identified and incorporated into the model encompassed tumor size, location, mitotic count from biopsy specimens, surface area evaluated during biopsy, and tumor response to therapy, when applicable. Rigorous testing procedures, including prior predictive simulations, validation utilizing synthetic data sets were employed. Finally, the model was trained on a comprehensive cohort of real-world GIST cases (n=80), drawn from the repository of the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, with a total of 160 cases analyzed. RESULTS Our computational model exhibited excellent diagnostic performance on synthetic data. Different model architecture were selected based on lower deviance and robust out-of-sample predictive capabilities. Posterior predictive checks (retrodiction) further corroborated the model's accuracy. Subsequently, PROMETheus was developed. This is an intuitive tool that dynamically computes predicted mitotic count and risk assessment on surgical specimens based on tumor-specific attributes, including size, location, surface area, and biopsy-derived mitotic count, using posterior probabilities derived from the model. CONCLUSIONS The deployment of PROMETheus represents a potential advancement in preoperative risk stratification for GISTs, offering clinicians a precise and reliable means to anticipate mitotic counts on surgical specimens and a solid base to stratify patients for clinical studies. By facilitating tailored therapeutic strategies, this innovative tool is poised to revolutionize clinical decision-making paradigms, ultimately translating into improved patient outcomes and enhanced prognostic precision in the management of GISTs.
Collapse
Affiliation(s)
- Salvatore Lorenzo Renne
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Pathology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Manuela Cammelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Ilaria Santori
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Marta Tassan-Mangina
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Laura Samà
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Laura Ruspi
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Federico Sicoli
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Piergiuseppe Colombo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Pathology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luigi Maria Terracciano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Pathology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Vittorio Quagliuolo
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ferdinando Carlo Maria Cananzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Sarcoma, Melanoma and Rare Tumors Surgery Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
21
|
Ma W, Hu J, Chen Z, Ai Y, Zhang Y, Dong K, Meng X, Liu L. The Development and Application of KinomePro-DL: A Deep Learning Based Online Small Molecule Kinome Selectivity Profiling Prediction Platform. J Chem Inf Model 2024; 64:7273-7290. [PMID: 39320984 DOI: 10.1021/acs.jcim.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Characterizing the kinome selectivity profiles of kinase inhibitors is essential in the early stages of novel small-molecule drug discovery. This characterization is critical for interpreting potential adverse events caused by off-target polypharmacology effects and provides unique pharmacological insights for drug repurposing development of existing kinase inhibitor drugs. However, experimental profiling of whole kinome selectivity is still time-consuming and resource-demanding. Here, we report a deep learning classification model using an in-house built data set of inhibitors against 191 well-representative kinases constructed based on a novel strategy by systematically cleaning and integrating six public data sets. This model, a multitask deep neural network, predicts the kinome selectivity profiles of compounds with novel structures. The model demonstrates excellent predictive performance, with auROC, prc-AUC, Accuracy, and Binary_cross_entropy of 0.95, 0.92, 0.90, and 0.37, respectively. It also performs well in a priori testing for inhibitors targeting different categories of proteins from internal compound collections, significantly improving over similar models on data sets from practical application scenarios. Integrated to subsequent machine learning-enhanced virtual screening workflow, novel CDK2 kinase inhibitors with potent kinase inhibitory activity and excellent kinome selectivity profiles are successfully identified. Additionally, we developed a free online web server, KinomePro-DL, to predict the kinome selectivity profiles and kinome-wide polypharmacology effects of small molecules (available on kinomepro-dl.pharmablock.com). Uniquely, our model allows users to quickly fine-tune it with their own training data sets, enhancing both prediction accuracy and robustness.
Collapse
Affiliation(s)
- Wei Ma
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Jiaqi Hu
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Zhuangzhi Chen
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Yaoqin Ai
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Yihang Zhang
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Keke Dong
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Xiangfei Meng
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Liu Liu
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| |
Collapse
|
22
|
de Brevern AG. Special Issue: "Molecular Dynamics Simulations and Structural Analysis of Protein Domains". Int J Mol Sci 2024; 25:10793. [PMID: 39409122 PMCID: PMC11477144 DOI: 10.3390/ijms251910793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The 3D protein structure is the basis for all their biological functions [...].
Collapse
Affiliation(s)
- Alexandre G. de Brevern
- DSIMB Bioinformatics Team, BIGR, INSERM, Université Paris Cité, F-75015 Paris, France; ; Tel.: +33-1-4449-3000
- DSIMB Bioinformatics Team, BIGR, INSERM, Université de la Réunion, F-97715 Saint Denis, France
| |
Collapse
|
23
|
Banerjee P, Chandra A, Mohammad T, Singh N, Hassan MI, Qamar I. Identification of high-affinity pyridoxal kinase inhibitors targeting cancer therapy: an integrated docking and molecular dynamics simulation approach. J Biomol Struct Dyn 2024; 42:8523-8540. [PMID: 37578056 DOI: 10.1080/07391102.2023.2246580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Pyridoxal kinase (PDXK) is a vitamin B6-dependent transferase enzyme encoded by the PDXK gene, crucial for leukemic cell proliferation. Disruption of its activity causes altered metabolism and reduced levels of nucleotides and polyamines. PDXK and pyridoxal 5'-phosphate (PLP) are overexpressed in various carcinomas, making them promising targets for drug design against cancer. Targeting PDXK may hold promise as a therapeutic approach for cancer treatment. This study focused on discovering potential inhibitors that could selectively interrupt the binding of pyridoxal phosphate (PLP) to pyridoxal kinase (PDXK). A commercially available library of 7,28,747 natural and druglike compounds was virtually screened using a molecular docking approach to target the substrate binding pocket of PDXK. Six promising inhibitors were identified, and all-atom molecular dynamics simulations were conducted on the PDXK-ligand complexes for 100 ns to assess their binding conformational stability. The simulation results indicated that the binding of ZINC095099376, ZINC01612996, ZINC049841390, ZINC095098959, ZINC01482077, and ZINC03830976 induced a slight structural change and stabilized the PDXK structure. This analysis provided valuable information about the critical residues involved in the PDXK-PLP complex formation and can be utilized in designing specific and effective PDXK inhibitors. According to this study, these compounds could be developed as anticancer agents targeting PDXK as a potential candidate for further study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pallabi Banerjee
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Anshuman Chandra
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
24
|
Bojarska J, Breza M, Borowiecki P, Madura ID, Kaczmarek K, Ziora ZM, Wolf WM. An experimental and computational investigation of the cyclopentene-containing peptide-derived compounds: focus on pseudo-cyclic motifs via intramolecular interactions. ROYAL SOCIETY OPEN SCIENCE 2024; 11:40962. [PMID: 39386982 PMCID: PMC11462612 DOI: 10.1098/rsos.240962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 10/12/2024]
