1
|
Dunn T, Sethuraman A. Accurate Inference of the Polyploid Continuum Using Forward-Time Simulations. Mol Biol Evol 2024; 41:msae241. [PMID: 39549274 DOI: 10.1093/molbev/msae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Multiple rounds of whole-genome duplication (WGD) followed by diploidization have occurred throughout the evolutionary history of angiosperms. Much work has been done to model the genomic consequences and evolutionary significance of WGD. While researchers have historically modeled polyploids as either allopolyploids or autopolyploids, the variety of natural polyploids span a continuum of differentiation across multiple parameters, such as the extent of polysomic versus disomic inheritance, and the degree of genetic differentiation between the ancestral lineages. Here we present a forward-time polyploid genome evolution simulator called SpecKS. SpecKS models polyploid speciation as originating from a 2D continuum, whose dimensions account for both the level of genetic differentiation between the ancestral parental genomes, as well the time lag between ancestral speciation and their subsequent reunion in the derived polyploid. Using extensive simulations, we demonstrate that changes in initial conditions along either dimension of the 2D continuum deterministically affect the shape of the Ks histogram. Our findings indicate that the error in the common method of estimating WGD time from the Ks histogram peak scales with the degree of allopolyploidy, and we present an alternative, accurate estimation method that is independent of the degree of allopolyploidy. Lastly, we use SpecKS to derive tests that infer both the lag time between parental divergence and WGD time, and the diversity of the ancestral species, from an input Ks histogram. We apply the latter test to transcriptomic data from over 200 species across the plant kingdom, the results of which are concordant with the prevailing theory that the majority of angiosperm lineages are derived from diverse parental genomes and may be of allopolyploid origin.
Collapse
Affiliation(s)
- Tamsen Dunn
- Department of Biology, San Diego State University, San Diego, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Arun Sethuraman
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
2
|
Zhao J, Xu Y, Zhang Z, Zhao M, Li K, Wang F, Sun K. Genome-wide analysis of the MADS-box gene family of sea buckthorn ( Hippophae rhamnoides ssp. sinensis) and their potential role in floral organ development. FRONTIERS IN PLANT SCIENCE 2024; 15:1387613. [PMID: 38938643 PMCID: PMC11208494 DOI: 10.3389/fpls.2024.1387613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024]
Abstract
Sea buckthorn (Hippophae rhamnoides ssp. sinensis) is a deciduous shrub or small tree in the Elaeagnaceae family. It is dioecious, featuring distinct structures in female and male flowers. The MADS-box gene family plays a crucial role in flower development and differentiation of floral organs in plants. However, systematic information on the MADS-box family in sea buckthorn is currently lacking. This study presents a genome-wide survey and expression profile of the MADS-box family of sea buckthorn. We identified 92 MADS-box genes in the H. rhamnoides ssp. Sinensis genome. These genes are distributed across 12 chromosomes and classified into Type I (42 genes) and Type II (50 genes). Based on the FPKM values in the transcriptome data, the expression profiles of HrMADS genes in male and female flowers of sea buckthorn showed that most Type II genes had higher expression levels than Type I genes. This suggesting that Type II HrMADS may play a more significant role in sea buckthorn flower development. Using the phylogenetic relationship between sea buckthorn and Arabidopsis thaliana, the ABCDE model genes of sea buckthorn were identified and some ABCDE model-related genes were selected for qRT-PCR analysis in sea buckthorn flowers and floral organs. Four B-type genes may be involved in the identity determination of floral organs in male flowers, and D-type genes may be involved in pistil development. It is hypothesized that ABCDE model genes may play an important role in the identity of sea buckthorn floral organs. This study analyzed the role of MADS-box gene family in the development of flower organs in sea buckthorn, which provides an important theoretical basis for understanding the regulatory mechanism of sex differentiation in sea buckthorn.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kun Sun
- College of Life Science, Northwest Normal University, Lanzhou, China
| |
Collapse
|
3
|
Chen H, Zwaenepoel A, Van de Peer Y. wgd v2: a suite of tools to uncover and date ancient polyploidy and whole-genome duplication. Bioinformatics 2024; 40:btae272. [PMID: 38632086 PMCID: PMC11078771 DOI: 10.1093/bioinformatics/btae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024] Open
Abstract
MOTIVATION Major improvements in sequencing technologies and genome sequence assembly have led to a huge increase in the number of available genome sequences. In turn, these genome sequences form an invaluable source for evolutionary, ecological, and comparative studies. One kind of analysis that has become routine is the search for traces of ancient polyploidy, particularly for plant genomes, where whole-genome duplication (WGD) is rampant. RESULTS Here, we present a major update of a previously developed tool wgd, namely wgd v2, to look for remnants of ancient polyploidy, or WGD. We implemented novel and improved previously developed tools to (a) construct KS age distributions for the whole-paranome (collection of all duplicated genes in a genome), (b) unravel intragenomic and intergenomic collinearity resulting from WGDs, (c) fit mixture models to age distributions of gene duplicates, (d) correct substitution rate variation for phylogenetic placement of WGDs, and (e) date ancient WGDs via phylogenetic dating of WGD-retained gene duplicates. The applicability and feasibility of wgd v2 for the identification and the relative and absolute dating of ancient WGDs is demonstrated using different plant genomes. AVAILABILITY AND IMPLEMENTATION wgd v2 is open source and available at https://github.com/heche-psb/wgd.
Collapse
Affiliation(s)
- Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Arthur Zwaenepoel
- UMR 8198, Evo-Eco-Paleo, University of Lille, CNRS, Lille, F-59000, France
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Tian XC, Guo JF, Yan XM, Shi TL, Nie S, Zhao SW, Bao YT, Li ZC, Kong L, Su GJ, Mao JF, Lin J. Unique gene duplications and conserved microsynteny potentially associated with resistance to wood decay in the Lauraceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1122549. [PMID: 36968354 PMCID: PMC10030967 DOI: 10.3389/fpls.2023.1122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Wood decay resistance (WDR) is marking the value of wood utilization. Many trees of the Lauraceae have exceptional WDR, as evidenced by their use in ancient royal palace buildings in China. However, the genetics of WDR remain elusive. Here, through comparative genomics, we revealed the unique characteristics related to the high WDR in Lauraceae trees. We present a 1.27-Gb chromosome-level assembly for Lindera megaphylla (Lauraceae). Comparative genomics integrating major groups of angiosperm revealed Lauraceae species have extensively shared gene microsynteny associated with the biosynthesis of specialized metabolites such as isoquinoline alkaloids, flavonoid, lignins and terpenoid, which play significant roles in WDR. In Lauraceae genomes, tandem and proximal duplications (TD/PD) significantly expanded the coding space of key enzymes of biosynthesis pathways related to WDR, which may enhance the decay resistance of wood by increasing the accumulation of these compounds. Among Lauraceae species, genes of WDR-related biosynthesis pathways showed remarkable expansion by TD/PD and conveyed unique and conserved motifs in their promoter and protein sequences, suggesting conserved gene collinearity, gene expansion and gene regulation supporting the high WDR. Our study thus reveals genomic profiles related to biochemical transitions among major plant groups and the genomic basis of WDR in the Lauraceae.
Collapse
Affiliation(s)
- Xue-Chan Tian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jing-Fang Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue-Mei Yan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Tian-Le Shi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shuai Nie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shi-Wei Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yu-Tao Bao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhi-Chao Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lei Kong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Guang-Ju Su
- National Tree Breeding Station for Nanmu in Zhuxi, Forest Farm of Zhuxi County, Hubei, China
| | - Jian-Feng Mao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Chen H, Zwaenepoel A. Inference of Ancient Polyploidy from Genomic Data. Methods Mol Biol 2023; 2545:3-18. [PMID: 36720805 DOI: 10.1007/978-1-0716-2561-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Whole-genome sequence data have revealed that numerous eukaryotic organisms derive from distant polyploid ancestors, even when these same organisms are genetically and karyotypically diploid. Such ancient whole-genome duplications (WGDs) have been important for long-term genome evolution and are often speculatively associated with important evolutionary events such as key innovations, adaptive radiations, or survival after mass extinctions. Clearly, reliable methods for unveiling ancient WGDs are key toward furthering understanding of the long-term evolutionary significance of polyploidy. In this chapter, we describe a set of basic established comparative genomics approaches for the inference of ancient WGDs from genomic data based on empirical age distributions and collinearity analyses, explain the principles on which they are based, and illustrate a basic workflow using the software "wgd," geared toward a typical exploratory analysis of a newly obtained genome sequence.
Collapse
Affiliation(s)
- Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Abstract
Polyploidizations, or whole-genome duplications (WGDs), in plants have increased biological complexity, facilitated evolutionary innovation, and likely enabled adaptation under harsh conditions. Besides genomic data, transcriptome data have been widely employed to detect WGDs, due to their efficient accessibility to the gene space of a species. Age distributions based on synonymous substitutions (so-called KS age distributions) for paralogs assembled from transcriptome data have identified numerous WGDs in plants, paving the way for further studies on the importance of WGDs for the evolution of seed and flowering plants. However, it is still unclear how transcriptome-based age distributions compare to those based on genomic data. In this chapter, we implemented three different de novo transcriptome assembly pipelines with two popular assemblers, i.e., Trinity and SOAPdenovo-Trans. We selected six plant species with published genomes and transcriptomes to evaluate how assembled transcripts from different pipelines perform when using KS distributions to detect previously documented WGDs in the six species. Further, using genes predicted in each genome as references, we evaluated the effects of missing genes, gene family clustering, and de novo assembled transcripts on the transcriptome-based KS distributions. Our results show that, although the transcriptome-based KS distributions differ from the genome-based ones with respect to their shapes and scales, they are still reasonably reliable for unveiling WGDs, except in species where most duplicates originated from a recent WGD. We also discuss how to overcome some possible pitfalls when using transcriptome data to identify WGDs.
