1
|
Beppu S, Nishikawa T, Tomomasa D, Hijikata A, Kasabata H, Terazono H, Ikawa K, Nakamura T, Horikawa S, Nagahama J, Nakamura A, Abematsu T, Nakagawa S, Oketani K, Kanegane H, Okamoto Y. Perspectives in newborn screening for SCID in Japan. Case report: newborn screening identified X-linked severe combined immunodeficiency with a novel IL2RG variant. Front Immunol 2024; 15:1478411. [PMID: 39635533 PMCID: PMC11614797 DOI: 10.3389/fimmu.2024.1478411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background Newborn screening (NBS) for severe combined immunodeficiency (SCID) has improved the prognosis of SCID. In Japan, NBS testing (measurement of the T-cell receptor excision circles (TREC) and kappa-deleting recombination excision circles (KREC)) was launched in 2017 and has expanded nationwide in recent years. In this study, we report a Japanese patient with X-linked SCID with a novel IL2RG variant identified through NBS. The patient underwent cord blood transplantation (CBT). Case The patient had no siblings or family history of inborn errors of immunity. He was born at 38 weeks of gestation and weighed 3,072 g. His NBS results revealed TREC 0 copies/105 cells (normal value: >565 copies/105 cells), which was considered suggestive of SCID. The patient was referred to our hospital. Although his lymphocyte count was 1,402/μL, naïve T cells and CD56+ natural killer (NK) cells were decreased to 0% and 0.05% of the total lymphocytes, respectively. Flow cytometric measurement testing revealed a decrease in γc protein expression in the B lymphocytes and NK lymphocytes. We identified a hemizygous novel missense variant (c.256A>C, p.Thr86Pro) of IL2RG. Both in silico and structural analyses revealed that this variant is likely pathogenic. At 3 months of age, he underwent CBT from a human leukocyte antigen-full-matched unrelated donor. The conditioning regimen included fludarabine (180 mg/m2) and targeted busulfan (35 mg×h/L). The patient achieved high-level donor chimerism and immune reconstitution, including B-cell function, at 13 months. Conclusion Using NBS, the patient was diagnosed as having X-linked SCID with a novel missense variant of IL2RG. Early diagnosis using NBS tests enables safe hematopoietic stem cell transplantation without complications such as infection. We also found that even SCID with novel variants can be accurately diagnosed using the NBS program. In Japan, the test uptake rate is approximately 80% due to the high number of self-funded screening tests, and it is hoped that the uptake rate will increase in the future.
Collapse
Affiliation(s)
- Shiro Beppu
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuro Nishikawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroshi Kasabata
- Department of Clinical Laboratory Medicine, Kagoshima University Hospital, Kagoshima, Japan
| | - Hideyuki Terazono
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuro Ikawa
- Department of Clinical Pharmacotherapy, Hiroshima University, Hiroshima, Japan
| | - Tatsuro Nakamura
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shogo Horikawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Jun Nagahama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Aki Nakamura
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takanari Abematsu
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shunsuke Nakagawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kaoru Oketani
- Kagoshima Prefectural Comprehensive Health Centre, Kagoshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuhiro Okamoto
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
2
|
Riller Q, Schmutz M, Fourgeaud J, Fischer A, Neven B. Protective role of antibodies in enteric virus infections: Lessons from primary and secondary immune deficiencies. Immunol Rev 2024; 328:243-264. [PMID: 39340232 DOI: 10.1111/imr.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Enteric viruses are the main cause of acute gastroenteritis worldwide with a significant morbidity and mortality, especially among children and aged adults. Some enteric viruses also cause disseminated infections and severe neurological manifestations such as poliomyelitis. Protective immunity against these viruses is not well understood in humans, with most knowledge coming from animal models, although the development of poliovirus and rotavirus vaccines has extended our knowledge. In a classical view, innate immunity involves the recognition of foreign DNA or RNA by pathogen recognition receptors leading to the production of interferons and other inflammatory cytokines. Antigen uptake and presentation to T cells and B cells then activate adaptive immunity and, in the case of the mucosal immunity, induce the secretion of dimeric IgA, the more potent immunoglobulins in viral neutralization. The study of Inborn errors of immunity (IEIs) offers a natural opportunity to study nonredundant immunity toward pathogens. In the case of enteric viruses, patients with a defective production of antibodies are at risk of developing neurological complications. Moreover, a recent description of patients with low or absent antibody production with protracted enteric viral infections associated with hepatitis reinforces the prominent role of B cells and immunoglobulins in the control of enteric virus.
Collapse
Affiliation(s)
- Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France
- IHU-Imagine, Paris, France
| | - Muriel Schmutz
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France
- IHU-Imagine, Paris, France
| | - Jacques Fourgeaud
- Université Paris Cité, FETUS, Paris, France
- Microbiology Department, AP-HP, Hôpital Necker, Paris, France
| | - Alain Fischer
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMRS 1163, Institut Imagine, Paris, France
- Collège de France, Paris, France
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France
- IHU-Imagine, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
3
|
Oluwatoba DS, Safoah HA, Do TD. The rise and fall of adenine clusters in the gas phase: a glimpse into crystal growth and nucleation. Anal Bioanal Chem 2024; 416:5037-5048. [PMID: 39031229 DOI: 10.1007/s00216-024-05442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
The emergence of a crystal nucleus from disordered states is a critical and challenging aspect of the crystallization process, primarily due to the extremely short length and timescales involved. Methods such as liquid-cell or low-dose focal-series transmission electron microscopy (TEM) are often employed to probe these events. In this study, we demonstrate that ion mobility spectrometry-mass spectrometry (IMS-MS) offers a complementary and insightful perspective on the nucleation process by examining the sizes and shapes of small clusters, specifically those ranging from n = 2 to 40. Our findings reveal the significant role of sulfate ions in the growth of adeninediium sulfate clusters, which are the precursors to the formation of single crystals. Specifically, sulfate ions stabilize adenine clusters at the 1:1 ratio. In contrast, guanine sulfate forms smaller clusters with varied ratios, which become stable as they approach the 1:2 ratio. The nucleation size is predicted to be between n = 8 and 14, correlating well with the unit cell dimensions of adenine crystals. This correlation suggests that IMS-MS can identify critical nucleation sizes and provide valuable structural information consistent with established crystallographic data. We also discuss the strengths and limitations of IMS-MS in this context. IMS-MS offers rapid and robust experimental protocols, making it a valuable tool for studying the effects of various additives on the assembly of small molecules. Additionally, it aids in elucidating nucleation processes and the growth of different crystal polymorphs.
Collapse
Affiliation(s)
| | - Happy Abena Safoah
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
4
|
Notarangelo LD. Genetically-determined defects of T cell development. Allergy Asthma Proc 2024; 45:326-331. [PMID: 39294907 PMCID: PMC11425799 DOI: 10.2500/aap.2024.45.240028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Genetically determined defects of T-cell development comprise a heterogeneous group of conditions characterized by peripheral T-cell lymphopenia due to impaired intrathymic differentiation of T-cell progenitors. Collectively, these conditions are typically referred to as severe combined immune deficiency (SCID). In some cases (leaky SCID), residual function of the defective gene allows partial T-cell development. The vast majority of SCID disorders are due to genetic defects that affect the T-cell differentiation potential of hematopoietic stem cells, through a variety of mechanisms. However, some forms of SCID reflect impaired development or function of thymic stromal cells. A lack of peripheral T cells leads to increased susceptibility to severe infections since early in life. SCID is inevitably fatal unless immune reconstitution is achieved, most often through hematopoietic cell transplantation. Enzyme replacement therapy, gene therapy, and thymus implantation represent other forms of treatment in selected cases. The availability of newborn screening has greatly facilitated prompt recognition of SCID, which allows statistically significant improvement in survival after hematopoietic cell transplantation.
Collapse
|
5
|
Sorel N, Díaz-Pascual F, Bessot B, Sadek H, Mollet C, Chouteau M, Zahn M, Gil-Farina I, Tajer P, van Eggermond M, Berghuis D, Lankester AC, André I, Gabriel R, Cavazzana M, Pike-Overzet K, Staal FJT, Lagresle-Peyrou C. Restoration of T and B Cell Differentiation after RAG1 Gene Transfer in Human RAG1 Defective Hematopoietic Stem Cells. Biomedicines 2024; 12:1495. [PMID: 39062069 PMCID: PMC11275127 DOI: 10.3390/biomedicines12071495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recombinase-activating gene (RAG)-deficient SCID patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. The two RAG genes act as a required dimer to initiate gene recombination. Gene therapy is a valid treatment alternative for RAG-SCID patients who lack a suitable bone marrow donor, but developing such therapy for RAG1/2 has proven challenging. Using a clinically approved lentiviral vector with a codon-optimized RAG1 gene, we report here preclinical studies using CD34+ cells from four RAG1-SCID patients. We used in vitro T cell developmental assays and in vivo assays in xenografted NSG mice. The RAG1-SCID patient CD34+ cells transduced with the RAG1 vector and transplanted into NSG mice led to restored human B and T cell development. Together with favorable safety data on integration sites, these results substantiate an ongoing phase I/II clinical trial for RAG1-SCID.
Collapse
Affiliation(s)
- Nataël Sorel
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | | | - Boris Bessot
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| | - Hanem Sadek
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Chloé Mollet
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| | - Myriam Chouteau
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Marco Zahn
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Irene Gil-Farina
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Parisa Tajer
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marja van Eggermond
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Dagmar Berghuis
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Arjan C. Lankester
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
| | - Richard Gabriel
- ProtaGene CGT GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, 75015 Paris, France;
- Imagine Institute UMR1163, Université Paris Cité, Sorbonne Paris Cité, 75015 Paris, France
| | - Kasrin Pike-Overzet
- Biotherapy Department, Necker-Enfants Malades Hospital, AP-HP, 75015 Paris, France;
| | - Frank J. T. Staal
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.B.); (A.C.L.)
| | - Chantal Lagresle-Peyrou
- Human Lymphohematopoiesis Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 75015 Paris, France (I.A.)
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, 75015 Paris, France
| |
Collapse
|
6
|
Baloh CH, Chong H. Inborn Errors of Immunity. Med Clin North Am 2024; 108:703-718. [PMID: 38816112 DOI: 10.1016/j.mcna.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Inborn errors of immunity occur in 1 in 1000 to 1 in 5000 individuals and are characterized by immune deficiency and immune dysregulation. The primary care provider (PCP) should be familiar with key features of these diagnoses including recurrent and/or severe infections, hyperinflammation, malignancy, and autoimmunity and have a low threshold to refer for evaluation. The PCP can begin a laboratory evaluation before referral by sending a complete blood count (CBC) with differential, antibody levels, vaccine titers, and possibly other tests. Management approaches vary from antibiotic prophylaxis to hematopoietic stem cell transplantation depending on the specific diagnosis.
