1
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
Xu H, Luo Y, Zhang M, Pan C, Lan X, Zheng J. Ovine LncRSFD1 Mined from RNA-Seq: Identification, Expression Profile, Promotion of Preadipocyte Differentiation, Promoter Activity, and Its Polymorphisms Related to Phenotypic Traits. Animals (Basel) 2024; 14:3631. [PMID: 39765535 PMCID: PMC11672851 DOI: 10.3390/ani14243631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Tail fat is essential for sheep survival in extreme environments, yet its significance is often overlooked, leading to the decline of fat-tailed breeds. This study identified a novel lncRNA, lncRSFD1 (TCONS_00054953), through transcriptome sequencing, showing differential expression in the tail adipose tissues of Lanzhou Fat-Tailed (LFT) sheep and Tibetan (TS) sheep. Highly expressed in adipose tissues, lncRSFD1 inhibits preadipocyte proliferation and promotes 3T3-L1 differentiation, suggesting its role in regulating fat deposition. Located in both the cytoplasm and nucleus, lncRSFD1 targets the neighboring gene PDE4DIP and may function as a molecular sponge for conserved miRNAs, including oar-miR-30a-3p, oar-miR-329b-5p, and oar-miR-431, which are known to influence fat and muscle-related physiological processes. Moreover, the core promoter of lncRSFD1 (-2607 bp to -1776 bp) harbors four SNPs (g.-2429G>A, g.-2030T>C, g.-2016C>T, g.-2015G>A) significantly associated with growth traits such as body height in Guiqian Semi-Fine Wool (GSFW) sheep. These findings suggest lncRSFD1 plays a key role in fat deposition and growth regulation, offering new insights into the molecular mechanisms of lncRNAs in sheep. It provides a potential target for genetic improvement and molecular breeding to enhance fat deposition and adaptability in sheep breeds.
Collapse
Affiliation(s)
- Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China;
| | - Yunyun Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (M.Z.); (C.P.)
| | - Mengyang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (M.Z.); (C.P.)
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (M.Z.); (C.P.)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (M.Z.); (C.P.)
| | - Juanshan Zheng
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China;
| |
Collapse
|
3
|
Qi F, Li T, Deng Q, Fan A. The impact of aerobic and anaerobic exercise interventions on the management and outcomes of non-alcoholic fatty liver disease. Physiol Res 2024; 73:671-686. [PMID: 39530904 PMCID: PMC11629946 DOI: 10.33549/physiolres.935244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/25/2024] [Indexed: 12/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder that includes non-alcoholic hepatic steatosis without or with moderate inflammation and non-alcoholic steatohepatitis (NASH), characterized by necroinflammation and a more rapid progression of fibrosis. It is the primary pathological basis for hepatocellular carcinoma. With its prevalence escalating annually, NAFLD has emerged as a global health epidemic, presenting a significant hazard to public health worldwide. Existing studies have shown that physical activity and exercise training have a positive effect on NAFLD. However, the extent to which exercise improves NAFLD depends on the type, intensity, and duration. Therefore, the type of exercise that has the best effect on improving NAFLD remains to be explored. To date, the most valuable discussions involve aerobic and anaerobic exercise. Exercise intervenes in the pathological process of NAFLD by regulating physiological changes in cells through multiple signaling pathways. The review aims to summarize the signaling pathways affected by two different exercise types associated with the onset and progression of NAFLD. It provides a new basis for improving and managing NAFLD in clinical practice.
Collapse
Affiliation(s)
- F Qi
- Chongqing College of International Business and Economics, Southwest University, Chongqing, China, College of Physical Education, Southwest University, Chongqing, China.
| | | | | | | |
Collapse
|
4
|
Lluch A, Latorre J, Oliveras-Cañellas N, Fernández-Sánchez A, Moreno-Navarrete JM, Castells-Nobau A, Comas F, Buxò M, Rodríguez-Hermosa JI, Ballester M, Espadas I, Martín-Montalvo A, Zhang B, Zhou Y, Burkhardt R, Höring M, Liebisch G, Castellanos-Rubio A, Santin I, Kar A, Laakso M, Pajukanta P, Olkkonen VM, Fernández-Real JM, Ortega FJ. A novel long non-coding RNA connects obesity to impaired adipocyte function. Mol Metab 2024; 90:102040. [PMID: 39362599 PMCID: PMC11544081 DOI: 10.1016/j.molmet.2024.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) can perform tasks of key relevance in fat cells, contributing, when defective, to the burden of obesity and its sequelae. Here, scrutiny of adipose tissue transcriptomes before and after bariatric surgery (GSE53378) granted identification of 496 lncRNAs linked to the obese phenotype. Only expression of linc-GALNTL6-4 displayed an average recovery over 2-fold and FDR-adjusted p-value <0.0001 after weight loss. The aim of the present study was to investigate the impact on adipocyte function and potential clinical value of impaired adipose linc-GALNTL6-4 in obese subjects. METHODS We employed transcriptomic analysis of public dataset GSE199063, and cross validations in two large transversal cohorts to report evidence of a previously unknown association of adipose linc-GALNTL6-4 with obesity. We then performed functional analyses in human adipocyte cultures, genome-wide transcriptomics, and untargeted lipidomics in cell models of loss and gain of function to explore the molecular implications of its associations with obesity and weight loss. RESULTS The expression of linc-GALNTL6-4 in human adipose tissue is adipocyte-specific and co-segregates with obesity, being normalized upon weight loss. This co-segregation is demonstrated in two longitudinal weight loss studies and two cross-sectional samples. While compromised expression of linc-GALNTL6-4 in obese subjects is primarily due to the inflammatory component in the context of obesity, adipogenesis requires the transcriptional upregulation of linc-GALNTL6-4, the expression of which reaches an apex in terminally differentiated adipocytes. Functionally, we demonstrated that the knockdown of linc-GALNTL6-4 impairs adipogenesis, induces alterations in the lipidome, and leads to the downregulation of genes related to cell cycle, while propelling in adipocytes inflammation, impaired fatty acid metabolism, and altered gene expression patterns, including that of apolipoprotein C1 (APOC1). Conversely, the genetic gain of linc-GALNTL6-4 ameliorated differentiation and adipocyte phenotype, putatively by constraining APOC1, also contributing to the metabolism of triglycerides in adipose. CONCLUSIONS Current data unveil the unforeseen connection of adipocyte-specific linc-GALNTL6-4 as a modulator of lipid homeostasis challenged by excessive body weight and meta-inflammation.
Collapse
Affiliation(s)
- Aina Lluch
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jèssica Latorre
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain.
| | - Núria Oliveras-Cañellas
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | | | - José M Moreno-Navarrete
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Anna Castells-Nobau
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Ferran Comas
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain
| | - Maria Buxò
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain
| | - José I Rodríguez-Hermosa
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; School of Medicine, University of Girona (UdG), Girona, Spain
| | - María Ballester
- Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Isabel Espadas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain
| | - Alejandro Martín-Montalvo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Birong Zhang
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Ainara Castellanos-Rubio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Izortze Santin
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bizkaia, Spain; Instituto de Investigación Sanitaria Biocruces Bizkaia, Bizkaia, Spain
| | - Asha Kar
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles (CA), USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Päivi Pajukanta
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles (CA), USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA; Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, University of Helsinki, Helsinki, Finland
| | - José M Fernández-Real
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain; School of Medicine, University of Girona (UdG), Girona, Spain.
| | - Francisco J Ortega
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain.
| |
Collapse
|
5
|
An G, Hui J, Zhang W, Fan A, Zhou Y, Zhao X, Lu Y, Wang X. A novel lncRNA associated with the prognosis of patients with colorectal cancer resists apoptosis through the LYN/BCL-2 pathway. Biochem Biophys Res Commun 2024; 723:150177. [PMID: 38810320 DOI: 10.1016/j.bbrc.2024.150177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE We found a novel lncRNA named lncAC138150.2 related to the overall survival and staging of patients with colorectal cancer (CRC) by bioinformatic analysis using data from the Cancer Genome Atlas (TCGA), and the study aimed to elucidate the function of lncAC138150.2 and underlying mechanisms. METHODS Target molecules were knocked down by transfection with antisense oligonucleotides (ASOs), siRNAs, or lentiviruses and overexpressed by transfection with plasmids. The function of lncAC138150.2 was determined using histological, cytological, and molecular biology methods. The underlying mechanism of lncAC138150.2 function was investigated using RNA-seq, bioinformatics analysis, and molecular biology methods. RESULTS The expression of lncAC138150.2 was increased in colorectal tissues compared with paired normal tissues. The lncAC138150.2 knockdown increased apoptosis but did not change the cell proliferation, cell cycle distribution, or cell migration ability of CRC cells, while lncAC138150.2 overexpression decreased CRC apoptosis. lncAC138150.2 was mainly located in the cell nucleus, and each lncAC138150.2 transcript knockdown increased CRC apoptosis. BCL-2 pathway was significantly altered in apoptosis induced by lncAC138150.2 knockdown, which was alleviated by BAX knockdown. The expression of LYN was significantly decreased with lncAC138150.2 knockdown, LYN knockdown increased CRC apoptosis, and its overexpression completely alleviated CRC apoptosis induced by lncAC138150.2 knockdown. CONCLUSION lncAC138150.2 significantly inhibited CRC apoptosis and affected the prognosis of patients with CRC, through the LYN/BCL-2 pathway.
Collapse
Affiliation(s)
- Guangzhou An
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China; Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Juan Hui
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wenyao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China
| | - Ahui Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China
| | - Yun Zhou
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China.
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
6
|
Cabiati M, Federico G, Del Ry S. Importance of Studying Non-Coding RNA in Children and Adolescents with Type 1 Diabetes. Biomedicines 2024; 12:1988. [PMID: 39335501 PMCID: PMC11429055 DOI: 10.3390/biomedicines12091988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Type 1 diabetes (T1D) mellitus is a chronic illness in children and teens, with rising global incidence rates. It stems from an autoimmune attack on pancreatic β cells, leading to insufficient insulin production. Genetic susceptibility and environmental triggers initiate this process. Early detection is possible by identifying multiple autoantibodies, which aids in predicting future T1D development. A new staging system highlights T1D's onset with islet autoimmunity rather than symptoms. Family members of T1D patients face a significantly increased risk of T1D. Italy recently passed a law mandating national T1D screening for pediatric populations. Measurements of β cell function continue to be essential in assessing efficacy, and different models have been proposed, but more appropriate biomarkers are mandatory for both progression studies before the onset of diabetes and during therapeutic monitoring. Biomarkers like microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) play key roles in T1D pathogenesis by regulating gene expression. Understanding their roles offers insights into T1D mechanisms and potential therapeutic targets. In this review, we summarized recent progress in the roles of some non-coding RNAs (ncRNAs) in the pathogenesis of T1D, with particular attention to miRNAs, lncRNAs, and circRNAs.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Giovanni Federico
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
7
|
Meng X, Bai X, Ke A, Li K, Lei Y, Ding S, Dai D. Long Non-Coding RNAs in Drug Resistance of Gastric Cancer: Complex Mechanisms and Potential Clinical Applications. Biomolecules 2024; 14:608. [PMID: 38927012 PMCID: PMC11201466 DOI: 10.3390/biom14060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric cancer (GC) ranks as the third most prevalent malignancy and a leading cause of cancer-related mortality worldwide. However, the majority of patients with GC are diagnosed at an advanced stage, highlighting the urgent need for effective perioperative and postoperative chemotherapy to prevent relapse and metastasis. The current treatment strategies have limited overall efficacy because of intrinsic or acquired drug resistance. Recent evidence suggests that dysregulated long non-coding RNAs (lncRNAs) play a significant role in mediating drug resistance in GC. Therefore, there is an imperative to explore novel molecular mechanisms underlying drug resistance in order to overcome this challenging issue. With advancements in deep transcriptome sequencing technology, lncRNAs-once considered transcriptional noise-have garnered widespread attention as potential regulators of carcinogenesis, including tumor cell proliferation, metastasis, and sensitivity to chemo- or radiotherapy through multiple regulatory mechanisms. In light of these findings, we aim to review the mechanisms by which lncRNAs contribute to drug therapy resistance in GC with the goal of providing new insights and breakthroughs toward overcoming this formidable obstacle.