Collapse
Affiliation(s)
- Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Expression Profiling and MicroRNA Regulatory Networks of Homeobox Family Genes in Sugarcane Saccharum spontaneum L. Int J Mol Sci 2022; 23:ijms23158724. [PMID: 35955858 PMCID: PMC9369071 DOI: 10.3390/ijms23158724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 01/13/2023] Open
Abstract
Homeobox (HB) genes play important roles in plant growth and development processes, particularly in the formation of lateral organs. Thus, they could influence leaf morphogenesis and biomass formation in plants. However, little is known about HBs in sugarcane, a crucial sugar crop, due to its complex genetic background. Here, 302 allelic sequences for 104 HBs were identified and divided into 13 subfamilies in sugarcane Saccharum spontaneum. Comparative genomics revealed that whole-genome duplication (WGD)/segmental duplication significantly promoted the expansion of the HB family in S. spontaneum, with SsHB26, SsHB63, SsHB64, SsHB65, SsHB67, SsHB95, and SsHB96 being retained from the evolutionary event before the divergence of dicots and monocots. Based on the analysis of transcriptome and degradome data, we speculated that SsHB15 and SsHB97 might play important roles in regulating sugarcane leaf morphogenesis, with miR166 and SsAGO10 being involved in the regulation of SsHB15 expression. Moreover, subcellular localization and transcriptional activity detection assays demonstrated that these two genes, SsHB15 and SsHB97, were functional transcription factors. This study demonstrated the evolutionary relationship and potential functions of SsHB genes and will enable the further investigation of the functional characterization and the regulatory mechanisms of SsHBs.
Collapse
|
8
|
Wang B, Hu W, Fang Y, Feng X, Fang J, Zou T, Zheng S, Ming R, Zhang J. Comparative Analysis of the MADS-Box Genes Revealed Their Potential Functions for Flower and Fruit Development in Longan ( Dimocarpus longan). FRONTIERS IN PLANT SCIENCE 2022; 12:813798. [PMID: 35154209 PMCID: PMC8829350 DOI: 10.3389/fpls.2021.813798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/16/2021] [Indexed: 06/01/2023]
Abstract
Longan (Dimocarpus longan Lour.) is an important economic crop widely planted in tropical and subtropical regions, and flower and fruit development play decisive effects on the longan yield and fruit quality formation. MCM1, AGAMOUS, DEFICIENS, Serum Response Factor (MADS)-box transcription factor family plays important roles for the flowering time, floral organ identity, and fruit development in plants. However, there is no systematic information of MADS-box family in longan. In this study, 114 MADS-box genes were identified from the longan genome, phylogenetic analysis divided them into type I (Mα, Mβ, Mγ) and type II (MIKC*, MIKC C ) groups, and MIKC C genes were further clustered into 12 subfamilies. Comparative genomic analysis of 12 representative plant species revealed the conservation of type II in Sapindaceae and analysis of cis-elements revealed that Dof transcription factors might directly regulate the MIKC C genes. An ABCDE model was proposed for longan based on the phylogenetic analysis and expression patterns of MADS-box genes. Transcriptome analysis revealed that MIKC C genes showed wide expression spectrums, particularly in reproductive organs. From 35 days after KClO3 treatment, 11 MIKC genes were up-regulated, suggesting a crucial role in off-season flower induction, while DlFLC, DlSOC1, DlSVP, and DlSVP-LIKE may act as the inhibitors. The gene expression patterns of longan fruit development indicated that DlSTK, DlSEP1/2, and DlMADS53 could be involved in fruit growth and ripening. This paper carried out the whole genome identification and analysis of the longan MADS-box family for the first time, which provides new insights for further understanding its function in flowers and fruit.
Collapse
Affiliation(s)
- Baiyu Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenshun Hu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Breeding Engineering Technology Research Center for Longan & Loquat, Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yaxue Fang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxi Feng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingping Fang
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Tengyue Zou
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoquan Zheng
- Fujian Breeding Engineering Technology Research Center for Longan & Loquat, Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Chen Q, Zhang X, Fang Y, Wang B, Xu S, Zhao K, Zhang J, Fang J. Genome-Wide Identification and Expression Analysis of the R2R3-MYB Transcription Factor Family Revealed Their Potential Roles in the Flowering Process in Longan ( Dimocarpus longan). FRONTIERS IN PLANT SCIENCE 2022; 13:820439. [PMID: 35401601 PMCID: PMC8990856 DOI: 10.3389/fpls.2022.820439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/02/2022] [Indexed: 05/10/2023]
Abstract
Longan (Dimocarpus longan Lour.) is a productive fruit crop with high nutritional and medical value in tropical and subtropical regions. The MYB gene family is one of the most widespread plant transcription factor (TF) families participating in the flowering regulation. However, little is known about the MYB TFs involved in the flowering process in longan and its regulatory network. In this study, a total of 119 DlR2R3-MYB genes were identified in the longan genome and were phylogenetically grouped into 28 subgroups. The groupings were supported by highly conserved gene structures and motif composition of DlR2R3-MYB genes in each subgroup. Collinearity analysis demonstrated that segmental replications played a more crucial role in the expansion of the DlR2R3-MYB gene family compared to tandem duplications, and all tandem/segmental duplication gene pairs have evolved under purifying selection. Interspecies synteny analysis among longan and five representative species implied the occurrence of gene duplication events was one of the reasons contributing to functional differentiation among species. RNA-seq data from various tissues showed DlR2R3-MYB genes displayed tissue-preferential expression patterns. The pathway of flower development was enriched with six DlR2R3-MYB genes. Cis-acting element prediction revealed the putative functions of DlR2R3-MYB genes were related to the plant development, phytohormones, and environmental stresses. Notably, the orthologous counterparts between Arabidopsis and longan R2R3-MYB members tended to play conserved roles in the flowering regulation and stress responses. Transcriptome profiling on off-season flower induction (FI) by KClO3 indicated two up-regulated and four down-regulated DlR2R3-MYB genes involved in the response to KClO3 treatment compared with control groups. Additionally, qRT-PCR confirmed certain genes exhibited high expression in flowers/flower buds. Subcellular localization experiments revealed that three predicted flowering-associated MYB proteins were localized in the nucleus. Future functional studies on these potential candidate genes involved in the flowering development could further the understanding of the flowering regulation mechanism.
Collapse
Affiliation(s)
- Qinchang Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yaxue Fang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baiyu Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaosi Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Jisen Zhang,
| | - Jingping Fang
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
- *Correspondence: Jingping Fang,
| |
Collapse
|
10
|
The Welwitschia genome reveals a unique biology underpinning extreme longevity in deserts. Nat Commun 2021; 12:4247. [PMID: 34253727 PMCID: PMC8275611 DOI: 10.1038/s41467-021-24528-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
The gymnosperm Welwitschia mirabilis belongs to the ancient, enigmatic gnetophyte lineage. It is a unique desert plant with extreme longevity and two ever-elongating leaves. We present a chromosome-level assembly of its genome (6.8 Gb/1 C) together with methylome and transcriptome data to explore its astonishing biology. We also present a refined, high-quality assembly of Gnetum montanum to enhance our understanding of gnetophyte genome evolution. The Welwitschia genome has been shaped by a lineage-specific ancient, whole genome duplication (~86 million years ago) and more recently (1-2 million years) by bursts of retrotransposon activity. High levels of cytosine methylation (particularly at CHH motifs) are associated with retrotransposons, whilst long-term deamination has resulted in an exceptionally GC-poor genome. Changes in copy number and/or expression of gene families and transcription factors (e.g. R2R3MYB, SAUR) controlling cell growth, differentiation and metabolism underpin the plant's longevity and tolerance to temperature, nutrient and water stress.
Collapse
|
11
|
Zhao T, Zwaenepoel A, Xue JY, Kao SM, Li Z, Schranz ME, Van de Peer Y. Whole-genome microsynteny-based phylogeny of angiosperms. Nat Commun 2021; 12:3498. [PMID: 34108452 PMCID: PMC8190143 DOI: 10.1038/s41467-021-23665-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
Plant genomes vary greatly in size, organization, and architecture. Such structural differences may be highly relevant for inference of genome evolution dynamics and phylogeny. Indeed, microsynteny-the conservation of local gene content and order-is recognized as a valuable source of phylogenetic information, but its use for the inference of large phylogenies has been limited. Here, by combining synteny network analysis, matrix representation, and maximum likelihood phylogenetic inference, we provide a way to reconstruct phylogenies based on microsynteny information. Both simulations and use of empirical data sets show our method to be accurate, consistent, and widely applicable. As an example, we focus on the analysis of a large-scale whole-genome data set for angiosperms, including more than 120 available high-quality genomes, representing more than 50 different plant families and 30 orders. Our 'microsynteny-based' tree is largely congruent with phylogenies proposed based on more traditional sequence alignment-based methods and current phylogenetic classifications but differs for some long-contested and controversial relationships. For instance, our synteny-based tree finds Vitales as early diverging eudicots, Saxifragales within superasterids, and magnoliids as sister to monocots. We discuss how synteny-based phylogenetic inference can complement traditional methods and could provide additional insights into some long-standing controversial phylogenetic relationships.
Collapse
Affiliation(s)
- Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Shu-Min Kao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
12
|
Van de Peer Y, Ashman TL, Soltis PS, Soltis DE. Polyploidy: an evolutionary and ecological force in stressful times. THE PLANT CELL 2021; 33:11-26. [PMID: 33751096 PMCID: PMC8136868 DOI: 10.1093/plcell/koaa015] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 05/10/2023]
Abstract
Polyploidy has been hypothesized to be both an evolutionary dead-end and a source for evolutionary innovation and species diversification. Although polyploid organisms, especially plants, abound, the apparent nonrandom long-term establishment of genome duplications suggests a link with environmental conditions. Whole-genome duplications seem to correlate with periods of extinction or global change, while polyploids often thrive in harsh or disturbed environments. Evidence is also accumulating that biotic interactions, for instance, with pathogens or mutualists, affect polyploids differently than nonpolyploids. Here, we review recent findings and insights on the effect of both abiotic and biotic stress on polyploids versus nonpolyploids and propose that stress response in general is an important and even determining factor in the establishment and success of polyploidy.