Collapse
Affiliation(s)
- Carolyn H Baloh
- Division of Allergy and Clinical Immunology, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, 60 Fenwood Road, BTM/Hale Building, 5th Floor, Boston, MA 02115, USA.
| | - Hey Chong
- Division of Allergy and Immunology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, AOB 3300, Pittsburgh, PA 15224, USA
| |
Collapse
|
7
|
Bzdok J, Czibere L, Burggraf S, Landt O, Maier EM, Röschinger W, Albert MH, Hegert S, Janzen N, Becker M, Durner J. Quality considerations and major pitfalls for high throughput DNA-based newborn screening for severe combined immunodeficiency and spinal muscular atrophy. PLoS One 2024; 19:e0306329. [PMID: 38941330 PMCID: PMC11213327 DOI: 10.1371/journal.pone.0306329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Many newborn screening programs worldwide have introduced screening for diseases using DNA extracted from dried blood spots (DBS). In Germany, DNA-based assays are currently used to screen for severe combined immunodeficiency (SCID), spinal muscular atrophy (SMA), and sickle cell disease (SCD). METHODS This study analysed the impact of pre-analytic DNA carry-over in sample preparation on the outcome of DNA-based newborn screening for SCID and SMA and compared the efficacy of rapid extraction versus automated protocols. Additionally, the distribution of T cell receptor excision circles (TREC) on DBS cards, commonly used for routine newborn screening, was determined. RESULTS Contaminations from the punching procedure were detected in the SCID and SMA assays in all experimental setups tested. However, a careful evaluation of a cut-off allowed for a clear separation of true positive polymerase chain reaction (PCR) amplifications. Our rapid in-house extraction protocol produced similar amounts compared to automated commercial systems. Therefore, it can be used for reliable DNA-based screening. Additionally, the amount of extracted DNA significantly differs depending on the location of punching within a DBS. CONCLUSIONS Newborn screening for SMA and SCID can be performed reliably. It is crucial to ensure that affected newborns are not overlooked. Therefore a carefully consideration of potential contaminating factors and the definition of appropriate cut-offs to minimise the risk of false results are of special concern. It is also important to note that the location of punching plays a pivotal role, and therefore an exact quantification of TREC numbers per μl may not be reliable and should therefore be avoided.
Collapse
Affiliation(s)
- Jessica Bzdok
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-Universität München, Munich, Germany
- Laboratory Becker MVZ GbR, Munich, Germany
| | | | | | | | | | | | - Michael H. Albert
- Department of Paediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Nils Janzen
- Screening-Labor Hannover, Hanover, Germany
- Department of Clinical Chemistry, Hanover Medical School, Hanover, Germany
- Division of Laboratory Medicine, Centre for Children and Adolescents, Kinder- und Jugendkrankenhaus Auf der Bult, Hanover, Germany
| | - Marc Becker
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-Universität München, Munich, Germany
- Laboratory Becker MVZ GbR, Munich, Germany
| | - Jürgen Durner
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-Universität München, Munich, Germany
- Laboratory Becker MVZ GbR, Munich, Germany
| |
Collapse
|
8
|
Chen R, Lukianova E, van der Loeff IS, Spegarova JS, Willet JDP, James KD, Ryder EJ, Griffin H, IJspeert H, Gajbhiye A, Lamoliatte F, Marin-Rubio JL, Woodbine L, Lemos H, Swan DJ, Pintar V, Sayes K, Ruiz-Morales ER, Eastham S, Dixon D, Prete M, Prigmore E, Jeggo P, Boyes J, Mellor A, Huang L, van der Burg M, Engelhardt KR, Stray-Pedersen A, Erichsen HC, Gennery AR, Trost M, Adams DJ, Anderson G, Lorenc A, Trynka G, Hambleton S. NUDCD3 deficiency disrupts V(D)J recombination to cause SCID and Omenn syndrome. Sci Immunol 2024; 9:eade5705. [PMID: 38787962 DOI: 10.1126/sciimmunol.ade5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Inborn errors of T cell development present a pediatric emergency in which timely curative therapy is informed by molecular diagnosis. In 11 affected patients across four consanguineous kindreds, we detected homozygosity for a single deleterious missense variant in the gene NudC domain-containing 3 (NUDCD3). Two infants had severe combined immunodeficiency with the complete absence of T and B cells (T -B- SCID), whereas nine showed classical features of Omenn syndrome (OS). Restricted antigen receptor gene usage by residual T lymphocytes suggested impaired V(D)J recombination. Patient cells showed reduced expression of NUDCD3 protein and diminished ability to support RAG-mediated recombination in vitro, which was associated with pathologic sequestration of RAG1 in the nucleoli. Although impaired V(D)J recombination in a mouse model bearing the homologous variant led to milder immunologic abnormalities, NUDCD3 is absolutely required for healthy T and B cell development in humans.
Collapse
Affiliation(s)
- Rui Chen
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Elena Lukianova
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Ina Schim van der Loeff
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| | | | - Joseph D P Willet
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham. B15 2TT Birmingham, UK
| | - Edward J Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Helen Griffin
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Hanna IJspeert
- Department of Immunology, Erasmus University Medical Center, Rotterdam 3000 CA, Netherlands
| | - Akshada Gajbhiye
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Frederic Lamoliatte
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Jose L Marin-Rubio
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Lisa Woodbine
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Brighton, UK
| | - Henrique Lemos
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - David J Swan
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Valeria Pintar
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Kamal Sayes
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | | | - Simon Eastham
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - David Dixon
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Penny Jeggo
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Brighton, UK
| | - Joan Boyes
- Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Andrew Mellor
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Lei Huang
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Mirjam van der Burg
- Department of Immunology, Erasmus University Medical Center, Rotterdam 3000 CA, Netherlands
| | - Karin R Engelhardt
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo 0424, Norway
| | - Hans Christian Erichsen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham. B15 2TT Birmingham, UK
| | - Anna Lorenc
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
- Open Targets, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Pavel-Dinu M, Gardner CL, Nakauchi Y, Kawai T, Delmonte OM, Palterer B, Bosticardo M, Pala F, Viel S, Malech HL, Ghanim HY, Bode NM, Kurgan GL, Detweiler AM, Vakulskas CA, Neff NF, Sheikali A, Menezes ST, Chrobok J, Hernández González EM, Majeti R, Notarangelo LD, Porteus MH. Genetically corrected RAG2-SCID human hematopoietic stem cells restore V(D)J-recombinase and rescue lymphoid deficiency. Blood Adv 2024; 8:1820-1833. [PMID: 38096800 PMCID: PMC11006817 DOI: 10.1182/bloodadvances.2023011766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αβ and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Cameron L. Gardner
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Yusuke Nakauchi
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Tomoki Kawai
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ottavia M. Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Boaz Palterer
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sebastien Viel
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
- Service d’immunologie biologique, Hospices Civils de Lyon, Centre International de Recherche en Infectivologie, Centre International de Recheerche in Infectivalogie, INSERM U1111, Université Claude Bernard Lyon 1, Centre National de la Recherge Scientifique, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hana Y. Ghanim
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | | | | | | | | | | | - Adam Sheikali
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Sherah T. Menezes
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Jade Chrobok
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Elaine M. Hernández González
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Luigi D. Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Matthew H. Porteus
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|
10
|
Howley E, Soomann M, Kreins AY. Parental Engagement in Identifying Information Needs After Newborn Screening for Families of Infants with Suspected Athymia. J Clin Immunol 2024; 44:79. [PMID: 38457046 PMCID: PMC10923976 DOI: 10.1007/s10875-024-01678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Congenital athymia is a rare T-lymphocytopaenic condition, which requires early corrective treatment with thymus transplantation (TT). Athymic patients are increasingly identified through newborn screening (NBS) for severe combined immunodeficiency (SCID). Lack of relatable information resources contributes to challenging patient and family journeys during the diagnostic period following abnormal NBS results. Patient and Public Involvement and Engagement (PPIE) activities, including parental involvement in paediatrics, are valuable initiatives to improve clinical communication and parental information strategies. Parents of infants with suspected athymia were therefore invited to discuss the information they received during the diagnostic period following NBS with the aim to identify parental information needs and targeted strategies to address these adequately. Parents reported that athymia was not considered with them as a possible differential diagnosis until weeks after initial NBS results. Whilst appropriate clinical information about athymia and TT was available upon referral to specialist immunology services, improved access to easy-to-understand information from reliable sources, including from clinical nurse specialists and peer support systems, remained desirable. A roadmap concept, with written or digital information, addressing parental needs in real time during a potentially complex diagnostic journey, was proposed and is transferrable to other inborn errors of immunity (IEI) and rare diseases. This PPIE activity provides insight into the information needs of parents of infants with suspected athymia who are identified through SCID NBS, and highlights the role for PPIE in promoting patient- and family-centred strategies to improve IEI care.
Collapse
Affiliation(s)
- Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Maarja Soomann
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Division of Immunology and the Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexandra Y Kreins
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Infection Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
11
|
Ünsal H, Caka C, Bildik HN, Esenboğa S, Kupesiz A, Kuşkonmaz B, Cetinkaya DU, van der Burg M, Tezcan İ, Çağdaş D. A large single-center cohort of bare lymphocyte syndrome: Immunological and genetic features in Turkey. Scand J Immunol 2024; 99:e13335. [PMID: 38441205 DOI: 10.1111/sji.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 03/07/2024]
Abstract
Major histocompatibility complex class II (MHC-II) deficiency or bare lymphocyte syndrome (BLS) is a rare, early-onset, autosomal recessive, and life-threatening inborn error of immunity. We aimed to assess the demographic, clinical, laboratory, follow-up, and treatment characteristics of patients with MHC-II deficiency, together with their survival. We retrospectively investigated 21 patients with MHC-II deficiency. Female/male ratio was 1.63. The median age at diagnosis was 16.3 months (5 months-9.7 years). Nineteen patients (90.5%) had parental consanguinity. Pulmonary diseases (pneumonia, chronic lung disease) (81%), diarrhoea (47.6%), and candidiasis (28.6%) were common. Four (19%) had autoimmunity, two developed septic arthritis, and three (14%) developed bronchiectasis in the follow-up. Three patients (14%) had CMV viraemia, one with bilateral CMV retinitis. Eight (38.1%) had lymphocytopenia, and four (19%) had neutropenia. Serum IgM, IgA, and IgG levels were low in 18 (85.7%), 15 (71.4%), and 11 (52.4%) patients, respectively. CD4+ lymphocytopenia, a reversed CD4+/CD8+ ratio, and absent/low HLA-DR expressions were detected in 93.3%, 86.7%, and 100% of the patients, respectively. Haematopoietic stem cell transplantation (HSCT) was performed on nine patients, and four died of septicaemia and ARDS after HSCT. The present median age of patients survived is 14 years (1-31 years). Genetic analysis was performed in 10 patients. RFX5 homozygous gene defect was found in three patients (P1, P4 and P8), and RFXANK (P2 and P14) and RFXAP (P18 and P19) heterozygous gene defects were found in each two patients, respectively. This large cohort showed that BLS patients have severe combined immunodeficiency (SCID)-like clinical findings. Flow cytometric MHC-II expression study is crucial for the diagnosis, differential diagnosis with SCID, early haematopoietic stem cell transplantation (HSCT), and post-HSCT follow-up. Genetic studies are required first for matched family donor evaluation before HSCT and then for genetic counselling.
Collapse
Affiliation(s)
- Hilal Ünsal
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Canan Caka
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hacer Neslihan Bildik
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboğa
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alphan Kupesiz
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Barış Kuşkonmaz
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Duygu Uçkan Cetinkaya
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory of Immunology, Leiden University, Leiden, The Netherlands
| | - İlhan Tezcan
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Çağdaş
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
Keller B, Kfir-Erenfeld S, Matusewicz P, Hartl F, Lev A, Lee YN, Simon AJ, Stauber T, Elpeleg O, Somech R, Stepensky P, Minguet S, Schraven B, Warnatz K. Combined Immunodeficiency Caused by a Novel Nonsense Mutation in LCK. J Clin Immunol 2023; 44:4. [PMID: 38112969 PMCID: PMC10730691 DOI: 10.1007/s10875-023-01614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/14/2023] [Indexed: 12/21/2023]
Abstract
Mutations affecting T-cell receptor (TCR) signaling typically cause combined immunodeficiency (CID) due to varying degrees of disturbed T-cell homeostasis and differentiation. Here, we describe two cousins with CID due to a novel nonsense mutation in LCK and investigate the effect of this novel nonsense mutation on TCR signaling, T-cell function, and differentiation. Patients underwent clinical, genetic, and immunological investigations. The effect was addressed in primary cells and LCK-deficient T-cell lines after expression of mutated LCK. RESULTS: Both patients primarily presented with infections in early infancy. The LCK mutation led to reduced expression of a truncated LCK protein lacking a substantial part of the kinase domain and two critical regulatory tyrosine residues. T cells were oligoclonal, and especially naïve CD4 and CD8 T-cell counts were reduced, but regulatory and memory including circulating follicular helper T cells were less severely affected. A diagnostic hallmark of this immunodeficiency is the reduced surface expression of CD4. Despite severely impaired TCR signaling mTOR activation was partially preserved in patients' T cells. LCK-deficient T-cell lines reconstituted with mutant LCK corroborated partially preserved signaling. Despite detectable differentiation of memory and effector T cells, their function was severely disturbed. NK cell cytotoxicity was unaffected. Residual TCR signaling in LCK deficiency allows for reduced, but detectable T-cell differentiation, while T-cell function is severely disturbed. Our findings expand the previous report on one single patient on the central role of LCK in human T-cell development and function.