Abstract
Conformational flexibility is one of the main disadvantages of peptide-based compounds. We focus on their molecular 'chameleonicity' related to forming pseudo-cyclic motifs via modulation of weak intramolecular interactions. It is an appealing strategy for controlling equilibrium between the polar open and the nonpolar closed conformations. Within this context, we report here the crystal structure of the (R)-(2-tert-butoxycarbonyl)amino-1-oxo-3-phenyl)propyl)-1-cyclopentene (1), synthesis of which in high yield was achieved by a facile multi-step protocol. Our Cambridge Structural Database (CSD) overview for the peptide-based crystals revealed the exclusivity of this compound from the viewpoint of the unusual pseudo-bicyclic system via C-H…O and C-O…π interactions, in which cyclopentene shields the amide bond. Notably, cyclopentene as a bioisostere of proline is an appealing scaffold in medicinal chemistry. An extensive combined experimental and computational study provided more profound insight into the supramolecular landscape of 1 with respect to similar derivatives deposited in the CSD, including the tendency of cyclopentene for the generation of pseudo-cyclic motifs through weak H-bonding and π-based intramolecular interactions. These weak interactions have been examined by either the quantum theory of 'atoms-in-molecules' (QTAIM) or complex Hirshfeld surface methodology, including enrichment ratios, molecular electrostatic potential surfaces and energy frameworks. In all analysed crystals, all types of H-bonded motifs involving cyclopentene are formed at all levels of supramolecular architecture. A library of cyclopentene-based H-bonding synthons is provided. A molecular docking study depicted vital interactions of cyclopentene with key amino acid residues inside the active sites of two prominent protein kinases, uncovering the therapeutic potential of 1 against breast cancer. To a large extent, dispersion forces have significance in stabilizing the supramolecular structure of both ligand and bio-complex ligand-protein. Finally, the satisfactory in silico bio-pharmacokinetic profile of 1 related to drug-likeness and blood-brain barrier permeation was also revealed.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical University of Lodz, 116 Zeromskiego St., Lodz90-924, Poland
| | - Martin Breza
- Department of Physical Chemistry, Slovak Technical University, Radlinskeho 9, BratislavaSK-81237, Slovakia
| | - Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 75 Koszykowa St., Warsaw00-662, Poland
| | - Izabela D. Madura
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St., Warsaw00-664, Poland
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego St., Lodz90-924, Poland
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St LuciaQLD 4072, Australia
| | - Wojciech M. Wolf
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical University of Lodz, 116 Zeromskiego St., Lodz90-924, Poland
| |
Collapse
|
25
|
Sudhir Kolpe M, Sardarsinh Suryawanshi V, Eldesoky GE, Hossain D, Chunarkar Patil P, Bhowmick S. Identification of Potent CHK2 Inhibitors‐Modulators for Therapeutic Application in Cancer: A Machine Learning Integrated Fragment‐Based Drug Design Approach. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202403302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 01/04/2025]
Abstract
AbstractThe CHK2 protein regulates the cell division cycle and responds to DNA damage. Additionally, it facilitates the repair of DNA damage and maintains the integrity of its biological processes. Dysregulation of the CHK2 protein is associated with a predisposition to harmful diseases. The current research protocol was designed to identify novel hit molecules as CHK2 inhibitors and disrupt the normal biological function of the CHK2 protein via a fragment‐based drug discovery approach. The protocol involved generating fragments using the MacFrag tool, followed by a chemical similarity search utilizing RDKit to identify fragment molecules analogous to previously established CHK2 inhibitor scaffolds. The bioactive molecules were constructed using the Fragmenstein tool, followed by molecular docking simulations to investigate their binding affinity. In addition, pharmacokinetic properties were analyzed, and a molecular dynamics simulation study was conducted to assess the stability of selected compounds with CHK2 protein. Finally, five novel compounds were identified as excellent CHK2 inhibitors through the FBDD and show good binding interactions at active sites of CHK2 with beneficial ADMET properties. This research work presents novel CHK2 inhibitor molecules that have the potential to be utilized in drug discovery, serving as key leads for future advancements in healthcare industries and sectors.
Collapse
Affiliation(s)
- Mahima Sudhir Kolpe
- SilicoScientia Private Limited Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block Bengaluru 560041 India
| | - Vikramsinh Sardarsinh Suryawanshi
- SilicoScientia Private Limited Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block Bengaluru 560041 India
| | - Gaber E. Eldesoky
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Dilnawaz Hossain
- SilicoScientia Private Limited Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block Bengaluru 560041 India
| | - Pritee Chunarkar Patil
- Department of Bioinformatics Rajiv Gandhi Institute of IT and Biotechnology Bharati Vidyapeeth Deemed to be University Pune-Satara Road Pune India
| | - Shovonlal Bhowmick
- SilicoScientia Private Limited Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block Bengaluru 560041 India
| |
Collapse
|
26
|
Zhu L, Liu YP, Huang YT, Zhou ZJ, Liu JF, Yu LM, Wang HS. Cellular and molecular biology of posttranslational modifications in cardiovascular disease. Biomed Pharmacother 2024; 179:117374. [PMID: 39217836 DOI: 10.1016/j.biopha.2024.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) has now become the leading cause of death worldwide, and its high morbidity and mortality rates pose a great threat to society. Although numerous studies have reported the pathophysiology of CVD, the exact pathogenesis of all types of CVD is not fully understood. Therefore, much more research is still needed to explore the pathogenesis of CVD. With the development of proteomics, many studies have successfully identified the role of posttranslational modifications in the pathogenesis of CVD, including key processes such as apoptosis, cell metabolism, and oxidative stress. In this review, we summarize the progress in the understanding of posttranslational modifications in cardiovascular diseases, including novel protein posttranslational modifications such as succinylation and nitrosylation. Furthermore, we summarize the currently identified histone deacetylase (HDAC) inhibitors used to treat CVD, providing new perspectives on CVD treatment modalities. We critically analyze the roles of posttranslational modifications in the pathogenesis of CVD-related diseases and explore future research directions related to posttranslational modifications in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Zhu
- Graduate School of Dalian Medical University, Dalian 116000, Liaoning, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yu-Ting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Zi-Jun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Jian-Feng Liu
- First School of Clinical Medicine, Shenyang Medical College, Shenyang 110034, Liaoning, China
| | - Li-Ming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China.
| | - Hui-Shan Wang
- Graduate School of Dalian Medical University, Dalian 116000, Liaoning, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China.
| |
Collapse
|
27
|
Silvaroli JA, Martinez GV, Vanichapol T, Davidson AJ, Zepeda-Orozco D, Pabla NS, Kim JY. Role of the CDKL1-SOX11 signaling axis in acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F426-F434. [PMID: 38991010 PMCID: PMC11460330 DOI: 10.1152/ajprenal.00147.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024] Open
Abstract
The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.NEW & NOTEWORTHY Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.