Collapse
Affiliation(s)
- Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
- Department of Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
13
|
On the origin of vertebrate body plan: Insights from the endoderm using the hourglass model. Gene Expr Patterns 2020; 37:119125. [PMID: 32599288 DOI: 10.1016/j.gep.2020.119125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/25/2020] [Accepted: 06/21/2020] [Indexed: 11/23/2022]
Abstract
The vertebrate body plan is thought to be derived during the early Cambrian from a worm-like chordate ancestor. While all three germ layers were clearly involved in this innovation, the role of the endoderm remains elusive. According to the hourglass model, the optimal window for investigating the evolution of vertebrate endoderm-derived structures during cephalochordate development is from the Spemann's organizer stage to the opening of the mouth (Stages 1-7, described herein). Regulatory gene expression, examined during these stages, illustrate that the cephalochordate endoderm is patterned into 12 organ primordia. Early vertebrates inherited at least a portion of 6 of these primordia, while the remainder were lost. Of those that were preserved, we demonstrate that the vertebrate symmetric mouth was built on a vestige of the anterior pre-oral pit, that the pre-existing pharyngeal pouch in this chordate ancestor laid the foundation for the new neural crest cell (NCC)-derived vertebrate-type pharyngeal arches, that the thyroid evolved from the posterior endostyle primordim, that the pancreas was derived from the Pdx1-expressing diverticulum primordium, and the small and large intestines originated with the Cdx1-expressing hindgut rudiments. This investigation uncovers the evolutionary foundations of vertebrate endoderm-derived structures, and demonstrates that the number of organ primordia were reduced during evolution.
Collapse
|
14
|
Zwaenepoel A, Van de Peer Y. wgd-simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 2020; 35:2153-2155. [PMID: 30398564 PMCID: PMC6581438 DOI: 10.1093/bioinformatics/bty915] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 11/17/2022] Open
Abstract
Summary Ancient whole-genome duplications (WGDs) have been uncovered in almost all major lineages of life on Earth and the search for traces or remnants of such events has become standard practice in most genome analyses. This is especially true for plants, where ancient WGDs are abundant. Common approaches to find evidence for ancient WGDs include the construction of KS distributions and the analysis of intragenomic colinearity. Despite the increased interest in WGDs and the acknowledgment of their evolutionary importance, user-friendly and comprehensive tools for their analysis are lacking. Here, we present an easy to use command-line tool for KS distribution construction named wgd. The wgd suite provides commonly used KS and colinearity analysis workflows together with tools for modeling and visualization, rendering these analyses accessible to genomics researchers in a convenient manner. Availability and implementation wgd is free and open source software implemented in Python and is available at https://github.com/arzwa/wgd. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University.,Center for Plant Systems Biology, VIB.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University.,Center for Plant Systems Biology, VIB.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Roelofs D, Zwaenepoel A, Sistermans T, Nap J, Kampfraath AA, Van de Peer Y, Ellers J, Kraaijeveld K. Multi-faceted analysis provides little evidence for recurrent whole-genome duplications during hexapod evolution. BMC Biol 2020; 18:57. [PMID: 32460826 PMCID: PMC7251882 DOI: 10.1186/s12915-020-00789-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/06/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gene duplication events play an important role in the evolution and adaptation of organisms. Duplicated genes can arise through different mechanisms, including whole-genome duplications (WGDs). Recently, WGD was suggested to be an important driver of evolution, also in hexapod animals. RESULTS Here, we analyzed 20 high-quality hexapod genomes using whole-paranome distributions of estimated synonymous distances (KS), patterns of within-genome co-linearity, and phylogenomic gene tree-species tree reconciliation methods. We observe an abundance of gene duplicates in the majority of these hexapod genomes, yet we find little evidence for WGD. The majority of gene duplicates seem to have originated through small-scale gene duplication processes. We did detect segmental duplications in six genomes, but these lacked the within-genome co-linearity signature typically associated with WGD, and the age of these duplications did not coincide with particular peaks in KS distributions. Furthermore, statistical gene tree-species tree reconciliation failed to support all but one of the previously hypothesized WGDs. CONCLUSIONS Our analyses therefore provide very limited evidence for WGD having played a significant role in the evolution of hexapods and suggest that alternative mechanisms drive gene duplication events in this group of animals. For instance, we propose that, along with small-scale gene duplication events, episodes of increased transposable element activity could have been an important source for gene duplicates in hexapods.
Collapse
Affiliation(s)
- Dick Roelofs
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Keygene N.V, Agro Business Park 90, 6708 PW, Wageningen, The Netherlands
| | - Arthur Zwaenepoel
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Tom Sistermans
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Joey Nap
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Andries A Kampfraath
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Yves Van de Peer
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, Center for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0028, South Africa
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Ken Kraaijeveld
- Origins Center, Nijenborgh 7, 9747AG, Groningen, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Pervaiz N, Shakeel N, Qasim A, Zehra R, Anwar S, Rana N, Xue Y, Zhang Z, Bao Y, Abbasi AA. Evolutionary history of the human multigene families reveals widespread gene duplications throughout the history of animals. BMC Evol Biol 2019; 19:128. [PMID: 31221090 PMCID: PMC6585022 DOI: 10.1186/s12862-019-1441-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hypothesis that vertebrates have experienced two ancient, whole genome duplications (WGDs) is of central interest to evolutionary biology and has been implicated in evolution of developmental complexity. Three-way and Four-way paralogy regions in human and other vertebrate genomes are considered as vital evidence to support this hypothesis. Alternatively, it has been proposed that such paralogy regions are created by small-scale duplications that occurred at different intervals over the evolution of life. RESULTS To address this debate, the present study investigates the evolutionary history of multigene families with at least three-fold representation on human chromosomes 1, 2, 8 and 20. Phylogenetic analysis and the tree topology comparisons classified the members of 36 multigene families into four distinct co-duplicated groups. Gene families falling within the same co-duplicated group might have duplicated together, whereas genes belong to different co-duplicated groups might have distinct evolutionary origins. CONCLUSION Taken together with previous investigations, the current study yielded no proof in favor of WGDs hypothesis. Rather, it appears that the vertebrate genome evolved as a result of small-scale duplication events, that cover the entire span of the animals' history.
Collapse
Affiliation(s)
- Nashaiman Pervaiz
- National Center for Bioinformatics, Programme of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nazia Shakeel
- National Center for Bioinformatics, Programme of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ayesha Qasim
- National Center for Bioinformatics, Programme of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rabail Zehra
- National Center for Bioinformatics, Programme of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saneela Anwar
- National Center for Bioinformatics, Programme of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Neenish Rana
- National Center for Bioinformatics, Programme of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yongbiao Xue
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhang Zhang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Bao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Programme of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
17
|
Zhang R, Wang FG, Zhang J, Shang H, Liu L, Wang H, Zhao GH, Shen H, Yan YH. Dating Whole Genome Duplication in Ceratopteris thalictroides and Potential Adaptive Values of Retained Gene Duplicates. Int J Mol Sci 2019; 20:ijms20081926. [PMID: 31010109 PMCID: PMC6515051 DOI: 10.3390/ijms20081926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Whole-genome duplications (WGDs) are widespread in plants and frequently coincide with global climatic change events, such as the Cretaceous–Tertiary (KT) extinction event approximately 65 million years ago (mya). Ferns have larger genomes and higher chromosome numbers than seed plants, which likely resulted from multiple rounds of polyploidy. Here, we use diploid and triploid material from a model fern species, Ceratopteris thalictroides, for the detection of WGDs. High-quality RNA-seq data was used to infer the number of synonymous substitutions per synonymous site (Ks) between paralogs; Ks age distribution and absolute dating approach were used to determine the age of WGD events. Evidence of an ancient WGD event with a Ks peak value of approximately 1.2 was obtained for both samples; however, the Ks frequency distributions varied significantly. Importantly, we dated the WGD event at 51–53 mya, which coincides with the Paleocene-Eocene Thermal Maximum (PETM), when the Earth became warmer and wetter than any other period during the Cenozoic. Duplicate genes were preferentially retained for specific functions, such as environment response, further support that the duplicates may have promoted quick adaption to environmental changes and potentially resulted in evolutionary success, especially for pantropical species, such as C. thalictroides, which exhibits higher temperature tolerance.
Collapse
Affiliation(s)
- Rui Zhang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Fa-Guo Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Jiao Zhang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Hui Shang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Li Liu
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Hao Wang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Guo-Hua Zhao
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Hui Shen
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| | - Yue-Hong Yan
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai 201602, China.
- Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai 201602, China.
| |
Collapse
|
18
|
Lü H, Li J, Huang Y, Zhang M, Zhang S, Wu J. Genome-wide identification, expression and functional analysis of the phosphofructokinase gene family in Chinese white pear (Pyrus bretschneideri). Gene 2019; 702:133-142. [PMID: 30904717 DOI: 10.1016/j.gene.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/29/2022]
Abstract
Phosphofructokinase plays an essential role in sugar metabolism in plants. Plants possess two types of phosphofructokinase proteins for phosphorylation of fructose-6-phosphate, the pyrophosphate-dependent fructose-6-phosphate phosphotransferase (PFP), and the ATP-dependent phosphofructokinase (PFK). Until now, the gene evolution, expression patterns, and functions of phosphofructokinase proteins were unknown in pear. In this report, 14 phosphofructokinase genes were identified in pear. The phylogenetic tree indicated that the phosphofructokinase gene family could be grouped into two subfamilies, with 10 genes belonging to the PbPFK subfamily, and 4 genes belonging to the PbPFP subfamily. Conserved motifs and exon numbers of the phosphofructokinase were found in pear and other six species. The evolution analysis indicated that WGD/Segmental and dispersed duplications were the main duplication models for the phosphofructokinase genes expansion in pear and other six species. Analysis of cis-regulatory element sequences of all phosphofructokinase genes identified light regulation and the MYB binding site in the promoter of all pear phosphofructokinase genes, suggesting that phosphofructokinase might could be regulated by light and MYB transcription factors (TFs). Gene expression patterns revealed that PbPFP1 showed similar pattern with sorbitol contents, suggesting important contributions to sugar accumulation during fruit development. Further functional analysis indicated that the phosphofructokinase gene PbPFP1 was localized on plasma membrane compartment, indicating that PbPFP1 had function in plasma membrane. Transient transformation of PbPFP1 in pear fruits led to significant increases of fructose and sorbitol compared to controls. Overall, our study provides important insights into the gene expression patterns and important potential functions of phosphofructokinase for sugar accumulation in pear fruits, which will help to enrich understanding of sugar-related bio-pathways and lay the molecular basis for fruit quality improvement.