Collapse
Affiliation(s)
- Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shlomit Kfir-Erenfeld
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Matusewicz
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Frederike Hartl
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Amos J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Tali Stauber
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Susana Minguet
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Burkhart Schraven
- Health Campus Immunology, Infectiology and Inflammation (GC-I3) Medical Faculty, Otto-Von Guericke University Magdeburg, Magdeburg, Germany
- Center of Health and Medical Prevention (CHaMP), Otto-Von Guericke University Magdeburg, Magdeburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Lev A, Somech R, Somekh I. Newborn screening for severe combined immunodeficiency and inborn errors of immunity. Curr Opin Pediatr 2023; 35:692-702. [PMID: 37707504 DOI: 10.1097/mop.0000000000001291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
PURPOSE OF REVIEW Severe combined immune deficiency (SCID) is the most devastating genetic disease of the immune system with an unfavorable outcome unless diagnosed early in life. Newborn screening (NBS) programs play a crucial role in facilitating early diagnoses and timely interventions for affected infants. RECENT FINDINGS SCID marked the pioneering inborn error of immunity (IEI) to undergo NBS, a milestone achieved 15 years ago through the enumeration of T-cell receptor excision circles (TRECs) extracted from Guthrie cards. This breakthrough has revolutionized our approach to SCID, enabling not only presymptomatic identification and prompt treatments (including hematopoietic stem cell transplantation), but also enhancing our comprehension of the global epidemiology of SCID. SUMMARY NBS is continuing to evolve with the advent of novel diagnostic technologies and treatments. Following the successful implementation of SCID-NBS programs, a call for the early identification of additional IEIs is the next step, encompassing a broader spectrum of IEIs, facilitating early diagnoses, and preventing morbidity and mortality.
Collapse
Affiliation(s)
- Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | | | |
Collapse
|
14
|
Ghosh S, Albert MH, Hauck F, Hönig M, Schütz C, Schulz A, Speckmann C. [Newborn screening for severe combined immunodeficiencies (SCID) in Germany]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:1222-1231. [PMID: 37726421 PMCID: PMC10622353 DOI: 10.1007/s00103-023-03773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Patients with a severe combined immunodeficiency (SCID) harbor genetic mutations disrupting T cell immunity and hence suffer severe, life-threatening infections or manifestations of immune dysregulation within the first months of their life. The only cure is to correct their immune system, usually by means of hematopoietic stem cell transplantation (HSCT). Pilot studies and national programs in the United States and in European countries have shown that patients can be identified at an early asymptomatic stage through newborn screening. This allows treatment before the occurrence of severe complications, which improves the outcome of curative strategies like HSCT.After assessment by the Federal Joint Committee (G-BA), the SCID screening was implemented into newborn screening in Germany in 2019. The first results of the screening (dry blood spot cards from around 2 million newborns between August 2019 and February 2022) were recently published. As expected, in addition to classic SCID diseases (incidence 1:54,000), infants with syndromic disorders and T cell lymphopenia were also identified. All patients with classic SCID were scheduled for curative treatment. Of the 25 patients with classic SCID, 21 were already transplanted at the time of data analysis. Only one of 21 transplanted patients died due to pre-existing infections. A comparison of the recent screening data with historical data suggests that SCID newborn screening has been successfully implemented in Germany. Patients with SCID are routinely identified very early and scheduled for curative therapy.
Collapse
Affiliation(s)
- Sujal Ghosh
- Klinik für Kinder-Onkologie, -Hämatologie und Klinische Immunologie, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland.
- Klinik für Kinder-Onkologie, -Hämatologie und Klinische Immunologie, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - Michael H Albert
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, Ludwig-Maximilians-Universität München, München, Deutschland
| | - Fabian Hauck
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, Ludwig-Maximilians-Universität München, München, Deutschland
| | - Manfred Hönig
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Catharina Schütz
- Pädiatrische Immunologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Deutschland
| | - Ansgar Schulz
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Carsten Speckmann
- Pädiatrische Hämatologie und Onkologie, Zentrum für Kinder- und Jugendmedizin und Centrum für Chronische Immundefizienz, Institut für Immundefizienz, Medizinische Fakultät, Universitätsklinikum Freiburg, Freiburg, Deutschland
| |
Collapse
|
15
|
Tang J, Zhao X. Chimeric antigen receptor T cells march into T cell malignancies. J Cancer Res Clin Oncol 2023; 149:13459-13475. [PMID: 37468610 DOI: 10.1007/s00432-023-05148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
T cell malignancies represent a diverse collection of leukemia/lymphoma conditions in humans arising from aberrant T cells. Such malignancies are often associated with poor clinical prognoses, cancer relapse, as well as progressive resistance to anti-cancer treatments. While chimeric antigen receptor (CAR) T cell immunotherapy has emerged as a revolutionary treatment strategy that is highly effective for treating B cell malignancies, its application as a treatment for T cell malignancies remains to be better explored. Furthermore, the effectiveness of CAR-T treatment in T cell malignancies is significantly influenced by the quality of contamination-free CAR-T cells during the manufacturing process, as well as by multiple characteristics of such malignancies, including the sharing of antigens across normal and malignant T cells, fratricide, and T cell aplasia. In this review, we provide a detailed account of the current developments in the clinical application of CAR-T therapy to treat T cell malignancies, offer strategies for addressing current challenges, and outline a roadmap toward its effective implementation as a broad treatment option for this condition.
Collapse
Affiliation(s)
- Jie Tang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Leonard WJ, Lin JX. Strategies to therapeutically modulate cytokine action. Nat Rev Drug Discov 2023; 22:827-854. [PMID: 37542128 DOI: 10.1038/s41573-023-00746-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 08/06/2023]
Abstract
Cytokines are secreted or membrane-presented molecules that mediate broad cellular functions, including development, differentiation, growth and survival. Accordingly, the regulation of cytokine activity is extraordinarily important both physiologically and pathologically. Cytokine and/or cytokine receptor engineering is being widely investigated to safely and effectively modulate cytokine activity for therapeutic benefit. IL-2 in particular has been extensively engineered, to create IL-2 variants that differentially exhibit activities on regulatory T cells to potentially treat autoimmune disease versus effector T cells to augment antitumour effects. Additionally, engineering approaches are being applied to many other cytokines such as IL-10, interferons and IL-1 family cytokines, given their immunosuppressive and/or antiviral and anticancer effects. In modulating the actions of cytokines, the strategies used have been broad, including altering affinities of cytokines for their receptors, prolonging cytokine half-lives in vivo and fine-tuning cytokine actions. The field is rapidly expanding, with extensive efforts to create improved therapeutics for a range of diseases.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Gennery AR. The "B" side of IL-7Rα-deficient SCID. Blood 2023; 142:1105-1106. [PMID: 37768696 DOI: 10.1182/blood.2023021475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
|
18
|
Äng C, Zetterström RH, Ramme K, Axelsen E, Marits P, Sundin M. Case report: IKZF1-related early-onset CID is expected to be missed in TREC-based SCID screening but can be identified by determination of KREC levels. Front Immunol 2023; 14:1257581. [PMID: 37771582 PMCID: PMC10523557 DOI: 10.3389/fimmu.2023.1257581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
This report illustrates a case that would have been missed in the most common screening algorithms used worldwide in newborn screening (NBS) for severe combined immunodeficiency (SCID). Our patient presented with a clinical picture that suggested a severe inborn error of immunity (IEI). The 6-month-old baby had normal T-cell receptor excision circle (TREC) levels but no measurable level of kappa-deleting recombination excision circles (KRECs) in the NBS sample. A de novo IKZF1-mutation (c.476A>G, p.Asn159Ser) was found. The clinical picture, immunologic workup, and genetic result were consistent with IKZF1-related combined immunodeficiency (CID). Our patient had symptomatic treatment and underwent allogeneic hematopoietic cell transplantation (HCT). IKZF1-related CID is a rare, serious, and early-onset disease; this case provides further insights into the phenotype, including KREC status.
Collapse
Affiliation(s)
- Christofer Äng
- Sachs Children’s Hospital, Södersjukhuset, Stockholm, Sweden
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf H. Zetterström
- Center for Inherited Metabolic Diseases, Medical Diagnostics Center, Karolinska University Hospital, Stockholm, Sweden
- Division of Inborn Errors of Endocrinology and Metabolism, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kim Ramme
- Department of Pediatric Hematology and Oncology, Children’s Hospital, Uppsala University Hospital, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Emma Axelsen
- Section of Pediatric Hematology, Immunology and HCT, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Per Marits
- Department of Clinical Immunology, Medical Diagnostics Center, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Sundin
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Section of Pediatric Hematology, Immunology and HCT, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Alizadeh Z, Fazlollahi MR, Mazinani M, Badalzadeh M, Heydarlou H, Carapito R, Molitor A, de Oteyza ACG, Proietti M, Bavani MS, Shariat M, Fallahpour M, Movahedi M, Moradi L, Grimbacher B, Bahram S, Pourpak Z. Clinical, immunological and molecular findings of 8 patients with typical and atypical severe combined immunodeficiency: identification of 7 novel mutations by whole exome sequencing. Genes Immun 2023; 24:207-214. [PMID: 37516813 DOI: 10.1038/s41435-023-00215-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023]
Abstract
Severe combined immunodeficiency (SCID) is one of the severe inborn errors of the immune system associated with life-threatening infections. Variations in SCID phenotypes, especially atypical SCID, may cause a significant delay in diagnosis. Therefore, SCID patients need to receive an early diagnosis. Here, we describe the clinical manifestations and genetic results of four SCID and atypical SCID patients. All patients (4 males and 4 females) in early infancy presented with SCID phenotypes within 6 months of birth. The mutations include RAG2 (p.I273T,p.G44X), IL7R (p.F361WfsTer17), ADA (c.780+1G>A), JAK3 (p.Q228Ter), LIG4 (p.G428R), and LAT (p.Y207fsTer33), as well as a previously reported missense mutation in RAG1 (p.A444V). The second report of LAT deficiency in SCID patients is presented in this study. Moreover, all variants were confirmed in patients and their parents as a heterozygous state by Sanger sequencing. The results of our study expand the clinical and molecular spectrum associated with SCID and leaky SCID phenotypes and provide valuable information for the clinical management of the patients.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Fazlollahi
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Badalzadeh
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Heydarlou
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091, Strasbourg, France
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091, Strasbourg, France
| | - Andrés Caballero Garcia de Oteyza
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
- RESIST - Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
| | - Michele Proietti
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
- RESIST - Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
| | - Maryam Soleimani Bavani
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Shariat
- Department of Allergy and Clinical Immunology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Movahedi
- Department of Allergy and Clinical Immunology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Moradi
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bodo Grimbacher
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
- RESIST - Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091, Strasbourg, France.
| | - Zahra Pourpak
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Korkmaz SB, Karaselek MA, Aytekin SE, Tokgoz H, Reisli I, Guner S, Keles S. Retrospective analysis of patients with severe combined immunodeficiency and alternative diagnostic criteria: A 20-year single centre experience. Int J Immunogenet 2023; 50:177-184. [PMID: 37308802 DOI: 10.1111/iji.12624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
Severe combined immunodeficiency (SCID) is an inborn errors of immunity (IEI) disorder characterized by impairment in the development and function of lymphocytes and could be fatal if not treated with hematopoietic stem cell transplant in the first 2 years of life. There are various diagnostic criteria for SCID among different primary immunodeficiency societies. We retrospectively evaluated clinical and laboratory findings of 59 patients followed up with the diagnosis of SCID at our clinic over the past 20 years in order to develop an algorithm that would help diagnosis of SCID for the countries where a high ratio of consanguineous marriage is present because these countries have not launched TREC assay in their newborn screening programs. The mean age at diagnosis was 5.80 ± 4.90 months, and the delay was 3.29 ± 3.99 months. The most common complaint and physical examination findings were cough (29.05%), eczematous rash (63%) and organomegaly (61%). ADA (17%), Artemis (14%), RAG1/2 (15%), MHC Class II (12%) and IL-2R (12%) deficiencies were the most common genetic defects. Lymphopenia (87.5%) was the most frequent abnormal laboratory finding and below 3000/mm3 in 95% of the patients. The CD3+ T cell count was 300/mm3 and below in 83% of the patients. As a result, a combination of low lymphocyte count and CD3 lymphopenia for SCID diagnosis would be more reliable for countries with high rate of consanguineous marriage. Physicians should consider diagnosis of SCID in a patient presenting with severe infections and lymphocyte counts below 3000/mm3 under 2 years of age.