Collapse
Affiliation(s)
- Xiangyu Meng
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Xiao Bai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Angting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Kaiqiang Li
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Yun Lei
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Siqi Ding
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Dongqiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
8
|
Liu Z, Yang J, Wang N, Liu J, Geng J, Zhu J, Cong B, Sun H, Wu R. Integrative lncRNA, circRNA, and mRNA analysis reveals expression profiles of six forensic body fluids/tissue. Int J Legal Med 2024; 138:731-742. [PMID: 37994925 DOI: 10.1007/s00414-023-03131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
RNAs have attracted much attention in forensic body fluid/tissue identification (BFID) due to their tissue-specific expression characteristics. Among RNAs, long RNAs (e.g., mRNA) have a higher probability of containing more polymorphic sites that can be used to assign the specific donor of the body fluid/tissue. However, few studies have characterized their overall profiles in forensic science. In this study, we sequenced the transcriptomes of 30 samples from venous blood, menstrual blood, semen, saliva, vaginal secretion, and skin tissue, obtaining a comprehensive picture of mRNA, lncRNA, and circRNA profiles. A total of 90,305 mRNAs, 102,906 lncRNAs (including 19,549 novel lncRNAs), and 40,204 circRNAs were detected. RNA type distribution, length distribution, and expression distribution were presented according to their annotation and expression level, and many novel body fluid/tissue-specific RNA markers were identified. Furthermore, the cognate relations among the three RNAs were analyzed according to gene annotations. Finally, SNPs and InDels from RNA transcripts were genotyped, and 21,611 multi-SNP and 4,471 multi-InDel transcriptomic microhaplotypes (tMHs) were identified. These results provide a comprehensive understanding of transcriptome profiles, which could provide new avenues for tracing the origin of the body fluid/tissue and identifying an individual.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Nana Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaojiao Geng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jianzhang Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Wang B, Ji M, Fang H, Gu H, Mehari TG, Han J, Feng W, Huo X, Zhang J, Chen Y, Zhang J, Ditta A, Khan MKR, Paterson AH, Chee PW, Wang K. An analysis of lncRNAs related to fiber quality and the discovery of their target genes in a Gossypium hirsutum line with Gossypium mustelinum introgression. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:40. [PMID: 38296887 DOI: 10.1007/s00122-024-04541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
KEY MESSAGE Analysis of fiber quality lncRNAs and their target genes from a pair of Gossypium mustelinum near-isogenic lines provide new prospects for improving the fiber quality of Upland cotton. Long noncoding RNAs (lncRNAs) are an important part of genome transcription and play roles in a wide range of biological processes in plants. In this research, a pair of near-isogenic cotton lines, namely, a Gossypium mustelinum introgression line (IL9) with outstanding fiber quality and its recurrent Upland cotton parent (PD94042), were used as the experimental materials. Cotton fibers were selected for lncRNA sequencing at 17 and 21 days post-anthesis. A total of 2693 differentially expressed genes were identified. In total, 5841 lncRNAs were ultimately screened, from which 163 differentially expressed lncRNAs were identified. Target genes of the lncRNAs were predicted by two different methods: cis and trans. Some of the target genes were related to cell components, membrane components, plant hormone signal transduction and catalytic metabolism, and the results indicated that there might also be important effects on the development of fiber. Four differentially expressed target genes related to fiber quality (Gomus.D05G015100, Gomus.A05G281300, Gomus.A12G023400 and Gomus.A10G226800) were screened through gene function annotation, and the functions of these four genes were verified through virus-induced gene silencing (VIGS). Compared to the negative controls, plants in which any of these four genes were silenced showed significant reductions in fiber strength. In addition, the plants in which the Gomus.A12G023400 gene was silenced showed a significant reduction in fiber uniformity, whereas the plants in which Gomus.A05G281300 was silenced showed a significant increase in fiber fineness as measured via micronaire. Our results showed that these genes play different roles during fiber development, impacting fiber quality.
Collapse
Affiliation(s)
- Baohua Wang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
| | - Meijun Ji
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Haijing Gu
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | | | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Wenxiang Feng
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xuehan Huo
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs of China, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Allah Ditta
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Muhammad K R Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| | - Peng W Chee
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, 31793, USA.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
10
|
Xie T, Huang Q, Huang Q, Huang Y, Liu S, Zeng H, Liu J. Dysregulated lncRNAs regulate human umbilical cord mesenchymal stem cell differentiation into insulin-producing cells by forming a regulatory network with mRNAs. Stem Cell Res Ther 2024; 15:22. [PMID: 38273351 PMCID: PMC10809572 DOI: 10.1186/s13287-023-03572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/16/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE In recent years, cell therapy has emerged as a new research direction in the treatment of diabetes. However, the underlying molecular mechanisms of mesenchymal stem cell (MSC) differentiation necessary to form such treatment have not been clarified. METHODS In this study, human umbilical cord mesenchymal stem cells (HUC-MSCs) isolated from newborns were progressively induced into insulin-producing cells (IPCs) using small molecules. HUC-MSC (S0) and four induced stage (S1-S4) samples were prepared. We then performed transcriptome sequencing experiments to obtain the dynamic expression profiles of both mRNAs and long noncoding RNAs (lncRNAs). RESULTS We found that the number of differentially expressed lncRNAs and mRNAs trended downwards during differentiation. Gene Ontology (GO) analysis showed that the target genes of differentially expressed lncRNAs were associated with translation, cell adhesion, and cell connection. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the NF-KB signalling pathway, MAPK signalling pathway, HIPPO signalling pathway, PI3K-Akt signalling pathway, and p53 signalling pathway were enriched in these differentially expressed lncRNA-targeting genes. We also found that the coexpression of the lncRNA CTBP1-AS2 with PROX1 and the lncRNAs AC009014.3 and GS1-72M22.1 with JARID2 mRNA was related to the development of pancreatic beta cells. Moreover, the coexpression of the lncRNAs: XLOC_ 050969, LINC00883, XLOC_050981, XLOC_050925, MAP3K14- AS1, RP11-148K1.12, and CTD2020K17.3 with p53, regulated insulin secretion by pancreatic beta cells. CONCLUSION In this study, HUC-MSCs combined with small molecule compounds were successfully induced into IPCs. Differentially expressed lncRNAs may regulate the insulin secretion of pancreatic beta cells by regulating multiple signalling pathways. The lncRNAs AC009014.3, Gs1-72m21.1, and CTBP1-AS2 may be involved in the development of pancreatic beta cells, and the lncRNAs: XLOC_050969, LINC00883, XLOC_050981, XLOC_050925, MAP3K14-AS1, RP11-148K1.12, and CTD2020K17.3 may be involved in regulating the insulin secretion of pancreatic beta cells, thus providing a lncRNA catalogue for future research regarding the mechanism of the transdifferentiation of HUC-MSCs into IPCs. It also provides a new theoretical basis for the transplantation of insulin-producing cells into diabetic patients in the future.
Collapse
Affiliation(s)
- Tianqin Xie
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China
| | - Qiming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translation Medicine, Nanchang University, Nanchang of Jiangxi, China
| | - Qiulan Huang
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China
| | - Yanting Huang
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China
| | - Shuang Liu
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China
| | - Haixia Zeng
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China
| | - Jianping Liu
- Department of Endocrinology Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China.
| |
Collapse
|
11
|
Wang S, Shi M, Zhang Y, Niu J, Li W, Yuan J, Cai C, Yang Y, Gao P, Guo X, Li B, Lu C, Cao G. Construction of LncRNA-Related ceRNA Networks in Longissimus Dorsi Muscle of Jinfen White Pigs at Different Developmental Stages. Curr Issues Mol Biol 2024; 46:340-354. [PMID: 38248324 PMCID: PMC10814722 DOI: 10.3390/cimb46010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
The development of skeletal muscle in pigs might determine the quality of pork. In recent years, long non-coding RNAs (lncRNAs) have been found to play an important role in skeletal muscle growth and development. In this study, we investigated the whole transcriptome of the longissimus dorsi muscle (LDM) of Jinfen White pigs at three developmental stages (1, 90, and 180 days) and performed a comprehensive analysis of lncRNAs, mRNAs, and micro-RNAs (miRNAs), aiming to find the key regulators and interaction networks in Jinfen White pigs. A total of 2638 differentially expressed mRNAs (DE mRNAs) and 982 differentially expressed lncRNAs (DE lncRNAs) were identified. Compared with JFW_1d, there were 497 up-regulated and 698 down-regulated DE mRNAs and 212 up-regulated and 286 down-regulated DE lncRNAs in JFW_90d, respectively. In JFW_180d, there were 613 up-regulated and 895 down-regulated DE mRNAs and 184 up-regulated and 131 down-regulated DE lncRNAs compared with JFW_1d. There were 615 up-regulated and 477 down-regulated DE mRNAs and 254 up-regulated and 355 down-regulated DE lncRNAs in JFW_180d compared with JFW_90d. Compared with mRNA, lncRNA has fewer exons, fewer ORFs, and a shorter length. We performed GO and KEGG pathway functional enrichment analysis for DE mRNAs and the potential target genes of DE lncRNAs. As a result, several pathways are involved in muscle growth and development, such as the PI3K-Akt, MAPK, hedgehog, and hippo signaling pathways. These are among the pathways through which mRNA and lncRNAs function. As part of this study, bioinformatic screening was used to identify miRNAs and DE lncRNAs that could act as ceRNAs. Finally, we constructed an lncRNA-miRNA-mRNA regulation network containing 26 mRNAs, 7 miRNAs, and 17 lncRNAs; qRT-PCR was used to verify the key genes in these networks. Among these, XLOC_022984/miR-127/ENAH and XLOC_016847/miR-486/NRF1 may function as key ceRNA networks. In this study, we obtained transcriptomic profiles from the LDM of Jinfen White pigs at three developmental stages and screened out lncRNA-miRNA-mRNA regulatory networks that may provide crucial information for the further exploration of the molecular mechanisms during skeletal muscle development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, No. 1 Mingxian South Road, Taigu 030801, China; (S.W.); (M.S.); (Y.Z.); (J.N.); (W.L.); (J.Y.); (C.C.); (Y.Y.); (P.G.); (X.G.); (B.L.)
