1
|
Ashraf MU, Rose S, Ganesh CP. Difficult extubation following recovery from acute liver failure: Use of point-of-care critical care assessment. Indian J Gastroenterol 2024:10.1007/s12664-024-01580-8. [PMID: 38676908 DOI: 10.1007/s12664-024-01580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Affiliation(s)
- Muhammad Uwais Ashraf
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| | - Sweta Rose
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - C P Ganesh
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| |
Collapse
|
2
|
Sehrawat SS, Premkumar M. Critical care management of acute liver failure. Indian J Gastroenterol 2024; 43:361-376. [PMID: 38578565 DOI: 10.1007/s12664-024-01556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
The management of acute liver failure (ALF) in modern hepatology intensive care units (ICU) has improved patient outcomes. Critical care management of hepatic encephalopathy, cerebral edema, fluid and electrolytes; prevention of infections and organ support are central to improved outcomes of ALF. In particular, the pathogenesis of encephalopathy is multifactorial, with ammonia, elevated intra-cranial pressure and systemic inflammation playing a central role. Although ALF remains associated with high mortality, the availability of supportive care, including organ failure support such as plasma exchange, timely mechanical ventilation or continuous renal replacement therapy, either conservatively manages patients with ALF or offers bridging therapy until liver transplantation. Thus, appropriate critical care management has improved the likelihood of patient recovery in ALF. ICU care interventions such as monitoring of cerebral edema, fluid status assessment and interventions for sepsis prevention, nutritional support and management of electrolytes can salvage a substantial proportion of patients. In this review, we discuss the key aspects of critical care management of ALF.
Collapse
Affiliation(s)
- Surender Singh Sehrawat
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Madhumita Premkumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| |
Collapse
|
3
|
Sanchez-Garcia J, Lopez-Verdugo F, Shorti R, Krong J, Kastenberg ZJ, Walters S, Gagnon A, Paci P, Zendejas I, Alonso D, Fujita S, Contreras AG, Botha J, Esquivel CO, Rodriguez-Davalos MI. Three-dimensional Liver Model Application for Liver Transplantation. Transplantation 2024; 108:464-472. [PMID: 38259179 DOI: 10.1097/tp.0000000000004730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
BACKGROUND Children are removed from the liver transplant waitlist because of death or progressive illness. Size mismatch accounts for 30% of organ refusal. This study aimed to demonstrate that 3-dimensional (3D) technology is a feasible and accurate adjunct to organ allocation and living donor selection process. METHODS This prospective multicenter study included pediatric liver transplant candidates and living donors from January 2020 to February 2023. Patient-specific, 3D-printed liver models were used for anatomic planning, real-time evaluation during organ procurement, and surgical navigation. The primary outcome was to determine model accuracy. The secondary outcome was to determine the impact of outcomes in living donor hepatectomy. Study groups were analyzed using propensity score matching with a retrospective cohort. RESULTS Twenty-eight recipients were included. The median percentage error was -0.6% for 3D models and had the highest correlation to the actual liver explant (Pearson's R = 0.96, P < 0.001) compared with other volume calculation methods. Patient and graft survival were comparable. From 41 living donors, the median percentage error of the allograft was 12.4%. The donor-matched study group had lower central line utilization (21.4% versus 75%, P = 0.045), shorter length of stay (4 versus 7 d, P = 0.003), and lower mean comprehensive complication index (3 versus 21, P = 0.014). CONCLUSIONS Three-dimensional volume is highly correlated with actual liver explant volume and may vary across different allografts for living donation. The addition of 3D-printed liver models during the transplant evaluation and organ procurement process is a feasible and safe adjunct to the perioperative decision-making process.
Collapse
Affiliation(s)
- Jorge Sanchez-Garcia
- Liver Center, Intermountain Primary Children's Hospital, Salt Lake City, UT
- Abdominal Transplant Service, Intermountain Medical Center, Murray, UT
| | - Fidel Lopez-Verdugo
- Liver Center, Intermountain Primary Children's Hospital, Salt Lake City, UT
- Abdominal Transplant Service, Intermountain Medical Center, Murray, UT
| | - Rami Shorti
- Emerging Technologies, Intermountain Health, Murray, UT
| | - Jake Krong
- Transplant Research Department, Intermountain Medical Center, Murray, UT
| | - Zachary J Kastenberg
- Liver Center, Intermountain Primary Children's Hospital, Salt Lake City, UT
- Division of Pediatric Surgery, University of Utah School of Medicine, Salt Lake City, UT
| | - Shannon Walters
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Andrew Gagnon
- Abdominal Transplant Service, Intermountain Medical Center, Murray, UT
| | - Philippe Paci
- Abdominal Transplant Service, Intermountain Medical Center, Murray, UT
| | - Ivan Zendejas
- Abdominal Transplant Service, Intermountain Medical Center, Murray, UT
| | - Diane Alonso
- Abdominal Transplant Service, Intermountain Medical Center, Murray, UT
| | - Shiro Fujita
- Liver Center, Intermountain Primary Children's Hospital, Salt Lake City, UT
- Abdominal Transplant Service, Intermountain Medical Center, Murray, UT
| | - Alan G Contreras
- Liver Center, Intermountain Primary Children's Hospital, Salt Lake City, UT
- Abdominal Transplant Service, Intermountain Medical Center, Murray, UT
| | - Jean Botha
- Liver Center, Intermountain Primary Children's Hospital, Salt Lake City, UT
- Abdominal Transplant Service, Intermountain Medical Center, Murray, UT
| | - Carlos O Esquivel
- Division of Abdominal Transplantation, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA
| | - Manuel I Rodriguez-Davalos
- Liver Center, Intermountain Primary Children's Hospital, Salt Lake City, UT
- Division of Transplant Surgery, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
4
|
Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther 2024; 9:17. [PMID: 38212307 PMCID: PMC10784577 DOI: 10.1038/s41392-023-01704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
Although stem cell-based therapy has demonstrated considerable potential to manage certain diseases more successfully than conventional surgery, it nevertheless comes with inescapable drawbacks that might limit its clinical translation. Compared to stem cells, stem cell-derived exosomes possess numerous advantages, such as non-immunogenicity, non-infusion toxicity, easy access, effortless preservation, and freedom from tumorigenic potential and ethical issues. Exosomes can inherit similar therapeutic effects from their parental cells such as embryonic stem cells and adult stem cells through vertical delivery of their pluripotency or multipotency. After a thorough search and meticulous dissection of relevant literature from the last five years, we present this comprehensive, up-to-date, specialty-specific and disease-oriented review to highlight the surgical application and potential of stem cell-derived exosomes. Exosomes derived from stem cells (e.g., embryonic, induced pluripotent, hematopoietic, mesenchymal, neural, and endothelial stem cells) are capable of treating numerous diseases encountered in orthopedic surgery, neurosurgery, plastic surgery, general surgery, cardiothoracic surgery, urology, head and neck surgery, ophthalmology, and obstetrics and gynecology. The diverse therapeutic effects of stem cells-derived exosomes are a hierarchical translation through tissue-specific responses, and cell-specific molecular signaling pathways. In this review, we highlight stem cell-derived exosomes as a viable and potent alternative to stem cell-based therapy in managing various surgical conditions. We recommend that future research combines wisdoms from surgeons, nanomedicine practitioners, and stem cell researchers in this relevant and intriguing research area.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Li D, Chen Y, Wan M, Mei F, Wang F, Gu P, Zhang X, Wei R, Zeng Y, Zheng H, Chen B, Xiong Q, Xue T, Guan T, Guo J, Tian Y, Zeng LY, Liu Z, Yuan H, Yang L, Liu H, Dai L, Yu Y, Qiu Y, Wu P, Win S, Than TA, Wei R, Schnabl B, Kaplowitz N, Jiang Y, Ma Q, Chen P. Oral magnesium prevents acetaminophen-induced acute liver injury by modulating microbial metabolism. Cell Host Microbe 2024; 32:48-62.e9. [PMID: 38056458 DOI: 10.1016/j.chom.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Acetaminophen overuse is a common cause of acute liver failure (ALF). During ALF, toxins are metabolized by enzymes such as CYP2E1 and transformed into reactive species, leading to oxidative damage and liver failure. Here, we found that oral magnesium (Mg) alleviated acetaminophen-induced ALF through metabolic changes in gut microbiota that inhibit CYP2E1. The gut microbiota from Mg-supplemented humans prevented acetaminophen-induced ALF in mice. Mg exposure modulated Bifidobacterium metabolism and enriched indole-3-carboxylic acid (I3C) levels. Formate C-acetyltransferase (pflB) was identified as a key Bifidobacterium enzyme involved in I3C generation. Accordingly, a Bifidobacterium pflB knockout showed diminished I3C generation and reduced the beneficial effects of Mg. Conversely, treatment with I3C or an engineered bacteria overexpressing Bifidobacterium pflB protected against ALF. Mechanistically, I3C bound and inactivated CYP2E1, thus suppressing formation of harmful reactive intermediates and diminishing hepatocyte oxidative damage. These findings highlight how interactions between Mg and gut microbiota may help combat ALF.
Collapse
Affiliation(s)
- Dongping Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu Chen
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, China
| | - Meijuan Wan
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengyi Mei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fangzhao Wang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rongjuan Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yunong Zeng
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanzhao Zheng
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bangguo Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qingquan Xiong
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Xue
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianshan Guan
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, China
| | - Jiayin Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanxin Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li-Yan Zeng
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhanguo Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hang Yuan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongbin Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yao Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yifeng Qiu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sanda Win
- Research Center for Liver Disease, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tin Aung Than
- Research Center for Liver Disease, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riqing Wei
- Department of Biopharmaceutics, Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA MC0063, USA
| | - Neil Kaplowitz
- Research Center for Liver Disease, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Qiang Ma
- Department of Biopharmaceutics, Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
6
|
Li L, Lan Y, Wang F, Gao T. Linarin Protects Against CCl 4-Induced Acute Liver Injury via Activating Autophagy and Inhibiting the Inflammatory Response: Involving the TLR4/MAPK/Nrf2 Pathway. Drug Des Devel Ther 2023; 17:3589-3604. [PMID: 38076631 PMCID: PMC10700044 DOI: 10.2147/dddt.s433591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Background Linarin has been implicated in the inhibition of inflammatory responses and hepatoprotective effects. However, the precise mechanism by which Linarin integrates injury-induced signaling from inflammatory responses and oxidative stress remains unclear. Methods We evaluated the role of Linarin in a mouse model of carbon tetrachloride (CCl4)-induced acute liver injury. Mice were orally pretreated with Linarin or vehicle for seven consecutive days, followed by intraperitoneal injection with 0.2% (v/v) CCl4. To investigate the mechanism of action on oxidative stress, CCl4-stimulated HepG2 cells were utilized. Results Our results revealed Linarin remarkably attenuated the loss of hepatic architecture, inflammatory cell infiltration, serum transaminases, and pro-inflammatory cytokines induced by CCl4. Linarin attenuated CCl4-induced oxidative stress by increasing the expression of cytosolic Nrf2 (nuclear factor erythroid 2-related factor 2), inducing nuclear localization of Nrf2, and increasing stress-induced protein heme oxygenase-1 (HO-1). Additionally, Linarin decreased the expression of toll-like receptors (TLR)-4, and its downstream proteins, MyD88, IRAK1, and TRAF6. Furthermore, Linarin reversed CCl4-induced phosphorylation of ERK, p38, and JNK. Importantly, Linarin increased the expression of both LC3II and Beclin 1, which are hallmarks of autophagic flux. Autophagy-mediated hepatoprotective effects in Linarin-treated HepG2 cells were mitigated by the autophagy inhibitor 3-MA. However, combined treatment of Linarin with 3-MA failed to significantly reverse cell apoptosis and the production of transaminases and pro-inflammatory cytokines. Conclusion Linarin prevents acute liver injury, possibly by alleviating ROS-induced oxidative stress, inhibiting TLR4/MyD88 and JNK/p38/ERK-mediated inflammatory responses, and promoting Beclin 1/LC3II-mediated autophagic flux.