Collapse
Affiliation(s)
- Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Gabriela V Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
28
|
Cabral G, Moss WJ, Brown KM. Proteomic approaches for protein kinase substrate identification in Apicomplexa. Mol Biochem Parasitol 2024; 259:111633. [PMID: 38821187 PMCID: PMC11194964 DOI: 10.1016/j.molbiopara.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William J Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
29
|
Bennett GM, Starczewski J, dela Cerna MVC. In silico identification of putative druggable pockets in PRL3, a significant oncology target. Biochem Biophys Rep 2024; 39:101767. [PMID: 39050014 PMCID: PMC11267023 DOI: 10.1016/j.bbrep.2024.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Protein tyrosine phosphatases (PTP) have emerged as targets in diseases characterized by aberrant phosphorylations such as cancers. The activity of the phosphatase of regenerating liver 3, PRL3, has been linked to several oncogenic and metastatic pathways, particularly in breast, ovarian, colorectal, and blood cancers. Development of small molecules that directly target PRL3, however, has been challenging. This is partly due to the lack of structural information on how PRL3 interacts with its inhibitors. Here, computational methods are used to bridge this gap by evaluating the druggability of PRL3. In particular, web-based pocket prediction tools, DoGSite3 and FTMap, were used to identify binding pockets using structures of PRL3 currently available in the Protein Data Bank. Druggability assessment by molecular dynamics simulations with probes was also performed to validate these results and to predict the strength of binding in the identified pockets. While several druggable pockets were identified, those in the closed conformation show more promise given their volume and depth. These two pockets flank the active site loops and roughly correspond to pockets predicted by molecular docking in previous papers. Notably, druggability simulations predict the possibility of low nanomolar affinity inhibitors in these sites implying the potential to identify highly potent small molecule inhibitors for PRL3. Putative pockets identified here can be leveraged for high-throughput virtual screening to further accelerate the drug discovery against PRL3 and development of PRL3-directed therapeutics.
Collapse
Affiliation(s)
- Grace M. Bennett
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| | - Julia Starczewski
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| | - Mark Vincent C. dela Cerna
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| |
Collapse
|
30
|
Biswas B, Huang YH, Craik DJ, Wang CK. The prospect of substrate-based kinase inhibitors to improve target selectivity and overcome drug resistance. Chem Sci 2024; 15:13130-13147. [PMID: 39183924 PMCID: PMC11339801 DOI: 10.1039/d4sc01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
Human kinases are recognized as one of the most important drug targets associated with cancer. There are >80 FDA-approved kinase inhibitors to date, most of which work by inhibiting ATP binding to the kinase. However, the frequent development of single-point mutations within the kinase domain has made overcoming drug resistance a major challenge in drug discovery today. Targeting the substrate site of kinases can offer a more selective and resistance-resilient solution compared to ATP inhibition but has traditionally been challenging. However, emerging technologies for the discovery of drug leads using recombinant display and stabilization of lead compounds have increased interest in targeting the substrate site of kinases. This review discusses recent advances in the substrate-based inhibition of protein kinases and the potential of such approaches for overcoming the emergence of resistance.
Collapse
Affiliation(s)
- Biswajit Biswas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| |
Collapse
|
31
|
Němec V, Remeš M, Beňovský P, Böck MC, Šranková E, Wong JF, Cros J, Williams E, Tse LH, Smil D, Ensan D, Isaac MB, Al-Awar R, Gomolková R, Ursachi VC, Fafílek B, Kahounová Z, Víchová R, Vacek O, Berger BT, Wells CI, Corona CR, Vasta JD, Robers MB, Krejci P, Souček K, Bullock AN, Knapp S, Paruch K. Discovery of Two Highly Selective Structurally Orthogonal Chemical Probes for Activin Receptor-like Kinases 1 and 2. J Med Chem 2024; 67:12632-12659. [PMID: 39023313 PMCID: PMC11320582 DOI: 10.1021/acs.jmedchem.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Activin receptor-like kinases 1-7 (ALK1-7) regulate a complex network of SMAD-independent as well as SMAD-dependent signaling pathways. One of the widely used inhibitors for functional investigations of these processes, in particular for bone morphogenetic protein (BMP) signaling, is LDN-193189. However, LDN-193189 has insufficient kinome-wide selectivity complicating its use in cellular target validation assays. Herein, we report the identification and comprehensive characterization of two chemically distinct highly selective inhibitors of ALK1 and ALK2, M4K2234 and MU1700, along with their negative controls. We show that both MU1700 and M4K2234 efficiently block the BMP pathway via selective in cellulo inhibition of ALK1/2 kinases and exhibit favorable in vivo profiles in mice. MU1700 is highly brain penetrant and shows remarkably high accumulation in the brain. These high-quality orthogonal chemical probes offer the selectivity required to become widely used tools for in vitro and in vivo investigation of BMP signaling.