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, No. 1 Mingxian South Road, Taigu 030801, China; (S.W.); (M.S.); (Y.Z.); (J.N.); (W.L.); (J.Y.); (C.C.); (Y.Y.); (P.G.); (X.G.); (B.L.)
| |
Collapse
|
12
|
Yang Y, Zhang J, Xu R, Wang W, Wei L. Role of LncRNAs in the Pathogenesis of Sepsis and their Clinical Significance. Curr Mol Med 2024; 24:835-843. [PMID: 37431903 DOI: 10.2174/1566524023666230710121347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023]
Abstract
Sepsis is a fatal organ dysfunction caused by the host's uncontrolled response to infection, with high morbidity and mortality. Early diagnosis and intervention are the most effective methods to reduce the mortality due to sepsis. However, there is still a lack of definite biomarkers or intervention targets for the diagnosis, evaluation, prognosis, and treatment of sepsis. Long non-coding RNAs (lncRNAs) are a type of noncoding transcript with a length ranging from 200 to 100,000 nucleotides. LncRNAs mainly locate in the cytoplasm and nucleus and participate in various signaling pathways related to inflammatory reactions and organ dysfunction. Recent studies have reported that lncRNAs are involved in regulating the pathophysiological process of sepsis. Some classical lncRNAs have been confirmed as promising biomarkers to evaluate the severity and prognosis of sepsis. This review summarizes the mechanical studies on lncRNAs in sepsis-induced acute lung, kidney, myocardial, and liver injuries, analyzes the role of lncRNAs in the pathogenesis of sepsis, and explores the possibility of lncRNAs as potential biomarkers and intervention targets for sepsis-induced multiple organ dysfunction.
Collapse
Affiliation(s)
- Yongpeng Yang
- Centre for Pediatric Emergency Unit 1, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Children's Medical Center, Lanzhou, Gansu, 730050, China
| | - Jianping Zhang
- Department of Neurosurgery, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Children's Medical Center, Lanzhou, Gansu, 730050, China
| | - Ruifeng Xu
- Centre for Pediatric Emergency Unit 1, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Children's Medical Center, Lanzhou, Gansu, 730050, China
| | - Weikai Wang
- Centre for Pediatric Emergency Unit 2, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Children's Medical Center, Lanzhou, Gansu, 730050, China
| | - Lin Wei
- Centre for Pediatric Emergency Unit 1, Gansu Provincial Maternity and Child-care Hospital, Gansu Provincial Children's Medical Center, Lanzhou, Gansu, 730050, China
| |
Collapse
|
13
|
Yu J, Yang G, Li S, Li M, Ji C, Liu G, Wang Y, Chen N, Lei C, Dang R. Identification of Dezhou donkey muscle development-related genes and long non-coding RNA based on differential expression analysis. Anim Biotechnol 2023; 34:2313-2323. [PMID: 35736796 DOI: 10.1080/10495398.2022.2088549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in the development of muscles. However, the role of lncRNAs in regulating skeletal muscle development has not been studied systematically in the donkey. In this study, we performed the RNA sequencing for different stages of muscles in donkeys, and investigate their expression profile, which showed that 3215 mRNAs (p-adjust <0.05) and 471 lncRNAs (p-value <0.05) were significantly differently expressed (DE) verified by RT-qPCR. GO and KEGG enrichment analysis indicated that DE genes and target genes of DE lncRNAs were associated with muscle development in the donkey. We also found these four target genes (DCN, ITM2A, MUSTN1, ARRDC2) involved in skeletal muscle growth and development. Combined with transcriptome data, network, and RT-qPCR results showed that four co-expression networks of DCN and lnc-008278, ITM2A and lnc_017247, MUSTN1 and lnc_030153, and ARRDC2 and lnc_033914, which may play an important role in the formation and development of muscle in the donkey.
Collapse
Affiliation(s)
- Jie Yu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Shandong, China
| | - Ge Yang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shipeng Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Mei Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chuanliang Ji
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Shandong, China
| | - Guiqin Liu
- Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, China
| | - Yantao Wang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Shandong, China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ruihua Dang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
14
|
Piao X, Ma L, Xu Q, Zhang X, Jin C. Noncoding RNAs: Versatile regulators of endothelial dysfunction. Life Sci 2023; 334:122246. [PMID: 37931743 DOI: 10.1016/j.lfs.2023.122246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Noncoding RNAs have recently emerged as versatile regulators of endothelial dysfunction in atherosclerosis, a chronic inflammatory disease characterized by the formation of plaques within the arterial walls. Through their ability to modulate gene expression, noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, play crucial roles in various cellular processes involved in endothelial dysfunction (ECD), such as inflammation, pyroptosis, migration, proliferation, apoptosis, oxidative stress, and angiogenesis. This review provides an overview of the current understanding of the regulatory roles of noncoding RNAs in endothelial dysfunction during atherosclerosis. It highlights the specific noncoding RNAs that have been implicated in the pathogenesis of ECD, their target genes, and the mechanisms by which they contribute to ECD. Furthermore, we have reviewed the current therapeutics in atherosclerosis and explore their interaction with noncoding RNAs. Understanding the intricate regulatory network of noncoding RNAs in ECD may open up new opportunities for the development of novel therapeutic strategies to combat ECD.
Collapse
Affiliation(s)
- Xiong Piao
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China.
| | - Lie Ma
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Qinqi Xu
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Xiaomin Zhang
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| | - Chengzhu Jin
- Cardiovascular Surgery, Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
15
|
Guo YC, Cao HD, Lian XF, Wu PX, Zhang F, Zhang H, Lu DH. Molecular mechanisms of noncoding RNA and epigenetic regulation in obesity with consequent diabetes mellitus development. World J Diabetes 2023; 14:1621-1631. [DOI: 10.4239/wjd.v14.i11.1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/26/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus (DM) and obesity have become two of the most prevalent and challenging diseases worldwide, with increasing incidence and serious complications. Recent studies have shown that noncoding RNA (ncRNA) and epigenetic regulation play crucial roles in the pathogenesis of DM complicated by obesity. Identification of the involvement of ncRNA and epigenetic regulation in the pathogenesis of diabetes with obesity has opened new avenues of investigation. Targeting these mechanisms with small molecules or RNA-based therapies may provide a more precise and effective approach to diabetes treatment than traditional therapies. In this review, we discuss the molecular mechanisms of ncRNA and epigenetic regulation and their potential therapeutic targets, and the research prospects for DM complicated with obesity.
Collapse
Affiliation(s)
- Yi-Chen Guo
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Hao-Di Cao
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Xiao-Fen Lian
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Pei-Xian Wu
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Fan Zhang
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Hua Zhang
- Department of Endocrinology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Dong-Hui Lu
- Department of Endo-crinology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
16
|
Zhang JG, Shi W, Ma DD, Lu ZJ, Li SY, Long XB, Ying GG. Chronic Paternal/Maternal Exposure to Environmental Concentrations of Imidacloprid and Thiamethoxam Causes Intergenerational Toxicity in Zebrafish Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13384-13396. [PMID: 37651267 DOI: 10.1021/acs.est.3c04371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidacloprid (IMI) and thiamethoxam (THM) are ubiquitous in aquatic ecosystems. Their negative effects on parental fish are investigated while intergenerational effects at environmentally relevant concentrations remain unclear. In this study, F0 zebrafish exposed to IMI and THM (0, 50, and 500 ng L-1) for 144 days post-fertilization (dpf) was allowed to spawn with two modes (internal mating and cross-mating), resulting in four types of F1 generations to investigate the intergenerational effects. IMI and THM affected F0 zebrafish fecundity, gonadal development, sex hormone and VTG levels, with accumulations found in F0 muscles and ovaries. In F1 generation, paternal or maternal exposure to IMI and THM also influenced sex hormones levels and elevated the heart rate and spontaneous movement rate. LncRNA-mRNA network analysis revealed that cell cycle and oocyte meiosis-related pathways in IMI groups and steroid biosynthesis related pathways in THM groups were significantly enriched in F1 offspring. Similar transcriptional alterations of dmrt1, insl3, cdc20, ccnb1, dnd1, ddx4, cox4i1l, and cox5b2 were observed in gonads of F0 and F1 generations. The findings indicated that prolonged paternal or maternal exposure to IMI and THM could severely cause intergenerational toxicity, resulting in developmental toxicity and endocrine-disrupting effects in zebrafish offspring.
Collapse
Affiliation(s)
- Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wenjun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
17
|
GÜZEL TANOĞLU E, ADIGÜZEL S, TANOĞLU A, AYDIN ZB, HOCAOĞLU G, EBİNÇ S. Long noncoding RNAs in pancreas cancer: from biomarkers to therapeutic targets. Turk J Med Sci 2023; 53:1552-1564. [PMID: 38813489 PMCID: PMC10760575 DOI: 10.55730/1300-0144.5724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/12/2023] [Accepted: 09/09/2023] [Indexed: 05/31/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNA molecules with a heterogeneous structure consisting of 200 or more nucleotides. Because these noncoding RNAs are transcribed by RNA polymerase II, they have properties similar to messenger RNA (mRNA). Contrary to popular belief, the term "ncRNA" originated before the discovery of microRNAs. LncRNA genes are more numerous than protein-coding genes. They are the focus of current molecular research because of their pivotal roles in cancer-related processes such as cell proliferation, differentiation, and migration. The incidence of pancreatic cancer (PC) is increasing around the world and research on the molecular aspects of PC are growing. In this review, it is aimed to provide critical information about lncRNAs in PC, including the biological and oncological behaviors of lncRNAs in PC and their potential application in therapeutic strategies and as diagnostic tumor markers.
Collapse
Affiliation(s)
- Esra GÜZEL TANOĞLU
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| | - Seyfure ADIGÜZEL
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| | - Alpaslan TANOĞLU
- Department of Internal Medicine, Division of Gastroenterology, School of Medicine, Bahçeşehir University, İstanbul,
Turkiye
| | - Zehra Betül AYDIN
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| | - Gülizar HOCAOĞLU
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| | - Samet EBİNÇ
- Department of Molecular Biology and Genetics, Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul,
Turkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, İstanbul,
Turkiye
| |
Collapse
|
18
|
Szukiewicz D. Insight into the Potential Mechanisms of Endocrine Disruption by Dietary Phytoestrogens in the Context of the Etiopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:12195. [PMID: 37569571 PMCID: PMC10418522 DOI: 10.3390/ijms241512195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoestrogens (PEs) are estrogen-like nonsteroidal compounds derived from plants (e.g., nuts, seeds, fruits, and vegetables) and fungi that are structurally similar to 17β-estradiol. PEs bind to all types of estrogen receptors, including ERα and ERβ receptors, nuclear receptors, and a membrane-bound estrogen receptor known as the G protein-coupled estrogen receptor (GPER). As endocrine-disrupting chemicals (EDCs) with pro- or antiestrogenic properties, PEs can potentially disrupt the hormonal regulation of homeostasis, resulting in developmental and reproductive abnormalities. However, a lack of PEs in the diet does not result in the development of deficiency symptoms. To properly assess the benefits and risks associated with the use of a PE-rich diet, it is necessary to distinguish between endocrine disruption (endocrine-mediated adverse effects) and nonspecific effects on the endocrine system. Endometriosis is an estrogen-dependent disease of unknown etiopathogenesis, in which tissue similar to the lining of the uterus (the endometrium) grows outside of the uterus with subsequent complications being manifested as a result of local inflammatory reactions. Endometriosis affects 10-15% of women of reproductive age and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility. In this review, the endocrine-disruptive actions of PEs are reviewed in the context of endometriosis to determine whether a PE-rich diet has a positive or negative effect on the risk and course of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
19
|
Pal A, Ghosh PK, Das S. The "LINC" between Δ40p53-miRNA Axis in the Regulation of Cellular Homeostasis. Mol Cell Biol 2023; 43:335-353. [PMID: 37283188 PMCID: PMC10348045 DOI: 10.1080/10985549.2023.2213147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Previous research has shown that Δ40p53, the translational isoform of p53, can inhibit cell growth independently of p53 by regulating microRNAs. Here, we explored the role of Δ40p53 in regulating the long noncoding RNA-micro-RNA-cellular process axis, specifically focusing on LINC00176. Interestingly, LINC00176 levels were predominantly affected by the overexpression/stress-mediated induction and knockdown of Δ40p53 rather than p53 levels. Additional assays revealed that Δ40p53 transactivates LINC00176 transcriptionally and could also regulate its stability. RNA immunoprecipitation experiments revealed that LINC00176 sequesters several putative microRNA targets, which could further titrate several mRNA targets involved in different cellular processes. To understand the downstream effects of this regulation, we ectopically overexpressed and knocked down LINC00176 in HCT116 p53-/- (harboring only Δ40p53) cells, which affected their proliferation, cell viability, and expression of epithelial markers. Our results provide essential insights into the pivotal role of Δ40p53 in regulating the novel LINC00176 RNA-microRNA-mRNA axis independent of FL-p53 and in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Pritam Kumar Ghosh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
20
|
Duan J, Huang Z, Nice EC, Xie N, Chen M, Huang C. Current advancements and future perspectives of long noncoding RNAs in lipid metabolism and signaling. J Adv Res 2023; 48:105-123. [PMID: 35973552 PMCID: PMC10248733 DOI: 10.1016/j.jare.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The investigation of lncRNAs has provided a novel perspective for elucidating mechanisms underlying diverse physiological and pathological processes. Compelling evidence has revealed an intrinsic link between lncRNAs and lipid metabolism, demonstrating that lncRNAs-induced disruption of lipid metabolism and signaling contribute to the development of multiple cancers and some other diseases, including obesity, fatty liver disease, and cardiovascular disease. AIMOF REVIEW The current review summarizes the recent advances in basic research about lipid metabolism and lipid signaling-related lncRNAs. Meanwhile, the potential and challenges of targeting lncRNA for the therapy of cancers and other lipid metabolism-related diseases are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Compared with the substantial number of lncRNA loci, we still know little about the role of lncRNAs in metabolism. A more comprehensive understanding of the function and mechanism of lncRNAs may provide a new standpoint for the study of lipid metabolism and signaling. Developing lncRNA-based therapeutic approaches is an effective strategy for lipid metabolism-related diseases.