Collapse
Affiliation(s)
- Lulu Li
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People’s Republic of China
- Department of Pharmacy, Wuhan NO.1 Hospital, Wuhan, Hubei, People’s Republic of China
| | - Yan Lan
- Department of Pharmacy, Huangshi Central Hospital, Huangshi, Hubei, People’s Republic of China
| | - Fuqian Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People’s Republic of China
- Department of Pharmacy, Wuhan NO.1 Hospital, Wuhan, Hubei, People’s Republic of China
| | - Tiexiang Gao
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
7
|
Psaraki A, Zagoura D, Ntari L, Makridakis M, Nikokiraki C, Trohatou O, Georgila K, Karakostas C, Angelioudaki I, Kriebardis AG, Gramignioli R, Sakellariou S, Xilouri M, Eliopoulos AG, Vlahou A, Roubelakis MG. MFGE-8 identified in fetal mesenchymal-stromal-cell-derived exosomes ameliorates acute hepatic failure pathology. iScience 2023; 26:108100. [PMID: 37915594 PMCID: PMC10616317 DOI: 10.1016/j.isci.2023.108100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Liver transplantation is the gold-standard therapy for acute hepatic failure (AHF) with limitations related to organ shortage and life-long immunosuppressive therapy. Cell therapy emerges as a promising alternative to transplantation. We have previously shown that IL-10 and Annexin-A1 released by amniotic fluid human mesenchymal stromal cells (AF-MSCs) and their hepatocyte progenitor-like (HPL) or hepatocyte-like (HPL) cells induce liver repair and downregulate systemic inflammation in a CCl4-AHF mouse model. Herein, we demonstrate that exosomes (EXO) derived from these cells improve liver phenotype in CCl4-induced mice and promote oval cell proliferation. LC-MS/MS proteomic analysis identified MEFG-8 in EXO cargo that facilitates rescue of AHF by suppressing PI3K signaling. Administration of recombinant MFGE-8 protein also reduced liver damage in CCl4-induced mice. Clinically, MEFG-8 expression was decreased in liver biopsies from AHF patients. Collectively, our study provides proof-of-concept for an innovative, cell-free, less immunogenic, and non-toxic alternative strategy for AHF.
Collapse
Affiliation(s)
- Adriana Psaraki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Dimitra Zagoura
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Lydia Ntari
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Manousos Makridakis
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Christina Nikokiraki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Ourania Trohatou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Konstantina Georgila
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Christos Karakostas
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Ioanna Angelioudaki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str, 12243 Egaleo, Greece
| | - Roberto Gramignioli
- Clinical Pathology and Cancer Diagnosis Unit, Karolinska Institute, 141 57 Huddinge, Sweden
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Stratigoula Sakellariou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Aristides G. Eliopoulos
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Antonia Vlahou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| |
Collapse
|
8
|
Zhu Y, Guo Y, Liu H, Zhou A, Fan Z, Zhu X, Miao X. Ubiquitin specific peptidase 47 contributes to liver regeneration. Life Sci 2023; 329:121967. [PMID: 37487274 DOI: 10.1016/j.lfs.2023.121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
AIMS Hepatocytes resume proliferation following liver injuries to compensate for the loss of liver mass. Robust liver regeneration is an intrinsic and pivotal process that facilitates restoration of liver anatomy and function. In the present study we investigated the role of ubiquitin-specific peptidase 47 (USP47) in liver regeneration. METHODS AND MATERIALS Proliferation of hepatocytes was evaluated by Ki67 staining in vivo and EdU incorporation in vitro. DNA-protein interaction was evaluated by chromatin immunoprecipitation (ChIP). RESULTS USP47 expression was up-regulated in hepatocytes isolated from mice subjected to partial hepatectomy (PHx) or exposed to HGF treatment. Ingenuity pathway analysis revealed E2F1 as a primary regulator of USP47 transcription. Reporter assay and ChIP assay confirmed that E2F1 directly bound to the USP47 promoter and activated USP47 transcription. Consistently, E2F1 knockdown abrogated USP47 induction by HGF. Compared to the wild type littermates, USP47 knockout mice displayed compromised liver regeneration following PHx. In addition, USP47 inhibition by a small-molecule compound impaired liver regeneration in mice. On the contrary, USP47 over-expression enhanced proliferation of hepatocytes in vitro and promoted liver regeneration in mice. Importantly, a positive correlation between USP47 expression and hepatocyte proliferation was identified in patients with acute liver failure (ALF). SIGNIFICANCE Our data suggest that USP47, transcriptionally activated by E2F1, plays an essential role in liver regeneration.
Collapse
Affiliation(s)
- Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yan Guo
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Anqi Zhou
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xi Zhu
- Department of Infectious Diseases, The First Peoples' Hospital of Kunshan, Kunshan, China.
| | - Xiulian Miao
- Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China.
| |
Collapse
|
9
|
Kong X, Liu W, Zhang X, Zhou C, Sun X, Cheng L, Lin J, Xie Z, Li J. HIF-1α inhibition in macrophages preserves acute liver failure by reducing IL-1β production. FASEB J 2023; 37:e23140. [PMID: 37584647 DOI: 10.1096/fj.202300428rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
The development of acute liver failure (ALF) is dependent on its local inducer. Inflammation is a high-frequency and critical factor that accelerates hepatocyte death and liver failure. In response to injury stress, the expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) in macrophages is promoted by both oxygen-dependent and oxygen-independent mechanisms, thus promoting the expression and secretion of the cytokine interleukin-1β (IL-1β). IL-1β further induces hepatocyte apoptosis or necrosis by signaling through the receptor (IL-1R) on hepatocyte. HIF-1α knockout in macrophages or IL-1R knockout in hepatocytes protects against liver failure. However, whether HIF-1α inhibition in macrophages has a protective role in ALF is unclear. In this study, we revealed that the small molecule HIF-1α inhibitor PX-478 inhibits the expression and secretion of IL-1β, but not tumor necrosis factor α (TNFα), in bone marrow-derived macrophages (BMDMs). PX-478 pretreatment alleviates liver injury in LPS/D-GalN-induced ALF mice by decreasing the hepatic inflammatory response. In addition, preventive or therapeutic administration of PX-478 combined with TNFα neutralizing antibody markedly improved LPS/D-GalN-induced ALF. Taken together, our data suggest that PX-478 administration leads to HIF-1α inhibition and decreased IL-1β secretion in macrophages, which represents a promising therapeutic strategy for inflammation-induced ALF.
Collapse
Affiliation(s)
- Xiangrong Kong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Wei Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xinwen Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Chendong Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xinyu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Long Cheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jinxia Lin
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Zhangzhou, P.R. China
| | - Zhifu Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
10
|
Ding M, Huang W, Liu G, Zhai B, Yan H, Zhang Y. Integration of ATAC-Seq and RNA-Seq reveals FOSL2 drives human liver progenitor-like cell aging by regulating inflammatory factors. BMC Genomics 2023; 24:260. [PMID: 37173651 PMCID: PMC10182660 DOI: 10.1186/s12864-023-09349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Human primary hepatocytes (PHCs) are considered to be the best cell source for cell-based therapies for the treatment of end-stage liver disease and acute liver failure. To obtain sufficient and high-quality functional human hepatocytes, we have established a strategy to dedifferentiate human PHCs into expandable hepatocyte-derived liver progenitor-like cells (HepLPCs) through in vitro chemical reprogramming. However, the reduced proliferative capacity of HepLPCs after long-term culture still limits their utility. Therefore, in this study, we attempted to explore the potential mechanism related to the proliferative ability of HepLPCs in vitro culture. RESULTS In this study, analysis of assay for transposase accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were performed for PHCs, proliferative HepLPCs (pro-HepLPCs) and late-passage HepLPCs (lp-HepLPCs). Genome-wide transcriptional and chromatin accessibility changes during the conversion and long-term culture of HepLPCs were studied. We found that lp-HepLPCs exhibited an aged phenotype characterized by the activation of inflammatory factors. Epigenetic changes were found to be consistent with our gene expression findings, with promoter and distal regions of many inflammatory-related genes showing increased accessibility in the lp-HepLPCs. FOSL2, a member of the AP-1 family, was found to be highly enriched in the distal regions with increased accessibility in lp-HepLPCs. Its depletion attenuated the expression of aging- and senescence-associated secretory phenotype (SASP)-related genes and resulted in a partial improvement of the aging phenotype in lp-HepLPCs. CONCLUSIONS FOSL2 may drive the aging of HepLPCs by regulating inflammatory factors and its depletion may attenuate this phenotypic shift. This study provides a novel and promising approach for the long-term in vitro culture of HepLPCs.
Collapse
Affiliation(s)
- Min Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Weijian Huang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Guifen Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hexin Yan
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
11
|
Agumava LU, Gulyaev VA, Lutsyk KN, Olisov OD, Akhmetshin RB, Magomedov KM, Kazymov BI, Akhmedov AR, Alekberov KF, Yaremin BI, Novruzbekov MS. Issues of intensive care and liver transplantation tactics in fulminant liver failure. BULLETIN OF THE MEDICAL INSTITUTE "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH) 2023. [DOI: 10.20340/vmi-rvz.2023.1.tx.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Fulminant liver failure is usually characterized as severe acute liver injury with encephalopathy and synthetic dysfunction (international normalized ratio [INR] ≥1.5) in a patient without cirrhosis or previous liver disease. Management of patients with acute liver failure includes ensuring that the patient is cared for appropriately, monitoring for worsening liver failure, managing complications, and providing nutritional support. Patients with acute liver failure should be treated at a liver transplant center whenever possible. Serial laboratory tests are used to monitor the course of a patient's liver failure and to monitor for complications. It is necessary to monitor the level of aminotransferases and bilirubin in serum daily. More frequent monitoring (three to four times a day) of blood coagulation parameters, complete blood count, metabolic panels, and arterial blood gases should be performed. For some causes of acute liver failure, such as acetaminophen intoxication, treatment directed at the underlying cause may prevent the need for liver transplantation and reduce mortality. Lactulose has not been shown to improve overall outcomes, and it can lead to intestinal distention, which can lead to technical difficulties during liver transplantation. Early in acute liver failure, signs and symptoms of cerebral edema may be absent or difficult to detect. Complications of cerebral edema include increased intracranial pressure and herniation of the brain stem. General measures to prevent increased intracranial pressure include minimizing stimulation, maintaining an appropriate fluid balance, and elevating the head of the patient's bed. For patients at high risk of developing cerebral edema, we also offer hypertonic saline prophylaxis (3%) with a target serum sodium level of 145 to 155 mEq/L (level 2C). High-risk patients include patients with grade IV encephalopathy, high ammonia levels (>150 µmol/L), or acute renal failure, and patients requiring vasopressor support. Approximately 40 % of patients with acute liver failure recover spontaneously with supportive care. Predictive models have been developed to help identify patients who are unlikely to recover spontaneously, as the decision to undergo liver transplant depends in part on the likelihood of spontaneous recovery of the liver. However, among those who receive a transplant, the one-year survival rate exceeds 80 %, making this treatment the treatment of choice in this difficult patient population.
Collapse
Affiliation(s)
- L. U. Agumava
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - V. A. Gulyaev
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - K. N. Lutsyk
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - O. D. Olisov
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center; Pirogov Russian National Research Medical University, Department of Transplantology and Artificial Organs
| | - R. B. Akhmetshin
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - K. M. Magomedov
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - B. I. Kazymov
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - A. R. Akhmedov
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - K. F. Alekberov
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center
| | - B. I. Yaremin
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center; Pirogov Russian National Research Medical University, Department of Transplantology and Artificial Organs
| | - M. S. Novruzbekov
- Research Institute of Ambulance them. N.V. Sklifosovsky, liver transplant center; Pirogov Russian National Research Medical University, Department of Transplantology and Artificial Organs
| |
Collapse
|
12
|
Kim JD. [Acute Liver Failure: Current Updates and Management]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 81:17-28. [PMID: 36695063 DOI: 10.4166/kjg.2022.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
Acute liver failure (ALF) is a rare disease condition with a dynamic clinical course and catastrophic outcomes. Several etiologies are involved in ALF. Hepatitis A and B infections and indiscriminate use of untested herbs or supplemental agents are the most common causes of ALF in Korea. Noninvasive neurological monitoring tools have been used in patients with ALF in recent times. Ongoing improvements in intensive care, including continuous renal replacement therapy, therapeutic plasma exchange, vasopressor, and extracorporeal membrane oxygenation, have reduced the mortality rate of patients with ALF. However, liver transplantation is still the most effective treatment for patients with intractable ALF. There is a need for further research in the areas of better prognostication and precise selection of patients for emergency transplantation.