Collapse
Affiliation(s)
- Hongmei Lü
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua Huang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
19
|
Abstract
Genomes appear similar to natural language texts, and protein domains can be treated as analogs of words. To investigate the linguistic properties of genomes further, we calculated the complexity of the “protein languages” in all major branches of life and identified a nearly universal value of information gain associated with the transition from a random domain arrangement to the current protein domain architecture. An exploration of the evolutionary relationship of the protein languages identified the domain combinations that discriminate between the major branches of cellular life. We conclude that there exists a “quasi-universal grammar” of protein domains and that the nearly constant information gain we identified corresponds to the minimal complexity required to maintain a functional cell. From an abstract, informational perspective, protein domains appear analogous to words in natural languages in which the rules of word association are dictated by linguistic rules, or grammar. Such rules exist for protein domains as well, because only a small fraction of all possible domain combinations is viable in evolution. We employ a popular linguistic technique, n-gram analysis, to probe the “proteome grammar”—that is, the rules of association of domains that generate various domain architectures of proteins. Comparison of the complexity measures of “protein languages” in major branches of life shows that the relative entropy difference (information gain) between the observed domain architectures and random domain combinations is highly conserved in evolution and is close to being a universal constant, at ∼1.2 bits. Substantial deviations from this constant are observed in only two major groups of organisms: a subset of Archaea that appears to be cells simplified to the limit, and animals that display extreme complexity. We also identify the n-grams that represent signatures of the major branches of cellular life. The results of this analysis bolster the analogy between genomes and natural language and show that a “quasi-universal grammar” underlies the evolution of domain architectures in all divisions of cellular life. The nearly universal value of information gain by the domain architectures could reflect the minimum complexity of signal processing that is required to maintain a functioning cell.
Collapse
|
20
|
Gao B, Chen M, Li X, Liang Y, Zhu F, Liu T, Zhang D, Wood AJ, Oliver MJ, Zhang J. Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors. BMC PLANT BIOLOGY 2018; 18:256. [PMID: 30367626 PMCID: PMC6204039 DOI: 10.1186/s12870-018-1437-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/23/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Facilitated by the rapid progress of sequencing technology, comparative genomic studies in plants have unveiled recurrent whole genome duplication (i.e. polyploidization) events throughout plant evolution. The evolutionary past of plant genes should be analyzed in a background of recurrent polyploidy events in distinctive plant lineages. The Vascular Plant One Zinc-finger (VOZ) gene family encode transcription factors associated with a number of important traits including control of flowering time and photoperiodic pathways, but the evolutionary trajectory of this gene family remains uncharacterized. RESULTS In this study, we deciphered the evolutionary history of the VOZ gene family by analyses of 107 VOZ genes in 46 plant genomes using integrated methods: phylogenic reconstruction, Ks-based age estimation and genomic synteny comparisons. By scrutinizing the VOZ gene family phylogeny the core eudicot γ event was well circumscribed, and relics of the precommelinid τ duplication event were detected by incorporating genes from oil palm and banana. The more recent T and ρ polyploidy events, closely coincident with the species diversification in Solanaceae and Poaceae, respectively, were also identified. Other important polyploidy events captured included the "salicoid" event in poplar and willow, the "early legume" and "soybean specific" events in soybean, as well as the recent polyploidy event in Physcomitrella patens. Although a small transcription factor gene family, the evolutionary history of VOZ genes provided an outstanding record of polyploidy events in plants. The evolutionary past of VOZ gene family demonstrated a close correlation with critical plant polyploidy events which generated species diversification and provided answer to Darwin's "abominable mystery". CONCLUSIONS We deciphered the evolutionary history of VOZ transcription factor family in plants and ancestral polyploidy events in plants were recapitulated simultaneously. This analysis allowed for the generation of an idealized plant gene tree demonstrating distinctive retention and fractionation patterns following polyploidy events.
Collapse
Affiliation(s)
- Bei Gao
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Moxian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoshuang Li
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Yuqing Liang
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Fuyuan Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037 China
| | - Tieyuan Liu
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Daoyuan Zhang
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| | - Andrew J. Wood
- Department of Plant Biology, Southern Illinois University-Carbondale, Carbondale, IL 62901-6509 USA
| | - Melvin J. Oliver
- USDA-ARS, Plant Genetic Research Unit, University of Missouri, Columbia, MO 65211 USA
| | - Jianhua Zhang
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
21
|
Mattenberger F, Sabater-Muñoz B, Toft C, Sablok G, Fares MA. Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomycotina. DNA Res 2018. [PMID: 28633360 PMCID: PMC5726480 DOI: 10.1093/dnares/dsx025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Gene duplication is an important source of novelties and genome complexity. What genes are preserved as duplicated through long evolutionary times can shape the evolution of innovations. Identifying factors that influence gene duplicability is therefore an important aim in evolutionary biology. Here, we show that in the yeast Saccharomyces cerevisiae the levels of gene expression correlate with gene duplicability, its divergence, and transcriptional plasticity. Genes that were highly expressed before duplication are more likely to be preserved as duplicates for longer evolutionary times and wider phylogenetic ranges than genes that were lowly expressed. Duplicates with higher expression levels exhibit greater divergence between their gene copies. Duplicates that exhibit higher expression divergence are those enriched for TATA-containing promoters. These duplicates also show transcriptional plasticity, which seems to be involved in the origin of adaptations to environmental stresses in yeast. While the expression properties of genes strongly affect their duplicability, divergence and transcriptional plasticity are enhanced after gene duplication. We conclude that highly expressed genes are more likely to be preserved as duplicates due to their promoter architectures, their greater tolerance to expression noise, and their ability to reduce the noise-plasticity conflict.
Collapse
Affiliation(s)
- Florian Mattenberger
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Systems Biology of Molecular Interactions and Regulation Department, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones, Científicas-Universitat de Valencia (CSIC-UV), Valencia 46980, Spain
| | - Beatriz Sabater-Muñoz
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Systems Biology of Molecular Interactions and Regulation Department, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones, Científicas-Universitat de Valencia (CSIC-UV), Valencia 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Christina Toft
- Department of Genetics, University of Valencia, Burjasot, Valencia 46100, Spain.,Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Burjasot, Valencia, Spain
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Systems Biology of Molecular Interactions and Regulation Department, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones, Científicas-Universitat de Valencia (CSIC-UV), Valencia 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| |
Collapse
|
22
|
Genome Wide Identification, Evolutionary, and Expression Analysis of VQ Genes from Two Pyrus Species. Genes (Basel) 2018; 9:genes9040224. [PMID: 29690608 PMCID: PMC5924566 DOI: 10.3390/genes9040224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/27/2023] Open
Abstract
The VQ motif-containing gene, a member of the plant-specific genes, is involved in the plant developmental process and various stress responses. The VQ motif-containing gene family has been studied in several plants, such as rice (Oryza sativa), maize (Zea mays), and Arabidopsis (Arabidopsis thaliana). However, no systematic study has been performed in Pyrus species, which have important economic value. In our study, we identified 41 and 28 VQ motif-containing genes in Pyrus bretschneideri and Pyrus communis, respectively. Phylogenetic trees were calculated using A. thaliana and O. sativa VQ motif-containing genes as a template, allowing us to categorize these genes into nine subfamilies. Thirty-two and eight paralogous of VQ motif-containing genes were found in P. bretschneideri and P. communis, respectively, showing that the VQ motif-containing genes had a more remarkable expansion in P. bretschneideri than in P. communis. A total of 31 orthologous pairs were identified from the P. bretschneideri and P. communis VQ motif-containing genes. Additionally, among the paralogs, we found that these duplication gene pairs probably derived from segmental duplication/whole-genome duplication (WGD) events in the genomes of P. bretschneideri and P. communis, respectively. The gene expression profiles in both P. bretschneideri and P. communis fruits suggested functional redundancy for some orthologous gene pairs derived from a common ancestry, and sub-functionalization or neo-functionalization for some of them. Our study provided the first systematic evolutionary analysis of the VQ motif-containing genes in Pyrus, and highlighted the diversification and duplication of VQ motif-containing genes in both P. bretschneideri and P. communis.
Collapse
|
23
|
Gregg WCT, Ather SH, Hahn MW. Gene-Tree Reconciliation with MUL-Trees to Resolve Polyploidy Events. Syst Biol 2018; 66:1007-1018. [PMID: 28419377 DOI: 10.1093/sysbio/syx044] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/30/2017] [Indexed: 11/13/2022] Open
Abstract
Polyploidy can have a huge impact on the evolution of species, and it is a common occurrence, especially in plants. The two types of polyploids-autopolyploids and allopolyploids-differ in the level of divergence between the genes that are brought together in the new polyploid lineage. Because allopolyploids are formed via hybridization, the homoeologous copies of genes within them are at least as divergent as orthologs in the parental species that came together to form them. This means that common methods for estimating the parental lineages of allopolyploidy events are not accurate, and can lead to incorrect inferences about the number of gene duplications and losses. Here, we have adapted an algorithm for topology-based gene-tree reconciliation to work with multi-labeled trees (MUL-trees). By definition, MUL-trees have some tips with identical labels, which makes them a natural representation of the genomes of polyploids. Using this new reconciliation algorithm we can: accurately place allopolyploidy events on a phylogeny, identify the parental lineages that hybridized to form allopolyploids, distinguish between allo-, auto-, and (in most cases) no polyploidy, and correctly count the number of duplications and losses in a set of gene trees. We validate our method using gene trees simulated with and without polyploidy, and revisit the history of polyploidy in data from the clades including both baker's yeast and bread wheat. Our re-analysis of the yeast data confirms the allopolyploid origin and parental lineages previously identified for this group. The method presented here should find wide use in the growing number of genomes from species with a history of polyploidy. [Polyploidy; reconciliation; whole-genome duplication.].