Collapse
Affiliation(s)
- Jiufei Duan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| |
Collapse
|
21
|
Zhou Q, Jiang Y, Cai C, Li W, Leow MKS, Yang Y, Liu J, Xu D, Sun L. Multidimensional conservation analysis decodes the expression of conserved long noncoding RNAs. Life Sci Alliance 2023; 6:e202302002. [PMID: 37024123 PMCID: PMC10078953 DOI: 10.26508/lsa.202302002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Although long noncoding RNAs (lncRNAs) experience weaker evolutionary constraints and exhibit lower sequence conservation than coding genes, they can still conserve their features in various aspects. Here, we used multiple approaches to systemically evaluate the conservation between human and mouse lncRNAs from various dimensions including sequences, promoter, global synteny, and local synteny, which led to the identification of 1,731 conserved lncRNAs with 427 high-confidence ones meeting multiple criteria. Conserved lncRNAs, compared with non-conserved ones, generally have longer gene bodies, more exons and transcripts, stronger connections with human diseases, and are more abundant and widespread across different tissues. Transcription factor (TF) profile analysis revealed a significant enrichment of TF types and numbers in the promoters of conserved lncRNAs. We further identified a set of TFs that preferentially bind to conserved lncRNAs and exert stronger regulation on conserved than non-conserved lncRNAs. Our study has reconciled some discrepant interpretations of lncRNA conservation and revealed a new set of transcriptional factors ruling the expression of conserved lncRNAs.
Collapse
Affiliation(s)
- Qiuzhong Zhou
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yuxi Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chaoqun Cai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wen Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Melvin Khee-Shing Leow
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Yi Yang
- Program in Health Services & Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Jin Liu
- Program in Health Services & Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Dan Xu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Sun
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, Singapore, Singapore
| |
Collapse
|
22
|
Sufianov A, Beilerli A, Kudriashov V, Ilyasova T, Liang Y, Mukhamedzyanov A, Bessonova M, Mashkin A, Beylerli O. The role of long non-coding RNAs in the development of adipose cells. Noncoding RNA Res 2023; 8:255-262. [PMID: 36890808 PMCID: PMC9988400 DOI: 10.1016/j.ncrna.2023.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
In recent times, the rising prevalence of obesity and its associated comorbidities have had a severe impact on human health and social progress. Therefore, scientists are delving deeper into the pathogenesis of obesity, exploring the role of non-coding RNAs. Long non-coding RNAs (lncRNAs), once regarded as mere "noise" during genome transcription, have now been confirmed through numerous studies to regulate gene expression and contribute to the occurrence and progression of several human diseases. LncRNAs can interact with protein, DNA, and RNA, respectively, and participate in regulating gene expression by modulating the levels of visible modification, transcription, post-transcription, and biological environment. Increasingly, researchers have established the involvement of lncRNAs in regulating adipogenesis, development, and energy metabolism of adipose tissue (white and brown fat). In this article, we present a literature review of the role of lncRNAs in the development of adipose cells.
Collapse
Affiliation(s)
- Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | | | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | - Marina Bessonova
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| | - Andrey Mashkin
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Corresponding author. Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| |
Collapse
|
23
|
In Silico and Experimental Analyses of Long Non-coding RNA TMPO-AS1 Expression in Iranian Patients with Gastric Cancer. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2023. [DOI: 10.5812/ijcm-130586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Background: In recent decades, many long non-coding RNAs (lncRNAs) have been reported to play a prominent role in tumorigenesis and the progression of human cancers, including gastric cancer (GC), a leading cause of cancer death in Iranian men and women. Studies have demonstrated that thymopoietin antisense transcript 1 (TMPO-AS1) was upregulated in different cancers by acting as an oncogenic lncRNA. Objectives: This study aimed to evaluate the expression of lncRNA TMPO-AS1 in Iranian patients with GC. Methods: In order to conduct the present study, 40 gastric tumor samples and 40 marginal noncancerous counterparts were collected. The characteristics of patients’ samples were recorded, and the TMPO-AS1 expression levels were evaluated by qRT-PCR analysis. The Cancer Genome Atlas (TCGA) data for TMPO-AS1 were used and analyzed through GEPIA and TANRIC online tools. Receiver operating characteristic (ROC) curve analysis was used to estimate the diagnostic value. Student t-test, one-way ANOVA, and chi-square test were accomplished via SPSS software. Results: Our data demonstrated that TMPO-AS1 was overexpressed in cancerous tissues compared to adjacent nonmalignant ones (P = 0.0076). None of the demographic and clinicopathological data were associated with TMPO-AS1 expression levels. The TCGA data demonstrated that TMPO-AS1 was upregulated in GC tissues in comparison to adjacent nonmalignant ones (P = 0.001). ROC curve analysis suggested that TMPO-AS1 expression levels could discriminate GC tumor tissues from normal ones (AUC = 0.699, P = 0.001). Conclusions: Altogether, in our study, we demonstrated that lncRNA TMPO-AS1 may be considered a biomarker in Iranian patients with GC. However, further investigations are required to confirm the potential application of this lncRNA in diagnosis, prognosis, and therapeutic applications of GC.
Collapse
|
24
|
Szukiewicz D. Aberrant epigenetic regulation of estrogen and progesterone signaling at the level of endometrial/endometriotic tissue in the pathomechanism of endometriosis. VITAMINS AND HORMONES 2023; 122:193-235. [PMID: 36863794 DOI: 10.1016/bs.vh.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endometriosis is a term referring to a condition whereby the endometrial tissue is found outside the uterine cavity. This progressive and debilitating condition affects up to 15% of women of reproductive age. Due to the fact that endometriosis cells may express estrogen receptors (ERα, Erβ, GPER) and progesterone (P4) receptors (PR-A, PR-B), their growth, cyclic proliferation, and breakdown are similar to the processes occurring in the endometrium. The underlying etiology and pathogenesis of endometriosis are still not fully explained. The retrograde transport of viable menstrual endometrial cells with the retained ability to attach within the pelvic cavity, proliferate, differentiate and invade into the surrounding tissue explains the most widely accepted implantation theory. Endometrial stromal cells (EnSCs) with clonogenic potential constitute the most abundant population of cells within endometrium that resemble the properties of mesenchymal stem cells (MSCs). Accordingly, formation of the endometriotic foci in endometriosis may be due to a kind of EnSCs dysfunction. Increasing evidence indicates the underestimated role of epigenetic mechanisms in the pathogenesis of endometriosis. Hormone-mediated epigenetic modifications of the genome in EnSCs or even MSCs were attributed an important role in the etiopathogenesis of endometriosis. The roles of excess estrogen exposure and P4 resistance were also found to be crucial in the development of epigenetic homeostasis failure. Therefore, the aim of this review was to consolidate the current knowledge regarding the epigenetic background of EnSCs and MSCs and the changed properties due to estrogen/P4 imbalances in the context of the etiopathogenesis of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
25
|
Hou C, Xie L, Wang T, Zheng J, Zhao Y, Qiu Q, Yang Y, Xiao T. Comparative transcription profiling of mRNA and lncRNA in pulmonary arterial hypertension after C75 treatment. BMC Pulm Med 2023; 23:46. [PMID: 36717804 PMCID: PMC9887911 DOI: 10.1186/s12890-023-02334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES To investigate mRNA and long non-coding RNA (lncRNA) expression profiles in monocrotaline (MCT)- mice. MATERIALS AND METHODS Lung tissues (Control-Vehicle, MCT-Vehicle, and MCT-C75) were examined by high-throughput sequencing (HTS). Aberrantly expressed mRNAs and lncRNAs were analyzed by bioinformatics. Cell proliferation and cell cycle analysis were performed to detect the potential protective effects of C75, an inhibitor of fatty acid synthase. The signaling pathways associated with inflammatory responses were verified by real time-PCR. RESULTS RNA sequencing data reveals 285 differentially expressed genes (DEGs) and 147 lncRNAs in the MCT-Vehicle group compared to the control. After five-week of C75 treatment, 514 DEGs and 84 lncRNAs are aberrant compared to the MCT-Vehicle group. Analysis of DEGs and lncRNA target genes reveals that they were enriched in pathways related to cell cycle, cell division, and vascular smooth muscle contraction that contributes to the PAH pathological process. Subsequently, the expression of eight DEGs and three lncRNAs is verified using RT-PCR. Differentially expressed lncRNAs (ENSMUSG00000110393.2, Gm38850, ENSMUSG00000100465.1, ENSMUSG00000110399.1) may associate in PAH pathogenesis as suggested by co-expression network analysis. C75 can protect against MCT-induced PAH through its anti-inflammatory and anti-proliferation. CONCLUSIONS These DEGs and lncRNAs can be considered as novel candidate regulators of PAH pathogenesis. We propose that C75 treatment can partially reverse PAH pathogenesis through modulating cell cycle, cell proliferation, and anti-inflammatory.