Collapse
Affiliation(s)
- Jin Dong Kim
- Department of Internal Medicine, Cheju Halla General Hospital, Jeju, Korea
| |
Collapse
|
13
|
Li P, Guo X, Liu T, Liu Q, Yang J, Liu G. Evaluation of Hepatoprotective Effects of Piperlongumine Derivative PL 1-3-Loaded Albumin Nanoparticles on Lipopolysaccharide/d-Galactosamine-Induced Acute Liver Injury in Mice. Mol Pharm 2022; 19:4576-4587. [PMID: 35971845 DOI: 10.1021/acs.molpharmaceut.2c00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, piperlongumine (PL) having specific cytotoxicity has attracted considerable attention for anticancer activity. Through structural modification, the active derivative PL 1-3 shows potential anti-inflammatory activity and low cytotoxicity, but its water solubility is low. Here, PL 1-3-loaded bovine serum albumin nanoparticles (1-3 NPs) were prepared and characterized, which can improve the dissolution. 1-3 NPs exhibited effective hepatoprotective effects on lipopolysaccharide/d-galactosamine-induced acute liver injury of mice, which was similar to liver injury in clinical settings. 1-3 NPs treatment can inhibit inflammation, oxidative stress, and apoptosis via the downregulation of NF-κB signaling pathways, the activation of Nrf2/HO-1 signaling pathways, and the inhibition of expression of Bax and caspase 3 proteins. The above results demonstrated that PL 1-3-loaded bovine serum albumin nanoparticles possessed potential value in intervention of inflammation-based liver injury.
Collapse
Affiliation(s)
- Pengxiao Li
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Xiaoyuan Guo
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Ting Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Qing Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| | - Guoyun Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong 252059, China
| |
Collapse
|
14
|
Nutritional Support in Acute Liver Failure. Diseases 2022; 10:diseases10040108. [PMID: 36412602 PMCID: PMC9680263 DOI: 10.3390/diseases10040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Acute liver failure (ALF) presents with an acute abnormality of liver blood tests in an individual without underlying chronic liver disease. The clinical course leads to the development of coagulopathy and hepatic encephalopathy. The role of nutrition in its prevention and treatment remains uncertain. We aimed to review literature data on the concept of ALF and the role of nutrition in its treatment and prevention, considering the impact of gut microbiota dysbiosis and eubiosis. We conducted a review of the literature on the main medical databases using the following keywords and acronyms and their associations: liver failure, nutrition, branched-chain amino acids, gut microbiota, dysbiosis, and probiotics. Upon their arrival at the emergency department, an early, accurate nutritional assessment is crucial for individuals with ALF. Branched-chain amino acids (BCAAs), stable euglycemia maintenance, and moderate caloric support are crucial for this subset of patients. An excessive protein load must be avoided because it worsens hepatic encephalopathy. Preclinical evidence supports future probiotics use for ALF treatment/prevention. Nutritional support and treatment for ALF are crucial steps against patient morbidity and mortality. BCAAs and euglycemia remain the mainstay of nutritional treatment of ALF. Gut dysbiosis re-modulation has an emerging and natural-history changing impact on ALF.
Collapse
|
15
|
Deep A, Alexander EC, Bulut Y, Fitzpatrick E, Grazioli S, Heaton N, Dhawan A. Advances in medical management of acute liver failure in children: promoting native liver survival. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:725-737. [PMID: 35931098 DOI: 10.1016/s2352-4642(22)00190-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Paediatric acute liver failure (PALF) is defined as a biochemical evidence of acute liver injury in a child with no previous history of chronic liver disease characterised by an international normalised ratio (INR) of 1·5 or more unresponsive to vitamin K with encephalopathy, or INR of 2·0 or more with or without encephalopathy. PALF can rapidly progress to multiorgan dysfunction or failure. Although the transplant era has substantially changed the outlook for these patients, transplantation itself is not without risks, including those associated with life-long immunosuppression. Consequently, there has been an increased focus on improving medical management to prioritise bridging of patients to native liver survival, which is possible due to improved understanding of the underlying pathophysiology of multiorgan involvement in PALF. In this Review, we discuss recent advances in the medical management of PALF with an aim of reducing the need for liver transplantation. The Review will focus on the non-specific immune-mediated inflammatory response, extracorporeal support devices, neuromonitoring and neuroprotection, and emerging cellular and novel future therapeutic options.
Collapse
Affiliation(s)
- Akash Deep
- Paediatric Intensive Care Unit, King's College Hospital NHS Foundation Trust, London, UK; Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK.
| | - Emma C Alexander
- Paediatric Intensive Care Unit, King's College Hospital NHS Foundation Trust, London, UK
| | - Yonca Bulut
- Department of Pediatrics, Division of Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Emer Fitzpatrick
- Paediatric Intensive Care Unit, King's College Hospital NHS Foundation Trust, London, UK; Department of Paediatric Gastroenterology and Hepatology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Serge Grazioli
- Division of Neonatal and Pediatric Intensive Care, Department of Pediatrics, Gynecology, and Obstetrics, Children's Hospital, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Nigel Heaton
- Liver Transplant Surgery, Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Martí-Carvajal AJ, Gluud C, Gluud LL, Pavlov CS, Mauro E, Monge Martín D, Liu JP, Nicola S, Comunián-Carrasco G, Martí-Amarista CE. Liver support systems for adults with acute liver failure. Hippokratia 2022. [DOI: 10.1002/14651858.cd015059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Arturo J Martí-Carvajal
- Facultad de Ciencias de la Salud Eugenio Espejo; Universidad UTE (Cochrane Ecuador); Quito Ecuador
- Facultad de Medicina, Universidad Francisco de Vitoria (Cochrane Madrid); Madrid Spain
- Cátedra Rectoral de Medicina Basada en la Evidencia; Universidad de Carabobo; Valencia Venezuela
| | - Christian Gluud
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research; The Capital Region, Copenhagen University Hospital - Rigshospitalet; Copenhagen Denmark
- Department of Regional Health Research; The Faculty of Health Sciences, University of Southern Denmark; Odense Denmark
| | - Lise Lotte Gluud
- Gastrounit, Medical Division; Copenhagen University Hospital Hvidovre; Hvidovre Denmark
| | - Chavdar S Pavlov
- Cochrane Hepato-Biliary Group; Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet; Copenhagen Denmark
- Department of Therapy ; IM Sechenov First Moscow State Medical University; Moscow Russian Federation
- Department of Gastroenterology; Botkin Hospital; Moscow Russian Federation
| | - Ezequiel Mauro
- Liver Unit & Liver Transplant Unit; Hospital Italiano de Buenos Aires; Buenos Aires Argentina
| | - Diana Monge Martín
- Facultad de Medicina; Universidad Francisco de Vitoria (Cochrane Madrid); Madrid Spain
| | - Jian Ping Liu
- Centre for Evidence-Based Chinese Medicine; Beijing University of Chinese Medicine; Beijing China
| | - Susana Nicola
- Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC); Universidad UTE; Quito Ecuador
| | - Gabriella Comunián-Carrasco
- Cátedra Rectoral de Medicina Basada en la Evidencia; Universidad de Carabobo; Valencia Venezuela
- Departamento de Obstetricia y Ginecología; Universidad de Carabobo; Valencia Venezuela
| | - Cristina Elena Martí-Amarista
- Division of General, Geriatric and Hospital Medicine; Stony Brook University, Renaissance School of Medicine HSC, Level 2, Rm 155; Stony Brook, 11794-8228 New York USA
| |
Collapse
|
17
|
Zhang C, Lin J, Zhen C, Wang F, Sun X, Kong X, Gao Y. Amygdalin protects against acetaminophen-induced acute liver failure by reducing inflammatory response and inhibiting hepatocyte death. Biochem Biophys Res Commun 2022; 602:105-112. [DOI: 10.1016/j.bbrc.2022.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/01/2022] [Indexed: 12/28/2022]
|
18
|
Gupta S, Sharma A, Paneerselvan S, Kandoi S, Patra B, Bishi DK, Verma RS. Generation and transplantation of hepatocytes‐like cells using human origin hepatogenic serum for acute liver injury treatment. Xenotransplantation 2022. [DOI: https://doi.org/10.1111/xen.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
| | - Akriti Sharma
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
| | - Sugan Paneerselvan
- Department of Hepatology Madras Medical College Chennai Tamil Nadu India
| | - Sangeetha Kandoi
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
- Department of Ophthalmology Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research University of California San Francisco California USA
| | - Bamadeb Patra
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
| | - Dillip Kumar Bishi
- Department of Biotechnology Rama Devi Women's University Bhubaneswar Odisha India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
| |
Collapse
|
19
|
Gupta S, Sharma A, Paneerselvan S, Kandoi S, Patra B, Bishi DK, Verma RS. Generation and transplantation of hepatocytes-like cells using human origin hepatogenic serum for acute liver injury treatment. Xenotransplantation 2022; 29:e12730. [PMID: 35166406 DOI: 10.1111/xen.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
Liver failure is a critical disease for which regenerative therapies are still being explored. The major limitation in the use of a clinical grade, viable cell-based therapy approach is the scarce availability of sufficient number of in-vitro differentiated hepatocyte-like cells (HLC) that can induce regeneration and ameliorate liver injury. Here, we report for the first time an approach to engineer HLCs using sera of hyperbilirubin patients that act as a reservoir of differentiation factor. Utilizing our humanized approach, mesenchymal stem cells (hMSC) derived from umbilical cord tissue were transdifferentiated into HLC using patient-derived serum along with dimethyl sulfoxide (DMSO). We studied the effects of serum on the proliferation, cell cycle analysis, and apoptosis of hMSC by various differentiation combinations. We optimized the hepatic transdifferentiation ability of hMSC with hyperbilirubin serum treatment for a period of 7 days. Assessment of HLC functionalities was shown by quantifying the HLC spent medium for albumin and urea secretions. Transplantation of HLC in an acute liver injury (ALI) rat model showed an effective improvement in the liver function and histological changes in the liver. The results of this study suggest that hMSC-derived HLC using humanized hepatogenic serum holds a promising potential for cell transplantation, as an efficient therapy modality for liver failure in humans.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sugan Paneerselvan
- Department of Hepatology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Sangeetha Kandoi
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.,Department of Ophthalmology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | - Bamadeb Patra
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Dillip Kumar Bishi
- Department of Biotechnology, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
20
|
Wu H, Xia F, Zhang L, Fang C, Lee J, Gong L, Gao J, Ling D, Li F. A ROS-Sensitive Nanozyme-Augmented Photoacoustic Nanoprobe for Early Diagnosis and Therapy of Acute Liver Failure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108348. [PMID: 34839560 DOI: 10.1002/adma.202108348] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Early diagnosis of acute liver failure (ALF) is critical for curable treatment of patients, because most existing ALF therapies have narrow therapeutic time windows after disease onset. Reactive oxygen species (ROS), which lead to the sequential occurrences of hepatocyte necrosis and the leakage of alanine aminotransferase (ALT), represent early biomarkers of ALF. Photoacoustic imaging is emerging as a powerful tool for in vivo imaging of ROS. However, high-performance imaging probes that can boost the photoacoustic signals of the short-lived ROS of ALF are yet to be developed, and there remains a great challenge for ROS-based imaging of ALF. Herein, a ROS-sensitive nanozyme-augmented photoacoustic nanoprobe for successful in vivo imaging of ALF is presented. The deep-penetrating photoacoustic signals of the nanoprobe can be activated by the overexpressed ROS in ALF due to the synergy between nanocatalytic bubbles generation and thermoelastic expansion. Impressively, the nanozyme-augmented ROS imaging enables earlier diagnosis of ALF than the clinical ALT method, and the ROS-activated catalytic activity of nanoprobe permits timely nanocatalytic therapy of ALF.
Collapse
Affiliation(s)
- Haibin Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Fan Xia
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Linji Gong
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310012, P. R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310012, P. R. China
| |
Collapse
|
21
|
Abstract
Liver failure in the context of acute (ALF) and acute on chronic liver failure (ACLF) is associated with high mortality in the absence of a liver transplant. For decades, therapeutic plasma exchange (TPE) is performed for the management of immune-mediated diseases. TPE has emerged as an attractive extracorporeal blood purification technique in patients with ALF and ACLF. The basic premise of using TPE is to remove the toxic substances which would allow recovery of native liver functions by facilitating liver regeneration. In recent years, encouraging data have emerged, suggesting the benefits of TPE in patients with liver failure. TPE has emerged as an attractive liver support device for the failing liver until liver transplantation or clinical recovery. The data in patients with ALF suggest routine use of high-volume TPE, while the data for such a strategy are less robust for patients with ACLF.