Collapse
Affiliation(s)
- W C Thomas Gregg
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - S Hussain Ather
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Matthew W Hahn
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
24
|
Darby CA, Stolzer M, Ropp PJ, Barker D, Durand D. Xenolog classification. Bioinformatics 2017; 33:640-649. [PMID: 27998934 PMCID: PMC5860392 DOI: 10.1093/bioinformatics/btw686] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/26/2016] [Indexed: 01/31/2023] Open
Abstract
Motivation Orthology analysis is a fundamental tool in comparative genomics. Sophisticated methods have been developed to distinguish between orthologs and paralogs and to classify paralogs into subtypes depending on the duplication mechanism and timing, relative to speciation. However, no comparable framework exists for xenologs: gene pairs whose history, since their divergence, includes a horizontal transfer. Further, the diversity of gene pairs that meet this broad definition calls for classification of xenologs with similar properties into subtypes. Results We present a xenolog classification that uses phylogenetic reconciliation to assign each pair of genes to a class based on the event responsible for their divergence and the historical association between genes and species. Our classes distinguish between genes related through transfer alone and genes related through duplication and transfer. Further, they separate closely-related genes in distantly-related species from distantly-related genes in closely-related species. We present formal rules that assign gene pairs to specific xenolog classes, given a reconciled gene tree with an arbitrary number of duplications and transfers. These xenology classification rules have been implemented in software and tested on a collection of ∼13 000 prokaryotic gene families. In addition, we present a case study demonstrating the connection between xenolog classification and gene function prediction. Availability and Implementation The xenolog classification rules have been implemented in N otung 2.9, a freely available phylogenetic reconciliation software package. http://www.cs.cmu.edu/~durand/Notung . Gene trees are available at http://dx.doi.org/10.7488/ds/1503 . Contact durand@cmu.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Charlotte A Darby
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Maureen Stolzer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Patrick J Ropp
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel Barker
- School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TH, UK
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Abstract
The study of evolutionary relationships among protein sequences was one of the first applications of bioinformatics. Since then, and accompanying the wealth of biological data produced by genome sequencing and other high-throughput techniques, the use of bioinformatics in general and phylogenetics in particular has been gaining ground in the study of protein and proteome evolution. Nowadays, the use of phylogenetics is instrumental not only to infer the evolutionary relationships among species and their genome sequences, but also to reconstruct ancestral states of proteins and proteomes and hence trace the paths followed by evolution. Here I survey recent progress in the elucidation of mechanisms of protein and proteome evolution in which phylogenetics has played a determinant role.
Collapse
Affiliation(s)
- Toni Gabaldón
- Bioinformatics Department, Centro de Investigación Principe Felipe
| |
Collapse
|
26
|
Robertson FM, Gundappa MK, Grammes F, Hvidsten TR, Redmond AK, Lien S, Martin SAM, Holland PWH, Sandve SR, Macqueen DJ. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biol 2017; 18:111. [PMID: 28615063 PMCID: PMC5470254 DOI: 10.1186/s13059-017-1241-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The functional divergence of duplicate genes (ohnologues) retained from whole genome duplication (WGD) is thought to promote evolutionary diversification. However, species radiation and phenotypic diversification are often temporally separated from WGD. Salmonid fish, whose ancestor underwent WGD by autotetraploidization ~95 million years ago, fit such a 'time-lag' model of post-WGD radiation, which occurred alongside a major delay in the rediploidization process. Here we propose a model, 'lineage-specific ohnologue resolution' (LORe), to address the consequences of delayed rediploidization. Under LORe, speciation precedes rediploidization, allowing independent ohnologue divergence in sister lineages sharing an ancestral WGD event. RESULTS Using cross-species sequence capture, phylogenomics and genome-wide analyses of ohnologue expression divergence, we demonstrate the major impact of LORe on salmonid evolution. One-quarter of each salmonid genome, harbouring at least 4550 ohnologues, has evolved under LORe, with rediploidization and functional divergence occurring on multiple independent occasions >50 million years post-WGD. We demonstrate the existence and regulatory divergence of many LORe ohnologues with functions in lineage-specific physiological adaptations that potentially facilitated salmonid species radiation. We show that LORe ohnologues are enriched for different functions than 'older' ohnologues that began diverging in the salmonid ancestor. CONCLUSIONS LORe has unappreciated significance as a nested component of post-WGD divergence that impacts the functional properties of genes, whilst providing ohnologues available solely for lineage-specific adaptation. Under LORe, which is predicted following many WGD events, the functional outcomes of WGD need not appear 'explosively', but can arise gradually over tens of millions of years, promoting lineage-specific diversification regimes under prevailing ecological pressures.
Collapse
Affiliation(s)
- Fiona M Robertson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Manu Kumar Gundappa
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Fabian Grammes
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Torgeir R Hvidsten
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway.,Umeå Plant Science Centre, Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90187, Umeå, Sweden
| | - Anthony K Redmond
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.,Centre for Genome-Enabled Biology & Medicine, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Peter W H Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Simen R Sandve
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Daniel J Macqueen
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
27
|
Abstract
Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity.
Collapse
|
28
|
Li J, Qin M, Qiao X, Cheng Y, Li X, Zhang H, Wu J. A New Insight into the Evolution and Functional Divergence of SWEET Transporters in Chinese White Pear (Pyrus bretschneideri). PLANT & CELL PHYSIOLOGY 2017; 58:839-850. [PMID: 28339862 DOI: 10.1093/pcp/pcx025] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/04/2017] [Indexed: 05/09/2023]
Abstract
SWEET genes are a recently identified plant gene family that play an indispensable role in sugar efflux. However, no systematic study has been performed in pear. In this research, 18 SWEET transporters identified in pear, almost twice the number found in woodland strawberry and Japanese apricot, were divided into four clades. Conserved motifs and six exons of the SWEET transporters were found in six species. SWEET transporters contained seven transmembrane segments (TMSs) that evolved from an internal duplication of an ancestral three-TMSs unit, connected by TMS4. This is the first direct evidence identifying internal repeats through bioinformatics analysis. Whole-genome duplication (WGD) or segmental duplication and dispersed duplication represent the main driving forces for SWEET family evolution in six species, with former duplications more important in pear. Gene expression results suggested that PbSWEET15 and PbSWEET17 have no expression in any tissues because of critical lost residues and that 62.5% of PbSWEET duplicate gene pairs have functional divergence. Additionally, PbSWEET6, PbSWEET7 and PbSWEET14 were found to play important roles in sucrose efflux from leaves, and the high expression of PbSWEET1 and PbSWEET2 might contribute to unloading sucrose from the phloem in the stem. Finally, PbSWEET5, PbSWEET9 and PbSWEET10 might contribute to pollen development. Overall, our study provides important insights into the evolution of the SWEET gene family in pear and four other Rosaceae, and the important candidate PbSWEET genes involved in the development of different tissues were identified in pear.
Collapse
Affiliation(s)
- Jiaming Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenhe District, Shenyang, Liaoning, China
| | - Mengfan Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yinsheng Cheng
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Xiaolong Li
- Laboratory of Fruit Quality Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Huping Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural SciencesZhengzhou, China
- Henan Provincial Key Laboratory for Oil Crops ImprovementZhengzhou, China
| | - Jun Wu
- Key Laboratory of Soybean Cultivation of Ministry of Agriculture China, Soybean Research Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| |
Collapse
|
29
|
Liu Y, Wang J, Ge W, Wang Z, Li Y, Yang N, Sun S, Zhang L, Wang X. Two Highly Similar Poplar Paleo-subgenomes Suggest an Autotetraploid Ancestor of Salicaceae Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:571. [PMID: 28446920 PMCID: PMC5388744 DOI: 10.3389/fpls.2017.00571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/29/2017] [Indexed: 05/12/2023]
Abstract
As a model plant to study perennial trees in the Salicaceae family, the poplar (Populus trichocarpa) genome was sequenced, revealing recurrent paleo-polyploidizations during its evolution. A comparative and hierarchical alignment of its genome to a well-selected reference genome would help us better understand poplar's genome structure and gene family evolution. Here, by adopting the relatively simpler grape (Vitis vinifera) genome as reference, and by inferring both intra- and inter-genomic gene collinearity, we produced a united alignment of these two genomes and hierarchically distinguished the layers of paralogous and orthologous genes, as related to recursive polyploidizations and speciation. We uncovered homologous blocks in the grape and poplar genomes and also between them. Moreover, we characterized the genes missing and found that poplar had two considerably similar subgenomes (≤0.05 difference in gene deletion) produced by the Salicaceae-common tetraploidization, suggesting its autotetraploid nature. Taken together, this work provides a timely and valuable dataset of orthologous and paralogous genes for further study of the genome structure and functional evolution of poplar and other Salicaceae plants.
Collapse
Affiliation(s)
- Yinzhe Liu
- School of Life Science, North China University of Science and TechnologyTangshan, China
- Center for Genomics and Computational Biology, North China University of Science and TechnologyTangshan, China
| | - Jinpeng Wang
- School of Life Science, North China University of Science and TechnologyTangshan, China
- Center for Genomics and Computational Biology, North China University of Science and TechnologyTangshan, China
| | - Weina Ge
- School of Life Science, North China University of Science and TechnologyTangshan, China
- Center for Genomics and Computational Biology, North China University of Science and TechnologyTangshan, China
| | - Zhenyi Wang
- School of Life Science, North China University of Science and TechnologyTangshan, China
- Center for Genomics and Computational Biology, North China University of Science and TechnologyTangshan, China
| | - Yuxian Li
- School of Life Science, North China University of Science and TechnologyTangshan, China
- Center for Genomics and Computational Biology, North China University of Science and TechnologyTangshan, China
| | - Nanshan Yang
- School of Life Science, North China University of Science and TechnologyTangshan, China
| | - Sangrong Sun
- School of Life Science, North China University of Science and TechnologyTangshan, China
| | - Liwei Zhang
- School of Life Science, North China University of Science and TechnologyTangshan, China
| | - Xiyin Wang
- School of Life Science, North China University of Science and TechnologyTangshan, China
- Center for Genomics and Computational Biology, North China University of Science and TechnologyTangshan, China
- *Correspondence: Xiyin Wang,
| |
Collapse
|
30
|
van Hooff JJE, Snel B, Seidl MF. Small homologous blocks in phytophthora genomes do not point to an ancient whole-genome duplication. Genome Biol Evol 2016; 6:1079-85. [PMID: 24760277 PMCID: PMC4040989 DOI: 10.1093/gbe/evu081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomes of the plant-pathogenic genus Phytophthora are characterized by small duplicated blocks consisting of two consecutive genes (2HOM blocks) and by an elevated abundance of similarly aged gene duplicates. Both properties, in particular the presence of 2HOM blocks, have been attributed to a whole-genome duplication (WGD) at the last common ancestor of Phytophthora. However, large intraspecies synteny—compelling evidence for a WGD—has not been detected. Here, we revisited the WGD hypothesis by deducing the age of 2HOM blocks. Two independent timing methods reveal that the majority of 2HOM blocks arose after divergence of the Phytophthora lineages. In addition, a large proportion of the 2HOM block copies colocalize on the same scaffold. Therefore, the presence of 2HOM blocks does not support a WGD at the last common ancestor of Phytophthora. Thus, genome evolution of Phytophthora is likely driven by alternative mechanisms, such as bursts of transposon activity.