Collapse
Affiliation(s)
- Sevim Busra Korkmaz
- Meram Medicine Faculty, Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Ali Karaselek
- Meram Medicine Faculty, Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Konya, Turkey
| | - Selma Erol Aytekin
- Meram Medicine Faculty, Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Konya, Turkey
| | - Huseyin Tokgoz
- Meram Medicine Faculty, Department of Pediatric Hematology, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Meram Medicine Faculty, Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Konya, Turkey
| | - Sukru Guner
- Meram Medicine Faculty, Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Meram Medicine Faculty, Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
21
|
Peng Y, Chen Y, Wang Y, Wang W, Qiao S, Lan J, Wang M. Dysbiosis and primary B-cell immunodeficiencies: current knowledge and future perspective. Immunol Res 2023; 71:528-536. [PMID: 36933165 DOI: 10.1007/s12026-023-09365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/27/2023] [Indexed: 03/19/2023]
Abstract
According to Elie Metchnikoff, an originator of modern immunology, several pivotal functions for disease and health are provided by indigenous microbiota. Nonetheless, important mechanistic insights have been elucidated more recently, owing to the growing availability of DNA sequencing technology. There are 10 to 100 trillion symbiotic microbes (such as viruses, bacteria, and yeast) in each human gut microbiota. Both locally and systemically, the gut microbiota has been demonstrated to impact immune homeostasis. Primary B-cell immunodeficiencies (PBIDs) are a group of primary immunodeficiency diseases (PIDs) referring to the dysregulated antibody production due to either intrinsic genetic defects or failures in functions of B cells. Recent studies have found that PBIDs cause disruptions in the gut's typical homeostatic systems, resulting in inadequate immune surveillance in the gastrointestinal (GI) tract, which is linked to increased dysbiosis, which is characterized by a disruption in the microbial homeostasis. This study aimed to review the published articles in this field to provide a comprehensive view of the existing knowledge about the crosstalk between the gut microbiome and PBID, the factors shaping the gut microbiota in PBID, as well as the potential clinical approaches for restoring a normal microbial community.
Collapse
Affiliation(s)
- Ye Peng
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China
| | - Yirui Chen
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Zhejiang, Hangzhou, China
| | - Wensong Wang
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China
| | - Sai Qiao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Zhejiang, Hangzhou, China
| | - Jianping Lan
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China.
| | - Manling Wang
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China.
| |
Collapse
|
22
|
Papaioannou I, Owen JS, Yáñez‐Muñoz RJ. Clinical applications of gene therapy for rare diseases: A review. Int J Exp Pathol 2023; 104:154-176. [PMID: 37177842 PMCID: PMC10349259 DOI: 10.1111/iep.12478] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
Rare diseases collectively exact a high toll on society due to their sheer number and overall prevalence. Their heterogeneity, diversity, and nature pose daunting clinical challenges for both management and treatment. In this review, we discuss recent advances in clinical applications of gene therapy for rare diseases, focusing on a variety of viral and non-viral strategies. The use of adeno-associated virus (AAV) vectors is discussed in the context of Luxturna, licenced for the treatment of RPE65 deficiency in the retinal epithelium. Imlygic, a herpes virus vector licenced for the treatment of refractory metastatic melanoma, will be an example of oncolytic vectors developed against rare cancers. Yescarta and Kymriah will showcase the use of retrovirus and lentivirus vectors in the autologous ex vivo production of chimeric antigen receptor T cells (CAR-T), licenced for the treatment of refractory leukaemias and lymphomas. Similar retroviral and lentiviral technology can be applied to autologous haematopoietic stem cells, exemplified by Strimvelis and Zynteglo, licenced treatments for adenosine deaminase-severe combined immunodeficiency (ADA-SCID) and β-thalassaemia respectively. Antisense oligonucleotide technologies will be highlighted through Onpattro and Tegsedi, RNA interference drugs licenced for familial transthyretin (TTR) amyloidosis, and Spinraza, a splice-switching treatment for spinal muscular atrophy (SMA). An initial comparison of the effectiveness of AAV and oligonucleotide therapies in SMA is possible with Zolgensma, an AAV serotype 9 vector, and Spinraza. Through these examples of marketed gene therapies and gene cell therapies, we will discuss the expanding applications of such novel technologies to previously intractable rare diseases.
Collapse
Affiliation(s)
| | - James S. Owen
- Division of MedicineUniversity College LondonLondonUK
| | - Rafael J. Yáñez‐Muñoz
- AGCTlab.orgCentre of Gene and Cell TherapyCentre for Biomedical SciencesDepartment of Biological SciencesSchool of Life Sciences and the EnvironmentRoyal Holloway University of LondonEghamUK
| |
Collapse
|
23
|
Braams M, Pike-Overzet K, Staal FJT. The recombinase activating genes: architects of immune diversity during lymphocyte development. Front Immunol 2023; 14:1210818. [PMID: 37497222 PMCID: PMC10367010 DOI: 10.3389/fimmu.2023.1210818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.
Collapse
Affiliation(s)
- Merijn Braams
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
24
|
Speckmann C, Nennstiel U, Hönig M, Albert MH, Ghosh S, Schuetz C, Brockow I, Hörster F, Niehues T, Ehl S, Wahn V, Borte S, Lehmberg K, Baumann U, Beier R, Krüger R, Bakhtiar S, Kuehl JS, Klemann C, Kontny U, Holzer U, Meinhardt A, Morbach H, Naumann-Bartsch N, Rothoeft T, Kreins AY, Davies EG, Schneider DT, Bernuth HV, Klingebiel T, Hoffmann GF, Schulz A, Hauck F. Prospective Newborn Screening for SCID in Germany: A First Analysis by the Pediatric Immunology Working Group (API). J Clin Immunol 2023; 43:965-978. [PMID: 36843153 PMCID: PMC9968632 DOI: 10.1007/s10875-023-01450-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 02/28/2023]
Abstract
BACKGR OUND T-cell receptor excision circle (TREC)-based newborn screening (NBS) for severe combined immunodeficiencies (SCID) was introduced in Germany in August 2019. METHODS Children with abnormal TREC-NBS were referred to a newly established network of Combined Immunodeficiency (CID) Clinics and Centers. The Working Group for Pediatric Immunology (API) and German Society for Newborn Screening (DGNS) performed 6-monthly surveys to assess the TREC-NBS process after 2.5 years. RESULTS Among 1.9 million screened newborns, 88 patients with congenital T-cell lymphocytopenia were identified (25 SCID, 17 leaky SCID/Omenn syndrome (OS)/idiopathic T-cell lymphocytopenia, and 46 syndromic disorders). A genetic diagnosis was established in 88%. Twenty-six patients underwent hematopoietic stem cell transplantation (HSCT), 23/26 within 4 months of life. Of these, 25/26 (96%) were alive at last follow-up. Two patients presented with in utero onset OS and died after birth. Five patients with syndromic disorders underwent thymus transplantation. Eight syndromic patients deceased, all from non-immunological complications. TREC-NBS missed one patient, who later presented clinically, and one tracking failure occurred after an inconclusive screening result. CONCLUSION The German TREC-NBS represents the largest European SCID screening at this point. The incidence of SCID/leaky SCID/OS in Germany is approximately 1:54,000, very similar to previous observations from North American and European regions and countries where TREC-NBS was implemented. The newly founded API-CID network facilitates tracking and treatment of identified patients. Short-term HSCT outcome was excellent, but NBS and transplant registries will remain essential to evaluate the long-term outcome and to compare results across the rising numbers of TREC-NBS programs across Europe.
Collapse
Affiliation(s)
- Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Mathildenstr. 1, 79106, Freiburg, Germany.
| | - Uta Nennstiel
- Screening Center, Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Manfred Hönig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University - University Hospital Düsseldorf, Düsseldorf, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Inken Brockow
- Screening Center, Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Friederike Hörster
- Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Tim Niehues
- Center for Pediatrics and Adolescent Medicine, Helios Hospital Krefeld, Krefeld, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Stephan Borte
- Immuno Deficiency Center Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, 04129, Leipzig, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic for Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Baumann
- Pediatric Hematology and Oncology, Hannover Medical School, Hanover, Germany
| | - Rita Beier
- Pediatric Hematology and Oncology, Hannover Medical School, Hanover, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt Am Main, Germany
| | - Joern-Sven Kuehl
- Department for Pediatric Immunology, Rheumatology & Infectiology, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Christian Klemann
- Department for Pediatric Immunology, Rheumatology & Infectiology, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ursula Holzer
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Andrea Meinhardt
- Center for Pediatrics and Adolescent Medicine, Medical Center, University Hospital Giessen, Giessen, Germany
| | - Henner Morbach
- Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - Nora Naumann-Bartsch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Tobias Rothoeft
- Department of Pediatrics, Pediatric Intensive Care Medicine, Catholic Hospital Bochum, Ruhr-University of Bochum, 44791, Bochum, Germany
| | - Alexandra Y Kreins
- Department of Immunology, Great Ormond Street Hospital for Children and UCL Great Ormond Street Institute of Child Health, London, UK
| | - E Graham Davies
- Department of Immunology, Great Ormond Street Hospital for Children and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dominik T Schneider
- Clinic of Pediatrics, Municipal Hospital Dortmund, University Witten-Herdecke, Witten, Germany
| | - Horst V Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
- Labor Berlin Charité-Vivantes, Department of Immunology, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Thomas Klingebiel
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt Am Main, Germany
| | - Georg F Hoffmann
- Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Fabian Hauck
- Divison of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
25
|
Geier CB, Voll RE, Warnatz K. [Principles of the diagnostics of inborn errors of immunity]. Z Rheumatol 2023; 82:285-297. [PMID: 37079035 DOI: 10.1007/s00393-023-01351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/21/2023]
Abstract
Inborn errors of immunity (IEI) are a heterogeneous group of nearly 500 diseases characterized by a congenital dysfunction of the immune system. The vast majority of IEIs are rare diseases but all IEIs share a cumulative prevalence of 1:1200-1:2000. In addition to a pathological susceptibility to infections, IEIs can also present with lymphoproliferative, autoimmune or autoinflammatory manifestations. There is often an overlap with classical rheumatic and inflammatory disease patterns. Therefore, a basic knowledge of the clinical presentation and the diagnostics of IEIs is also relevant for the practicing rheumatologist.