Collapse
Affiliation(s)
- Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
22
|
Geem D, Jiang W, Rytting HB, Chandrakasan S, Salem A, Stevens JP, Karpen SJ, Magliocca JF, Romero R, Rodriguez DS. Resolution of recurrent pediatric acute liver failure with liver transplantation in a patient with NBAS mutation. Pediatr Transplant 2021; 25:e14084. [PMID: 34288298 PMCID: PMC8515489 DOI: 10.1111/petr.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/17/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pediatric acute liver failure (PALF) remains an enigmatic process of rapid end-organ dysfunction associated with a variety of pathologic conditions though the predominant cause is indeterminate. A growing body of research has identified mutations in the NBAS gene to be associated with recurrent acute liver failure and multi-systemic disease including short stature, skeletal dysplasia, facial dysmorphism, immunologic abnormalities, and Pelger-Huët anomaly. METHODS AND RESULTS Here, we describe a 4-year-old girl who presented with dehydration in the setting of acute gastroenteritis and fever but went on to develop PALF on day 2 of hospitalization. She clinically recovered with supportive measures, but after discharge, had at least 2 additional episodes of PALF. Ultimately, she underwent liver transplant and her recurrent episodes of PALF did not recur throughout a 6-year follow-up period. Whole-exome sequencing post-liver transplant initially revealed two variants of uncertain significance in the NBAS gene. Parental studies confirmed the c.1549C > T(p.R517C; now likely pathogenic) variant from her mother and a novel c.4646T > C(p.L1549P) variant from her father. In silico analyses predicted these variants to have a deleterious effect on protein function. Consistent with previously characterized NBAS mutation-associated disease (NMAD), our patient demonstrated the following features: progeroid facial features, hypoplasia of the 12th ribs, Pelger-Huët anomaly on peripheral blood smear, and abnormal B and NK cell function. CONCLUSION Altogether, we describe a novel pathogenic variant in the NBAS gene of a patient with NMAD and report the resolution of recurrent PALF secondary to NMAD following liver transplantation.
Collapse
Affiliation(s)
- Duke Geem
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Heather B. Rytting
- Department of Pathology, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Anand Salem
- Department of Pediatrics, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - James P. Stevens
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Saul J. Karpen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Joseph F. Magliocca
- Department of Surgery, Transplant, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Rene Romero
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Dellys Soler Rodriguez
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
23
|
Henderson MW, Sparkenbaugh EM, Wang S, Ilich A, Noubouossie DF, Mailer R, Renné T, Flick MJ, Luyendyk JP, Chen ZL, Strickland S, Stravitz RT, McCrae KR, Key NS, Pawlinski R. Plasmin-mediated cleavage of high-molecular-weight kininogen contributes to acetaminophen-induced acute liver failure. Blood 2021; 138:259-272. [PMID: 33827130 PMCID: PMC8310429 DOI: 10.1182/blood.2020006198] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP)-induced liver injury is associated with activation of coagulation and fibrinolysis. In mice, both tissue factor-dependent thrombin generation and plasmin activity have been shown to promote liver injury after APAP overdose. However, the contribution of the contact and intrinsic coagulation pathways has not been investigated in this model. Mice deficient in individual factors of the contact (factor XII [FXII] and prekallikrein) or intrinsic coagulation (FXI) pathway were administered a hepatotoxic dose of 400 mg/kg of APAP. Neither FXII, FXI, nor prekallikrein deficiency mitigated coagulation activation or hepatocellular injury. Interestingly, despite the lack of significant changes to APAP-induced coagulation activation, markers of liver injury and inflammation were significantly reduced in APAP-challenged high-molecular-weight kininogen-deficient (HK-/-) mice. Protective effects of HK deficiency were not reproduced by inhibition of bradykinin-mediated signaling, whereas reconstitution of circulating levels of HK in HK-/- mice restored hepatotoxicity. Fibrinolysis activation was observed in mice after APAP administration. Western blotting, enzyme-linked immunosorbent assay, and mass spectrometry analysis showed that plasmin efficiently cleaves HK into multiple fragments in buffer or plasma. Importantly, plasminogen deficiency attenuated APAP-induced liver injury and prevented HK cleavage in the injured liver. Finally, enhanced plasmin generation and HK cleavage, in the absence of contact pathway activation, were observed in plasma of patients with acute liver failure due to APAP overdose. In summary, extrinsic but not intrinsic pathway activation drives the thromboinflammatory pathology associated with APAP-induced liver injury in mice. Furthermore, plasmin-mediated cleavage of HK contributes to hepatotoxicity in APAP-challenged mice independently of thrombin generation or bradykinin signaling.
Collapse
Affiliation(s)
- Michael W Henderson
- Department of Pathology and Laboratory Medicine
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Erica M Sparkenbaugh
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shaobin Wang
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anton Ilich
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Denis F Noubouossie
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Reiner Mailer
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - R Todd Stravitz
- Hume-Lee Transplant Center of Virginia Commonwealth University, Richmond, VA; and
| | - Keith R McCrae
- Taussig Cancer Institute and Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH
| | - Nigel S Key
- Department of Pathology and Laboratory Medicine
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rafal Pawlinski
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
24
|
Li WJ, Zhu XJ, Yuan TJ, Wang ZY, Bian ZQ, Jing HS, Shi X, Chen CY, Fu GB, Huang WJ, Shi YP, Liu Q, Zeng M, Zhang HD, Wu HP, Yu WF, Zhai B, Yan HX. An extracorporeal bioartificial liver embedded with 3D-layered human liver progenitor-like cells relieves acute liver failure in pigs. Sci Transl Med 2021; 12:12/551/eaba5146. [PMID: 32641490 DOI: 10.1126/scitranslmed.aba5146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Clinical advancement of the bioartificial liver is hampered by the lack of expandable human hepatocytes and appropriate bioreactors and carriers to encourage hepatic cells to function during extracorporeal circulation. We have recently developed an efficient approach for derivation of expandable liver progenitor-like cells from human primary hepatocytes (HepLPCs). Here, we generated immortalized and functionally enhanced HepLPCs by introducing FOXA3, a hepatocyte nuclear factor that enables potentially complete hepatic function. When cultured on macroporous carriers in an air-liquid interactive bioartificial liver (Ali-BAL) support device, the integrated cells were alternately exposed to aeration and nutrition and grew to form high-density three-dimensional constructs. This led to highly efficient mass transfer and supported liver functions such as albumin biosynthesis and ammonia detoxification via ureagenesis. In a porcine model of drug overdose-induced acute liver failure (ALF), extracorporeal Ali-BAL treatment for 3 hours prevented hepatic encephalopathy and led to markedly improved survival (83%, n = 6) compared to ALF control (17%, n = 6, P = 0.02) and device-only (no-cell) therapy (0%, n = 6, P = 0.003). The blood ammonia concentrations, as well as the biochemical and coagulation indices, were reduced in Ali-BAL-treated pigs. Ali-BAL treatment attenuated liver damage, ameliorated inflammation, and enhanced liver regeneration in the ALF porcine model and could be considered as a potential therapeutic avenue for patients with ALF.
Collapse
Affiliation(s)
- Wei-Jian Li
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Xue-Jing Zhu
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Tian-Jie Yuan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhen-Yu Wang
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Zheng-Qian Bian
- Training Center, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Hong-Shu Jing
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Xiao Shi
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Cai-Yang Chen
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Gong-Bo Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei-Jian Huang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yao-Ping Shi
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China
| | - Min Zeng
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Hong-Dan Zhang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Hong-Ping Wu
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China. .,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China.
| | - He-Xin Yan
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China. .,Shanghai Celliver Biotechnology Co. Ltd., Shanghai 210201, China.,Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai 200127, China.,Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW This article describes the neurologic sequelae of various nutritional micronutrient deficiencies, celiac disease, inflammatory bowel disease, and liver disease. Where relevant, appropriate treatments for these conditions are also discussed. The developing field of the microbiome and nervous system interaction is also outlined. RECENT FINDINGS Pathology in the gastrointestinal system can affect the nervous system when it causes micronutrient deficiency, when immune responses created by the gastrointestinal system affect the nervous system, when toxins caused by gastrointestinal organ failure harm the nervous system, and when treatments aimed at a gastrointestinal medical condition cause damage to the nervous system as a side effect. SUMMARY This article addresses familiar concepts and new developments in the treatment and understanding of diseases that affect the gut and nervous system simultaneously.
Collapse
|
26
|
Inhibition of Dot1L Alleviates Fulminant Hepatitis Through Myeloid-Derived Suppressor Cells. Cell Mol Gastroenterol Hepatol 2021; 12:81-98. [PMID: 33497867 PMCID: PMC8081916 DOI: 10.1016/j.jcmgh.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Fulminant hepatitis (FH) is a clinical syndrome characterized by sudden and severe liver dysfunction. Dot1L, a histone methyltransferase, is implicated in various physiologic and pathologic processes, including transcription regulation and leukemia. However, the role of Dot1L in regulating inflammatory responses during FH remains elusive. METHODS Propionibacterium acnes (P. acnes)-primed, lipopolysaccharides (LPS)-induced FH was established in C57BL/6 mice and was treated with the Dot1L inhibitor EPZ-5676. Myeloid derived suppressor cells (MDSCs) were depleted by anti-Gr-1 antibody to evaluate their therapeutic roles in Dot1L treatment of FH. Moreover, peripheral blood of patients suffered with FH and healthy controls was collected to determine the expression profile of Dot1L-SOCS1-iNOS axis in their MDSCs. RESULTS Here we identified that EPZ-5676, pharmacological inhibitor of Dot1L, attenuated the liver injury of mice subjected to FH. Dot1L inhibition led to decreased T helper 1 cell response and expansion of regulatory T cells (Tregs) during FH. Interestingly, Dot1L inhibition didn't directly target T cells, but dramatically enhanced the immunosuppressive function of MDSCs. Mechanistically, Dot1L inhibition epigenetically suppressed SOCS1 expression, thus inducing inducible nitric oxide synthase (iNOS) expression in a STAT1-dependent manner. Moreover, in human samples, the levels of Dot1L and SOCS1 expression were upregulated in MDSCs, accompanied by decreased expression of iNOS in patients with FH, compared with healthy controls. CONCLUSIONS Altogether, our findings established Dot1L as a critical regulator of MDSC immunosuppressive function for the first time, and highlighted the therapeutic potential of Dot1L inhibitor for FH treatment.