Collapse
Affiliation(s)
- Jolien J E van Hooff
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, The Netherlands
| | | | | |
Collapse
|
31
|
Singh PP, Arora J, Isambert H. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes. PLoS Comput Biol 2015; 11:e1004394. [PMID: 26181593 PMCID: PMC4504502 DOI: 10.1371/journal.pcbi.1004394] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.
Collapse
Affiliation(s)
- Param Priya Singh
- CNRS UMR168, UPMC, Institut Curie, Research Center, Paris, France
- * E-mail: (PPS); (HI)
| | - Jatin Arora
- CNRS UMR168, UPMC, Institut Curie, Research Center, Paris, France
| | - Hervé Isambert
- CNRS UMR168, UPMC, Institut Curie, Research Center, Paris, France
- * E-mail: (PPS); (HI)
| |
Collapse
|
32
|
Wang X, Wang J, Jin D, Guo H, Lee TH, Liu T, Paterson AH. Genome Alignment Spanning Major Poaceae Lineages Reveals Heterogeneous Evolutionary Rates and Alters Inferred Dates for Key Evolutionary Events. MOLECULAR PLANT 2015; 8:885-98. [PMID: 25896453 DOI: 10.1016/j.molp.2015.04.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/13/2015] [Accepted: 04/06/2015] [Indexed: 05/06/2023]
Abstract
Multiple comparisons among genomes can clarify their evolution, speciation, and functional innovations. To date, the genome sequences of eight grasses representing the most economically important Poaceae (grass) clades have been published, and their genomic-level comparison is an essential foundation for evolutionary, functional, and translational research. Using a formal and conservative approach, we aligned these genomes. Direct comparison of paralogous gene pairs all duplicated simultaneously reveal striking variation in evolutionary rates among whole genomes, with nucleotide substitution slowest in rice and up to 48% faster in other grasses, adding a new dimension to the value of rice as a grass model. We reconstructed ancestral genome contents for major evolutionary nodes, potentially contributing to understanding the divergence and speciation of grasses. Recent fossil evidence suggests revisions of the estimated dates of key evolutionary events, implying that the pan-grass polyploidization occurred ∼96 million years ago and could not be related to the Cretaceous-Tertiary mass extinction as previously inferred. Adjusted dating to reflect both updated fossil evidence and lineage-specific evolutionary rates suggested that maize subgenome divergence and maize-sorghum divergence were virtually simultaneous, a coincidence that would be explained if polyploidization directly contributed to speciation. This work lays a solid foundation for Poaceae translational genomics.
Collapse
Affiliation(s)
- Xiyin Wang
- Plant Genome Mapping Laboratory, University of Athens, GA 30602, USA; Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China; College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Jingpeng Wang
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China; College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Dianchuan Jin
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China; College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Athens, GA 30602, USA; Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Tae-Ho Lee
- Plant Genome Mapping Laboratory, University of Athens, GA 30602, USA
| | - Tao Liu
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China; College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Athens, GA 30602, USA; Department of Plant Biology, University of Georgia, Athens, GA 30602, USA; Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
33
|
Massip F, Sheinman M, Schbath S, Arndt PF. How evolution of genomes is reflected in exact DNA sequence match statistics. Mol Biol Evol 2014; 32:524-35. [PMID: 25398628 PMCID: PMC4298173 DOI: 10.1093/molbev/msu313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genome evolution is shaped by a multitude of mutational processes, including point mutations, insertions, and deletions of DNA sequences, as well as segmental duplications. These mutational processes can leave distinctive qualitative marks in the statistical features of genomic DNA sequences. One such feature is the match length distribution (MLD) of exactly matching sequence segments within an individual genome or between the genomes of related species. These have been observed to exhibit characteristic power law decays in many species. Here, we show that simple dynamical models consisting solely of duplication and mutation processes can already explain the characteristic features of MLDs observed in genomic sequences. Surprisingly, we find that these features are largely insensitive to details of the underlying mutational processes and do not necessarily rely on the action of natural selection. Our results demonstrate how analyzing statistical features of DNA sequences can help us reveal and quantify the different mutational processes that underlie genome evolution.
Collapse
Affiliation(s)
- Florian Massip
- Department for Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany UR1077, Unite Mathematiques Informatique et Genome, INRA, domaine de Vilvert, Jouy-en-Josas, France
| | - Michael Sheinman
- Department for Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Sophie Schbath
- UR1077, Unite Mathematiques Informatique et Genome, INRA, domaine de Vilvert, Jouy-en-Josas, France
| | - Peter F Arndt
- Department for Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| |
Collapse
|
34
|
Phylogenetic investigation of human FGFR-bearing paralogons favors piecemeal duplication theory of vertebrate genome evolution. Mol Phylogenet Evol 2014; 81:49-60. [PMID: 25245952 DOI: 10.1016/j.ympev.2014.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Understanding the genetic mechanisms underlying the organismal complexity and origin of novelties during vertebrate history is one of the central goals of evolutionary biology. Ohno (1970) was the first to postulate that whole genome duplications (WGD) have played a vital role in the evolution of new gene functions: permitting an increase in morphological, physiological and anatomical complexity during early vertebrate history. RESULTS Here, we analyze the evolutionary history of human FGFR-bearing paralogon (human autosome 4/5/8/10) by the phylogenetic analysis of multigene families with triplicate and quadruplicate distribution on these chromosomes. Our results categorized the histories of 21 families into discrete co-duplicated groups. Genes of a particular co-duplicated group exhibit identical evolutionary history and have duplicated in concert with each other, whereas genes belonging to different groups have dissimilar histories and have not duplicated concurrently. CONCLUSION Taken together with our previously published data, we submit that there is sufficient empirical evidence to disprove the 1R/2R hypothesis and to support the general prediction that vertebrate genome evolved by relatively small-scale, regional duplication events that spread across the history of life.
Collapse
|
35
|
Ambreen S, Khalil F, Abbasi AA. Integrating large-scale phylogenetic datasets to dissect the ancient evolutionary history of vertebrate genome. Mol Phylogenet Evol 2014; 78:1-13. [PMID: 24821622 DOI: 10.1016/j.ympev.2014.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/17/2014] [Accepted: 05/01/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND The vertebrate genome often contains closely spaced set of paralogous genes from distinct gene families on typically two, three or four different chromosomes (paralogons). This type of genome architecture is widely considered to be remnants of whole genome duplication events (WGD/2R). RESULTS Taking advantage of the well-annotated and high-quality human genomic sequence map as well as the ever-increasing accessibility of large-scale genomic sequence data from a diverse range of animal species, we investigated the evolutionary history of potential quadruplicated regions residing on human HOX-cluster bearing chromosomes (chromosomes 2/7/12/17). For this purpose a detailed phylogenetic analysis was performed for those multigene families, including members of at least three of the four HOX-bearing chromosomes. Topology comparison approach categorized the members of 63 families into distinct co-duplicated groups. Distinct gene families belonging to a particular co-duplicated group, exhibit similar evolutionary history and hence have duplicated concurrently, whereas genes of two different co-duplicated groups do not share their history and have not duplicated in concert with each other. CONCLUSIONS These results based on large-scale phylogenetic dataset yielded no evidence in favor of polyploidization events; instead it appears that triplicated and quadruplicated genomic segments on the human HOX-bearing chromosomes arose by small-scale duplication events that occurred at widely different time points in animal evolution.
Collapse
Affiliation(s)
- Sadaf Ambreen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Faiqa Khalil
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
36
|
Jourda C, Cardi C, Mbéguié-A-Mbéguié D, Bocs S, Garsmeur O, D'Hont A, Yahiaoui N. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications. THE NEW PHYTOLOGIST 2014; 202:986-1000. [PMID: 24716518 DOI: 10.1111/nph.12710] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/25/2013] [Indexed: 05/26/2023]
Abstract
Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling.
Collapse
Affiliation(s)
| | | | - Didier Mbéguié-A-Mbéguié
- CIRAD, UMR QUALISUD, F-97130, Capesterre-Belle-Eau, Guadeloupe, France
- CIRAD, UMR QUALISUD, F-34398, Montpellier, France
| | | | | | | | | |
Collapse
|
37
|
Exploiting a Reference Genome in Terms of Duplications: The Network of Paralogs and Single Copy Genes in Arabidopsis thaliana. BIOLOGY 2013; 2:1465-87. [PMID: 24833233 PMCID: PMC4009786 DOI: 10.3390/biology2041465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
Arabidopsis thaliana became the model organism for plant studies because of its small diploid genome, rapid lifecycle and short adult size. Its genome was the first among plants to be sequenced, becoming the reference in plant genomics. However, the Arabidopsis genome is characterized by an inherently complex organization, since it has undergone ancient whole genome duplications, followed by gene reduction, diploidization events and extended rearrangements, which relocated and split up the retained portions. These events, together with probable chromosome reductions, dramatically increased the genome complexity, limiting its role as a reference. The identification of paralogs and single copy genes within a highly duplicated genome is a prerequisite to understand its organization and evolution and to improve its exploitation in comparative genomics. This is still controversial, even in the widely studied Arabidopsis genome. This is also due to the lack of a reference bioinformatics pipeline that could exhaustively identify paralogs and singleton genes. We describe here a complete computational strategy to detect both duplicated and single copy genes in a genome, discussing all the methodological issues that may strongly affect the results, their quality and their reliability. This approach was used to analyze the organization of Arabidopsis nuclear protein coding genes, and besides classifying computationally defined paralogs into networks and single copy genes into different classes, it unraveled further intriguing aspects concerning the genome annotation and the gene relationships in this reference plant species. Since our results may be useful for comparative genomics and genome functional analyses, we organized a dedicated web interface to make them accessible to the scientific community
Collapse
|
38
|
Wang Y, Fan G, Liu Y, Sun F, Shi C, Liu X, Peng J, Chen W, Huang X, Cheng S, Liu Y, Liang X, Zhu H, Bian C, Zhong L, Lv T, Dong H, Liu W, Zhong X, Chen J, Quan Z, Wang Z, Tan B, Lin C, Mu F, Xu X, Ding Y, Guo AY, Wang J, Ke W. The sacred lotus genome provides insights into the evolution of flowering plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:557-67. [PMID: 23952714 DOI: 10.1111/tpj.12313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/04/2013] [Accepted: 08/12/2013] [Indexed: 05/07/2023]
Abstract
Sacred lotus (Nelumbo nucifera) is an ornamental plant that is also used for food and medicine. This basal eudicot species is especially important from an evolutionary perspective, as it occupies a critical phylogenetic position in flowering plants. Here we report the draft genome of a wild strain of sacred lotus. The assembled genome is 792 Mb, which is approximately 85-90% of genome size estimates. We annotated 392 Mb of repeat sequences and 36,385 protein-coding genes within the genome. Using these sequence data, we constructed a phylogenetic tree and confirmed the basal location of sacred lotus within eudicots. Importantly, we found evidence for a relatively recent whole-genome duplication event; any indication of the ancient paleo-hexaploid event was, however, absent. Genomic analysis revealed evidence of positive selection within 28 embryo-defective genes and one annexin gene that may be related to the long-term viability of sacred lotus seed. We also identified a significant expansion of starch synthase genes, which probably elevated starch levels within the rhizome of sacred lotus. Sequencing this strain of sacred lotus thus provided important insights into the evolution of flowering plant and revealed genetic mechanisms that influence seed dormancy and starch synthesis.