Collapse
Affiliation(s)
- Christoph B Geier
- Klinik für Rheumatologie und Klinische Immunologie, Medizinische Universitätsklinik - Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
- Centrum für Chronische Immundefizienz (CCI), Medizinische Universitätsklinik - Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - Reinhard E Voll
- Klinik für Rheumatologie und Klinische Immunologie, Medizinische Universitätsklinik - Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
- Centrum für Chronische Immundefizienz (CCI), Medizinische Universitätsklinik - Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - Klaus Warnatz
- Klinik für Rheumatologie und Klinische Immunologie, Medizinische Universitätsklinik - Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland.
- Centrum für Chronische Immundefizienz (CCI), Medizinische Universitätsklinik - Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland.
- Klinik für Klinische Immunologie, Universitätsspital Zürich, Zürich, Schweiz.
| |
Collapse
|
26
|
Slatter M, Lum SH. Personalized hematopoietic stem cell transplantation for inborn errors of immunity. Front Immunol 2023; 14:1162605. [PMID: 37090739 PMCID: PMC10113466 DOI: 10.3389/fimmu.2023.1162605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Patients with inborn errors of immunity (IEI) have been transplanted for more than 50 years. Many long-term survivors have ongoing medical issues showing the need for further improvements in how hematopoietic stem cell transplantation (HSCT) is performed if patients in the future are to have a normal quality of life. Precise genetic diagnosis enables early treatment before recurrent infection, autoimmunity and organ impairment occur. Newborn screening for severe combined immunodeficiency (SCID) is established in many countries. For newly described disorders the decision to transplant is not straight-forward. Specific biologic therapies are effective for some diseases and can be used as a bridge to HSCT to improve outcome. Developments in reduced toxicity conditioning and methods of T-cell depletion for mismatched donors have made transplant an option for all eligible patients. Further refinements in conditioning plus precise graft composition and additional cellular therapy are emerging as techniques to personalize the approach to HSCT for each patient.
Collapse
Affiliation(s)
- Mary Slatter
- Paediatric Immunology and HSCT, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Su Han Lum
- Paediatric Immunology and HSCT, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
27
|
Jafari L, Hamidieh AA, Behfar M, Karamlou Y, Shamsipour M, Mohseni R, Farajifard H, Salajegheh P. Effect of Early Bacillus Calmette-Guerin Vaccination of Pediatric Severe Combined Immunodeficiency Patients on the Outcome of Hematopoietic Stem Cell Transplantation Using a Reduced-Intensity Conditioning Regimen. Transplant Cell Ther 2023; 29:188.e1-188.e8. [PMID: 36539079 DOI: 10.1016/j.jtct.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
The eminence of Bacillus Calmette-Guerin (BCG) vaccine in newborn vaccination programs has been conspicuous throughout the years, especially in low-income developing countries where tuberculosis is prevalent; however, application of the BCG vaccine is not without constraints, especially in patients afflicted with immunodeficiency diseases, such as severe combined immunodeficiency (SCID). The present study aimed to evaluate whether the administration of BCG vaccine at birth could improve the outcomes of hematopoietic stem cell transplantation (HSCT) in pediatric patients with SCID. In this study, 30 SCID patients who underwent HSCT using a reduced-intensity conditioning regimen (RIC) were followed-up for 2 years post-HSCT. The outcomes of HSCT were evaluated in both non-BCG-vaccinated patients (n = 12) and BCG-vaccinated patients (n = 18). Our results show a higher incidence of acute graft-versus-host disease (aGVHD), but not of chronic GVHD, in the BCG-vaccinated patients, and a similar overall survival (OS) rate in the 2 groups. We speculate that the similar OS rate in the 2 groups, despite the risk of BGC vaccination, was because this group received an RIC conditioning regimen. There was no other difference between the 2 groups. Considering the effect of the BCG vaccine on HSCT outcome, we suggest that the administration of BCG vaccine be deferred until age 3 months so that APT testing without the interference of maternal antibodies can be performed. However, this study could benefit from a larger cohort to further validate our findings, as the possible reason for some factors not being statistically significant was our small sample size.
Collapse
Affiliation(s)
- Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran.
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Yalda Karamlou
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mansour Shamsipour
- Methodology and Data Analysis Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran; Epidemiology Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Hamid Farajifard
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Pouria Salajegheh
- Kerman University of Medical Sciences, Department of Pediatrics, School of Medicine, Tehran, Iran
| |
Collapse
|
28
|
Zhang X, Kang X, Yang M, Cai Z, Song Y, Zhou X, Cao J, Wang C, Huang K, Peng Y, He J, Xiao Z. A variant of RAG1 gene identified in severe combined immunodeficiency: a case report. BMC Pediatr 2023; 23:56. [PMID: 36732712 PMCID: PMC9896705 DOI: 10.1186/s12887-022-03822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/24/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The recombination-activating gene 1 (RAG1) protein is essential for the V (variable)-D (diversity)-J (joining) recombination process. Mutations in RAG1 have been reported to be associated with several types of immune disorders. Typical clinical features driven by RAG1 variants include persistent infections, severe lymphopenia, and decreased immunoglobulin levels . CASE PRESENTATION In this study, a 2-month-24-days-old infant with recurrent fever was admitted to our hospital with multiple infections and absence of T and B lymphocytes. The infant was diagnosed with severe combined immunodeficiency (SCID). A homozygous variation c.2147G>A (NM_000448.2: exonme2: c.2147G>A (p.Arg716Gln)) was identified in the RAG1 gene using whole-exome sequencing and Sanger sequencing. The predicted 3D structure of variant RAG1 indicated altered protein stability. Additionally, decreased expression of variant RAG1 gene was detected at both the mRNA and protein levels. CONCLUSIONS Our study identified a novel homozygous variant in RAG1 gene that causes SCID. This finding expands the variant spectrum of RAG1 in SCID and provides further evidence for the clinical diagnosis of SCID.
Collapse
Affiliation(s)
- Xinping Zhang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Xiayan Kang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Meiyu Yang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Zili Cai
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Yulei Song
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Xiong Zhou
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Jianshe Cao
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Chengjuan Wang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Kang Huang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Yani Peng
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Jie He
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Zhenghui Xiao
- Department of Pediatric Intensive Care Unit of Hunan Children's Hospital, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
29
|
Willemsen M, Staels F, Gerbaux M, Neumann J, Schrijvers R, Meyts I, Humblet-Baron S, Liston A. DNA replication-associated inborn errors of immunity. J Allergy Clin Immunol 2023; 151:345-360. [PMID: 36395985 DOI: 10.1016/j.jaci.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Inborn errors of immunity are a heterogeneous group of monogenic immunologic disorders caused by mutations in genes with critical roles in the development, maintenance, or function of the immune system. The genetic basis is frequently a mutation in a gene with restricted expression and/or function in immune cells, leading to an immune disorder. Several classes of inborn errors of immunity, however, result from mutation in genes that are ubiquitously expressed. Despite the genes participating in cellular processes conserved between cell types, immune cells are disproportionally affected, leading to inborn errors of immunity. Mutations in DNA replication, DNA repair, or DNA damage response factors can result in monogenic human disease, some of which are classified as inborn errors of immunity. Genetic defects in the DNA repair machinery are a well-known cause of T-B-NK+ severe combined immunodeficiency. An emerging class of inborn errors of immunity is those caused by mutations in DNA replication factors. Considerable heterogeneity exists within the DNA replication-associated inborn errors of immunity, with diverse immunologic defects and clinical manifestations observed. These differences are suggestive for differential sensitivity of certain leukocyte subsets to deficiencies in specific DNA replication factors. Here, we provide an overview of DNA replication-associated inborn errors of immunity and discuss the emerging mechanistic insights that can explain the observed immunologic heterogeneity.
Collapse
Affiliation(s)
- Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.
| | - Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Julika Neumann
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven, Belgium; ERN-RITA Core Center Member, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium.
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Immunology Program, The Babraham Institute, Babraham Research Campus, Cambridge.
| |
Collapse
|
30
|
Baloh CH, Chong H. Inborn Errors of Immunity. Prim Care 2023; 50:253-268. [PMID: 37105605 DOI: 10.1016/j.pop.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Inborn errors of immunity occur in 1 in 1000 to 1 in 5000 individuals and are characterized by immune deficiency and immune dysregulation. The primary care provider (PCP) should be familiar with key features of these diagnoses including recurrent and/or severe infections, hyperinflammation, malignancy, and autoimmunity and have a low threshold to refer for evaluation. The PCP can begin a laboratory evaluation before referral by sending a complete blood count (CBC) with differential, antibody levels, vaccine titers, and possibly other tests. Management approaches vary from antibiotic prophylaxis to hematopoietic stem cell transplantation depending on the specific diagnosis.
Collapse
|
31
|
Walter JE, Ziegler JB, Ballow M, Cunningham-Rundles C. Advances and Challenges of the Decade: The Ever-Changing Clinical and Genetic Landscape of Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:107-115. [PMID: 36610755 DOI: 10.1016/j.jaip.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023]
Abstract
In the past 10 years, we have witnessed major advances in clinical immunology. Newborn screening for severe combined immunodeficiency has become universal in the United States and screening programs are being extended to severe combined immunodeficiency and other inborn errors of immunity globally. Early genetic testing is becoming the norm for many of our patients and allows for informed selection of targeted therapies including biologics repurposed from other specialties. During the COVID-19 pandemic, our understanding of essential immune responses expanded and the discovery of immune gene defects continued. Immunoglobulin products, the backbone of protection for antibody deficiency syndromes, came into use to minimize side effects. New polyclonal and monoclonal antibody products emerged with increasing options to manage respiratory viral agents such as SARS-CoV-2 and respiratory syncytial virus. Against these advances, we still face major challenges. Atypical is becoming typical as phenotypes of distinct genetic disease overlap whereas the clinical spectrum of the same genetic defect widens. Therefore, clinical judgment needs to be paired with repeated deep immune phenotyping and upfront genetic testing, as technologies rapidly evolve, and clinical disease often progresses with age. Managing patients with organ damage resulting from immune dysregulation poses a special major clinical challenge and management often lacks standardization, from autoimmune cytopenias, granulomatous interstitial lung disease, enteropathy, and liver disease to endocrine, rheumatologic, and neurologic complications. Clinical, translational, and basic science networks will continue to advance the field; however, cross-talk and education with practicing allergists/immunologists are essential to keep up with the ever-changing clinical and genetic landscape of inborn errors of immunity.
Collapse
Affiliation(s)
- Jolan E Walter
- Division of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Mass.
| | - John B Ziegler
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia; Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Mark Ballow
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | | |
Collapse
|
32
|
Labrosse R, Boufaied I, Bourdin B, Gona S, Randolph HE, Logan BR, Bourbonnais S, Berthe C, Chan W, Buckley RH, Parrott RE, Cuvelier GDE, Kapoor N, Chandra S, Dávila Saldaña BJ, Eissa H, Goldman FD, Heimall J, O'Reilly R, Chaudhury S, Kolb EA, Shenoy S, Griffith LM, Pulsipher M, Kohn DB, Notarangelo LD, Pai SY, Cowan MJ, Dvorak CC, Haddad É, Puck JM, Barreiro LB, Decaluwe H. Aberrant T-cell exhaustion in severe combined immunodeficiency survivors with poor T-cell reconstitution after transplantation. J Allergy Clin Immunol 2023; 151:260-271. [PMID: 35987350 PMCID: PMC9924130 DOI: 10.1016/j.jaci.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) comprises rare inherited disorders of immunity that require definitive treatment through hematopoietic cell transplantation (HCT) or gene therapy for survival. Despite successes of allogeneic HCT, many SCID patients experience incomplete immune reconstitution, persistent T-cell lymphopenia, and poor long-term outcomes. OBJECTIVE We hypothesized that CD4+ T-cell lymphopenia could be associated with a state of T-cell exhaustion in previously transplanted SCID patients. METHODS We analyzed markers of exhaustion in blood samples from 61 SCID patients at a median of 10.4 years after HCT. RESULTS Compared to post-HCT SCID patients with normal CD4+ T-cell counts, those with poor T-cell reconstitution showed lower frequency of naive CD45RA+/CCR7+ T cells, recent thymic emigrants, and TCR excision circles. They also had a restricted TCR repertoire, increased expression of inhibitory receptors (PD-1, 2B4, CD160, BTLA, CTLA-4), and increased activation markers (HLA-DR, perforin) on their total and naive CD8+ T cells, suggesting T-cell exhaustion and aberrant activation, respectively. The exhaustion score of CD8+ T cells was inversely correlated with CD4+ T-cell count, recent thymic emigrants, TCR excision circles, and TCR diversity. Exhaustion scores were higher among recipients of unconditioned HCT, especially when further in time from HCT. Patients with fewer CD4+ T cells showed a transcriptional signature of exhaustion. CONCLUSIONS Recipients of unconditioned HCT for SCID may develop late post-HCT T-cell exhaustion as a result of diminished production of T-lineage cells. Elevated expression of inhibitory receptors on their T cells may be a biomarker of poor long-term T-cell reconstitution.