Collapse
|
27
|
Hu J, Zhu Z, Ying H, Yao J, Ma H, Li L, Zhao Y. Oleoylethanolamide Protects Against Acute Liver Injury by Regulating Nrf-2/HO-1 and NLRP3 Pathways in Mice. Front Pharmacol 2021; 11:605065. [PMID: 33536915 PMCID: PMC7848133 DOI: 10.3389/fphar.2020.605065] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Acute liver injury is a rapidly deteriorating clinical condition with markedly high morbidity and mortality. Oleoylethanolamide (OEA) is an endogenous lipid messenger with multiple bioactivities, and has therapeutic effects on various liver diseases. However, effects of OEA on acute liver injury remains unknown. In this study, effects and mechanisms of OEA in lipopolysaccharide (LPS)/d-galactosamine (D-Gal)-induced acute liver injury in mice were investigated. We found that OEA treatment significantly attenuated LPS/D-Gal-induced hepatocytes damage, reduced liver index (liver weight/body weight), decreased plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) levels. Moreover, mechanism study suggested that OEA pretreatment significantly reduced hepatic MDA levels, increased Superoxide dismutase (SOD) and Glutathione peroxidase (GSH-PX) activities via up-regulate Nrf-2 and HO-1 expression to exert anti-oxidation activity. Additionally, OEA markedly reduced the expression levels of Bax, Bcl-2 and cleaved caspase-3 to suppress hepatocyte apoptosis. Meanwhile, OEA remarkedly reduced the number of activated intrahepatic macrophages, and alleviated the mRNA expression of pro-inflammatory factors, including TNF-α, IL-6, MCP1 and RANTES. Furthermore, OEA obviously reduced the expression of IL-1β in liver and plasma through inhibit protein levels of NLRP3 and caspase-1, which indicated that OEA could suppress NLRP3 inflammasome pathway. We further determined the protein expression of PPAR-α in liver and found that OEA significantly increase hepatic PPAR-α expression. In addition, HO-1 inhibitor ZnPP blocked the therapeutic effects of OEA on LPS/D-Gal-induced liver damage and oxidative stress, suggesting crucial role of Nrf-2/HO-1 pathway in the protective effects of OEA in acute liver injury. Together, these findings demonstrated that OEA protect against the LPS/D-Gal-induced acute liver injury in mice through the inhibition of apoptosis, oxidative stress and inflammation, and its mechanisms might be associated with the Nrf-2/HO-1 and NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Jiaji Hu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Zhoujie Zhu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Hanglu Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Jie Yao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Huabin Ma
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
28
|
Siu JT, Nguyen T, Turgeon RD. N-acetylcysteine for non-paracetamol (acetaminophen)-related acute liver failure. Cochrane Database Syst Rev 2020; 12:CD012123. [PMID: 33294991 PMCID: PMC8095024 DOI: 10.1002/14651858.cd012123.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Acute liver failure is a rare and serious disease. Acute liver failure may be paracetamol-induced or non-paracetamol-induced. Acute liver failure not caused by paracetamol (acetaminophen) has a poor prognosis with limited treatment options. N-acetylcysteine has been successful in treating paracetamol-induced acute liver failure and reduces the risk of needing to undergo liver transplantation. Recent randomised clinical trials have explored whether the benefit can be extrapolated to treat non-paracetamol-related acute liver failure. The American Association for the Study of Liver Diseases (AASLD) 2011 guideline suggested that N-acetylcysteine could improve spontaneous survival when given during early encephalopathy stages for patients with non-paracetamol-related acute liver failure. OBJECTIVES To assess the benefits and harms of N-acetylcysteine compared with placebo or no N-acetylcysteine, as an adjunct to usual care, in people with non-paracetamol-related acute liver failure. SEARCH METHODS We searched the Cochrane Hepato-Biliary Group Controlled Trials Register (searched 25 June 2020), Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 6) in The Cochrane Library, MEDLINE Ovid (1946 to 25 June 2020), Embase Ovid (1974 to 25 June 2020), Latin American and Caribbean Health Science Information database (LILACS) (1982 to 25 June 2020), Science Citation Index Expanded (1900 to 25 June 2020), and Conference Proceedings Citation Index - Science (1990 to 25 June 2020). SELECTION CRITERIA We included randomised clinical trials that compared N-acetylcysteine at any dose or route with placebo or no intervention in participants with non-paracetamol-induced acute liver failure. DATA COLLECTION AND ANALYSIS We used standard methodological procedures as described in the Cochrane Handbook for Systematic Reviews of Interventions. We conducted meta-analyses and presented results using risk ratios (RR) with 95% confidence intervals (CIs). We quantified statistical heterogeneity by calculating I2. We assessed bias using the Cochrane risk of bias tool and determined the certainty of the evidence using the GRADE approach. MAIN RESULTS We included two randomised clinical trials: one with 183 adults and one with 174 children (birth through age 17 years). We classified both trials at overall high risk of bias. One unregistered study in adults is awaiting classification while we are awaiting responses from study authors for details on trial methodology (e.g. randomisation processes). We did not meta-analyse all-cause mortality because of significant clinical heterogeneity in the two trials. For all-cause mortality at 21 days between adults receiving N-acetylcysteine versus placebo, there was inconclusive evidence of effect (N-acetylcysteine 24/81 (29.6%) versus placebo 31/92 (33.7%); RR 0.88, 95% CI 0.57 to 1.37; low certainty evidence). The certainty of the evidence was low due to risk of bias and imprecision. Similarly, for all-cause mortality at one year between children receiving N-acetylcysteine versus placebo, there was inconclusive evidence of effect (25/92 (27.2%) versus 17/92 (18.5%); RR 1.47, 95% CI 0.85 to 2.53; low certainty evidence). We downgraded the certainty of evidence due to very serious imprecision. We did not meta-analyse serious adverse events and liver transplantation at one year due to incomplete reporting and clinical heterogeneity. For liver transplantation at 21 days in the trial with adults, there was inconclusive evidence of effect (RR 0.72, 95% CI 0.49 to 1.06; low certainty evidence). We downgraded the certainty of the evidence due to serious risk of bias and imprecision. For liver transplantation at one year in the trial with children, there was inconclusive evidence of effect (RR 1.23, 95% CI 0.84 to 1.81; low certainty of evidence). We downgraded the certainty of the evidence due to very serious imprecision. There was inconclusive evidence of effect on serious adverse events in the trial with children (RR 1.25, 95% CI 0.35 to 4.51; low certainty evidence). We downgraded the certainty of the evidence due to very serious imprecision. We did not meta-analyse non-serious adverse events due to clinical heterogeneity. There was inconclusive evidence of effect on non-serious adverse events in adults (RR 1.07, 95% CI 0.79 to 1.45; 173 participants; low certainty of evidence) and children (RR 1.19, 95% CI 0.62 to 2.16; 184 participants; low certainty of evidence). None of the trials reported outcomes of proportion of participants with resolution of encephalopathy and coagulopathy or health-related quality of life. The National Institute of Health in the United States funded both trials through grants. One of the trials received additional funding from two hospital foundations' grants. Pharmaceutical companies provided the study drug and matching placebo, but they did not have input into study design nor involvement in analysis. AUTHORS' CONCLUSIONS The available evidence is inconclusive regarding the effect of N-acetylcysteine compared with placebo or no N-acetylcysteine, as an adjunct to usual care, on mortality or transplant rate in non-paracetamol-induced acute liver failure. Current evidence does not support the guideline suggestion to use N-acetylcysteine in adults with non-paracetamol-related acute liver failure, nor the rising use observed in clinical practice. The uncertainty based on current scanty evidence warrants additional randomised clinical trials with non-paracetamol-related acute liver failure evaluating N-acetylcysteine versus placebo, as well as investigations to identify predictors of response and the optimal N-acetylcysteine dose and duration.
Collapse
Affiliation(s)
- Jacky Tp Siu
- Lower Mainland Pharmacy Services, Fraser Health Authority, Vancouver, Canada
| | | | - Ricky D Turgeon
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
29
|
Reynolds AS, Liang J, Raiss M, Dangayach NS, Schiano TD. Fatal cerebral edema in patients with decompensated cirrhosis: A case series. J Crit Care 2020; 61:115-118. [PMID: 33157306 DOI: 10.1016/j.jcrc.2020.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Unlike patients with acute liver failure, patients with cirrhosis are not traditionally thought to be at risk for developing cerebral edema. In the largest case series to date, we document clinical characteristics of cirrhotic patients who develop cerebral edema. MATERIALS AND METHODS In this retrospective case series, seventeen adult patients with acute-on-chronic liver failure (ACLF) were identified using Morbidity & Mortality data. Neurological decompensation was defined by focal neurological deficits or abnormal movements. Elevated ICP was diagnosed clinically by pupillary reflex change improving with hyperosmolar therapy, or by herniation on CT. Pulsatility indices >1.2 on transcranial Dopplers (TCDs) and/or optic nerve sheath diameter (ONSD) >0.5 cm were acceptable alternatives. RESULTS Median MELD-Na was 36 (IQR 31.5,43) compared with 20 (IQR 19,23) prior to admission. Neurological decompensation was associated with abnormal pupil reactivity in 76% and abnormal movements in 65%. Cerebral edema was diagnosed by CT (n = 14). For those too ill to transport, elevated ICP was confirmed with TCDs for three patients and ONSD for two. Mortality was 100% a median of 3 days (IQR 1.5,5) from neurologic decompensation. CONCLUSIONS ACLF patients with neurological decompensation exhibit distinct clinical changes. Noninvasive bedside techniques may serve as surrogate measures for ICP.
Collapse
Affiliation(s)
- Alexandra S Reynolds
- Department of Neurosurgery, Mount Sinai Hospital, New York, NY, United States of America; Department of Neurology, Mount Sinai Hospital, New York, NY, United States of America.
| | - John Liang
- Department of Neurosurgery, Mount Sinai Hospital, New York, NY, United States of America; Department of Neurology, Mount Sinai Hospital, New York, NY, United States of America
| | - Monica Raiss
- Department of Neurosurgery, Mount Sinai Hospital, New York, NY, United States of America
| | - Neha S Dangayach
- Department of Neurosurgery, Mount Sinai Hospital, New York, NY, United States of America; Department of Neurology, Mount Sinai Hospital, New York, NY, United States of America
| | - Thomas D Schiano
- Department of Medicine, Mount Sinai Hospital, New York, NY, United States of America
| |
Collapse
|
30
|
Wang H, Li X, Dong G, Yan F, Zhang J, Shi H, Ning Z, Gao M, Cheng D, Ma Q, Wang C, Zhao M, Dai J, Li C, Li Z, Zhang H, Xiong H. Toll-like Receptor 4 Inhibitor TAK-242 Improves Fulminant Hepatitis by Regulating Accumulation of Myeloid-Derived Suppressor Cell. Inflammation 2020; 44:671-681. [PMID: 33083887 DOI: 10.1007/s10753-020-01366-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Fulminant hepatitis (FH) is an acute clinical disease with a poor prognosis and high mortality rate. The purpose of this study was to determine the protective effect of the Toll-like receptor 4 (TLR4) inhibitor TAK-242 on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced explosive hepatitis and explore in vivo and in vitro mechanisms. Mice were pretreated with TAK-242 for 3 h prior to LPS (10 μg/kg)/D-GalN (250 mg/kg) administration. Compared to the LPS/D-GalN group, the TAK-242 pretreatment group showed significantly prolonged survival, reduced serum alanine aminotransferase and aspartate aminotransferase levels, relieved oxidative stress, and reduced inflammatory interleukin (IL)-6, IL-12, and tumor necrosis factor-α levels. In addition, TAK-242 increased the accumulation of myeloid-derived suppressor cells (MDSCs). Next, mice were treated with an anti-Gr-1 antibody to deplete MDSCs, and adoptive transfer experiments were performed. We found that TAK-242 protected against FH by regulating MDSCs. In the in vitro studies, TAK-242 regulated the accumulation of MDSCs and promoted the release of immunosuppressive inflammatory cytokines. In addition, TAK-242 inhibited protein expression of nuclear factor-κB and mitogen-activated protein kinases. In summary, TAK-242 had a hepatoprotective effect against LPS/D-GalN-induced explosive hepatitis in mice. Its protective effect may be involved in suppressing inflammation, reducing oxidative stress, and increasing the proportion of MDSCs.
Collapse
Affiliation(s)
- Haiyan Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuehui Li
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Shandong Province, Jining, 272011, China
| | - Dalei Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
31
|
Anand AC, Nandi B, Acharya SK, Arora A, Babu S, Batra Y, Chawla YK, Chowdhury A, Chaoudhuri A, Eapen EC, Devarbhavi H, Dhiman RK, Datta Gupta S, Duseja A, Jothimani D, Kapoor D, Kar P, Khuroo MS, Kumar A, Madan K, Mallick B, Maiwall R, Mohan N, Nagral A, Nath P, Panigrahi SC, Pawar A, Philips CA, Prahraj D, Puri P, Rastogi A, Saraswat VA, Saigal S, Shalimar, Shukla A, Singh SP, Verghese T, Wadhawan M. Indian National Association for the Study of Liver Consensus Statement on Acute Liver Failure (Part-2): Management of Acute Liver Failure. J Clin Exp Hepatol 2020; 10:477-517. [PMID: 33029057 PMCID: PMC7527855 DOI: 10.1016/j.jceh.2020.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is not an uncommon complication of a common disease such as acute hepatitis. Viral hepatitis followed by antituberculosis drug-induced hepatotoxicity are the commonest causes of ALF in India. Clinically, such patients present with appearance of jaundice, encephalopathy, and coagulopathy. Hepatic encephalopathy (HE) and cerebral edema are central and most important clinical event in the course of ALF, followed by superadded infections, and determine the outcome in these patients. The pathogenesis of encephalopathy and cerebral edema in ALF is unique and multifactorial. Ammonia plays a crucial role in the pathogenesis, and several therapies aim to correct this abnormality. The role of newer ammonia-lowering agents is still evolving. These patients are best managed at a tertiary care hospital with facility for liver transplantation (LT). Aggressive intensive medical management has been documented to salvage a substantial proportion of patients. In those with poor prognostic factors, LT is the only effective therapy that has been shown to improve survival. However, recognizing suitable patients with poor prognosis has remained a challenge. Close monitoring, early identification and treatment of complications, and couseling for transplant form the first-line approach to manage such patients. Recent research shows that use of dynamic prognostic models is better for selecting patients undergoing liver transplantation and timely transplant can save life of patients with ALF with poor prognostic factors.