Collapse
Affiliation(s)
- Yun Wang
- Wuhan Vegetable Research Institute, Wuhan, 430065, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Guo H, Lee TH, Wang X, Paterson AH. Function relaxation followed by diversifying selection after whole-genome duplication in flowering plants. PLANT PHYSIOLOGY 2013; 162:769-78. [PMID: 23580595 PMCID: PMC3668069 DOI: 10.1104/pp.112.213447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 04/09/2013] [Indexed: 05/20/2023]
Abstract
Episodes of whole-genome duplication (WGD) followed by gene loss dominate the evolutionary history of flowering plants. Despite the importance of understanding gene evolution following WGD, little is known about the evolutionary dynamics of this process. In this study, we analyzed duplicated genes from three WGD events in the Arabidopsis (Arabidopsis thaliana) lineage using multiple data types. Most duplicated genes that have survived from the most recent WGD (α) are under purifying selection in modern Arabidopsis populations. Using the number of identified protein-protein interactions as a proxy for functional divergence, approximately 92.7% of α-duplicated genes were diverged in function from one another in modern Arabidopsis populations, indicating that their preservation is no longer explicable by dosage balance. Dosage-balanced retention declines with antiquity of duplication: 24.1% of α-duplicated gene pairs in Arabidopsis remain in dosage balance with interacting partners, versus 12.9% and 9.4% for the earlier β-duplication and γ-triplication. GO-slim (a cut-down version of gene ontologies) terms reinforce evidence from protein-protein interactions, showing that the putatively diverged gene pairs are adapted to different cellular components. We identified a group of α-duplicated genes that show higher than average single-nucleotide polymorphism density, indicating that a period of positive selection, potentially driving functional divergence, may have preceded the current phase of purifying selection. We propose three possible paths for the evolution of duplicated genes following WGD.
Collapse
|
40
|
Pujar A, Menda N, Bombarely A, Edwards JD, Strickler SR, Mueller LA. From manual curation to visualization of gene families and networks across Solanaceae plant species. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat028. [PMID: 23681907 PMCID: PMC3655285 DOI: 10.1093/database/bat028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High-quality manual annotation methods and practices need to be scaled to the increased rate of genomic data production. Curation based on gene families and gene networks is one approach that can significantly increase both curation efficiency and quality. The Sol Genomics Network (SGN; http://solgenomics.net) is a comparative genomics platform, with genetic, genomic and phenotypic information of the Solanaceae family and its closely related species that incorporates a community-based gene and phenotype curation system. In this article, we describe a manual curation system for gene families aimed at facilitating curation, querying and visualization of gene interaction patterns underlying complex biological processes, including an interface for efficiently capturing information from experiments with large data sets reported in the literature. Well-annotated multigene families are useful for further exploration of genome organization and gene evolution across species. As an example, we illustrate the system with the multigene transcription factor families, WRKY and Small Auxin Up-regulated RNA (SAUR), which both play important roles in responding to abiotic stresses in plants. Database URL:http://solgenomics.net/
Collapse
Affiliation(s)
- Anuradha Pujar
- Boyce Thompson Institute for Plant Research, 533, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
41
|
Evolutionary, structural and functional interplay of the IκB family members. PLoS One 2013; 8:e54178. [PMID: 23372681 PMCID: PMC3553144 DOI: 10.1371/journal.pone.0054178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/11/2012] [Indexed: 12/17/2022] Open
Abstract
A primary level of control for nuclear factor kappa B (NF-κB) is effected through its interactions with the inhibitor protein, inhibitor of kappa B (IκB). Several lines of evidence confirm the existence of multiple forms of IκB that appear to regulate NF-κB by distinct mechanisms. Therefore, we performed a comprehensive bioinformatics analysis to understand the evolutionary history and intrinsic functional diversity of IκB family members. Phylogenetic relationships were constructed to trace the evolution of the IκB family genes. Our phylogenetic analysis revealed 10 IκB subfamily members that clustered into 5 major clades. Since the ankyrin (ANK) domain appears to be more ancient than the Rel homology domain (RHD), our phylogenetic analysis suggests that some undefined ancestral set of ANK repeats acquired an RHD before any duplication and was later duplicated and then diverged into the different IκB subfamilies. Functional analysis identified several functionally divergent sites in the ANK repeat domains (ARDs) and revealed that this region has undergone strong purifying selection, suggesting its functional importance in IκB genes. Structural analysis showed that the major variations in the number of ANK repeats and high conformational changes in the finger loop ARD region contribute to the differing binding partner specificities, thereby leading to distinct IκB functions. In summary, our study has provided useful information about the phylogeny and structural and functional divergence of the IκB family. Additionally, we identified a number of amino acid sites that contribute to the predicted functional divergence of these proteins.
Collapse
|
42
|
Gosu V, Basith S, Durai P, Choi S. Molecular evolution and structural features of IRAK family members. PLoS One 2012; 7:e49771. [PMID: 23166766 PMCID: PMC3498205 DOI: 10.1371/journal.pone.0049771] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/12/2012] [Indexed: 02/04/2023] Open
Abstract
The interleukin-1 receptor-associated kinase (IRAK) family comprises critical signaling mediators of the TLR/IL-1R signaling pathways. IRAKs are Ser/Thr kinases. There are 4 members in the vertebrate genome (IRAK1, IRAK2, IRAKM, and IRAK4) and an IRAK homolog, Pelle, in insects. IRAK family members are highly conserved in vertebrates, but the evolutionary relationship between IRAKs in vertebrates and insects is not clear. To investigate the evolutionary history and functional divergence of IRAK members, we performed extensive bioinformatics analysis. The phylogenetic relationship between IRAK sequences suggests that gene duplication events occurred in the evolutionary lineage, leading to early vertebrates. A comparative phylogenetic analysis with insect homologs of IRAKs suggests that the Tube protein is a homolog of IRAK4, unlike the anticipated protein, Pelle. Furthermore, the analysis supports that an IRAK4-like kinase is an ancestral protein in the metazoan lineage of the IRAK family. Through functional analysis, several potentially diverged sites were identified in the common death domain and kinase domain. These sites have been constrained during evolution by strong purifying selection, suggesting their functional importance within IRAKs. In summary, our study highlighted the molecular evolution of the IRAK family, predicted the amino acids that contributed to functional divergence, and identified structural variations among the IRAK paralogs that may provide a starting point for further experimental investigations.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Shaherin Basith
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- * E-mail:
| |
Collapse
|
43
|
Asrar Z, Haq F, Abbasi AA. Fourfold paralogy regions on human HOX-bearing chromosomes: role of ancient segmental duplications in the evolution of vertebrate genome. Mol Phylogenet Evol 2012; 66:737-47. [PMID: 23142696 DOI: 10.1016/j.ympev.2012.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 10/27/2012] [Accepted: 10/29/2012] [Indexed: 01/26/2023]
Abstract
BACKGROUND Susumu Ohno's idea that modern vertebrates are degenerate polyploids (concept referred as 2R hypothesis) has been the subject of intense debate for past four decades. It was proposed that intra-genomic synteny regions (paralogons) in human genome are remains of ancient polyploidization events that occurred early in the vertebrate history. The quadruplicated paralogon centered on human HOX clusters is taken as evidence that human HOX-bearing chromosomes were structured by two rounds of whole genome duplication (WGD) events. RESULTS Evolutionary history of human HOX-bearing chromosomes (chromosomes 2/7/12/17) was evaluated by the phylogenetic analysis of multigene families with triplicated or quadruplicated distribution on these chromosomes. Topology comparison approach categorized the members of 44 families into four distinct co-duplicated groups. Distinct gene families belonging to a particular co-duplicated group, exhibit similar evolutionary history and hence have duplicated simultaneously, whereas genes of two distinct co-duplicated groups do not share their evolutionary history and have not duplicated in concert with each other. CONCLUSION The recovery of co-duplicated groups suggests that "ancient segmental duplications and rearrangements" is the most rational model of evolutionary events that have generated the triplicated and quadruplicated paralogy regions seen on the human HOX-bearing chromosomes.