Collapse
Affiliation(s)
- Roxane Labrosse
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Ines Boufaied
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Benoîte Bourdin
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Saideep Gona
- Genetics, Genomics, and Systems Biology, Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Ill
| | - Haley E Randolph
- Genetics, Genomics, and Systems Biology, Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Ill
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wis
| | - Sara Bourbonnais
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Chloé Berthe
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Wendy Chan
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | | | | | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neena Kapoor
- Blood and Marrow Transplant Program, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Blachy J Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Hesham Eissa
- Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, Colo
| | - Fred D Goldman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Ala
| | - Jennifer Heimall
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Richard O'Reilly
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sonali Chaudhury
- Division of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Edward A Kolb
- Nemours Children's Health, Center for Cancer and Blood Disorders, Wilmington, Del
| | - Shalini Shenoy
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Linda M Griffith
- Division of Allergy, Immunology, and Transplantation, National Institutes of Health, Bethesda, Md
| | - Michael Pulsipher
- Blood and Marrow Transplant Program, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Donald B Kohn
- Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Calif
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Md
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Morton J Cowan
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Élie Haddad
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Jennifer M Puck
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Luis B Barreiro
- Genetics, Genomics, and Systems Biology, Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Ill
| | - Hélène Decaluwe
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada; Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada.
| |
Collapse
|
33
|
Fischer A. Gene therapy for inborn errors of immunity: past, present and future. Nat Rev Immunol 2022:10.1038/s41577-022-00800-6. [DOI: 10.1038/s41577-022-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
34
|
Lev A, Sharir I, Simon AJ, Levy S, Lee YN, Frizinsky S, Daas S, Saraf-Levy T, Broides A, Nahum A, Hanna S, Stepensky P, Toker O, Dalal I, Etzioni A, Stein J, Adam E, Hendel A, Marcus N, Almashanu S, Somech R. Lessons Learned From Five Years of Newborn Screening for Severe Combined Immunodeficiency in Israel. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2722-2731.e9. [PMID: 35487367 DOI: 10.1016/j.jaip.2022.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Implementation of newborn screening (NBS) programs for severe combined immunodeficiency (SCID) have advanced the diagnosis and management of affected infants and undoubtedly improved their outcomes. Reporting long-term follow-up of such programs is of great importance. OBJECTIVE We report a 5-year summary of the NBS program for SCID in Israel. METHODS Immunologic and genetic assessments, clinical analyses, and outcome data from all infants who screened positive were evaluated and summarized. RESULTS A total of 937,953 Guthrie cards were screened for SCID. A second Guthrie card was requested on 1,169 occasions (0.12%), which resulted in 142 referrals (0.015%) for further validation tests. Flow cytometry immune-phenotyping, T cell receptor excision circle measurement in peripheral blood, and expression of TCRVβ repertoire for the validation of positive cases revealed a specificity and sensitivity of 93.7% and 75.9%, respectively, in detecting true cases of SCID. Altogether, 32 SCID and 110 non-SCID newborns were diagnosed, making the incidence of SCID in Israel as high as 1:29,000 births. The most common genetic defects in this group were associated with mutations in DNA cross-link repair protein 1C and IL-7 receptor α (IL-7Rα) genes. No infant with SCID was missed during the study time. Twenty-two SCID patients underwent hematopoietic stem cell transplantation, which resulted in a 91% survival rate. CONCLUSIONS Newborn screening for SCID should ultimately be applied globally, specifically to areas with high rates of consanguineous marriages. Accumulating data from follow-up studies on NBS for SCID will improve diagnosis and treatment and enrich our understanding of immune development in health and disease.
Collapse
Affiliation(s)
- Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Idan Sharir
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Amos J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Hemato-Immunology Unit, Hematology Lab, Sheba Medical Center, Tel HaShomer, Israel
| | - Shiran Levy
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shirly Frizinsky
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Suha Daas
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Israel
| | - Talia Saraf-Levy
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Israel
| | - Arnon Broides
- Pediatric Immunology, Soroka University Medical Center, Beer-Sheva, Israel; Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY
| | - Amit Nahum
- Pediatric Immunology, Soroka University Medical Center, Beer-Sheva, Israel; Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Primary Immunodeficiency Research Laboratory, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Suhair Hanna
- Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Ruth Children Hospital, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Polina Stepensky
- Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Department of Bone Marrow Transplantation, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Toker
- Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Faculty of Medicine, Hebrew University of Jerusalem, Israel; Allergy and Immunology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ilan Dalal
- Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Department of Pediatrics, Pediatric Allergy Unit, E. Wolfson Medical Center, Holon, Israel, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Amos Etzioni
- Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Ruth Children Hospital, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Jerry Stein
- Department for Hemato-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Etai Adam
- Division of Pediatric Hematology and Oncology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Ayal Hendel
- Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Nufar Marcus
- Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Allergy and Immunology Unit, Schneider Children's Medical Center of Israel, Felsenstein Medical Research Center, Kipper Institute of Immunology, Petach Tikva, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Shlomo Almashanu
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Israel.
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; National Lab for Confirming Primary Immunodeficiency in Newborn Screening Center for Newborn Screening, Ministry of Health, Tel HaShomer, Israel.
| |
Collapse
|
35
|
Slatter MA, Gennery AR. Advances in the treatment of severe combined immunodeficiency. Clin Immunol 2022; 242:109084. [DOI: 10.1016/j.clim.2022.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
|
36
|
Sertori R, Lin JX, Martinez E, Rana S, Sharo A, Kazemian M, Sunderam U, Andrake M, Shinton S, Truong B, Dunbrack RM, Liu C, Srinivasan R, Brenner SE, Seroogy CM, Puck JM, Leonard WJ, Wiest DL. Investigation of the causal etiology in a patient with T-B+NK+ immunodeficiency. Front Immunol 2022; 13:928252. [PMID: 35967429 PMCID: PMC9372720 DOI: 10.3389/fimmu.2022.928252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Newborn screening for severe combined immunodeficiency (SCID) has not only accelerated diagnosis and improved treatment for affected infants, but also led to identification of novel genes required for human T cell development. A male proband had SCID newborn screening showing very low T cell receptor excision circles (TRECs), a biomarker for thymic output of nascent T cells. He had persistent profound T lymphopenia, but normal numbers of B and natural killer (NK) cells. Despite an allogeneic hematopoietic stem cell transplant from his brother, he failed to develop normal T cells. Targeted resequencing excluded known SCID genes; however, whole exome sequencing (WES) of the proband and parents revealed a maternally inherited X-linked missense mutation in MED14 (MED14V763A), a component of the mediator complex. Morpholino (MO)-mediated loss of MED14 function attenuated T cell development in zebrafish. Moreover, this arrest was rescued by ectopic expression of cDNA encoding the wild type human MED14 ortholog, but not by MED14V763A , suggesting that the variant impaired MED14 function. Modeling of the equivalent mutation in mouse (Med14V769A) did not disrupt T cell development at baseline. However, repopulation of peripheral T cells upon competitive bone marrow transplantation was compromised, consistent with the incomplete T cell reconstitution experienced by the proband upon transplantation with bone marrow from his healthy male sibling, who was found to have the same MED14V763A variant. Suspecting that the variable phenotypic expression between the siblings was influenced by further mutation(s), we sought to identify genetic variants present only in the affected proband. Indeed, WES revealed a mutation in the L1 cell adhesion molecule (L1CAMQ498H); however, introducing that mutation in vivo in mice did not disrupt T cell development. Consequently, immunodeficiency in the proband may depend upon additional, unidentified gene variants.
Collapse
Affiliation(s)
- Robert Sertori
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Esteban Martinez
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Sadhna Rana
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | - Andrew Sharo
- Center for Computational Biology, University of California, Berkeley, CA, United States
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, United States
| | - Uma Sunderam
- Innovation Labs, Tata Consultancy Services, Hyderabad, India
| | - Mark Andrake
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Susan Shinton
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Billy Truong
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Roland M. Dunbrack
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | | | - Steven E. Brenner
- Center for Computational Biology, University of California, Berkeley, CA, United States
| | - Christine M. Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer M. Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children’s Hospital, San Francisco, CA, United States
| | - Warren J. Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - David L. Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
37
|
Barreiros LA, Sousa JL, Geier C, Leiss-Piller A, Kanegae MPP, França TT, Boisson B, Lima AM, Costa-Carvalho BT, Aranda CS, de Moraes-Pinto MI, Segundo GRS, Ferreira JFS, Tavares FS, Guimarães FATDM, Toledo EC, da Matta Ain AC, Moreira IF, Soldatelli G, Grumach AS, de Barros Dorna M, Weber CW, Di Gesu RSW, Dantas VM, Fernandes FR, Torgerson TR, Ochs HD, Bustamante J, Walter JE, Condino-Neto A. SCID and Other Inborn Errors of Immunity with Low TRECs - the Brazilian Experience. J Clin Immunol 2022; 42:1171-1192. [PMID: 35503492 DOI: 10.1007/s10875-022-01275-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
Abstract
Severe combined immunodeficiency, SCID, is a pediatric emergency that represents the most critical group of inborn errors of immunity (IEI). Affected infants present with early onset life-threatening infections due to absent or non-functional T cells. Without early diagnosis and curative treatment, most die in early infancy. As most affected infants appear healthy at birth, newborn screening (NBS) is essential to identify and treat patients before the onset of symptoms. Here, we report 47 Brazilian patients investigated between 2009 and 2020 for SCID due to either a positive family history and/or clinical impression and low TRECs. Based on clinical presentation, laboratory finding, and genetic information, 24 patients were diagnosed as typical SCID, 14 as leaky SCID, and 6 as Omenn syndrome; 2 patients had non-SCID IEI, and 1 remained undefined. Disease onset median age was 2 months, but at the time of diagnosis and treatment, median ages were 6.5 and 11.5 months, respectively, revealing considerable delay which affected negatively treatment success. While overall survival was 51.1%, only 66.7% (30/45) lived long enough to undergo hematopoietic stem-cell transplantation, which was successful in 70% of cases. Forty-three of 47 (91.5%) patients underwent genetic testing, with a 65.1% success rate. Even though our patients did not come from the NBS programs, the diagnosis of SCID improved in Brazil during the pilot programs, likely due to improved medical education. However, we estimate that at least 80% of SCID cases are still missed. NBS-SCID started to be universally implemented in the city of São Paulo in May 2021, and it is our hope that other cities will follow, leading to early diagnosis and higher survival of SCID patients in Brazil.