Collapse
Key Words
- ACLF, Acute on Chronic liver Failure
- AKI, Acute kidney injury
- ALF, Acute Liver Failure
- ALFED score
- ALT, alanine transaminase
- AST, aspartate transaminase
- CNS, central nervous system
- CT, Computerized tomography
- HELLP, Hemolysis, elevated liver enzymes, and low platelets
- ICH, Intracrainial hypertension
- ICP, Intracrainial Pressure
- ICU, Intensive care unit
- INR, International normalised ratio
- LAD, Liver assist device
- LDLT, Living donor liver transplantation
- LT, Liver transplantation
- MAP, Mean arterial pressure
- MELD, model for end-stage liver disease
- MLD, Metabolic liver disease
- NAC, N-acetyl cysteine
- PALF, Pediatric ALF
- WD, Wilson's Disease
- acute liver failure
- artificial liver support
- liver transplantation
- plasmapheresis
Collapse
Affiliation(s)
- Anil C. Anand
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Bhaskar Nandi
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
| | - Anil Arora
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Sethu Babu
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad, 500003, India
| | - Yogesh Batra
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
| | - Yogesh K. Chawla
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
| | - Ashok Chaoudhuri
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Eapen C. Eapen
- Department of Hepatology, Christian Medical College, Vellore, India
| | - Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
| | - Radha K. Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Dinesh Jothimani
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
| | | | - Premashish Kar
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
| | - Mohamad S. Khuroo
- Department of Gastroenterology, Dr Khuroo’ s Medical Clinic, Srinagar, Kashmir, India
| | - Ashish Kumar
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Kaushal Madan
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
| | - Bipadabhanjan Mallick
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Rakhi Maiwall
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Neelam Mohan
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
| | - Aabha Nagral
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Preetam Nath
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Sarat C. Panigrahi
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Ankush Pawar
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
| | - Cyriac A. Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi 682028, Kerala, India
| | - Dibyalochan Prahraj
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Pankaj Puri
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
| | - Amit Rastogi
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Sanjiv Saigal
- Department of Hepatology, Department of Liver Transplantation, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
| | - Akash Shukla
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
| | - Thomas Verghese
- Department of Gastroenterology, Government Medical College, Kozikhode, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| | - The INASL Task-Force on Acute Liver Failure
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad, 500003, India
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Hepatology, Christian Medical College, Vellore, India
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
- Gleneagles Global Hospitals, Hyderabad, Telangana, India
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
- Department of Gastroenterology, Dr Khuroo’ s Medical Clinic, Srinagar, Kashmir, India
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi 682028, Kerala, India
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
- Department of Hepatology, Department of Liver Transplantation, India
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
- Department of Gastroenterology, SCB Medical College, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
- Department of Gastroenterology, Government Medical College, Kozikhode, India
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| |
Collapse
|
32
|
Rovegno M, Vera M, Ruiz A, Benítez C. Current concepts in acute liver failure. Ann Hepatol 2020; 18:543-552. [PMID: 31126880 DOI: 10.1016/j.aohep.2019.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 02/04/2023]
Abstract
Acute liver failure (ALF) is a severe condition secondary to a myriad of causes associated with poor outcomes. The prompt diagnosis and identification of the aetiology allow the administration of specific treatments plus supportive strategies and to define the overall prognosis, the probability of developing complications and the need for liver transplantation. Pivotal issues are adequate monitoring and the institution of prophylactic strategies to reduce the risk of complications, such as progressive liver failure, cerebral oedema, renal failure, coagulopathies or infections. In this article, we review the main aspects of ALF, including the definition, diagnosis and complications. Also, we describe the standard-of-care strategies and recent advances in the treatment of ALF. Finally, we include our experience of care patients with ALF.
Collapse
Affiliation(s)
- Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Magdalena Vera
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alex Ruiz
- Unidad de Gastroenterología, Instituto de Medicina, Escuela de Medicina, Universidad Austral de Chile, Chile
| | - Carlos Benítez
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
33
|
Zagórska A, Través PG, Jiménez-García L, Strickland JD, Oh J, Tapia FJ, Mayoral R, Burrola P, Copple BL, Lemke G. Differential regulation of hepatic physiology and injury by the TAM receptors Axl and Mer. Life Sci Alliance 2020; 3:e202000694. [PMID: 32571802 PMCID: PMC7335405 DOI: 10.26508/lsa.202000694] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies have implicated the TAM receptor tyrosine kinase (RTK) Mer in liver disease, yet our understanding of the role that Mer and its related RTKs Tyro3 and Axl play in liver homeostasis and the response to acute injury is limited. We find that Mer and Axl are most prominently expressed in hepatic Kupffer and endothelial cells and that as mice lacking these RTKs age, they develop profound liver disease characterized by apoptotic cell accumulation and immune activation. We further find that Mer is critical to the phagocytosis of apoptotic hepatocytes generated in settings of acute hepatic injury, and that Mer and Axl act in concert to inhibit cytokine production in these settings. In contrast, we find that Axl is uniquely important in mitigating liver damage during acetaminophen intoxication. Although Mer and Axl are protective in acute injury models, we find that Axl exacerbates fibrosis in a model of chronic injury. These divergent effects have important implications for the design and implementation of TAM-directed therapeutics that might target these RTKs in the liver.
Collapse
Affiliation(s)
- Anna Zagórska
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA, USA
| | - Paqui G Través
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA, USA
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | | | - Jenna D Strickland
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| | - Joanne Oh
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA, USA
| | - Francisco J Tapia
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA, USA
| | - Rafael Mayoral
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Patrick Burrola
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA, USA
| | - Bryan L Copple
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA, USA
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute, La Jolla, CA, USA
| |
Collapse
|
34
|
Zhang E, Huang J, Wang K, Yu Q, Zhu C, Ren H. Pterostilbene Protects Against Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Failure by Upregulating the Nrf2 Pathway and Inhibiting NF- κB, MAPK, and NLRP3 Inflammasome Activation. J Med Food 2020; 23:952-960. [PMID: 32701014 DOI: 10.1089/jmf.2019.4647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The purpose of this study was to evaluate the protective effect of pterostilbene (Psb) against lipopolysaccharide and D-galactosamine (L/D)-induced acute liver failure (ALF) in mice and its potential mechanisms. Histology of liver was detected by H&E staining. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in serum and malondialdehyde (MDA), myeloperoxidase (MPO), glutathione (GSH), and superoxide dismutase (SOD) contents in liver were examined using detection kits. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) secretion were detected by ELISA. Meanwhile, MAPK, NF-κB, NLRP3 inflammasome, and Nrf2 were assessed by western blotting. Our findings showed that pretreatment with Psb protected against L/D-induced ALF by lowering the lethality, improving liver histology, reducing ALT, AST, IL-6, IL-1β, TNF-α, MDA, and MPO levels, and boosting liver GSH content and SOD activity. Moreover, Psb pretreatment effectively suppressed inflammation by decreasing NLRP3 inflammasome, MAPK, and NF-κB pathway activations. Moreover, Psb pretreatment efficiently enhanced the expression of several antioxidant enzymes, mainly depending on Nrf2 activation. This was the first study to demonstrate that Psb protects against L/D-induced ALF by inactivating MAPK, NF-κb, and NLRP3 inflammasome and upregulating the Nrf2 signaling pathway, indicating a potential therapeutic application for ALF treatment.
Collapse
Affiliation(s)
- Erli Zhang
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jingbo Huang
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun, China
| | - Kun Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, Changchun, China
| | - Chao Zhu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Hua Ren
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Anand AC, Nandi B, Acharya SK, Arora A, Babu S, Batra Y, Chawla YK, Chowdhury A, Chaoudhuri A, Eapen EC, Devarbhavi H, Dhiman R, Datta Gupta S, Duseja A, Jothimani D, Kapoor D, Kar P, Khuroo MS, Kumar A, Madan K, Mallick B, Maiwall R, Mohan N, Nagral A, Nath P, Panigrahi SC, Pawar A, Philips CA, Prahraj D, Puri P, Rastogi A, Saraswat VA, Saigal S, Shalimar, Shukla A, Singh SP, Verghese T, Wadhawan M. Indian National Association for the Study of the Liver Consensus Statement on Acute Liver Failure (Part 1): Epidemiology, Pathogenesis, Presentation and Prognosis. J Clin Exp Hepatol 2020; 10:339-376. [PMID: 32655238 PMCID: PMC7335721 DOI: 10.1016/j.jceh.2020.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is an infrequent, unpredictable, potentially fatal complication of acute liver injury (ALI) consequent to varied etiologies. Etiologies of ALF as reported in the literature have regional differences, which affects the clinical presentation and natural course. In this part of the consensus article designed to reflect the clinical practices in India, disease burden, epidemiology, clinical presentation, monitoring, and prognostication have been discussed. In India, viral hepatitis is the most frequent cause of ALF, with drug-induced hepatitis due to antituberculosis drugs being the second most frequent cause. The clinical presentation of ALF is characterized by jaundice, coagulopathy, and encephalopathy. It is important to differentiate ALF from other causes of liver failure, including acute on chronic liver failure, subacute liver failure, as well as certain tropical infections which can mimic this presentation. The disease often has a fulminant clinical course with high short-term mortality. Death is usually attributable to cerebral complications, infections, and resultant multiorgan failure. Timely liver transplantation (LT) can change the outcome, and hence, it is vital to provide intensive care to patients until LT can be arranged. It is equally important to assess prognosis to select patients who are suitable for LT. Several prognostic scores have been proposed, and their comparisons show that indigenously developed dynamic scores have an edge over scores described from the Western world. Management of ALF will be described in part 2 of this document.
Collapse
Key Words
- ACLF, acute on chronic liver failure
- AFLP, acute fatty liver of pregnancy
- AKI, Acute kidney injury
- ALF, Acute liver failure
- ALFED, Acute Liver Failure Early Dynamic
- ALT, alanine transaminase
- ANA, antinuclear antibody
- AP, Alkaline phosphatase
- APTT, activated partial thromboplastin time
- ASM, alternative system of medicine
- ASMA, antismooth muscle antibody
- AST, aspartate transaminase
- ATN, Acute tubular necrosis
- ATP, adenosine triphosphate
- ATT, anti-TB therapy
- AUROC, Area under the receiver operating characteristics curve
- BCS, Budd-Chiari syndrome
- BMI, body mass index
- CBF, cerebral blood flow
- CBFV, cerebral blood flow volume
- CE, cerebral edema
- CHBV, chronic HBV
- CLD, chronic liver disease
- CNS, central nervous system
- CPI, clinical prognostic indicator
- CSF, cerebrospinal fluid
- DAMPs, Damage-associated molecular patterns
- DILI, drug-induced liver injury
- EBV, Epstein-Barr virus
- ETCO2, End tidal CO2
- GRADE, Grading of Recommendations Assessment Development and Evaluation
- HAV, hepatitis A virus
- HBV, Hepatitis B virus
- HELLP, hemolysis
- HEV, hepatitis E virus
- HLH, Hemophagocytic lymphohistiocytosis
- HSV, herpes simplex virus
- HV, hepatic vein
- HVOTO, hepatic venous outflow tract obstruction
- IAHG, International Autoimmune Hepatitis Group
- ICH, intracerebral hypertension
- ICP, intracerebral pressure
- ICU, intensive care unit
- IFN, interferon
- IL, interleukin
- IND-ALF, ALF of indeterminate etiology
- INDILI, Indian Network for DILI
- KCC, King's College Criteria
- LC, liver cirrhosis
- LDLT, living donor liver transplantation
- LT, liver transplantation
- MAP, mean arterial pressure
- MHN, massive hepatic necrosis
- MPT, mitochondrial permeability transition
- MUAC, mid-upper arm circumference
- NAPQI, n-acetyl-p-benzo-quinone-imine
- NPV, negative predictive value
- NWI, New Wilson's Index
- ONSD, optic nerve sheath diameter
- PAMPs, pathogen-associated molecular patterns
- PCR, polymerase chain reaction
- PELD, Pediatric End-Stage Liver Disease
- PPV, positive predictive value
- PT, prothrombin time
- RAAS, renin–angiotensin–aldosterone system
- SHF, subacute hepatic failure
- SIRS, systemic inflammatory response syndrome
- SNS, sympathetic nervous system
- TB, tuberculosis
- TCD, transcranial Doppler
- TGF, tumor growth factor
- TJLB, transjugular liver biopsy
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TSFT, triceps skin fold thickness
- US, ultrasound
- USALF, US Acute Liver Failure
- VZV, varicella-zoster virus
- WD, Wilson disease
- Wilson disease (WD)
- YP, yellow phosphorus
- acute liver failure
- autoimmune hepatitis (AIH)
- drug-induced liver injury
- elevated liver enzymes, low platelets
- sALI, severe acute liver injury
- viral hepatitis
Collapse
Affiliation(s)
- Anil C. Anand
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Bhaskar Nandi
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
| | - Anil Arora
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Sethu Babu
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad 500003, India
| | - Yogesh Batra
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
| | - Yogesh K. Chawla
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
| | - Ashok Chaoudhuri
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Eapen C. Eapen
- Department of Hepatology, Christian Medical College, Vellore, India
| | - Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
| | - RadhaKrishan Dhiman
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Ajay Duseja
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Dinesh Jothimani
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
| | | | - Premashish Kar
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
| | - Mohamad S. Khuroo
- Department of Gastroenterology, Dr Khuroo’ S Medical Clinic, Srinagar, Kashmir, India
| | - Ashish Kumar
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Kaushal Madan
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
| | - Bipadabhanjan Mallick
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Rakhi Maiwall
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Neelam Mohan
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the Medicity Hospital, Sector – 38, Gurgaon, Haryana, India
| | - Aabha Nagral
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Preetam Nath
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Sarat C. Panigrahi
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Ankush Pawar
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
| | - Cyriac A. Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, 682028, Kerala, India
| | - Dibyalochan Prahraj
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Pankaj Puri
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
| | - Amit Rastogi
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Sanjiv Saigal
- Department of Hepatology, Department of Liver Transplantation, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
| | - Akash Shukla
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
| | - Thomas Verghese
- Department of Gastroenterology, Government Medical College, Kozikhode, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| | - The INASL Task-Force on Acute Liver Failure
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad 500003, India
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Hepatology, Christian Medical College, Vellore, India
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
- Gleneagles Global Hospitals, Hyderabad, Telangana, India
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
- Department of Gastroenterology, Dr Khuroo’ S Medical Clinic, Srinagar, Kashmir, India
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the Medicity Hospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, 682028, Kerala, India
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
- Department of Hepatology, Department of Liver Transplantation, India
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
- Department of Gastroenterology, Government Medical College, Kozikhode, India
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| |
Collapse
|
36
|
Zhang S, Hou Y, Yang J, Xie D, Jiang L, Hu H, Hu J, Luo C, Zhang Q. Application of mesenchymal stem cell exosomes and their drug-loading systems in acute liver failure. J Cell Mol Med 2020; 24:7082-7093. [PMID: 32492261 PMCID: PMC7339207 DOI: 10.1111/jcmm.15290] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cell exosomes are nanoscale membrane vesicles released from stem cells of various origins that can regulate signal transduction pathways between liver cells, and their functions in intercellular communication have been recognized. Due to their natural substance transport properties and excellent biocompatibility, exosomes can also be used as drug carriers to release a variety of substances, which has great prospects in the treatment of critical and incurable diseases. Different types of stem cell exosomes have been used to study liver diseases. Due to current difficulties in the treatment of acute liver failure (ALF), this review will outline the potential of stem cell exosomes for ALF treatment. Specifically, we reviewed the pathogenesis of acute liver failure and the latest progress in the use of stem cell exosomes in the treatment of ALF, including the role of exosomes in inhibiting the ALF inflammatory response and regulating signal transduction pathways, the advantages of stem cell exosomes and their use as a drug‐loading system, and their pre‐clinical application in the treatment of ALF. Finally, the clinical research status of stem cell therapy for ALF and the current challenges of exosome clinical transformation are summarized.