Collapse
Affiliation(s)
- Václav Němec
- Institute
for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Marek Remeš
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Petr Beňovský
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Michael C. Böck
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Eliška Šranková
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
| | - Jong Fu Wong
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Julien Cros
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Eleanor Williams
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Lap Hang Tse
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - David Smil
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Deeba Ensan
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Methvin B. Isaac
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Rima Al-Awar
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Regina Gomolková
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Vlad-Constantin Ursachi
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
| | - Bohumil Fafílek
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
| | - Zuzana Kahounová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Ráchel Víchová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Ondřej Vacek
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Benedict-Tilman Berger
- Institute
for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
| | - Carrow I. Wells
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | - James D. Vasta
- Promega Corporation, Madison, Wisconsin 53716, United States
| | | | - Pavel Krejci
- Department
of Biology, Faculty of Medicine, Masaryk
University, 625 00 Brno, Czech
Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
| | - Karel Souček
- International
Clinical Research Center, St. Anne’s
University Hospital, 602
00 Brno, Czech Republic
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno Czech Republic
| | - Alex N. Bullock
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Stefan Knapp
- Institute
for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
| | - Kamil Paruch
- Department
of Chemistry, Masaryk University, Brno 625 00, Czech Republic
- Institute
of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| |
Collapse
|
32
|
Mohammadi Y, Emadi R, Maddahi A, Shirdel S, Morowvat MH. Identifying potential Alzheimer's disease therapeutics through GSK-3β inhibition: A molecular docking and dynamics approach. Comput Biol Chem 2024; 111:108095. [PMID: 38805865 DOI: 10.1016/j.compbiolchem.2024.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
Emerging as a promising drug target for Alzheimer's disease (AD) therapy, glycogen synthase kinase 3β (GSK-3β) has garnered attention. This study sought to rigorously scrutinize a compendium of natural compounds retrieved from the ZINC database through pharmacodynamic experiments, employing a 1 H-indazole-3-carboxamide (INDZ) scaffold, to identify compounds capable of inhibiting the GSK-3β protein. Utilizing a multi-step approach, the study involved pharmacophore analysis, followed by molecular docking to select five promising ligands for further investigation. Subsequently, ESMACS simulations were employed to assess the stability of the ligand-protein interactions. Evaluation of the binding modes and free energy of the ligands revealed that five compounds (2a-6a) exhibited crucial interactions with the active site residues. Furthermore, various methodologies, including hydrogen bond and clustering analyses, were utilized to ascertain their inhibitory potential and elucidate the factors contributing to ligand binding in the protein's active site. The findings from MMPBSA/GBSA analysis indicated that these five selected small molecules closely approached the IC50 value of the reference ligand (OH8), yielding energy values of -34.85, -32.58, -31.71, and -30.39 kcal/mol, respectively. Additionally, an assessment of the interactions using hydrogen bond and dynamic analyses delineated the effective binding of the ligands with the binding pockets in the protein. Through computational analysis, we obtained valuable insights into the molecular mechanisms of GSK-3β, aiding in the development of more potent inhibitors.
Collapse
Affiliation(s)
- Yasaman Mohammadi
- Faculty of Dentistry, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Reza Emadi
- Department of Biochemistry, Institute of Biochemistry & Biophsysics (IBB), University of Tehran, Tehran, Iran
| | - Arman Maddahi
- Department of Microbiology, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Shiva Shirdel
- Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
33
|
Aboul-Soud MAM, Al-Sheikh YA, Ghneim HK, Supuran CT, Carta F. Kinase inhibitors: 20 years of success and many new challenges and recent trends in their patents. Expert Opin Ther Pat 2024; 34:583-592. [PMID: 38784980 DOI: 10.1080/13543776.2024.2355247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Protein kinases (PKs) play key roles in cellular signaling and regulation cascades and therefore are listed among the most investigated enzymes with the intent to develop drugs that are able to modulate their catalytic features. Specifically, PKs are involved in chronic diseases of large impact in the society such as cancers and neurodegeneration. Since the approval of Fasudil for the management of cerebral vasospasm, frantic efforts are currently ongoing for the development of selective PK-modulating agents. AREAS COVERED A selection of the most relevant patents in the European Patent Office for biomedical innovation and/or industrial development covering the years 2020-2023 on PK modulators either of the antibody and small-molecule type is reported. In addition to the examined patents, we also reported the contributions claiming the use of antibody-targeted PKs for lab bench identification kits. EXPERT OPINION The field of PK modulators for biomedical purposes is particularly crowded with contributions, making it rich in valuable information for the development of potential drugs. An emerging frontier is represented by PK activators that aims to complement the use of PK inhibitors with the final intent of finely adjusting any PK-related disruption responsible for triggering any disease.
Collapse
Affiliation(s)
- Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Yazeed A Al-Sheikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hazem K Ghneim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
34
|
Royet C, Diot S, Onofre M, Lecki L, Pastore M, Reynes C, Lorcy F, Lacheretzszablewski V, Serre I, Morris MC. Multiplexed Profiling of CDK Kinase Activities in Tumor Biopsies with Fluorescent Peptide Biosensors. ACS Sens 2024; 9:2964-2978. [PMID: 38863434 DOI: 10.1021/acssensors.4c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Detection of disease biomarkers constitutes a major challenge for the development of personalized and predictive diagnostics as well as companion assays. Protein kinases (PKs) involved in the coordination of cell cycle progression and proliferation that are hyperactivated in human cancers constitute attractive pharmacological targets and relevant biomarkers. Although it is relatively straightforward to assess the relative abundance of PKs in a biological sample, there is not always a direct correlation with enzymatic activity, which is regulated by several posttranslational mechanisms. Studies of relative abundance therefore convey limited information, and the lack of selective, sensitive, and standardized tools together with the inherent complexity of biological samples makes it difficult to quantify PK activities in physio-pathological tissues. To address this challenge, we have developed a toolbox of fluorescent biosensors that report on CDK activities in a sensitive, selective, dose-dependent, and quantitative fashion, which we have implemented to profile CDK activity signatures in cancer cell lines and biopsies from human tumors. In this study, we report on a standardized and calibrated biosensing approach to quantify CDK1,2,4, and 6 activities simultaneously through a combination of four different biosensors in a panel of 40 lung adenocarcinoma and 40 follicular lymphoma samples. CDK activity profiling highlighted two major patterns which were further correlated with age, sex of patients, tumor size, grade, and genetic and immunohistochemical features of the biopsies. Multiplex CDKACT biosensing technology provides new and complementary information relative to current genetic and immunohistochemical characterization of tumor biopsies, which will be useful for diagnostic purposes, potentially guiding therapeutic decision. These fluorescent peptide biosensors offer promise for personalized diagnostics based on kinase activity profiling.
Collapse
Affiliation(s)
- Chloé Royet
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Sébastien Diot
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Mélanie Onofre
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Lennard Lecki
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Manuela Pastore
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Christelle Reynes
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Frederique Lorcy
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | | | - Isabelle Serre
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | - May C Morris
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
35
|
van Rhijn N, Zhao C, Al-Furaiji N, Storer ISR, Valero C, Gago S, Chown H, Baldin C, Grant RF, Bin Shuraym H, Ivanova L, Kniemeyer O, Krüger T, Bignell E, Goldman GH, Amich J, Delneri D, Bowyer P, Brakhage AA, Haas H, Bromley MJ. Functional analysis of the Aspergillus fumigatus kinome identifies a druggable DYRK kinase that regulates septal plugging. Nat Commun 2024; 15:4984. [PMID: 38862481 PMCID: PMC11166925 DOI: 10.1038/s41467-024-48592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. Azole antifungals represent first-line therapeutics for most of these infections but resistance is rising, therefore the identification of antifungal targets whose inhibition synergises with the azoles could improve therapeutic outcomes. Here, we generate a library of 111 genetically barcoded null mutants of Aspergillus fumigatus in genes encoding protein kinases, and show that loss of function of kinase YakA results in hypersensitivity to the azoles and reduced pathogenicity. YakA is an orthologue of Candida albicans Yak1, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. We show that YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and to grow in mouse lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit C. albicans Yak1, prevents stress-mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.