Collapse
Affiliation(s)
- Cuilan Hou
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, No. 355 Luding Road, Shanghai, 200062 China ,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200062 China
| | - Lijian Xie
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, No. 355 Luding Road, Shanghai, 200062 China ,grid.8547.e0000 0001 0125 2443Department of Pediatrics, JinShan Hospital, Fudan University, Shanghai, China
| | - Tingxia Wang
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, No. 355 Luding Road, Shanghai, 200062 China
| | - Junmin Zheng
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, No. 355 Luding Road, Shanghai, 200062 China
| | - Yuqi Zhao
- grid.412679.f0000 0004 1771 3402The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, 230022 Anhui China
| | - Qingzhu Qiu
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, No. 355 Luding Road, Shanghai, 200062 China
| | - Yi Yang
- grid.13402.340000 0004 1759 700XThe Children’s Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310052 China
| | - Tingting Xiao
- grid.16821.3c0000 0004 0368 8293Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, No. 355 Luding Road, Shanghai, 200062 China ,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200062 China
| |
Collapse
|
26
|
Hao M, Qi Y, Xu R, Zhao K, Li M, Shan Y, Xia T, Yang K, Hasi W, Zhang C, Li D, Wang Y, Wang P, Kuang H. ENCD: a manually curated database of experimentally supported endocrine system disease and lncRNA associations. Database (Oxford) 2023; 2023:6991525. [PMID: 36653322 PMCID: PMC9849115 DOI: 10.1093/database/baac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
ENCD (http://www.bio-server.cn/ENCD/) is a manually curated database that provides comprehensive experimentally supported associations among endocrine system diseases (ESDs) and long non-coding ribonucleic acid (lncRNAs). The incidence of ESDs has increased in recent years, often accompanying other chronic diseases, and can lead to disability. A growing body of research suggests that lncRNA plays an important role in the progression and metastasis of ESDs. However, there are no resources focused on collecting and integrating the latest and experimentally supported lncRNA-ESD associations. Hence, we developed an ENCD database that consists of 1379 associations between 35 ESDs and 501 lncRNAs in 12 human tissues curated from literature. By using ENCD, users can explore the genetic data for diseases corresponding to the body parts of interest as well as study the lncRNA regulating mechanism for ESDs. ENCD also provides a flexible tool to visualize a disease- or gene-centric regulatory network. In addition, ENCD offers a submission page for researchers to submit their newly discovered endocrine disorders-genetic data entries online. Collectively, ENCD will provide comprehensive insights for investigating the ESDs associated with lncRNAs. Database URL http://www.bio-server.cn/ENCD.
Collapse
Affiliation(s)
| | | | | | | | - Mingqing Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin 150081, China
| | - Yongyan Shan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin 150081, China
| | - Tian Xia
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin 150081, China
| | - Kun Yang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin 150081, China
| | - Wuyang Hasi
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin 150081, China
| | - Cong Zhang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin 150081, China
| | - Daowei Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin 150081, China
| | - Yi Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Harbin 150081, China
| | - Peng Wang
- *Corresponding author: Tel: +8645185555060; Fax: +8645185555060; Correspondence may also be addressed to Peng Wang. Tel: +8645186669617; Fax: +8645186669617;
| | - Hongyu Kuang
- *Corresponding author: Tel: +8645185555060; Fax: +8645185555060; Correspondence may also be addressed to Peng Wang. Tel: +8645186669617; Fax: +8645186669617;
| |
Collapse
|
27
|
Zhu J, Cao K, Zhang P, Ma J. LINC00669 promotes lung adenocarcinoma growth by stimulating the Wnt/β-catenin signaling pathway. Cancer Med 2023; 12:9005-9023. [PMID: 36621836 PMCID: PMC10134358 DOI: 10.1002/cam4.5604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
Lung cancer poses severe threats to human health. It is indispensable to discover more druggable molecular targets. We identified a novel dysregulated long non-coding RNA (lncRNA), LINC00669, in lung adenocarcinoma (LUAD) by analyzing the TCGA and GEO databases. Pan-cancer analysis indicated significantly upregulated LINC00669 across 33 cancer types. GSEA revealed a tight association of LINC00669 with the cell cycle. We next attempted to improve the prognostic accuracy of this lncRNA by establishing a risk signature in reliance on cell cycle genes associated with LINC00669. The resulting risk score combined with LINC00669 and stage showed an AUC of 0.746. The risk score significantly stratified LUAD patients into low- and high-risk subgroups, independently predicting prognosis. Its performance was verified by nomogram (C-index = 0.736) and decision curve analysis. Gene set variation analysis disclosed the two groups' molecular characteristics. We also evaluated the tumor immune microenvironment by dissecting 28 infiltrated immune cells, 47 immune checkpoint gene expressions, and immunophenoscore within the two subgroups. Furthermore, the risk signature could predict sensitivity to immune checkpoint inhibitors and other anticancer therapies. Eventually, in vitro and in vivo experiments were conducted to validate LINC00669's function using qRT-PCR, CCK8, flow cytometry, western blot, and immunofluorescence staining. The gain- and loss-of-function study substantiated LINC00669's oncogenic effects, which stimulated non-small cell lung cancer cell proliferation but reduced apoptosis via activating the Wnt/β-catenin pathway. Its oncogenic potentials were validated in the xenograft mouse model. Overall, we identified a novel oncogenic large intergenic non-coding RNA (lincRNA), LINC00669. The resulting signature may facilitate predicting prognosis and therapy responses in LUAD.
Collapse
Affiliation(s)
- Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kui Cao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ping Zhang
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
28
|
Elsayed OM, Abdelazim SA, Darwish HA, Shaker OG, Senousy MA. Association of LncRNA-PAX8-AS1 and LAIR-2 polymorphisms along with their expression with clinical and subclinical hypothyroidism. Sci Rep 2023; 13:6. [PMID: 36593237 PMCID: PMC9807632 DOI: 10.1038/s41598-022-26346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023] Open
Abstract
The genetic and epigenetic architecture of clinical and subclinical hypothyroidism remains unclear. We investigated the impact of long noncoding RNA (LncRNA)-PAX8-AS1 and LAIR-2 genetic variants on the susceptibility to clinical and subclinical hypothyroidism, their influence on LncRNA-PAX8-AS1 and LAIR-2 expression and their potential as hypothyroid biomarkers. Hundred clinical hypothyroid patients, 110 subclinical hypothyroid patients, and 95 healthy controls were enrolled. Gene expression analysis and genotyping were performed by qPCR. LAIR-2 protein, a proinflammatory mediator, was tested by ELISA. Serum LncRNA-PAX8-AS1 was downregulated, whereas LAIR-2 mRNA and protein levels were upregulated in clinical and subclinical hypothyroid patients compared to healthy controls. LncRNA-PAX8-AS1 rs4848320 and rs1110839 were associated with increased risk of clinical hypothyroidism. Interestingly, both SNPs were associated with differential expression of serum LncRNA-PAX8-AS1 among clinical hypothyroid patients. LAIR-2 rs2287828 was associated with elevated risk of both clinical and subclinical hypothyroidism. Harboring the rs2287828 T allele augmented the LAIR-2 mRNA expression among clinical hypothyroid patients, while elevated both LAIR-2 mRNA and protein levels in subclinical hypothyroid patients. The rs4848320-rs1110839-rs2287828 TTT, CTT, and CGT haplotypes were associated with increased hypothyroid risk. Surprisingly, serum LncRNA-PAX8-AS1 and LAIR-2 mRNA expression demonstrated superior diagnostic accuracy for clinical hypothyroidism and turned out as independent predictors in the multivariate analysis. Conclusively, LncRNA-PAX8-AS1 and LAIR-2 genetic variants are novel genetic biomarkers of hypothyroidism that could alter the LncRNA-PAX8-AS1 and LAIR-2 expression. LncRNA-PAX8-AS1 and LAIR-2 expression profiles have the potential as effective diagnostic and prognostic indicators of hypothyroidism.
Collapse
Affiliation(s)
| | - Samy A Abdelazim
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Hebatallah A Darwish
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| |
Collapse
|
29
|
Sawada T, Kanemoto Y, Kurokawa T, Kato S. The epigenetic function of androgen receptor in prostate cancer progression. Front Cell Dev Biol 2023; 11:1083486. [PMID: 37025180 PMCID: PMC10070878 DOI: 10.3389/fcell.2023.1083486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Androgen and androgen deprivation (castration) therapies, including androgen receptor antagonists, are clinically used to treat patients with prostate cancer. However, most hormone-dependent prostate cancer patients progress into a malignant state with loss of hormone-dependency, known as castration (drug)-resistant prostate cancer (CRPC), after prolong androgen-based treatments. Even in the CRPC state with irreversible malignancy, androgen receptor (AR) expression is detectable. An epigenetic transition to CRPC induced by the action of AR-mediated androgen could be speculated in the patients with prostate cancer. Androgen receptors belongs to the nuclear receptor superfamily with 48 members in humans, and acts as a ligand-dependent transcriptional factor, leading to local chromatin reorganization for ligand-dependent gene regulation. In this review, we discussed the transcriptional/epigenetic regulatory functions of AR, with emphasis on the clinical applications of AR ligands, AR protein co-regulators, and AR RNA coregulator (enhancer RNA), especially in chromatin reorganization, in patients with prostate cancer.
Collapse
Affiliation(s)
- Takahiro Sawada
- Graduate School of Life Science and Engineering, Iryo Sosei University, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima, Japan
| | - Yoshiaki Kanemoto
- Graduate School of Life Science and Engineering, Iryo Sosei University, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima, Japan
| | - Tomohiro Kurokawa
- Graduate School of Life Science and Engineering, Iryo Sosei University, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Shigeaki Kato
- Graduate School of Life Science and Engineering, Iryo Sosei University, Fukushima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Japan
- *Correspondence: Shigeaki Kato,
| |
Collapse
|
30
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Katturajan R, Kannampuzha S, Murali R, Namachivayam A, Ganesan R, Renu K, Dey A, Vellingiri B, Prince SE. Exploring the Regulatory Role of ncRNA in NAFLD: A Particular Focus on PPARs. Cells 2022; 11:3959. [PMID: 36552725 PMCID: PMC9777112 DOI: 10.3390/cells11243959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Liver diseases are responsible for global mortality and morbidity and are a significant cause of death worldwide. Consequently, the advancement of new liver disease targets is of great interest. Non-coding RNA (ncRNA), such as microRNA (miRNA) and long ncRNA (lncRNA), has been proven to play a significant role in the pathogenesis of virtually all acute and chronic liver disorders. Recent studies demonstrated the medical applications of miRNA in various phases of hepatic pathology. PPARs play a major role in regulating many signaling pathways involved in various metabolic disorders. Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world, encompassing a spectrum spanning from mild steatosis to severe non-alcoholic steatohepatitis (NASH). PPARs were found to be one of the major regulators in the progression of NAFLD. There is no recognized treatment for NAFLD, even though numerous clinical trials are now underway. NAFLD is a major risk factor for developing hepatocellular carcinoma (HCC), and its frequency increases as obesity and diabetes become more prevalent. Reprogramming anti-diabetic and anti-obesity drugs is an effective therapy option for NAFLD and NASH. Several studies have also focused on the role of ncRNAs in the pathophysiology of NAFLD. The regulatory effects of these ncRNAs make them a primary target for treatments and as early biomarkers. In this study, the main focus will be to understand the regulation of PPARs through ncRNAs and their role in NAFLD.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
31
|
Li L, Xie W. LncRNA HDAC11-AS1 Suppresses Atherosclerosis by Inhibiting HDAC11-Mediated Adropin Histone Deacetylation. J Cardiovasc Transl Res 2022; 15:1256-1269. [PMID: 35505157 DOI: 10.1007/s12265-022-10248-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022]
Abstract
LncRNA HDAC11-AS1 (HDAC11-AS1) is the natural antisense transcript of HDAC11, a key enzyme for DNA histone deacetylation. We evaluated the role of HDAC11-AS1 in atherosclerosis. In this research, we found that HDAC11-AS1 ameliorated blood lipid levels and atherosclerosis in high fat-dieted apoE-/- mice by regulating HDAC11 negatively. The change in blood lipid levels is related to the expression of LPL, which is enhanced by HDAC11-AS1 through regulating adropin histone deacetylation in vitro and in vivo. In conclusion, HDAC11-AS1 plays an anti-atherogenic role through adropin to induce LPL expressions, thereby enhancing TG metabolism. The results are valuable for the further development of HDAC11-AS1 and its clinical applications. It provides a new clinical therapeutic target for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
32
|
Hao Y, Lu L, Liu A, Lin X, Xiao L, Kong X, Li K, Liang F, Xiong J, Qu L, Li Y, Li J. Integrating bioinformatic strategies in spatial life science research. Brief Bioinform 2022; 23:bbac415. [PMID: 36198665 PMCID: PMC9677476 DOI: 10.1093/bib/bbac415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022] Open
Abstract
As space exploration programs progress, manned space missions will become more frequent and farther away from Earth, putting a greater emphasis on astronaut health. Through the collaborative efforts of researchers from various countries, the effect of the space environment factors on living systems is gradually being uncovered. Although a large number of interconnected research findings have been produced, their connection seems to be confused, and many unknown effects are left to be discovered. Simultaneously, several valuable data resources have emerged, accumulating data measuring biological effects in space that can be used to further investigate the unknown biological adaptations. In this review, the previous findings and their correlations are sorted out to facilitate the understanding of biological adaptations to space and the design of countermeasures. The biological effect measurement methods/data types are also organized to provide references for experimental design and data analysis. To aid deeper exploration of the data resources, we summarized common characteristics of the data generated from longitudinal experiments, outlined challenges or caveats in data analysis and provided corresponding solutions by recommending bioinformatics strategies and available models/tools.