Collapse
Affiliation(s)
- Shuqin Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yu Hou
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jing Yang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Denghui Xie
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Linrui Jiang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huazhong Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jingjing Hu
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Caizhu Luo
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Xu W, Xiao M, Li J, Chen Y, Sun Q, Li H, Sun W. Hepatoprotective effects of Di Wu Yang Gan: A medicinal food against CCl 4-induced hepatotoxicity in vivo and in vitro. Food Chem 2020; 327:127093. [PMID: 32470802 DOI: 10.1016/j.foodchem.2020.127093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 12/28/2022]
Abstract
The development of functional foods based on medicinal food ingredients has become a hot topic in China. Di Wu Yang Gan (DWYG) is a Chinese medicinal food that contains five dietary plants. Various health benefits, including anti-inflammation, liver regeneration regulation, have been reported, though the mechanism is not clear. This study aimed to investigate the protective effect of DWYG on carbon tetrachloride-induced acute liver injury (ALI) in embryonic liver L-02 cells and mice model. DWYG-medicated serum protected L-02 cells from carbon tetrachloride-induced damage, reduced the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the culture medium, decreased the expression of Bax and increased the expression of Bcl-2. Mice study suggested that DWYG decreased the levels of malondialdehyde, ALT and AST. Together, these results suggest the hepatoprotective effects of DWYG against ALI and provide an experimental basis for the utilization of DWYG to treat liver damage.
Collapse
Affiliation(s)
- Weidong Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Mingzhong Xiao
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Jiayao Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yu Chen
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hanmin Li
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China; Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430074, China.
| | - Wencai Sun
- Army Hospital of the 81st Army Group, Zhangjiakou, China
| |
Collapse
|
38
|
Hu C, Zhao L, Wu Z, Li L. Transplantation of mesenchymal stem cells and their derivatives effectively promotes liver regeneration to attenuate acetaminophen-induced liver injury. Stem Cell Res Ther 2020; 11:88. [PMID: 32106875 PMCID: PMC7047366 DOI: 10.1186/s13287-020-01596-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP)-induced injury is a common clinical phenomenon that not only occurs in a dose-dependent manner but also occurs in some idiosyncratic individuals in a dose-independent manner. APAP overdose generally results in acute liver injury via the initiation of oxidative stress, endoplasmic reticulum (ER) stress, autophagy, liver inflammation, and microcirculatory dysfunction. Liver transplantation is the only effective strategy for treating APAP-induced liver failure, but liver transplantation is inhibited by scarce availability of donor liver grafts, acute graft rejection, lifelong immunosuppression, and unbearable costs. Currently, N-acetylcysteine (NAC) effectively restores liver functions early after APAP intake, but it does not protect against APAP-induced injury at the late stage. An increasing number of animal studies have demonstrated that mesenchymal stem cells (MSCs) significantly attenuate acute liver injury through their migratory capacity, hepatogenic differentiation, immunoregulatory capacity, and paracrine effects in acute liver failure (ALF). In this review, we comprehensively discuss the mechanisms of APAP overdose-induced liver injury and current therapies for treating APAP-induced liver injury. We then comprehensively summarize recent studies about transplantation of MSC and MSC derivatives for treating APAP-induced liver injury. We firmly believe that MSCs and their derivatives will effectively promote liver regeneration and liver injury repair in APAP overdose-treated animals and patients. To this end, MSC-based therapies may serve as an effective strategy for patients who are waiting for liver transplantation during the early and late stages of APAP-induced ALF in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhongwen Wu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
39
|
Hu C, Wu Z, Li L. Mesenchymal stromal cells promote liver regeneration through regulation of immune cells. Int J Biol Sci 2020; 16:893-903. [PMID: 32071558 PMCID: PMC7019139 DOI: 10.7150/ijbs.39725] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The liver is sensitive to pathogen-induced acute or chronic liver injury, and liver transplantation (LT) is the only effective strategy for end-stage liver diseases. However, the clinical application is limited by a shortage of liver organs, immunological rejection and high cost. Mesenchymal stromal cell (MSC)-based therapy has gradually become a hot topic for promoting liver regeneration and repairing liver injury in various liver diseases, since MSCs are reported to migrate toward injured tissues, undergo hepatogenic differentiation, inhibit inflammatory factor release and enhance the proliferation of liver cells in vivo. MSCs exert immunoregulatory effects through cell-cell contact and the secretion of anti-inflammatory factors to inhibit liver inflammation and promote liver regeneration. In addition, MSCs are reported to effectively inhibit the activation of cells of the innate immune system, including macrophages, natural killer (NK) cells, dendritic cells (DCs), monocytes and other immune cells, and inhibit the activation of cells of the adaptive immune system, including T lymphocytes, B lymphocytes and subsets of T cells or B cells. In the current review, we mainly focus on the potential effects and mechanisms of MSCs in inhibiting the activation of immune cells to attenuate liver injury in models or patients with acute liver failure (ALF), nonalcoholic fatty liver disease (NAFLD), and liver fibrosis and in patients or models after LT. We highlight that MSC transplantation may replace general therapies for eliminating acute or chronic liver injury in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Zhongwen Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
40
|
Seetharam A. Intensive Care Management of Acute Liver Failure: Considerations While Awaiting Liver Transplantation. J Clin Transl Hepatol 2019; 7:384-391. [PMID: 31915608 PMCID: PMC6943205 DOI: 10.14218/jcth.2019.00032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022] Open
Abstract
Acute liver failure is a unique clinical phenomenon characterized by abrupt deterioration in liver function and altered mentation. The development of high-grade encephalopathy and multisystem organ dysfunction herald poor prognosis. Etiologic-specific treatments and supportive measures are routinely employed; however, liver transplantation remains the only chance for cure in those who do not spontaneously recover. The utility of artificial and bioartificial assist therapies as supportive care-to allow time for hepatic recovery or as a bridge to liver transplantation-has been examined but studies have been small, with mixed results. Given the severity of derangements, intensive critical care is needed to successfully bridge patients to transplant, and evaluation of candidates occurs rapidly in parallel with serial reassessments of operative fitness. Psychosocial assessment is often suboptimal and relative contraindications to transplant, such as ventilator-dependence may be overlooked. While often employed to guide evaluation, no single prognostic model discriminates those who will spontaneously recover and those who will require transplant. The purpose of this review will be to summarize approaches in critical care, prognostic modeling, and medical evaluation of the acute liver failure transplant candidate.
Collapse
Affiliation(s)
- Anil Seetharam
- Correspondence to: Anil Seetharam, Banner Transplant and Advanced Liver Disease, University of Arizona College of Medicine, 441 N. 12th Street, 2nd Floor, Phoenix, AZ 85006, USA. Tel: +1-602-521-5800; Fax: +1-602-521-5337, E-mail:
| |
Collapse
|
41
|
Abstract
Malnutrition is prevalent in patients with hepatic failure and remains an independent risk factor for morbidity and mortality in these patients. Factors that contribute to malnutrition in this patient population include altered metabolic rate, fat malabsorption, and impaired gastric emptying, all in the setting of an acute and potentially prolonged hospitalization. Acute liver failure (ALF), different from cirrhosis or chronic liver disease, is an uncommon but dramatic clinical syndrome that demonstrates severe and rapid decline in hepatic metabolic function. ALF has a significant risk of mortality. There are >10 cases per million persons per year in developed countries, but ALF presents with unique challenges in clinical management related to heterogeneity in severity and etiology. Patients with ALF by definition should not have a prior history of liver disease, and liver disease is subsequently defined by the onset of liver injury, the presence of hepatic encephalopathy (HE), and coagulopathy as defined by an international normalized ratio > 1.5. HE usually develops within 1-4 weeks of the onset of liver injury but may occur within 26 weeks of the initial presentation. Rates of survival from ALF have improved over recent years, but the rarity and severity of presentation have resulted in traditionally limited evidence to guide basic supportive care. Over time, advances in critical care management and the use of emergency liver transplantation have improved. In this article, we will review current nutrition considerations for patients with ALF.
Collapse
Affiliation(s)
- Matthew Robert Kappus
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Duke University Hospital, Durham, North Carolina, USA
| |
Collapse
|
42
|
Li H, Zhao XK, Cheng YJ, Zhang Q, Wu J, Lu S, Zhang W, Liu Y, Zhou MY, Wang Y, Yang J, Cheng ML. Gasdermin D-mediated hepatocyte pyroptosis expands inflammatory responses that aggravate acute liver failure by upregulating monocyte chemotactic protein 1/CC chemokine receptor-2 to recruit macrophages. World J Gastroenterol 2019; 25:6527-6540. [PMID: 31802832 PMCID: PMC6886019 DOI: 10.3748/wjg.v25.i44.6527] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Massive hepatocyte death is the core event in acute liver failure (ALF). Gasdermin D (GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death. However, the role of hepatocyte pyroptosis and its mechanisms of expanding inflammatory responses in ALF are unclear.
AIM To investigate the role and mechanisms of GSDMD-mediated hepatocyte pyroptosis through in vitro and in vivo experiments.
METHODS The expression of pyroptosis pathway-associated proteins in liver tissues from ALF patients and a hepatocyte injury model was examined by Western blot. GSDMD short hairpin RNA (shRNA) was used to investigate the effects of downregulation of GSDMD on monocyte chemotactic protein 1 (MCP1) and its receptor CC chemokine receptor-2 (CCR2) in vitro. For in vivo experiments, we used GSDMD knockout mice to investigate the role and mechanism of GSDMD in a D-galactose/lipopolysaccharide (D-Galn/LPS)-induced ALF mouse model.
RESULTS The levels of pyroptosis pathway-associated proteins in liver tissue from ALF patients and a hepatocyte injury model increased significantly. The level of GSDMD-N protein increased most obviously (P < 0.001). In vitro, downregulation of GSDMD by shRNA decreased the cell inhibition rate and the levels of MCP1/CCR2 proteins (P < 0.01). In vivo, GSDMD knockout dramatically eliminated inflammatory damage in the liver and improved the survival of D-Galn/LPS-induced ALF mice (P < 0.001). Unlike the mechanism of immune cell pyroptosis that involves releasing interleukin (IL)-1β and IL-18, GSDMD-mediated hepatocyte pyroptosis recruited macrophages via MCP1/CCR2 to aggravate hepatocyte death. However, this pathological process was inhibited after knocking down GSDMD.
CONCLUSION GSDMD-mediated hepatocyte pyroptosis plays an important role in the pathogenesis of ALF, recruiting macrophages to release inflammatory mediators by upregulating MCP1/CCR2 and leading to expansion of the inflammatory responses. GSDMD knockout can reduce hepatocyte death and inflammatory responses, thus alleviating ALF.