Collapse
Affiliation(s)
- Norman van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Can Zhao
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Narjes Al-Furaiji
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Pharmacology, College of Medicine, University of Kerbala, Kerbala, Iraq
| | - Isabelle S R Storer
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Clara Baldin
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Rachael-Fortune Grant
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hajer Bin Shuraym
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, 11481, Riyadh, Saudi Arabia
| | - Lia Ivanova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Elaine Bignell
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- MRC Centre for Medical Mycology, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Daniela Delneri
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Axel A Brakhage
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
36
|
Hansen DT, Rueb NJ, Levinzon ND, Cheatham TE, Gaston R, Tanvir Ahmed K, Osburn-Staker S, Cox JE, Dudley GB, Barrios AM. The mechanism of covalent inhibition of LAR phosphatase by illudalic acid. Bioorg Med Chem Lett 2024; 104:129740. [PMID: 38599294 PMCID: PMC11057956 DOI: 10.1016/j.bmcl.2024.129740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Leukocyte antigen-related (LAR) phosphatase is a receptor-type protein tyrosine phosphatase involved in cellular signaling and associated with human disease including cancer and metabolic disorders. Selective inhibition of LAR phosphatase activity by well characterized and well validated small molecules would provide key insights into the roles of LAR phosphatase in health and disease, but identifying selective inhibitors of LAR phosphatase activity has been challenging. Recently, we described potent and selective inhibition of LAR phosphatase activity by the fungal natural product illudalic acid. Here we provide a detailed biochemical characterization of the adduct formed between LAR phosphatase and illudalic acid. A mass spectrometric analysis indicates that two cysteine residues are covalently labeled by illudalic acid and a related analog. Mutational analysis supports the hypothesis that inhibition of LAR phosphatase activity is due primarily to the adduct with the catalytic cysteine residue. A computational study suggests potential interactions between the illudalic acid moiety and the enzyme active site. Taken together, these data offer novel insights into the mechanism of inhibition of LAR phosphatase activity by illudalic acid.
Collapse
Affiliation(s)
- Daniel T Hansen
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Nicole J Rueb
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathan D Levinzon
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert Gaston
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Kh Tanvir Ahmed
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Sandra Osburn-Staker
- Mass Spectrometry and Proteomics Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - James E Cox
- Mass Spectrometry and Proteomics Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Gregory B Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
37
|
Hussain S, Mursal M, Verma G, Hasan SM, Khan MF. Targeting oncogenic kinases: Insights on FDA approved tyrosine kinase inhibitors. Eur J Pharmacol 2024; 970:176484. [PMID: 38467235 DOI: 10.1016/j.ejphar.2024.176484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Protein kinases play pivotal roles in various biological functions, influencing cell differentiation, promoting survival, and regulating the cell cycle. The disruption of protein kinase activity is intricately linked to pathways in tumor development. This manuscript explores the transformative impact of protein kinase inhibitors on cancer therapy, particularly their efficacy in cases driven by targeted mutations. Focusing on key tyrosine kinase inhibitors (TKIs) like Bcr-Abl, Epidermal Growth Factor Receptor (EGFR), and Vascular Endothelial Growth Factor Receptor (VEGFR), it targets critical kinase families in cancer progression. Clinical trial details of these TKIs offer insights into their therapeutic potentials. Learning from FDA-approved kinase inhibitors, the review dissects trends in kinase drug development since imatinib's paradigm-shifting approval in 2001. TKIs have evolved into pivotal drugs, extending beyond oncology. Ongoing clinical trials explore novel kinase targets, revealing the vast potential within the human kinome. The manuscript provides a detailed analysis of advancements until 2022, discussing the roles of specific oncogenic protein kinases in cancer development and carcinogenesis. Our exploration on PubMed for relevant and significant TKIs undergoing pre-FDA approval phase III clinical trials enriches the discussion with valuable findings. While kinase inhibitors exhibit lower toxicity than traditional chemotherapy in cancer treatment, challenges like resistance and side effects emphasize the necessity of understanding resistance mechanisms, prompting the development of novel inhibitors like osimertinib targeting specific mutant proteins. The review advocates thorough research on effective combination therapies, highlighting the future development of more selective RTKIs to optimize patient-specific cancer treatment and reduce adverse events.
Collapse
Affiliation(s)
- Sahil Hussain
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohd Mursal
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Garima Verma
- RWE Specialist, HealthPlix Technologies, Bengaluru, Karnataka 560103, India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohemmed Faraz Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
38
|
Ravichandran A, Araque JC, Lawson JW. Predicting the functional state of protein kinases using interpretable graph neural networks from sequence and structural data. Proteins 2024; 92:623-636. [PMID: 38083830 DOI: 10.1002/prot.26641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 04/13/2024]
Abstract
Protein kinases are central to cellular activities and are actively pursued as drug targets for several conditions including cancer and autoimmune diseases. Despite the availability of a large structural database for kinases, methodologies to elucidate the structure-function relationship of these proteins (without manual intervention) are lacking. Such techniques are essential in structural biology and to accelerate drug discovery efforts. Here, we implement an interpretable graph neural network (GNN) framework for classifying the functionally active and inactive states of a large set of protein kinases by only using their tertiary structure and amino acid sequence. We show that the GNN models can classify kinase structures with high accuracy (>97%). We implement the Gradient-weighted Class Activation Mapping for graphs (Graph Grad-CAM) to automatically identify structurally important residues and residue-residue contacts of the kinases without any a priori input. We show that the motifs identified through the Graph Grad-CAM methodology are functionally critical, consistent with the existing kinase literature. Notably, the highly conserved DFG and HRD motifs of the well-known hydrophobic spine are identified by the interpretable framework in addition to some of the lesser known motifs. Further, using Grad-CAM maps as the vector embedding of the protein structures, we identify the subtle differences in the crystal structures among different sub-classes of kinases in the Protein Data Bank (PDB). Frameworks such as the one implemented here, for high-throughput identification of protein structure-function relationships are essential in designing targeted small molecules therapies as well as in engineering new proteins for novel applications.