Collapse
Affiliation(s)
- Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Liang Lu
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Anna Liu
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Li Xiao
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Xiaoyue Kong
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Kai Li
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Fengji Liang
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Jianghui Xiong
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Lina Qu
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Yinghui Li
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
33
|
Guo WH, Guo Q, Liu YL, Yan DD, Jin L, Zhang R, Yan J, Luo XH, Yang M. Mutated lncRNA increase the risk of type 2 diabetes by promoting β cell dysfunction and insulin resistance. Cell Death Dis 2022; 13:904. [PMID: 36302749 PMCID: PMC9613878 DOI: 10.1038/s41419-022-05348-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Islet β cell dysfunction and insulin resistance are the main pathogenesis of type 2 diabetes (T2D), but the mechanism remains unclear. Here we identify a rs3819316 C > T mutation in lncRNA Reg1cp mainly expressed in islets associated with an increased risk of T2D. Analyses in 16,113 Chinese adults reveal that Mut-Reg1cp individuals had higher incidence of T2D and presented impaired insulin secretion as well as increased insulin resistance. Mice with islet β cell specific Mut-Reg1cp knock-in have more severe β cell dysfunction and insulin resistance. Mass spectrometry assay of proteins after RNA pulldown demonstrate that Mut-Reg1cp directly binds to polypyrimidine tract binding protein 1 (PTBP1), further immunofluorescence staining, western blot analysis, qPCR analysis and glucose stimulated insulin secretion test reveal that Mut-Reg1cp disrupts the stabilization of insulin mRNA by inhibiting the phosphorylation of PTBP1 in β cells. Furthermore, islet derived exosomes transfer Mut-Reg1cp into peripheral tissue, which then promote insulin resistance by inhibiting AdipoR1 translation and adiponectin signaling. Our findings identify a novel mutation in lncRNA involved in the pathogenesis of T2D, and reveal a new mechanism for the development of T2D.
Collapse
Affiliation(s)
- Wan-Hui Guo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China
| | - Qi Guo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| | - Ya-Lin Liu
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China
| | - Dan-Dan Yan
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Li Jin
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Rong Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Jing Yan
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Xiang-Hang Luo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| | - Mi Yang
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| |
Collapse
|
34
|
Han H, Wang X, Li W, Liu J, Fan Y, Zhang H, Yang J, Gao Y, Liu Y. Identification and Characterization of lncRNAs Expression Profile Related to Goat Skeletal Muscle at Different Development Stages. Animals (Basel) 2022; 12:ani12192683. [PMID: 36230427 PMCID: PMC9558979 DOI: 10.3390/ani12192683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
LncRNAs are essential for regulating skeletal muscle. However, the expression profile and function of lncRNAs in goat muscle remains unclear. Here, an average of ~14.58 Gb high-quality reads were obtained from longissimus dorsi tissues of 1-month-old (n = 3) and 9-month-old (n = 3) Wu'an black goats using RNA sequencing. Of a total of 3441 lncRNAs, 1281 were lincRNAs, 805 were antisense lncRNAs, and 1355 were sense_overlapping lncRNAs. These lncRNAs shared some properties with goats, such as fewer exons, shorter transcript, and open reading frames (ORFs) length. Among them, 36 differentially expressed lncRNAs (DE lncRNA) were identified, and then 10 random lncRNAs were validated by RT-qPCR. Furthermore, 30 DE lncRNAs were neighboring 71 mRNAs and several genes were functionally enriched in muscle development-related pathways, such as APC, IFRD1, NKX2-5, and others. Additionally, 36 DE lncRNAs and 2684 mRNAs were included in co-expression interactions. A lncRNA-miRNA-mRNA network containing 4 lncRNAs, 3 miRNAs, and 8 mRNAs was finally constructed, of which XR_001296113.2 might regulate PDLIM7 expression by interaction with chi-miR-1296 to affect skeletal muscle development. This study revealed the expression profile of goat lncRNAs for further investigative studies and provides a fuller understanding of skeletal muscle development.
Collapse
Affiliation(s)
- Haiyin Han
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Xianwei Wang
- Henan Animal Husbandry Service, Zhengzhou 450046, China
| | - Wentao Li
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Jiannan Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056021, China
| | - Yekai Fan
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Hui Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Junqi Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
| | - Yahui Gao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
- Correspondence: (Y.G.); (Y.L.); Tel./Fax: +86-0310-8573021 (Y.G.); +86-0310-8573009 (Y.L.)
| | - Yufang Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China
- Correspondence: (Y.G.); (Y.L.); Tel./Fax: +86-0310-8573021 (Y.G.); +86-0310-8573009 (Y.L.)
| |
Collapse
|
35
|
Raza SHA, Pant SD, Wani AK, Mohamed HH, Khalifa NE, Almohaimeed HM, Alshanwani AR, Assiri R, Aggad WS, Noreldin AE, Abdelnour SA, Wang Z, Zan L. Krüppel-like factors family regulation of adipogenic markers genes in bovine cattle adipogenesis. Mol Cell Probes 2022; 65:101850. [PMID: 35988893 DOI: 10.1016/j.mcp.2022.101850] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 02/07/2023]
Abstract
Intramuscular fat (IMF) content is a crucial determinant of meat quality traits in livestock. A network of transcription factors act in concert to regulate adipocyte formation and differentiation, which in turn influences intramuscular fat. Several genes and associated transcription factors have been reported to influence lipogenesis and adipogenesis during fetal and subsequent growth stage. Specifically in cattle, Krüppel-like factors (KLFs), which represents a family of transcription factors, have been reported to be involved in adipogenic differentiation and development. KLFs are a relatively large group of zinc-finger transcription factors that have a variety of functions in addition to adipogenesis. In mammals, the participation of KLFs in cell development and differentiation is well known. Specifically in the context of adipogenesis, KLFs function either as positive (KLF4, KLF5, KLF6, KLF8, KLF9, KLF10, KLF11, KLF12, KLF13, KLF14 and KLF15) or negative organizers (KLF2, KLF3 and KLF7), by a variety of different mechanisms such as crosstalk with C/EBP and PPARγ. In this review, we aim to summarize the potential functions of KLFs in regulating adipogenesis and associated pathways in cattle. Furthermore, the function of known bovine adipogenic marker genes, and associated transcription factors that regulate the expression of these marker genes is also summarized. Overall, this review will provide an overview of marker genes known to influence bovine adipogenesis and regulation of expression of these genes, to provide insights into leveraging these genes and transcription factors to enhance breeding programs, especially in the context of IMF deposition and meat quality.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Sameer D Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, (144411), India
| | - Hadeer H Mohamed
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Fuka, Matrouh University, Matrouh, 51744, Egypt
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Aliah R Alshanwani
- Physiology Department, College of Medicine, King Saud University, Saudi Arabia
| | - Rasha Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, College of Medicine, University of Jeddah, P.O. Box 8304, Jeddah, 23234, Saudi Arabia
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Zhe Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
36
|
Abstract
In eukaryotic organisms, noncoding RNAs (ncRNAs) have been implicated as important regulators of multifaceted biological processes, including transcriptional, posttranscriptional, and epigenetic regulation of gene expression. In recent years, it is becoming clear that protozoan parasites encode diverse ncRNA transcripts; however, little is known about their cellular functions. Recent advances in high-throughput “omic” studies identified many novel long ncRNAs (lncRNAs) in apicomplexan parasites, some of which undergo splicing, polyadenylation, and encode small proteins. To date, only a few of them are characterized, leaving a big gap in our understanding regarding their origin, mode of action, and functions in parasite biology. In this review, we focus on lncRNAs of the human malaria parasite Plasmodium falciparum and highlight their cellular functions and possible mechanisms of action.
Collapse
Affiliation(s)
- Karina Simantov
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Manish Goyal
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
37
|
Yang W, Guo R, Pi A, Ding Q, Hao L, Song Q, Chen L, Dou X, Na L, Li S. Long non-coding RNA-EN_181 potentially contributes to the protective effects of N-acetylcysteine against non-alcoholic fatty liver disease in mice. Br J Nutr 2022; 129:1-15. [PMID: 35710106 DOI: 10.1017/s0007114522001829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
N-acetylcysteine (NAC) possesses a strong capability to ameliorate high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in mice, but the underlying mechanism is still unknown. Our study aimed to clarify the involvement of long non-coding RNA (lncRNA) in the beneficial effects of NAC on HFD-induced NAFLD. C57BL/6J mice were fed a normal-fat diet (10 % fat), a HFD (45 % fat) or a HFD plus NAC (2 g/l). After 14-week of intervention, NAC rescued the deleterious alterations induced by HFD, including the changes in body and liver weights, hepatic TAG, plasma alanine aminotransferase, plasma aspartate transaminase and liver histomorphology (haematoxylin and eosin and Oil red O staining). Through whole-transcriptome sequencing, 52 167 (50 758 known and 1409 novel) hepatic lncRNA were detected. Our cross-comparison data revealed the expression of 175 lncRNA was changed by HFD but reversed by NAC. Five of those lncRNA, lncRNA-NONMMUT148902·1 (NO_902·1), lncRNA-XR_001781798·1 (XR_798·1), lncRNA-NONMMUT141720·1 (NO_720·1), lncRNA-XR_869907·1 (XR_907·1), and lncRNA-ENSMUST00000132181 (EN_181), were selected based on an absolute log2 fold change value of greater than 4, P-value < 0·01 and P-adjusted value < 0·01. Further qRT-PCR analysis showed the levels of lncRNA-NO_902·1, lncRNA-XR_798·1, and lncRNA-EN_181 were decreased by HFD but restored by NAC, consistent with the RNA sequencing. Finally, we constructed a ceRNA network containing lncRNA-EN_181, 3 miRNA, and 13 mRNA, which was associated with the NAC-ameliorated NAFLD. Overall, lncRNA-EN_181 might be a potential target in NAC-ameliorated NAFLD. This finding enhanced our understanding of the biological mechanisms underlying the beneficial role of NAC.