Collapse
Affiliation(s)
- Lucila Akune Barreiros
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730, Av. Professor Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Jusley Lira Sousa
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730, Av. Professor Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | | | | | - Marilia Pylles Patto Kanegae
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730, Av. Professor Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Tábata Takahashi França
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730, Av. Professor Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | - Ana Carolina da Matta Ain
- Departamento de Pediatria E Imunologia, Hospital Universitário de Taubaté, Universidade de Taubaté, Taubate, SP, Brazil
| | | | - Gustavo Soldatelli
- Hospital das Clínicas, Universidade Federal de Santa Caratina, Florianopolis, SC, Brazil
| | | | - Mayra de Barros Dorna
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, SP, Brazil
| | | | | | - Vera Maria Dantas
- Departamento de Pediatria, Universidade Federal Do Rio Grande Do Norte, Natal, RN, Brazil
| | | | | | - Hans Dietrich Ochs
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jolan Eszter Walter
- University of South Florida at Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Antonio Condino-Neto
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, 1730, Av. Professor Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil.
- Immunogenic Laboratories Inc, Sao Paulo, SP, Brazil.
| |
Collapse
|
38
|
Chen Y, Wen R, Yang Z, Chen Z. Genome editing using CRISPR/Cas9 to treat hereditary hematological disorders. Gene Ther 2022; 29:207-216. [PMID: 33750926 DOI: 10.1038/s41434-021-00247-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system is a versatile and convenient genome-editing tool with prospects in gene therapy. This technique is based on customized site-specific nucleases with programmable guiding RNAs that cleave and introduce double-strand breaks (DSBs) at the target locus and achieve precise genome modification by triggering DNA repair mechanisms. Human hematopoietic stem/progenitor cells (HSPCs) are conventional cell targets for gene therapy in hematological diseases and have been widely used in most studies. Induced pluripotent stem cells (iPSCs) can be generated from a variety of somatic cells and hold great promise for personalized cell-based therapies. CRISPR/Cas9-mediated genome editing in autologous HSPCs and iPSCs is an ideal therapeutic solution for treating hereditary hematological disorders. Here, we review and summarize the latest studies about CRISPR/Cas9-mediated genome editing in patient-derived HSPCs and iPSCs to treat hereditary hematological disorders. Current challenges and prospects are also discussed.
Collapse
Affiliation(s)
- Yan Chen
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, PR China
| | - Ruiting Wen
- Department of Hematology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, PR China
| | - Zhigang Yang
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, PR China
- Department of Hematology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, PR China
| | - Zhanghui Chen
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, PR China.
| |
Collapse
|
39
|
Sertori R, Jones R, Basheer F, Rivera L, Dawson S, Loke S, Heidary S, Dhillon A, Liongue C, Ward AC. Generation and Characterization of a Zebrafish IL-2Rγc SCID Model. Int J Mol Sci 2022; 23:ijms23042385. [PMID: 35216498 PMCID: PMC8875600 DOI: 10.3390/ijms23042385] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
The IL-2 family of cytokines act via receptor complexes that share the interleukin-2 receptor gamma common (IL-2Rγc) chain to play key roles in lymphopoiesis. Inactivating IL-2Rγc mutations results in severe combined immunodeficiency (SCID) in humans and other species. This study sought to generate an equivalent zebrafish SCID model. The zebrafish il2rga gene was targeted for genome editing using TALENs and presumed loss-of-function alleles analyzed with respect to immune cell development and impacts on intestinal microbiota and tumor immunity. Knockout of zebrafish Il-2rγc.a resulted in a SCID phenotype, including a significant reduction in T cells, with NK cells also impacted. This resulted in dysregulated intestinal microbiota and defective immunity to tumor xenotransplants. Collectively, this establishes a useful zebrafish SCID model.
Collapse
Affiliation(s)
- Robert Sertori
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
| | - Realla Jones
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
| | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Leni Rivera
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Samantha Dawson
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Stella Loke
- School of Life and Environmental Science, Deakin University, Burwood, VIC 3125, Australia;
| | - Somayyeh Heidary
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Amardeep Dhillon
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (R.S.); (R.J.); (F.B.); (L.R.); (S.D.); (S.H.); (A.D.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
- Correspondence:
| |
Collapse
|
40
|
Chong-Neto HJ, Segundo GRS, Rosário NA. Fatal and Unresponsive Cytomegalovirus Infection in a New Homozygous FOXN1 Gene Variation Causing Nude SCID. J Clin Immunol 2022; 42:859-861. [PMID: 35064468 PMCID: PMC8782688 DOI: 10.1007/s10875-021-01192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
|
41
|
Carneiro-Sampaio M, de Jesus AA, Bando SY, Moreira-Filho CA. Inborn Errors of Immunity With Fetal or Perinatal Clinical Manifestations. Front Pediatr 2022; 10:891343. [PMID: 35601409 PMCID: PMC9121170 DOI: 10.3389/fped.2022.891343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
In this article we revised the literature on Inborn Errors of Immunity (IEI) keeping our focus on those diseases presenting with intrauterine or perinatal clinical manifestations. We opted to describe our findings according to the IEI categories established by the International Union of Immunological Societies, predominantly addressing the immunological features of each condition or group of diseases. The main finding is that such precocious manifestations are largely concentrated in the group of primary immune regulatory disorders (PIRDs) and not in the group of classical immunodeficiencies. The IEI categories with higher number of immunological manifestations in utero or in perinatal period are: (i) diseases of immune dysregulation (HLH, IPEX and other Tregopathies, autosomal recessive ALPS with complete lack of FAS protein expression) and (ii) autoinflammatory diseases (NOMID/CINCA, DIRA and some interferonopathies, such as Aicardi-Goutières syndrome, AGS, and USP18 deficiency). Regarding the other IEI categories, some patients with Omenn syndrome (an atypical form of SCID), and a few X-linked CGD patients present with clinical manifestations at birth associated to immune dysregulation. The most frequent clinical features were hydrops fetalis, intrauterine growth retardation leading to fetal loss, stillbirths, and prematurity, as in HLH and IPEX. Additionally, pseudo-TORCH syndrome was observed in AGS and in USP18 deficiency. The main goal of our review was to contribute to increasing the medical awareness of IEI with intrauterine and perinatal onset, which has obvious implications for diagnosis, treatment, and genetic counseling.
Collapse
Affiliation(s)
- Magda Carneiro-Sampaio
- Department of Pediatrics, Faculdade de Medicina, Universidade de São Paulo, Sao-Paulo, Brazil
| | - Adriana Almeida de Jesus
- Translational Autoinflammatory Disease Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina, Universidade de São Paulo, Sao-Paulo, Brazil
| | | |
Collapse
|
42
|
Abstract
Current practice in IBD is to classify patients based on clinical signs and symptoms and provide treatments accordingly. However, the response of IBD patients to available treatments is highly variable, highlighting clinically significant heterogeneity among patients. Thus, more accurate patient stratification is urgently needed to more effectively target therapeutic interventions to specific patients. Here we review the degree of heterogeneity in IBD, discussing how the microbiota, genetics, and immune system may contribute to the variation among patients. We highlight how molecular heterogeneity may relate to clinical phenotype, but in other situations may be independent of clinical phenotype, encouraging future studies to fill the gaps. Finally, we discuss novel stratification methodologies as a foundation for precision medicine, in particular a novel stratification strategy based on conserved genes across species. All of these dimensions of heterogeneity have potential to provide strategies for patient stratification and move IBD practice towards personalised medicine.
Collapse
Affiliation(s)
- Katja A Selin
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Charlotte R H Hedin
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
43
|
Blom M, Bredius RGM, van der Burg M. Future Perspectives of Newborn Screening for Inborn Errors of Immunity. Int J Neonatal Screen 2021; 7:ijns7040074. [PMID: 34842618 PMCID: PMC8628921 DOI: 10.3390/ijns7040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Newborn screening (NBS) programs continue to expand due to innovations in both test methods and treatment options. Since the introduction of the T-cell receptor excision circle (TREC) assay 15 years ago, many countries have adopted screening for severe combined immunodeficiency (SCID) in their NBS program. SCID became the first inborn error of immunity (IEI) in population-based screening and at the same time the TREC assay became the first high-throughput DNA-based test in NBS laboratories. In addition to SCID, there are many other IEI that could benefit from early diagnosis and intervention by preventing severe infections, immune dysregulation, and autoimmunity, if a suitable NBS test was available. Advances in technologies such as KREC analysis, epigenetic immune cell counting, protein profiling, and genomic techniques such as next-generation sequencing (NGS) and whole-genome sequencing (WGS) could allow early detection of various IEI shortly after birth. In the next years, the role of these technical advances as well as ethical, social, and legal implications, logistics and cost will have to be carefully examined before different IEI can be considered as suitable candidates for inclusion in NBS programs.
Collapse
Affiliation(s)
- Maartje Blom
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Correspondence:
| | - Robbert G. M. Bredius
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| |
Collapse
|
44
|
Blom M, Pico-Knijnenburg I, Imholz S, Vissers L, Schulze J, Werner J, Bredius R, van der Burg M. Second Tier Testing to Reduce the Number of Non-actionable Secondary Findings and False-Positive Referrals in Newborn Screening for Severe Combined Immunodeficiency. J Clin Immunol 2021; 41:1762-1773. [PMID: 34370170 PMCID: PMC8604867 DOI: 10.1007/s10875-021-01107-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Newborn screening (NBS) for severe combined immunodeficiency (SCID) is based on the detection of T-cell receptor excision circles (TRECs). TRECs are a sensitive biomarker for T-cell lymphopenia, but not specific for SCID. This creates a palette of secondary findings associated with low T-cells that require follow-up and treatment or are non-actionable. The high rate of (non-actionable) secondary findings and false-positive referrals raises questions about the harm-benefit-ratio of SCID screening, as referrals are associated with high emotional impact and anxiety for parents. METHODS An alternative quantitative TREC PCR with different primers was performed on NBS cards of referred newborns (N = 56) and epigenetic immune cell counting was used as for relative quantification of CD3 + T-cells (N = 59). Retrospective data was used to determine the reduction in referrals with a lower TREC cutoff value or an adjusted screening algorithm. RESULTS When analyzed with a second PCR with different primers, 45% of the referrals (25/56) had TREC levels above cutoff, including four false-positive cases in which two SNPs were identified. With epigenetic qPCR, 41% (24/59) of the referrals were within the range of the relative CD3 + T-cell counts of the healthy controls. Lowering the TREC cutoff value or adjusting the screening algorithm led to lower referral rates but did not prevent all false-positive referrals. CONCLUSIONS Second tier tests and adjustments of cutoff values or screening algorithms all have the potential to reduce the number of non-actionable secondary findings in NBS for SCID, although second tier tests are more effective in preventing false-positive referrals.