Collapse
Affiliation(s)
- Ashwin Ravichandran
- KBR Inc., Intelligent Systems Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Juan C Araque
- KBR Inc., Intelligent Systems Division, NASA Ames Research Center, Moffett Field, California, USA
| | - John W Lawson
- Intelligent Systems Division, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
39
|
Ren F, Dai J, Zhang J, Luan Y, Yang F, Shen J, Liu H, Zhou J. A magnetic calcium phosphate for selective capture of multi-phosphopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1238:124110. [PMID: 38603891 DOI: 10.1016/j.jchromb.2024.124110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
The specific enrichment of multi-phosphopeptides in the presence of non-phosphopeptides and mono-phosphopeptides was still a challenge for phosphoproteomics research. Most of these enrichment materials relied on Zn, Ti, Sn, and other rare precious metals as the bonding center to enrich multi-phosphopeptides while ignoring the use of common metal elements. The addition of rare metals increased the cost of the experiment, which was not conducive to their large-scale application in biomedical proteomics laboratories. In addition, multiple high-speed centrifugation steps also resulted in the loss of low-abundance multi-phosphopeptides in the treatment procedure of biological samples. This study proposed the use of calcium, a common element, as the central bonding agent for synthesizing magnetic calcium phosphate materials (designated as CaP-Fe3O4). These materials aim to capture multi-phosphopeptides and identifying phosphorylation sites. The current results demonstrate that CaP-Fe3O4 exhibited excellent selection specificity, high sensitivity, and stability in the enrichment of multi-phosphopeptides and the identification of phosphorylation sites. Additionally, the introduction of magnetic separation not only reduced the time required for multi-phosphopeptides enrichment but also prevented the loss of these peptides during high-speed centrifugation. These findings contribute to the widespread application and advancement of phosphoproteomics research.
Collapse
Affiliation(s)
- FangKun Ren
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - JunYong Dai
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - JingYi Zhang
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - YanFei Luan
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Fan Yang
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China
| | - HaiLong Liu
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - JiaHong Zhou
- College of Life Sciences, Jiangsu Key Laboratory Biofunctional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
40
|
Zhang H, Xu D, Huang H, Jiang H, Hu L, Liu L, Sun G, Gao J, Li Y, Xia C, Chen S, Zhou H, Kong X, Wang M, Luo C. Discovery of a Covalent Inhibitor Selectively Targeting the Autophosphorylation Site of c-Src Kinase. ACS Chem Biol 2024; 19:999-1010. [PMID: 38513196 DOI: 10.1021/acschembio.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Nonreceptor tyrosine kinase c-Src plays a crucial role in cell signaling and contributes to tumor progression. However, the development of selective c-Src inhibitors turns out to be challenging. In our previous study, we performed posttranslational modification-inspired drug design (PTMI-DD) to provide a plausible way for designing selective kinase inhibitors. In this study, after identifying a unique pocket comprising a less conserved cysteine and an autophosphorylation site in c-Src as well as a promiscuous covalent inhibitor, chemical optimization was performed to obtain (R)-LW-Srci-8 with nearly 75-fold improved potency (IC50 = 35.83 ± 7.21 nM). Crystallographic studies revealed the critical C-F···C═O interactions that may contribute to tight binding. The kinact and Ki values validated the improved binding affinity and decreased warhead reactivity of (R)-LW-Srci-8 for c-Src. Notably, in vitro tyrosine kinase profiling and cellular activity-based protein profiling (ABPP) cooperatively indicated a specific inhibition of c-Src by (R)-LW-Srci-8. Intriguingly, (R)-LW-Srci-8 preferentially binds to inactive c-Src with unphosphorylated Y419 both in vitro and in cells, subsequently disrupting the autophosphorylation. Collectively, our study demonstrated the feasibility of developing selective kinase inhibitors by cotargeting a nucleophilic residue and a posttranslational modification site and providing a chemical probe for c-Src functional studies.
Collapse
Affiliation(s)
- Huimin Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dounan Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongchan Huang
- Center for Chemical Biology and Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Hao Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
| | - Liping Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Ge Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Jing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Yuanqing Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuicui Xia
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shijie Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Xiangqian Kong
- Center for Chemical Biology and Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
41
|
Wahl V, Olson VA, Kondas AV, Jahrling PB, Damon IK, Kindrachuk J. Variola Virus and Clade I Mpox Virus Differentially Modulate Cellular Responses Longitudinally in Monocytes During Infection. J Infect Dis 2024; 229:S265-S274. [PMID: 37995376 PMCID: PMC10965214 DOI: 10.1093/infdis/jiad516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Variola virus (VARV), the etiological agent of smallpox, had enormous impacts on global health prior to its eradication. In the absence of global vaccination programs, mpox virus (MPXV) has become a growing public health threat that includes endemic and nonendemic regions across the globe. While human mpox resembles smallpox in clinical presentation, there are considerable knowledge gaps regarding conserved molecular pathogenesis between these 2 orthopoxviruses. Thus, we sought to compare MPXV and VARV infections in human monocytes through kinome analysis. We performed a longitudinal analysis of host cellular responses to VARV infection in human monocytes as well as a comparative analysis to clade I MPXV-mediated responses. While both viruses elicited strong activation of cell responses early during infection as compared to later time points, several key differences in cell signaling events were identified and validated. These observations will help in the design and development of panorthopoxvirus therapeutics.
Collapse
Affiliation(s)
- Victoria Wahl
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Victoria A Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ashley V Kondas
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Inger K Damon
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jason Kindrachuk
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
42
|
Chamakiya CA, Chothani SR, Joshi RJ, Bhalodia J, Ambasana MA, Bapodra AH, Kapuriya N. Efficient and metal-free synthesis of 2-aroyl 7-azaindoles via thermally induced denitrogenative intramolecular annulation of 1,2,3,4-tetrazolopyridines. Org Biomol Chem 2024; 22:2192-2196. [PMID: 38411006 DOI: 10.1039/d4ob00078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A facile and metal-free intramolecular denitrogenative annulation strategy for the preparation of novel 2-aroyl 7-azaindoles has been developed from 3-(tetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one in the presence of the deep eutectic solvent Dowtherm A. The valuable features of the protocol include a short reaction time, absence of any metal catalyst, utilization of a eutectic solvent, easy product isolation, and very good yields of novel 2-aroyl 7-azaindoles.