Collapse
Affiliation(s)
- Wenwen Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Aiwen Pi
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Qing Song
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Lixin Na
- Public Health College, Shanghai University of Medicine & Health Sciences, Shanghai201318, People's Republic of China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| |
Collapse
|
38
|
Liu C, Jiang S, Xie H, Jia H, Li R, Zhang K, Wang N, Lin P, Yu X. Long non-coding RNA AC245100.4 contributes to prostate cancer migration via regulating PAR2 and activating p38-MAPK pathway. Med Oncol 2022; 39:94. [DOI: 10.1007/s12032-022-01689-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
|
39
|
Hayakawa A, Kurokawa T, Kanemoto Y, Sawada T, Mori J, Kato S. Skeletal and gene-regulatory functions of nuclear sex steroid hormone receptors. J Bone Miner Metab 2022; 40:361-374. [PMID: 35076781 DOI: 10.1007/s00774-021-01306-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
The wide variety of sex hormone actions underlie bone growth and health, and their actions mediate gene regulation by the cognate nuclear receptors. Nuclear androgen and estrogen receptors (AR, and ERα/ERβ) are hormone-dependent and DNA binding- transcription regulatory factors, and gene regulation by sex hormones often accompany with chromatin remodeling under aid of a number of co-regulators. As sex hormone biosynthesis is under highly regulated systemic and local regulations, the skeletal actions of sex hormones could be inferred from only the phenotypic abnormalities in skeleton in mouse genetic models deficient of nuclear receptors selectively in specific types of bone cells as well as at specific cell differentiation stages. Anabolic androgen actions and anti-bone resorptive estrogen actions are discussed here from the phenotypic abnormalities in such model mice. Though rapid gene regulation by sex hormones may not require chromatin reorganization, dynamic chromatin reconfiguration looks to facilitate profound and long-term hormonal actions. In this review, we focus the recent findings in gene regulation at a chromatin level, particularly of the function of enhancer RNAs transcribed from strong enhancers, and in the role of liquid-liquid phase separation state in transcription initiation through chromatin reconfiguration.
Collapse
Affiliation(s)
- Akira Hayakawa
- Graduate School of Life Science and Engineering, Iryo Sosei University, 5-5-1, Iino, Chuo-dai, Iwaki, Fukushima, 9708551, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Tomohiro Kurokawa
- Graduate School of Life Science and Engineering, Iryo Sosei University, 5-5-1, Iino, Chuo-dai, Iwaki, Fukushima, 9708551, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Yoshiaki Kanemoto
- Graduate School of Life Science and Engineering, Iryo Sosei University, 5-5-1, Iino, Chuo-dai, Iwaki, Fukushima, 9708551, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Takahiro Sawada
- Graduate School of Life Science and Engineering, Iryo Sosei University, 5-5-1, Iino, Chuo-dai, Iwaki, Fukushima, 9708551, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Jinichi Mori
- Graduate School of Life Science and Engineering, Iryo Sosei University, 5-5-1, Iino, Chuo-dai, Iwaki, Fukushima, 9708551, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Department of Hematology, Jyoban Hospital, Tokiwa Foundation, Iwaki, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Shigeaki Kato
- Graduate School of Life Science and Engineering, Iryo Sosei University, 5-5-1, Iino, Chuo-dai, Iwaki, Fukushima, 9708551, Japan.
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan.
- School of Medicine, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan.
| |
Collapse
|
40
|
Relationship between the Levels of lncRNA H19 in Plasma and Different Adipose Tissue Depots with Patients’ Response to Bariatric Surgery. Life (Basel) 2022; 12:life12050633. [PMID: 35629301 PMCID: PMC9147957 DOI: 10.3390/life12050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Bariatric surgery represents a widespread approach to treating morbid obesity. The search for biomarkers to identify patients to whom this type of treatment will be most effective is needed. Our aim was to characterize the relationship of levels of lncRNA H19 in plasma and different adipose tissue depots with patients’ response to bariatric surgery. The study includes control subjects, patients with obesity and patients with obesity accompanied by impaired carbohydrate metabolism (ICM). Quantitative analysis of lncRNA H19 levels has been performed using qPCR in plasma and subcutaneous (SAT) and visceral adipose tissue (VAT). Patients with obesity without ICM have higher levels of lncRNA H19 in VAT compared to SAT, and higher levels of lncRNA H19 in SAT compared to SAT of control individuals. One year after the intervention, levels of lncRNA H19 decreased in SAT of patients with obesity without ICM. The preoperative level of lncRNA H19 in VAT demonstrates a positive correlation with excess weight loss and a negative correlation with initial BMI. In conclusion, ICM affects expression of lncRNA H19 in SAT of patients with obesity. The preoperative level of lncRNA H19 in VAT can be used to predict excess weight loss in patients with obesity after bariatric surgery.
Collapse
|
41
|
Wu B, Xu C, Tian Y, Zeng Y, Yan F, Chen A, Zhao J, Chen L. Aerobic exercise promotes the expression of ATGL and attenuates inflammation to improve hepatic steatosis via lncRNA SRA. Sci Rep 2022; 12:5370. [PMID: 35354841 PMCID: PMC8968712 DOI: 10.1038/s41598-022-09174-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
The role of aerobic exercise in preventing and improving non-alcoholic fatty liver has been widely established. SRA is a long non-coding RNA, which has received increasing attention due to its important role in lipid metabolism. However, it is unclear whether aerobic exercise can prevent and treat hepatic lipid accumulation via SRA. The mice were randomly divided into four groups as follows, normal control group, normal aerobic exercise group, high-fat diet group (HFD), and high-fat diet plus aerobic exercise (8 weeks, 6 days/week, 18 m/min for 50 min, 6% slope) group (HAE). After 8 weeks, the mice in the HAE group showed significant improvement in hepatic steatosis. Body weight as well as blood TC, LDL-C, and liver TG levels were significantly lower in the HAE group than in the HFD group. Compared with the HFD group, the expression of SRA was markedly suppressed and the expression of ATGL was significantly increased in the HAE group. Additionally, the JNK/P38 signaling was inhibited, the pro-inflammatory factors were down-regulated, and the anti-inflammatory factor was increased. In addition to this, the same results were shown in experiments with overexpression of SRA. The results of this study provided new support for aerobic exercise to improve hepatic lipid metabolism via lncRNA.
Collapse
|
42
|
Ji X, Meng W, Liu Z, Mu X. Emerging Roles of lncRNAs Regulating RNA-Mediated Type-I Interferon Signaling Pathway. Front Immunol 2022; 13:811122. [PMID: 35280983 PMCID: PMC8914027 DOI: 10.3389/fimmu.2022.811122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
The type-I interferon (IFN-I) signaling pathway plays pivot roles in defending against pathogen invasion. Exogenous ssRNA and dsRNA could be immunogenic. RNA-mediated IFN signaling is extensively studied in the field. The incorrect functioning of this pathway leads to either autoimmune diseases or suffering from microorganism invasion. From the discrimination of “self” and “non-self” molecules by receptors to the fine-tune modulations in downstream cascades, all steps are under the surveillance featured by complex feedbacks and regulators. Studies in recent years highlighted the emerging roles of long noncoding RNAs (lncRNAs) as a reservoir for signaling regulation. LncRNAs bind to targets through the structure and sequence, and thus the mechanisms of action can be complex and specific. Here, we summarized lncRNAs modulating the RNA-activated IFN-I signaling pathway according to the event order during the signaling. We hope this review help understand how lncRNAs are participating in the regulation of IFN-I signaling.
Collapse
Affiliation(s)
- Xiaoxin Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Wei Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Zichuan Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Zichuan Liu, ; Xin Mu,
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Zichuan Liu, ; Xin Mu,
| |
Collapse
|
43
|
Nabi M, Andrabi SM, Rasool SUA, Ashraf S, Majid I, Amin S. Androgen receptor coregulator long noncoding RNA CTBP1-AS is associated with polycystic ovary syndrome in Kashmiri women. Endocrine 2022; 75:614-622. [PMID: 34611799 DOI: 10.1007/s12020-021-02894-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is one of the most common reproductive, endocrine, and metabolic disorder in premenopausal women. Even though the pathophysiology of PCOS is complex and obscure, the disorder is prominently considered as the syndrome of hyperandrogenism. C-Terminal binding protein 1 antisense (CTBP1-AS) acts as a novel androgen receptor regulating long noncoding RNA (lncRNA). Therefore, the present study was aimed to establish the possible association of androgen receptor regulating long noncoding RNA CTBP1-AS with PCOS. METHODS A total of 178 subjects including 105 PCOS cases and 73 age-matched healthy controls were recruited for the study. The anthropometric, hormonal, and biochemical parameters of all subjects were analyzed. Total RNA was isolated from peripheral venous blood and expression analysis was done by quantitative real-time PCR. The correlation analysis was performed to evaluate the association between and various clinical parameters and lncRNA CTBP1-AS expression. RESULTS AND CONCLUSION The mean expression level of CTBP1-AS was found to be significantly higher in the PCOS women than in the healthy controls (-lnCTBP1-AS, 4.23 ± 1.68 versus 1.24 ± 0.29, P < 0.001). Furthermore, subjects with higher expression level of CTBP1-AS had significantly higher risk of PCOS compared to subjects with low levels of CTBP1-AS expression (actual OR = 11.36, 95% CI = 5.59-23.08, P < 0.001). The area under receiver operator characteristic (ROC) curve was 0.987 (SE 0.006, 95% CI 0.976-0.99). However, lncRNA CTBP1-AS was found to have no association with different clinical characteristics of PCOS. In conclusion, androgen receptor coregulating lncRNA CTBP1-AS is associated with PCOS women and high expression of CTBP1-AS is a risk factor for PCOS in Kashmiri women.