Collapse
Affiliation(s)
- Maartje Blom
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Sandra Imholz
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Lotte Vissers
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Janika Schulze
- Department of Research and Development, Epimune GmbH, Belin, Germany
| | - Jeannette Werner
- Department of Research and Development, Epimune GmbH, Belin, Germany
| | - Robbert Bredius
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
45
|
Wang HH, Sun SL, Jau RC, Tantoh DM, Hsu SY, Nfor ON, Chen PH, Liu WH, Ko JL, Liaw YP. Risk of HBV infection among male and female first-time blood donors born before and after the July 1986 HBV vaccination program in Taiwan. BMC Public Health 2021; 21:1831. [PMID: 34627173 PMCID: PMC8502303 DOI: 10.1186/s12889-021-11846-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Background In July 1984, Taiwan officially began a nationwide hepatitis B virus (HBV) vaccination program where only infants born to HBsAg-positive mothers were vaccinated free of charge until June 1986. However, from July 1986, all infants were vaccinated against HBV. The impact of the July 1986 HBV vaccination program on first-time blood donors has not been exhaustively studied. We, therefore, determined the risk of HBV among male and female first-time blood donors born before and after the July 1986 HBV vaccination program in Taiwan. Methods Initially, we recruited 857,310 first-time blood donors whose data were collected between 2013 and 2018 from 5 blood donation centers in Taiwan. However, we excluded donors with incomplete and outlying data (n = 12,213) and those born between July 1984 and June 1986 (n = 21,054). The final study participants comprised 9118 HBV positive and 814,925 HBV negative individuals. We divided the participants into two birth cohorts (born before and after July 1986) and assumed that those born before July 1986 were not vaccinated at birth while those born after July 1986 were vaccinated. Results The prevalence of HBV among those born before and after July 1986 was 4.53 and 0.25%, respectively. Individuals born after July 1986 had a lower risk of HBV than those born before July 1986. The adjusted odds ratio (OR), 95% confidence interval (CI) was 0.16, 0.13–0.19. Men had a higher risk of HBV than women (OR = 1.40, 95% CI = 1.34–1.47). The interaction between sex and birth date was significant (p-value = 0.0067). Stratification of participants by birth date revealed a higher risk of HBV in men compared to women in both birth cohorts. The OR, 95% CI was 1.47, 1.40–1.55 for those born before July 1986 but declined to 1.15, 1.02–1.29 for those born after July 1986. Conclusions The risk of HBV was lower among those born after than those born before the July 1986 vaccination program. In both cohorts, the risk was high in men relative to women. The seemingly protective effect among those born after July 1986 was higher in women than men.
Collapse
Affiliation(s)
- Hsuan-Hui Wang
- Taichung Blood Center, Taiwan Blood Services Foundation, Taichung, Taiwan
| | - Shu-Lung Sun
- Taiwan Blood Services Foundation, Taipei, Taiwan
| | - Rong-Chiou Jau
- Taichung Blood Center, Taiwan Blood Services Foundation, Taichung, Taiwan
| | - Disline Manli Tantoh
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan.,Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Shu-Yi Hsu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Pei-Hsin Chen
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Wen-Hsiu Liu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, Taichung, 40201, Taiwan. .,Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Yung-Po Liaw
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan. .,Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd, Taichung, 40201, Taiwan. .,Medical Imaging and Big Data Center, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
46
|
Béziat V, Casanova JL, Jouanguy E. Human genetic and immunological dissection of papillomavirus-driven diseases: new insights into their pathogenesis. Curr Opin Virol 2021; 51:9-15. [PMID: 34555675 DOI: 10.1016/j.coviro.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Human papillomaviruses (HPVs) are responsible for cutaneous and mucosal lesions. Persistent HPV infection remains a leading cause of uterine cancer in women, but also of cutaneous squamous cell carcinoma in patients with epidermodysplasia verruciformis (EV), and of rare and devastating benign tumors, such as 'tree-man' syndrome. HPV infections are usually asymptomatic or benign in the general population. Severe manifestations in otherwise healthy subjects can attest to inherited immunodeficiencies. The human genetic dissection of these cases has identified critical components of the immune response to HPVs, including the non-redundant roles of keratinocyte-intrinsic immunity in controlling β-HPVs, and of T cell-dependent adaptive immunity for controlling all HPV types. A key role of the CD28 T-cell costimulation pathway in controlling common warts due to HPVs was recently discovered. This review summarizes the state of the art in the human genetics of HPV infection, focusing on two key affected cell types: keratinocytes and T cells.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA; Howard Hughes Medical Institute, New York, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA
| |
Collapse
|
47
|
van den Akker-van Marle ME, Blom M, van der Burg M, Bredius RGM, Van der Ploeg CPB. Economic Evaluation of Different Screening Strategies for Severe Combined Immunodeficiency Based on Real-Life Data. Int J Neonatal Screen 2021; 7:ijns7030060. [PMID: 34564080 PMCID: PMC8482221 DOI: 10.3390/ijns7030060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 01/24/2023] Open
Abstract
Although several countries have adopted severe combined immunodeficiency (SCID) into their newborn screening (NBS) program, other countries are still in the decision process of adding this disorder in their program and finding the appropriate screening strategy. This decision may be influenced by the cost(-effectiveness) of these screening strategies. In this study, the cost(-effectiveness) of different NBS strategies for SCID was estimated based on real-life data from a prospective implementation study in the Netherlands. The cost of testing per child for SCID was estimated at EUR 6.36. The cost of diagnostics after screen-positive results was assessed to vary between EUR 985 and 8561 per child dependent on final diagnosis. Cost-effectiveness ratios varied from EUR 41,300 per QALY for the screening strategy with T-cell receptor excision circle (TREC) ≤ 6 copies/punch to EUR 44,100 for the screening strategy with a cut-off value of TREC ≤ 10 copies/punch. The analysis based on real-life data resulted in higher costs, and consequently in less favorable cost-effectiveness estimates than analyses based on hypothetical data, indicating the need for verifying model assumptions with real-life data. The comparison of different screening strategies suggest that strategies with a lower number of referrals, e.g., by distinguishing between urgent and less urgent referrals, are favorable from an economic perspective.
Collapse
Affiliation(s)
- M. Elske van den Akker-van Marle
- Unit Medical Decision Making, Department of Biomedical Data Sciences, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-526-1202
| | - Maartje Blom
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.B.); (M.v.d.B.)
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.B.); (M.v.d.B.)
| | - Robbert G. M. Bredius
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands;
| | - Catharina P. B. Van der Ploeg
- Department of Child Health, The Netherlands Organization for Applied Scientific Research, TNO, P.O. Box 3005, 2301 DA Leiden, The Netherlands;
| |
Collapse
|
48
|
Göngrich C, Ekwall O, Sundin M, Brodszki N, Fasth A, Marits P, Dysting S, Jonsson S, Barbaro M, Wedell A, von Döbeln U, Zetterström RH. First Year of TREC-Based National SCID Screening in Sweden. Int J Neonatal Screen 2021; 7:ijns7030059. [PMID: 34449549 PMCID: PMC8395826 DOI: 10.3390/ijns7030059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Screening for severe combined immunodeficiency (SCID) was introduced into the Swedish newborn screening program in August 2019 and here we report the results of the first year. T cell receptor excision circles (TRECs), kappa-deleting element excision circles (KRECs), and actin beta (ACTB) levels were quantitated by multiplex qPCR from dried blood spots (DBS) of 115,786 newborns and children up to two years of age, as an approximation of the number of recently formed T and B cells and sample quality, respectively. Based on low TREC levels, 73 children were referred for clinical assessment which led to the diagnosis of T cell lymphopenia in 21 children. Of these, three were diagnosed with SCID. The screening performance for SCID as the outcome was sensitivity 100%, specificity 99.94%, positive predictive value (PPV) 4.11%, and negative predictive value (NPV) 100%. For the outcome T cell lymphopenia, PPV was 28.77%, and specificity was 99.95%. Based on the first year of screening, the incidence of SCID in the Swedish population was estimated to be 1:38,500 newborns.
Collapse
Affiliation(s)
- Christina Göngrich
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Correspondence: (C.G.); (R.H.Z.)
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden; (O.E.); (A.F.)
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
| | - Mikael Sundin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; (M.S.); (P.M.)
- Section of Pediatric Hematology, Immunology and HCT, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Nicholas Brodszki
- Department of Pediatric Immunology, Children’s Hospital, Lund University Hospital, 22242 Lund, Sweden;
| | - Anders Fasth
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden; (O.E.); (A.F.)
| | - Per Marits
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; (M.S.); (P.M.)
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Sam Dysting
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
| | - Susanne Jonsson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
| | - Michela Barbaro
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Ulrika von Döbeln
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rolf H. Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Correspondence: (C.G.); (R.H.Z.)
| |
Collapse
|
49
|
Strubbe S, De Bruyne M, Pannicke U, Beyls E, Vandekerckhove B, Leclercq G, De Baere E, Bordon V, Vral A, Schwarz K, Haerynck F, Taghon T. A Novel Non-Coding Variant in DCLRE1C Results in Deregulated Splicing and Induces SCID Through the Generation of a Truncated ARTEMIS Protein That Fails to Support V(D)J Recombination and DNA Damage Repair. Front Immunol 2021; 12:674226. [PMID: 34220820 PMCID: PMC8248492 DOI: 10.3389/fimmu.2021.674226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Severe Combined Immune Deficiency (SCID) is a primary deficiency of the immune system in which opportunistic and recurring infections are often fatal during neonatal or infant life. SCID is caused by an increasing number of genetic defects that induce an abrogation of T lymphocyte development or function in which B and NK cells might be affected as well. Because of the increased availability and usage of next-generation sequencing (NGS), many novel variants in SCID genes are being identified and cause a heterogeneous disease spectrum. However, the molecular and functional implications of these new variants, of which some are non-coding, are often not characterized in detail. Using targeted NGS, we identified a novel homozygous c.465-1G>C splice acceptor site variant in the DCLRE1C gene in a T-B-NK+ SCID patient and fully characterized the molecular and functional impact. By performing a minigene splicing reporter assay, we revealed deregulated splicing of the DCLRE1C transcript since a cryptic splice acceptor in exon 7 was employed. This induced a frameshift and the generation of a p.Arg155Serfs*15 premature termination codon (PTC) within all DCLRE1C splice variants, resulting in the absence of full-length ARTEMIS protein. Consistently, a V(D)J recombination assay and a G0 micronucleus assay demonstrated the inability of the predicted mutant ARTEMIS protein to perform V(D)J recombination and DNA damage repair, respectively. Together, these experiments molecularly and functionally clarify how a newly identified c.465-1G>C variant in the DCLRE1C gene is responsible for inducing SCID. In a clinical context, this demonstrates how the experimental validation of new gene variants, that are identified by NGS, can facilitate the diagnosis of SCID which can be vital for implementing appropriate therapies.
Collapse
Affiliation(s)
- Steven Strubbe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Ulrich Pannicke
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Elien Beyls
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent (CMGG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Victoria Bordon
- Department of Internal Medicine and Pediatrics, Division of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Klaus Schwarz
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Germa Red Cross Blood Service Baden-Württemberg – Hessen, Ulm, Germany
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
50
|
Slatter MA, Gennery AR. Treosulfan-based conditioning for inborn errors of immunity. Ther Adv Hematol 2021; 12:20406207211013985. [PMID: 34094045 PMCID: PMC8141989 DOI: 10.1177/20406207211013985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Inborn errors of immunity (IEI) are inherited disorders that lead to defects in the development and/or function of the immune system. The number of disorders that can be treated by haematopoietic stem-cell transplantation (HSCT) has increased rapidly with the advent of next-generation sequencing. The methods used to transplant children with IEI have improved dramatically over the last 20 years. The introduction of reduced-toxicity conditioning is an important factor in the improved outcome of HSCT. Treosulfan has myeloablative and immunosuppressive properties, enabling engraftment with less toxicity than traditionally used doses of busulfan. It is firmly incorporated into the conditioning guidelines of the Inborn Errors Working Party of the European Society for Blood and Marrow Transplantation. Unlike busulfan, pharmacokinetically guided dosing of treosulfan is not part of routine practice, but data are emerging which indicate that further improvements in outcome may be possible, particularly in infants who have a decreased clearance of treosulfan. It is likely that individualized dosing, not just of treosulfan, but of all agents used in conditioning regimens, will be developed and implemented in the future. This will lead to a reduction in unwanted variability in drug exposure, leading to more predictable and adjustable exposure, and improved outcome of HSCT, with fewer late adverse effects and improved quality of life. Such conditioning regimens can be used as the basis to study the need for additional agents in certain disorders which are difficult to engraft or require high levels of donor chimerism, the dosing of individual cellular components within grafts, and effects of adjuvant cellular or immunotherapy post-transplant. This review documents the establishment of treosulfan worldwide, as a safe and effective agent for conditioning children with IEI prior to HSCT.
Collapse
Affiliation(s)
- Mary A Slatter
- Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Queen Victoria Road, Newcastle Upon Tyne NE1 4LP, UK
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|