Collapse
Affiliation(s)
- Zainab Asrar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | | |
Collapse
|
44
|
Zhou W, Li S, Liu Y, Qi X, Chen H, Cheng CHK, Liu X, Zhang Y, Lin H. The evolution of tachykinin/tachykinin receptor (TAC/TACR) in vertebrates and molecular identification of the TAC3/TACR3 system in zebrafish (Danio rerio). Mol Cell Endocrinol 2012; 361:202-12. [PMID: 22580006 DOI: 10.1016/j.mce.2012.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/26/2012] [Accepted: 04/20/2012] [Indexed: 11/18/2022]
Abstract
Tachykinins are a family of peptides that are conserved from invertebrates to mammals. However, little is known about the evolutionary history of tachykinin (TAC) and tachykinin receptor (TACR) genes in vertebrates, especially in the teleost group. In the present study, five TACs and six TACRs genes were identified in the zebrafish genome. Genomic synteny analysis and phylogenetic tree analysis indicate that the increased numbers of TAC and TACR genes in vertebrates are the result of both genome duplications and local individual gene duplication. The full-length cDNA sequences encoding multiple TAC3s (TAC3a and TAC3b) and TACR3s (TACR3a1, TACR3a2 and TACR3b) were subsequently cloned from zebrafish brain samples. Sequence analysis suggested that four putative neurokinin B (NKB)-like peptides (NKBa-13, NKBa-10, NKBb-13 and NKBb-11) might be generated by the processing of two zebrafish TAC3 precursors. Tissue distribution studies in zebrafish revealed that TAC3 and TACR3 are mainly expressed in the brain regions. The biological activities of four zebrafish NKB peptides and three TACR3s were further examined using transcription reporter assays in cultured eukaryotic cells. All the synthetic NKB peptides were able to evoke the downstream signaling events of TACR3s with the exception of NKBb-11. These results indicated that the multiple TAC/TACR genes identified in vertebrates evolved from gene duplication events and that the TAC3/TACR3 systems also operate in the teleost group.
Collapse
Affiliation(s)
- Wenyi Zhou
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vanneste K, Van de Peer Y, Maere S. Inference of genome duplications from age distributions revisited. Mol Biol Evol 2012; 30:177-90. [PMID: 22936721 DOI: 10.1093/molbev/mss214] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Whole-genome duplications (WGDs), thought to facilitate evolutionary innovations and adaptations, have been uncovered in many phylogenetic lineages. WGDs are frequently inferred from duplicate age distributions, where they manifest themselves as peaks against a small-scale duplication background. However, the interpretation of duplicate age distributions is complicated by the use of K(S), the number of synonymous substitutions per synonymous site, as a proxy for the age of paralogs. Two particular concerns are the stochastic nature of synonymous substitutions leading to increasing uncertainty in K(S) with increasing age since duplication and K(S) saturation caused by the inability of evolutionary models to fully correct for the occurrence of multiple substitutions at the same site. K(S) stochasticity is expected to erode the signal of older WGDs, whereas K(S) saturation may lead to artificial peaks in the distribution. Here, we investigate the consequences of these effects on K(S)-based age distributions and WGD inference by simulating the evolution of duplicated sequences according to predefined real age distributions and re-estimating the corresponding K(S) distributions. We show that, although K(S) estimates can be used for WGD inference far beyond the commonly accepted K(S) threshold of 1, K(S) saturation effects can cause artificial peaks at higher ages. Moreover, K(S) stochasticity and saturation may lead to confounded peaks encompassing multiple WGD events and/or saturation artifacts. We argue that K(S) effects need to be properly accounted for when inferring WGDs from age distributions and that the failure to do so could lead to false inferences.
Collapse
Affiliation(s)
- Kevin Vanneste
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | | | | |
Collapse
|
46
|
Polyploidy and the evolution of complex traits. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:292068. [PMID: 22900230 PMCID: PMC3413983 DOI: 10.1155/2012/292068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/29/2012] [Accepted: 06/05/2012] [Indexed: 12/14/2022]
Abstract
We explore how whole-genome duplications (WGDs) may have given rise to complex innovations in cellular networks, innovations that could not have evolved through sequential single-gene duplications. We focus on two classical WGD events, one in bakers' yeast and the other at the base of vertebrates (i.e., two rounds of whole-genome duplication: 2R-WGD). Two complex adaptations are discussed in detail: aerobic ethanol fermentation in yeast and the rewiring of the vertebrate developmental regulatory network through the 2R-WGD. These two examples, derived from diverged branches on the eukaryotic tree, boldly underline the evolutionary potential of WGD in facilitating major evolutionary transitions. We close by arguing that the evolutionary importance of WGD may require updating certain aspects of modern evolutionary theory, perhaps helping to synthesize a new evolutionary systems biology.
Collapse
|
47
|
Vekemans D, Proost S, Vanneste K, Coenen H, Viaene T, Ruelens P, Maere S, Van de Peer Y, Geuten K. Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. Mol Biol Evol 2012; 29:3793-806. [PMID: 22821009 DOI: 10.1093/molbev/mss183] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Comparative genome biology has unveiled the polyploid origin of all angiosperms and the role of recurrent polyploidization in the amplification of gene families and the structuring of genomes. Which species share certain ancient polyploidy events, and which do not, is ill defined because of the limited number of sequenced genomes and transcriptomes and their uneven phylogenetic distribution. Previously, it has been suggested that most, but probably not all, of the eudicots have shared an ancient hexaploidy event, referred to as the gamma triplication. In this study, detailed phylogenies of subfamilies of MADS-box genes suggest that the gamma triplication has occurred before the divergence of Gunnerales but after the divergence of Buxales and Trochodendrales. Large-scale phylogenetic and K(S)-based approaches on the inflorescence transcriptomes of Gunnera manicata (Gunnerales) and Pachysandra terminalis (Buxales) provide further support for this placement, enabling us to position the gamma triplication in the stem lineage of the core eudicots. This triplication likely initiated the functional diversification of key regulators of reproductive development in the core eudicots, comprising 75% of flowering plants. Although it is possible that the gamma event triggered early core eudicot diversification, our dating estimates suggest that the event occurred early in the stem lineage, well before the rapid speciation of the earliest core eudicot lineages. The evolutionary significance of this paleopolyploidy event may thus rather lie in establishing a species lineage that was resilient to extinction, but with the genomic potential for later diversification. We consider that the traits generated from this potential characterize extant core eudicots both chemically and morphologically.
Collapse
Affiliation(s)
- Dries Vekemans
- Department of Biology, KULeuven, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hoogewijs D, Dewilde S, Vierstraete A, Moens L, Vinogradov SN. A phylogenetic analysis of the globins in fungi. PLoS One 2012; 7:e31856. [PMID: 22384087 PMCID: PMC3287990 DOI: 10.1371/journal.pone.0031856] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/13/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND All globins belong to one of three families: the F (flavohemoglobin) and S (sensor) families that exhibit the canonical 3/3 α-helical fold, and the T (truncated 3/3 fold) globins characterized by a shortened 2/2 α-helical fold. All eukaryote 3/3 hemoglobins are related to the bacterial single domain F globins. It is known that Fungi contain flavohemoglobins and single domain S globins. Our aims are to provide a census of fungal globins and to examine their relationships to bacterial globins. RESULTS Examination of 165 genomes revealed that globins are present in >90% of Ascomycota and ~60% of Basidiomycota genomes. The S globins occur in Blastocladiomycota and Chytridiomycota in addition to the phyla that have FHbs. Unexpectedly, group 1 T globins were found in one Blastocladiomycota and one Chytridiomycota genome. Phylogenetic analyses were carried out on the fungal globins, alone and aligned with representative bacterial globins. The Saccharomycetes and Sordariomycetes with two FHbs form two widely divergent clusters separated by the remaining fungal sequences. One of the Saccharomycete groups represents a new subfamily of FHbs, comprising a previously unknown N-terminal and a FHb missing the C-terminal moiety of its reductase domain. The two Saccharomycete groups also form two clusters in the presence of bacterial FHbs; the surrounding bacterial sequences are dominated by Proteobacteria and Bacilli (Firmicutes). The remaining fungal FHbs cluster with Proteobacteria and Actinobacteria. The Sgbs cluster separately from their bacterial counterparts, except for the intercalation of two Planctomycetes and a Proteobacterium between the Fungi incertae sedis and the Blastocladiomycota and Chytridiomycota. CONCLUSION Our results are compatible with a model of globin evolution put forward earlier, which proposed that eukaryote F, S and T globins originated via horizontal gene transfer of their bacterial counterparts to the eukaryote ancestor, resulting from the endosymbiotic events responsible for the origin of mitochondria and chloroplasts.
Collapse
Affiliation(s)
- David Hoogewijs
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
49
|
Wang Y, Wang X, Paterson AH. Genome and gene duplications and gene expression divergence: a view from plants. Ann N Y Acad Sci 2012; 1256:1-14. [PMID: 22257007 DOI: 10.1111/j.1749-6632.2011.06384.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With many plant genomes sequenced, it is now clear that one distinguishing feature of angiosperm (flowering plant) genomes is their high frequency of whole-genome duplication. Single-gene duplication is also widespread in angiosperm genomes. Following various mechanisms of gene duplication, genes are often retained or lost in a biased manner, which has suggested recent models for gene family evolution, such as functional buffering and the gene balance hypothesis in addition to now-classical models, including neofunctionalization and subfunctionalization. Evolutionary consequences of gene duplication, often studied through analyzing gene expression divergence, have enhanced understanding of the biological significance of different mechanisms of gene duplication.
Collapse
Affiliation(s)
- Yupeng Wang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
50
|
Matita, a new retroelement from peanut: characterization and evolutionary context in the light of the Arachis A-B genome divergence. Mol Genet Genomics 2011; 287:21-38. [PMID: 22120641 DOI: 10.1007/s00438-011-0656-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 10/20/2011] [Indexed: 12/16/2022]
Abstract
Cultivated peanut is an allotetraploid with an AB-genome. In order to learn more of the genomic structure of peanut, we characterized and studied the evolution of a retrotransposon originally isolated from a resistance gene analog (RGA)-containing bacterial artificial chromosome (BAC) clone. It is a moderate copy number Ty1-copia retrotransposon from the Bianca lineage and we named it Matita. Fluorescent in situ hybridization (FISH) experiments showed that Matita is mainly located on the distal regions of chromosome arms and is of approximately equal frequency on both A- and B-chromosomes. Its chromosome-specific hybridization pattern facilitates the identification of individual chromosomes, a useful cytogenetic tool considering that chromosomes in peanut are mostly metacentric and of similar size. Phylogenetic analysis of Matita elements, molecular dating of transposition events, and an estimation of the evolutionary divergence of the most probable A- and B-donor species suggest that Matita underwent its last major burst of transposition activity at around the same time of the A- and B-genome divergence about 3.5 million years ago. By probing BAC libraries with overgos probes for Matita, resistance gene analogues, and single- or low-copy genes, it was demonstrated that Matita is not randomly distributed in the genome but exhibits a significant tendency of being more abundant near resistance gene homologues than near single-copy genes. The described work is a further step towards broadening the knowledge on genomic and chromosomal structure of peanut and on its evolution.
Collapse
|