Collapse
Affiliation(s)
- Chirag A Chamakiya
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Savankumar R Chothani
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Rupal J Joshi
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Jasmin Bhalodia
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Mrunal A Ambasana
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Atul H Bapodra
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Naval Kapuriya
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| |
Collapse
|
43
|
Zhang S, Zhang L, Liu T, Qiao Y, Cao X, Cheng J, Wu H, Shen H. Investigating the transcriptomic variances in two phases Ecytonucleospora hepatopenaei (EHP) in Litopenaeus vannamei. J Invertebr Pathol 2024; 203:108061. [PMID: 38244837 DOI: 10.1016/j.jip.2024.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
This study explores the transcriptomic differences in two distinct phases of Ecytonucleospora hepatopenaei (EHP) in Litopenaeus vannamei, a crucial aspect in shrimp health management. We employed high-throughput sequencing to categorize samples into two phases, 'Phase A' and 'Phase B', defined by the differential expression of PTP2 and TPS1 genes. Our analysis identified 2057 genes, with 78 exhibiting significant variances, including 62 upregulated and 16 downregulated genes. Enrichment analyses via GO and KEGG pathways highlighted these genes' roles in cellular metabolism, signal transduction, and immune responses. Notably, genes like IQGAP2, Rhob, Pim1, and PCM1 emerged as potentially crucial in EHP's infection process and lifecycle. We hypothesize that these genes may influence trehalose metabolism and glucose provision, impacting the biological activities within EHP during different phases. Interestingly, a lower transcript count in 'Phase A' EHP suggests a reduction in biological activities, likely preparing for host cell invasion. This research provides a foundational understanding of EHP infection mechanisms, offering vital insights for future studies and therapeutic interventions.
Collapse
Affiliation(s)
- Sheng Zhang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Jiangsu Ocean University, Lianyungang 222005, China
| | - Leiting Zhang
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Nanjing Normal University, Nanjing 210023, China
| | - Tingyue Liu
- Nanjing Normal University, Nanjing 210023, China
| | - Yi Qiao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Xiaohui Cao
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Jie Cheng
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Hailong Wu
- Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Shen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; Jiangsu Ocean University, Lianyungang 222005, China; Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
44
|
Anwar S, Choudhury A, Hussain A, AlAjmi MF, Hassan MI, Islam A. Harnessing memantine in Alzheimer's disease therapy through inhibition of microtubule affinity-regulating kinase: Mechanistic insights. Int J Biol Macromol 2024; 262:130090. [PMID: 38342269 DOI: 10.1016/j.ijbiomac.2024.130090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative disorder that primarily affects memory, thinking, and behavior, eventually leading to severe cognitive impairment. Therapeutic management of AD is urgently needed to improve the quality and lifestyle of patients. Tau phosphorylating kinases are considered attractive therapeutic targets. Microtubule affinity-regulating kinase 4 (MARK4) is directly linked with pathological phosphorylations of tau, highlighting its role in the therapeutic targeting of AD. The current manuscript shows the MARK4 inhibitory effect of Memantine (MEM), a drug used in treating AD. We have performed fluorescence based binding measurements, enzyme inhibition assay, docking and molecular dynamics (MD) simulations to understand the binding of of MARK4 and MEM and subsequent inhibition in the kinase activity. A 100 ns MD simulations provided a detailed analysis of MARK4-MEM complex and the role of potential critical residues in the binding. Finally, this study provides molecular insights into the therapeutic implication of MEM in AD therapeutics. We propose MEM effectively inhibits MARK4, it may be implicated in the development of targeted and efficient treatments for AD.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
45
|
Hu J, Allen BK, Stathias V, Ayad NG, Schürer SC. Kinome-Wide Virtual Screening by Multi-Task Deep Learning. Int J Mol Sci 2024; 25:2538. [PMID: 38473785 PMCID: PMC10932040 DOI: 10.3390/ijms25052538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Deep learning is a machine learning technique to model high-level abstractions in data by utilizing a graph composed of multiple processing layers that experience various linear and non-linear transformations. This technique has been shown to perform well for applications in drug discovery, utilizing structural features of small molecules to predict activity. Here, we report a large-scale study to predict the activity of small molecules across the human kinome-a major family of drug targets, particularly in anti-cancer agents. While small-molecule kinase inhibitors exhibit impressive clinical efficacy in several different diseases, resistance often arises through adaptive kinome reprogramming or subpopulation diversity. Polypharmacology and combination therapies offer potential therapeutic strategies for patients with resistant diseases. Their development would benefit from a more comprehensive and dense knowledge of small-molecule inhibition across the human kinome. Leveraging over 650,000 bioactivity annotations for more than 300,000 small molecules, we evaluated multiple machine learning methods to predict the small-molecule inhibition of 342 kinases across the human kinome. Our results demonstrated that multi-task deep neural networks outperformed classical single-task methods, offering the potential for conducting large-scale virtual screening, predicting activity profiles, and bridging the gaps in the available data.
Collapse
Affiliation(s)
- Jiaming Hu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (B.K.A.); (V.S.)
| | - Bryce K. Allen
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (B.K.A.); (V.S.)
- Institute for Data Science & Computing, University of Miami, Miami, FL 33136, USA
| | - Vasileios Stathias
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (B.K.A.); (V.S.)
| | - Nagi G. Ayad
- Center for Therapeutic Innovation Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Miami Project to Cure Paralysis, Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (B.K.A.); (V.S.)
- Institute for Data Science & Computing, University of Miami, Miami, FL 33136, USA
- Center for Therapeutic Innovation Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
46
|
Abdel-Mohsen HT, Anwar MM, Ahmed NS, Abd El-Karim SS, Abdelwahed SH. Recent Advances in Structural Optimization of Quinazoline-Based Protein Kinase Inhibitors for Cancer Therapy (2021-Present). Molecules 2024; 29:875. [PMID: 38398626 PMCID: PMC10892255 DOI: 10.3390/molecules29040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is a complicated, multifaceted disease that can impact any organ in the body. Various chemotherapeutic agents have a low selectivity and are very toxic when used alone or in combination with others. Resistance is one of the most important hurdles that develop due to the use of many anticancer therapeutics. As a result, treating cancer requires a target-specific palliative care strategy. Remarkable scientific discoveries have shed light on several of the molecular mechanisms underlying cancer, resulting in the development of various targeted anticancer agents. One of the most important heterocyclic motifs is quinazoline, which has a wide range of biological uses and chemical reactivities. Newer, more sophisticated medications with quinazoline structures have been found in the last few years, and great strides have been made in creating effective protocols for building these pharmacologically active scaffolds. A new class of chemotherapeutic agents known as quinazoline-based derivatives possessing anticancer properties consists of several well-known compounds that block different protein kinases and other molecular targets. This review highlights recent updates (2021-2024) on various quinazoline-based derivatives acting against different protein kinases as anticancer chemotherapeutics. It also provides guidance for the design and synthesis of novel quinazoline analogues that could serve as lead compounds.