Collapse
Affiliation(s)
- Mudasar Nabi
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Syed Mudasir Andrabi
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shuhama, Kashmir, 190006, India
| | | | - Sairish Ashraf
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Imran Majid
- Cutis Institute of Dermatology, Hyderpora, Srinagar, 190014, India
| | - Shajrul Amin
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| |
Collapse
|
44
|
Li J, Guo S, Sun Z, Fu Y. Noncoding RNAs in Drug Resistance of Gastrointestinal Stromal Tumor. Front Cell Dev Biol 2022; 10:808591. [PMID: 35174150 PMCID: PMC8841737 DOI: 10.3389/fcell.2022.808591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in the gastrointestinal tracts and a model for the targeted therapy of solid tumors because of the oncogenic driver mutations in KIT and PDGDRA genes, which could be effectively inhibited by the very first targeted agent, imatinib mesylate. Most of the GIST patients could benefit a lot from the targeted treatment of this receptor tyrosine kinase inhibitor. However, more than 50% of the patients developed resistance within 2 years after imatinib administration, limiting the long-term effect of imatinib. Noncoding RNAs (ncRNAs), the non-protein coding transcripts of human, were demonstrated to play pivotal roles in the resistance of various chemotherapy drugs. In this review, we summarized the mechanisms of how ncRNAs functioning on the drug resistance in GIST. During the drug resistance of GIST, there were five regulating mechanisms where the functions of ncRNAs concentrated: oxidative phosphorylation, autophagy, apoptosis, drug target changes, and some signaling pathways. Also, these effects of ncRNAs in drug resistance were divided into two aspects. How ncRNAs regulate drug resistance in GIST was further summarized according to ncRNA types, different drugs and categories of resistance. Moreover, clinical applications of these ncRNAs in GIST chemotherapies concentrated on the prognostic biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Jiehan Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuning Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yang Fu, ; Zhenqiang Sun,
| | - Yang Fu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
- *Correspondence: Yang Fu, ; Zhenqiang Sun,
| |
Collapse
|
45
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
46
|
Alvarez-Dominguez JR, Winther S, Hansen JB, Lodish HF, Knoll M. An adipose lncRAP2-Igf2bp2 complex enhances adipogenesis and energy expenditure by stabilizing target mRNAs. iScience 2022; 25:103680. [PMID: 35036870 PMCID: PMC8749451 DOI: 10.1016/j.isci.2021.103680] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/06/2021] [Accepted: 12/20/2021] [Indexed: 02/09/2023] Open
Abstract
lncRAP2 is a conserved cytoplasmic lncRNA enriched in adipose tissue and required for adipogenesis. Using purification and in vivo interactome analyses, we show that lncRAP2 forms complexes with proteins that stabilize mRNAs and modulate translation, among them Igf2bp2. Surveying transcriptome-wide Igf2bp2 client mRNAs in white adipocytes reveals selective binding to mRNAs encoding adipogenic regulators and energy expenditure effectors, including adiponectin. These same target proteins are downregulated when either Igf2bp2 or lncRAP2 is downregulated, hindering adipocyte lipolysis. Proteomics and ribosome profiling show this occurs predominantly through mRNA accumulation, as lncRAP2-Igf2bp2 complex binding does not impact translation efficiency. Phenome-wide association studies reveal specific associations of genetic variants within both lncRAP2 and Igf2bp2 with body mass and type 2 diabetes, and both lncRAP2 and Igf2bp2 are suppressed in adipose depots of obese and diabetic individuals. Thus, the lncRAP2-Igf2bp2 complex potentiates adipose development and energy expenditure and is associated with susceptibility to obesity-linked diabetes.
Collapse
Affiliation(s)
- Juan R. Alvarez-Dominguez
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104, USA
| | - Sally Winther
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK2100, Copenhagen, Denmark
| | - Jacob B. Hansen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK2100, Copenhagen, Denmark
| | - Harvey F. Lodish
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, 21Ames Street, Cambridge, MA02142, USA
| | - Marko Knoll
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Institute for Diabetes Research, Helmholtz Zentrum München, Heidemannstrasse 1, 80939München, Germany
| |
Collapse
|
47
|
Feng H, Liu T, Yousuf S, Zhang X, Huang W, Li A, Xie L, Miao X. Identification and analysis of lncRNA, miRNA and mRNA related to subcutaneous and intramuscular fat in Laiwu pigs. Front Endocrinol (Lausanne) 2022; 13:1081460. [PMID: 36714570 PMCID: PMC9880541 DOI: 10.3389/fendo.2022.1081460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) regulate adipocyte differentiation and metabolism, However, their function on subcutaneous and intramuscular adipose tissues in pigs is unclear. Intramuscular fat (IMF) is an important indicator for evaluating meat quality. Breeds with high IMF content are often accompanied by high subcutaneous fat (SCF), which severely affects the meat rate of pigs. It is of great significance for porcine breeding to study the mechanism of lncRNA related to adipogenesis and lipid metabolism. METHODS We identified differentially expressed lncRNAs, miRNAs and mRNAs in subcutaneous and intramuscular adipose tissues in three female Laiwu pigs by deep RNA-sequencing(|log2foldchange|≥1, P_value ≤ 0.05). The gene expression profiles of IMF and SCF in Laiwu pigs were comparatively analyzed by Bioinformatics methods to identify key lncRNAs, miRNAs, and mRNAs associated with lipid metabolism and adipogenesis. RESULTS A total of 1209 lncRNAs (DElncRNAs), 286 miRNAs (DEmiRNAs), and 1597 mRNAs (DEgenes) were differentially expressed between two types of adipose. Among them, 17 DElncRNAs and 103 target genes play a role in the co-expression network, as well as 59 DElncRNAs, 44 DEmiRNAs, and 88 DEgenes involved in ceRNA network. In GO(Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of DElncRNAs their target genes involved in many adipogenesis and lipid metabolism biological processes and signaling pathways, such as PPAR signaling pathway, Wnt signaling pathway, MAPK signaling pathway. CONCLUSIONS By constructing co-expression and ceRNAs network we found that Wnt signaling pathway play a critical regulatory role in intramuscular adipogenesis and lipid accumulation in Laiwu pigs. TCONS_00006525, TCONS_00046551 and TCONS_00000528 may target WNT5A, WNT10B and FDZ3 in co-expression network, TCONS_00026517 and other lncRNAs regulate the expression of PPARG, RXRG and SCD in ceRNA network, and were involved in Wnt signaling pathway. This study provides a theoretical basis for further understanding the post-transcriptional regulation mechanism of meat quality formation, predicting and treating diseases caused by ectopic fat.
Collapse
|
48
|
Zhou G, Zhang M, Zhang J, Feng Y, Xie Z, Liu S, Zhu D, Luo Y. The gene regulatory role of non-coding RNAs in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2022; 13:959487. [PMID: 36060931 PMCID: PMC9436424 DOI: 10.3389/fendo.2022.959487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Non-coding RNAs are classified as small non-coding RNAs, long non-coding RNAs and circular RNAs, which are involved in a variety of biological processes, including cell differentiation, proliferation, apoptosis and pathological conditions of various diseases. Many studies have shown that non-coding RNAs are related to spermatogenesis, maturation, apoptosis, function, etc. In addition, the expression of non-coding RNAs in testicular tissue and semen of patients with non-obstructive azoospermia was different. However, the role of non-coding RNAs in the pathogenesis of non-obstructive azoospermia has not been fully elucidated, and the role of non-coding RNAs in non-obstructive azoospermia is rarely reviewed. Here we summarize the research progress of non-coding RNAs in the pathogenesis of non-obstructive azoospermia.
Collapse
Affiliation(s)
- Guanqing Zhou
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mimi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingzhi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yaofeng Feng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhishen Xie
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Siyi Liu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Detu Zhu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yumei Luo, ; Detu Zhu,
| | - Yumei Luo
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yumei Luo, ; Detu Zhu,
| |
Collapse
|
49
|
Marini F, Giusti F, Palmini G, Perigli G, Santoro R, Brandi ML. Genetics and Epigenetics of Parathyroid Carcinoma. Front Endocrinol (Lausanne) 2022; 13:834362. [PMID: 35282432 PMCID: PMC8908968 DOI: 10.3389/fendo.2022.834362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 01/12/2023] Open
Abstract
Parathyroid carcinoma (PC) is an extremely rare malignancy, accounting less than 1% of all parathyroid neoplasms, and an uncommon cause of primary hyperparathyroidism (PHPT), characterized by an excessive secretion of parathyroid hormone (PTH) and severe hypercalcemia. As opposed to parathyroid hyperplasia and adenomas, PC is associated with a poor prognosis, due to a commonly unmanageable hypercalcemia, which accounts for death in the majority of cases, and an overall survival rate of 78-85% and 49-70% at 5 and 10 years after diagnosis, respectively. No definitively effective therapies for PC are currently available. The mainly employed treatment for PC is the surgical removal of tumoral gland(s). Post-surgical persistent or recurrent disease manifest in about 50% of patients. The comprehension of genetic and epigenetic bases and molecular pathways that characterize parathyroid carcinogenesis is important to distinguish malignant PCs from benign adenomas, and to identify specific targets for novel therapies. Germline heterozygote inactivating mutations of the CDC73 tumor suppressor gene, with somatic loss of heterozygosity at 1q31.2 locus, account for about 50-75% of familial cases; over 75% of sporadic PCs harbor biallelic somatic inactivation/loss of CDC73. Recurrent mutations of the PRUNE2 gene, a recurrent mutation in the ADCK1 gene, genetic amplification of the CCND1 gene, alterations of the PI3K/AKT/mTOR signaling pathway, and modifications of microRNA expression profile and gene promoter methylation pattern have all been detected in PC. Here, we review the current knowledge on gene mutations and epigenetic changes that have been associated with the development of PC, in both familial and sporadic forms of this malignancy.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Fondazione Italiana per la Ricerca sulle Malattie dell'Osso (F.I.R.M.O.) Italian Foundation for the Research on Bone Diseases, Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giuliano Perigli
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero-Universitaria (AOU)-Careggi, Florence, Italy
| | - Roberto Santoro
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero-Universitaria (AOU)-Careggi, Florence, Italy
| | - Maria Luisa Brandi
- Fondazione Italiana per la Ricerca sulle Malattie dell'Osso (F.I.R.M.O.) Italian Foundation for the Research on Bone Diseases, Florence, Italy
- *Correspondence: Maria Luisa Brandi,
| |
Collapse
|
50
|
Pang H, Fan W, Shi X, Li J, Wang Y, Luo S, Lin J, Huang G, Li X, Xie Z, Zhou Z. Characterization of lncRNA Profiles of Plasma-Derived Exosomes From Type 1 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:822221. [PMID: 35634499 PMCID: PMC9135040 DOI: 10.3389/fendo.2022.822221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDS Exosomes contain several types of transcripts, including long non-coding RNAs (lncRNAs), and have been shown to exert important effects in human diseases. However, the roles of exosomal lncRNAs in type 1 diabetes mellitus (T1DM) have not been well investigated. In the present study, we characterized the plasma-derived exosomal lncRNAs expression profiles of T1DM and predict their potential function in the pathogenesis of T1DM. MATERIAL AND METHODS Exosomal lncRNA expression profiles were detected by Illumina Hiseq platform (T1DM subjects N=10; age-, sex- matched Control subjects N=10). Six exosomal lncRNAs were selected to validate their expression level by using quantitative real-time PCR (qRT-PCR) (T1DM subjects N=30; age-, sex- matched Control subjects N=30). Bioinformatics analysis approaches were carried out to explore the potential biological function of differentially expressed lncRNAs. RESULTS A total of 162 differentially expressed exosomal lncRNAs were identified in T1DM patients compared with control subjects, among which 77 up-regulated and 85 down-regulated. The expression level of the selected six lncRNAs didn't show significant difference in the following qRT-PCR analysis. Gene Ontology analysis enriched terms such as activation of phospholipase D activity, neuronal cell body membrane, and calcium sensitive guanylate cyclase activator activity for cis-acting genes of lncRNAs, and metal ion binding for trans-acting genes. The most enriched Kyoto Encyclopedia of Genes and Genomes pathways for the lncRNAs were associated with oxidative phosphorylation and Parkinson's disease for cis-acting genes, and pathways in cancer as well as focal adhesion for trans-acting genes. CONCLUSIONS This study characterized the lncRNA profiles of plasma-derived exosomes from T1DM for the first time and these results highlighted the potential role of exosomal lncRNAs in T1DM pathogenesis. A better understanding of exosomal lncRNA profiling will provide novel insights into its molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhiguo Xie
- *Correspondence: Zhiguang Zhou, ; Zhiguo Xie,
| | | |
Collapse
|