Collapse
Affiliation(s)
- Heba T. Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Bohouth Street, Dokki, Cairo P.O. Box 12622, Egypt;
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Bohouth Street, Dokki, Cairo P.O. Box 12622, Egypt; (M.M.A.); (N.S.A.); (S.S.A.E.-K.)
| | - Nesreen S. Ahmed
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Bohouth Street, Dokki, Cairo P.O. Box 12622, Egypt; (M.M.A.); (N.S.A.); (S.S.A.E.-K.)
| | - Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Bohouth Street, Dokki, Cairo P.O. Box 12622, Egypt; (M.M.A.); (N.S.A.); (S.S.A.E.-K.)
| | - Sameh H. Abdelwahed
- Department of Chemistry, Prairie View A & M University, Prairie View, TX 77446, USA
| |
Collapse
|
47
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol Res 2024; 200:107059. [PMID: 38216005 DOI: 10.1016/j.phrs.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 80 FDA-approved therapeutic agents that target about two dozen different protein kinases and seven of these drugs were approved in 2023. Of the approved drugs, thirteen target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), twenty block nonreceptor protein-tyrosine kinases, and 43 inhibit receptor protein-tyrosine kinases. The data indicate that 69 of these drugs are prescribed for the treatment of neoplasms. Six drugs (abrocitinib, baricitinib, deucravacitinib, ritlecitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, rheumatoid arthritis, psoriasis, alopecia areata, and ulcerative colitis). Of the 80 approved drugs, nearly two dozen are used in the treatment of multiple diseases. The following seven drugs received FDA approval in 2023: capivasertib (HER2-positive breast cancer), fruquintinib (metastatic colorectal cancer), momelotinib (myelofibrosis), pirtobrutinib (mantle cell lymphoma, chronic lymphocytic leukemia, small lymphocytic lymphoma), quizartinib (Flt3-mutant acute myelogenous leukemia), repotrectinib (ROS1-positive lung cancer), and ritlecitinib (alopecia areata). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 80 FDA-approved small molecule protein kinase inhibitors including the molecular weight, number of hydrogen bond donors/acceptors, polar surface area, potency, solubility, lipophilic efficiency, and ligand efficiency.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
48
|
Scianò F, Terrana F, Pecoraro C, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Exploring the therapeutic potential of focal adhesion kinase inhibition in overcoming chemoresistance in pancreatic ductal adenocarcinoma. Future Med Chem 2024; 16:271-289. [PMID: 38269431 DOI: 10.4155/fmc-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related deaths worldwide. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase often overexpressed in PDAC. FAK has been linked to cell migration, survival, proliferation, angiogenesis and adhesion. This review first highlights the chemoresistant nature of PDAC. Second, the role of FAK in PDAC cancer progression and resistance is carefully described. Additionally, it discusses recent developments of FAK inhibitors as valuable drugs in the treatment of PDAC, with a focus on diamine-substituted-2,4-pyrimidine-based compounds, which represent the most potent class of FAK inhibitors in clinical trials for the treatment of PDAC disease. To conclude, relevant computational studies performed on FAK inhibitors are reported to highlight the key structural features required for interaction with the protein, with the aim of optimizing this novel targeted therapy.
Collapse
Affiliation(s)
- Fabio Scianò
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Francesca Terrana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Barbara Parrino
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Patrizia Diana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, Pisa, 56017, Italy
| | - Daniela Carbone
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| |
Collapse
|
49
|
Wang L, Liu WQ, Broussy S, Han B, Fang H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front Pharmacol 2024; 14:1307860. [PMID: 38239196 PMCID: PMC10794590 DOI: 10.3389/fphar.2023.1307860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Vascular endothelial growth factors (VEGF), Vascular endothelial growth factor receptors (VEGFR) and their downstream signaling pathways are promising targets in anti-angiogenic therapy. They constitute a crucial system to regulate physiological and pathological angiogenesis. In the last 20 years, many anti-angiogenic drugs have been developed based on VEGF/VEGFR system to treat diverse cancers and retinopathies, and new drugs with improved properties continue to emerge at a fast rate. They consist of different molecular structures and characteristics, which enable them to inhibit the interaction of VEGF/VEGFR, to inhibit the activity of VEGFR tyrosine kinase (TK), or to inhibit VEGFR downstream signaling. In this paper, we reviewed the development of marketed anti-angiogenic drugs involved in the VEGF/VEGFR axis, as well as some important drug candidates in clinical trials. We discuss their mode of action, their clinical benefits, and the current challenges that will need to be addressed by the next-generation of anti-angiogenic drugs. We focus on the molecular structures and characteristics of each drug, including those approved only in China.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wang-Qing Liu
- CiTCoM, CNRS, INSERM, Université Paris Cité, Paris, France
| | | | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongming Fang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
| |
Collapse
|
50
|
Trigueiros BAFDS, Santos IJS, Pimenta FP, Ávila AR. A Long Way to Go: A Scenario for Clinical Trials of PI3K Inhibitors in Treating Cancer. Cancer Control 2024; 31:10732748241238047. [PMID: 38494880 PMCID: PMC10946074 DOI: 10.1177/10732748241238047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Alterations in PI3K function are directly related to cancer, making PI3K inhibitors suitable options for anticancer therapies. Information on therapy using different types of PI3K inhibitors is available in literature, providing indications of trends in developing new therapies. Although some studies on PI3K inhibitors for cancer treatment provide clinical evidence, they do not allow a careful search for potential PI3K inhibitors conducted by development indicators. Here, we performed a foresight study of clinical trials involving PI3K inhibitors from the past 11 years using indicators of clinical evolution to identify technological trends and provide data for supporting recommendations for new study designs. METHODS A comprehensive foresight study was designed based on documents from clinical trials on PI3K inhibitors to perform a systematic and comparative analysis, in order to identify technological trends on new cancer therapies. RESULTS Our results demonstrate that total number of clinical trials has decreased over the years and, currently, there is a clear prevalence of studies using isoform-specific inhibitors in combined interventions. Clinical trials in Phases I and II were the most frequently found in the database, whereas Phase III trials correspond to 7% of studies. The measurement of clinical trials progression using indicators (drugs in Phase III profile, top-10 drugs, and top-10 combined drugs) demonstrated that the 3 new medicines BKM120, IBI-376, and PF-05212384 have a high potential to provide more efficient cancer treatment in combined interventions. These data also include the groups of targets for each drug, providing a useful and reliable source for design new combinations to overcome the resistance and the poor tolerability observed in some PI3K therapies. CONCLUSIONS The establishment of development indicators based on clinical trials for cancer treatment was useful to highlight the clinical investment in 3 new PI3K drugs and the advantages of combine therapy using FDA-approved drugs.
Collapse
Affiliation(s)
| | | | - Fabricia Pires Pimenta
- Instituto Carlos Chagas - Fiocruz Paraná, Fundação Oswaldo Cruz - Fiocruz, Curitiba, Brasil
| | - Andréa Rodrigues Ávila
- Instituto Carlos Chagas - Fiocruz Paraná, Fundação Oswaldo Cruz - Fiocruz, Curitiba, Brasil
| |
Collapse
|