Collapse
Affiliation(s)
- Hong Li
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Xue-Ke Zhao
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yi-Ju Cheng
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Quan Zhang
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Jun Wu
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Shuang Lu
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Wei Zhang
- Comprehensive Liver Cancer Center of the Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Yang Liu
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Ming-Yu Zhou
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Ya Wang
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Jing Yang
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Ming-Liang Cheng
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| |
Collapse
|
43
|
Flavonoids from Livistona chinensis fruit ameliorates LPS/D-GalN-induced acute liver injury by inhibiting oxidative stress and inflammation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
44
|
Xu J, Pei S, Wang Y, Liu J, Qian Y, Huang M, Zhang Y, Xiao Y. Tpl2 Protects Against Fulminant Hepatitis Through Mobilization of Myeloid-Derived Suppressor Cells. Front Immunol 2019; 10:1980. [PMID: 31481966 PMCID: PMC6710335 DOI: 10.3389/fimmu.2019.01980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
Myeloid derived suppressor cells (MDSC) in the liver microenvironment protects against the inflammation-induced liver injury in fulminant hepatitis (FH). However, the molecular mechanism through which MDSC is recruited into the inflamed liver remain elusive. Here we identified a protein kinase Tpl2 as a critical mediator of MDSC recruitment into liver during the pathogenesis of Propionibacterium acnes/LPS-induced FH. Loss of Tpl2 dramatically suppressed MDSC mobilization into liver, leading to exaggerated local inflammation and increased FH-induced mortality. Mechanistically, although the protective effect of Tpl2 for FH-induced mortality was dependent on the presence of MDSC, Tpl2 neither directly targeted myeloid cells nor T cells to regulate FH pathogenesis, but functioned in hepatocytes to mediate the induction of MDSC-attracting chemokine CXCL1 and CXCL2 through modulating IL-25 (also known as IL-17E) signaling. As a consequence, increased MDSC in the inflamed liver specifically restrained the local proliferation of infiltrated pathogenic CD4+ T cells, and thus protected against the inflammation-induced acute liver failure. Together, our findings established Tpl2 as a critical mediator of MDSC recruitment and highlighted the therapeutic potential of Tpl2 for the treatment of FH.
Collapse
Affiliation(s)
- Jing Xu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junli Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanyun Zhang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
45
|
Lin NC, Wu HH, Ho JHC, Liu CS, Lee OKS. Mesenchymal stem cells prolong survival and prevent lethal complications in a porcine model of fulminant liver failure. Xenotransplantation 2019; 26:e12542. [PMID: 31219208 DOI: 10.1111/xen.12542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Fulminant liver failure (FLF) is a life-threatening disease. METHODS Lethal FLF was induced by ischemia-reperfusion (I-R) injury in mini-pigs, and MSCs were infused via splenic vein after reperfusion. RESULTS Accumulated survival within 28 days was significantly improved by MSCs (P = 0.0348). Notably, MSCs maintained blood-gas homeostasis in the first 24 hours and prevented FLF-induced elevation of prothrombin time, international normalized ratio, and creatinine and ammonia levels in the first 3 days. With MSCs, serum levels of liver enzymes gradually decreased after 3 days, and platelet count was back to normal at 1 week of FLF. MSCs promoted liver regeneration within 2 weeks and differentiated into functional hepatocytes at 2-4 weeks after transplantation, evidenced by increase in Ki67-positive cells, detectable human hepatocyte growth factor, human vascular endothelial growth factor, human hepatocyte-specific antigen, and human albumin-expressing cells in the liver at different time points. Reactive oxidative species (ROS) were accumulated after FLF and eliminated at 4 weeks after MSC transplantation. CONCLUSIONS Together, MSCs prolong the survival and prevent lethal sequelae of I-R injury-induced FLF by maintenance of liver-function homeostasis and rescue of ROS in the acute stage and by homing and differentiation into hepatocytes in the subacute stage.
Collapse
Affiliation(s)
- Niang-Cheng Lin
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan.,Division of Transplantation Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei, Taiwan.,Department of Surgery, National Yang Ming University, Taipei, Taiwan
| | - Hao-Hsiang Wu
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan.,Stem Cell Research Center, National Yang Ming University, Taipei, Taiwan
| | - Jennifer Hui-Chun Ho
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan.,Stem Cell Research Center, National Yang Ming University, Taipei, Taiwan
| | - Chin-Su Liu
- Department of Surgery, National Yang Ming University, Taipei, Taiwan.,Divisions of Pediatric Surgery and Transplantation Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
46
|
Gyoeri GP, Pereyra D, Braunwarth E, Ammann M, Jonas P, Offensperger F, Klinglmueller F, Baumgartner R, Holzer S, Gnant M, Laengle F, Staettner S, Gruenberger T, Starlinger P. The 3-60 criteria challenge established predictors of postoperative mortality and enable timely therapeutic intervention after liver resection. Hepatobiliary Surg Nutr 2019; 8:111-124. [PMID: 31098358 DOI: 10.21037/hbsn.2019.02.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background To date, definitions of liver dysfunction (LD) after hepatic resection rely on late postoperative time points. Further, the used parameters are markedly influenced by perioperative management. Thus, we aimed to establish a very early postoperative score to predict postoperative mortality. Methods Liver related parameters were evaluated after liver resection in a retrospective evaluation cohort of 228 colorectal cancer patients with liver metastasis (mCRC) and subsequent validation in a prospective set of 482 consecutive patients from 4 independent institutions undergoing hepatic resection was performed. Results C-reactive protein (CRP, AUC =0.739, P<0.001) and antithrombinIII-activity (ATIII, AUC =0.844, P<0.001) on the first postoperative day (POD) were found to be elevated in patients with LD. Cut-off values for CRP at 3 mg/dL and for ATIII at 60% significantly identified high-risk patients for postoperative LD and mortality (P<0.001) and thus defined the 3-60 criteria on POD1. The 3-60 criteria showed superior sensitivity and specificity compared to established criteria for LD [3-60 criteria: total positive patients: 26 patients (70% mortality detected), odds ratio (OR): 48.8; International Study Group for Liver Surgery: total positive patients: 43 (70% mortality detected), OR: 23.3; Peak7: total positive patients: 9 (30% mortality detected), OR: 27.8; 50-50: total positive patients: 9 (30% mortality detected), OR: 27.8]. These results could be validated in a multi-center analysis and ultimately the 3-60 criteria remained an independent predictor of postoperative mortality upon multivariable analysis. Conclusions The 3-60 criteria on POD1 predict postoperative LD and mortality early after liver resection with a comparable or better accuracy than established criteria, allowing for immediate identification of high-risk patients.
Collapse
Affiliation(s)
- Georg P Gyoeri
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - David Pereyra
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Eva Braunwarth
- Department of Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Ammann
- Department of Surgery, State Hospital Wiener Neustadt, Wiener Neustadt, Austria
| | - Philipp Jonas
- Department of Surgery, Kaiser Franz Josef Hospital, Vienna, Austria
| | - Florian Offensperger
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Florian Klinglmueller
- Core Unit for Medical Statistics and Informatics, Medical University of Vienna, Vienna, Austria
| | - Ruth Baumgartner
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Sandra Holzer
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Michael Gnant
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Friedrich Laengle
- Department of Surgery, State Hospital Wiener Neustadt, Wiener Neustadt, Austria
| | - Stefan Staettner
- Department of Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Patrick Starlinger
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Liver transplantation as a lifesaving procedure for posthepatectomy liver failure and iatrogenic liver injuries. Langenbecks Arch Surg 2019; 404:301-308. [DOI: 10.1007/s00423-019-01780-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
|
48
|
Li FC, Lee SL, Lin HM, Lin CJ, Wang SS, Lee YY, Lo SY, Sun TL, Chen WL, Lo W, Horton N, Xu C, Chiang SJ, Chen YF, Lee HS, Dong CY. Dynamic visualization of the recovery of mouse hepatobiliary metabolism to acetaminophen-overdose damage. JOURNAL OF BIOPHOTONICS 2019; 12:e201800296. [PMID: 30302934 DOI: 10.1002/jbio.201800296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Acetaminophen (APAP) overdose is one of the world's leading causes of drug-induced hepatotoxicity. Although traditional methods such as histological imaging and biochemical assays have been successfully applied to evaluate the extent of APAP-induced liver damage, detailed effect of how APAP overdose affect the recovery of hepatobiliary metabolism and is not completely understood. In this work, we used intravital multiphoton microscopy to image and quantify hepatobiliary metabolism of the probe 6-carboxyfluorescein diacetate in APAP-overdose mice. We analyzed hepatobiliary metabolism for up to 7 days following the overdose and found that the excretion of the probe molecule was the most rapid on Day 1 following APAP overdose and slowed down on Days 2 and 3. On Day 7, probe excretion capability has exceeded that of the normal mice, suggesting that newly regenerated hepatocytes have higher metabolic capabilities. Our approach may be further developed applied to studying drug-induced hepatotoxicity in vivo.
Collapse
Affiliation(s)
- Feng-Chieh Li
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Sheng-Lin Lee
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Hung-Ming Lin
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chih-Ju Lin
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Sheng-Shun Wang
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Yang Lee
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Su-Yen Lo
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Tzu-Lin Sun
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Wei-Liang Chen
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Wen Lo
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Nicholas Horton
- School of Engineering and Applied Physics, Cornell University, Ithaca, New York
| | - Chris Xu
- School of Engineering and Applied Physics, Cornell University, Ithaca, New York
| | - Shu-Jen Chiang
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yang-Fang Chen
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Hsuan-Shu Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Chen-Yuan Dong
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
- Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan, Republic of China
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
49
|
Singla R, Abidi SMS, Dar AI, Acharya A. Nanomaterials as potential and versatile platform for next generation tissue engineering applications. J Biomed Mater Res B Appl Biomater 2019; 107:2433-2449. [PMID: 30690870 DOI: 10.1002/jbm.b.34327] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 12/23/2018] [Indexed: 12/16/2022]
Abstract
Tissue engineering (TE) is an emerging field where alternate/artificial tissues or organ substitutes are implanted to mimic the functionality of damaged or injured tissues. Earlier efforts were made to develop natural, synthetic, or semisynthetic materials for skin equivalents to treat burns or skin wounds. Nowadays, many more tissues like bone, cardiac, cartilage, heart, liver, cornea, blood vessels, and so forth are being engineered using 3-D biomaterial constructs or scaffolds that could deliver active molecules such as peptides or growth factors. Nanomaterials (NMs) due to their unique mechanical, electrical, and optical properties possess significant opportunities in TE applications. Traditional TE scaffolds were based on hydrolytically degradable macroporous materials, whereas current approaches emphasize on controlling cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix. This review article gives a comprehensive outlook of different organ specific NMs which are being used for diversified TE applications. Varieties of NMs are known to serve as biological alternatives to repair or replace a portion or whole of the nonfunctional or damaged tissue. NMs may promote greater amounts of specific interactions stimulated at the cellular level, ultimately leading to more efficient new tissue formation. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2433-2449, 2019.
Collapse
Affiliation(s)
- Rubbel Singla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| |
Collapse
|
50
|
Anand AC, Singh P. Neurological Recovery After Recovery From Acute Liver Failure: Is it Complete? J Clin Exp Hepatol 2019; 9:99-108. [PMID: 30765942 PMCID: PMC6363962 DOI: 10.1016/j.jceh.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
Neurologic dysfunction characterised by Hepatic Encephalopathy (HE) and cerebral oedema are the most dramatic presentations of Acute Liver Failure (ALF) and signify poor outcome. Improved critical care and wider availability of emergency Liver Transplantation (LT) has improved survivability in ALF. In most cases absence of clinically overt encephalopathy after spontaneous recovery from ALF or after LT is thought to indicate complete neurologic recovery. Recent data suggests that neurologic recovery may not always be complete. Instances of persistent neurologic dysfunction as well as neuropsychiatric abnormalities are now being recognised and warrant active follow up of these patients. Although evidences irreversible neurologic damage is uncommon after ALF, neuropsychiatric disturbances are not uncommon. Complex pathogenesis is involved in neurocognitive disorders seen after many other conditions including LT that require critical care. Structural damage and persistent neurological abnormalities seen after ALF are more likely to be related to cerebral edema, raised intracranial tension and cerebral hypoxemia, while neurocognitive dysfunctions may be a part of a wider spectrum of disorders commonly seen among those who recover from any critical illness.
Collapse
Key Words
- ALF, Acute Liver Failure
- APAP, Acetaminophen
- BBB, Blood Brain Barrier
- CARS, Compensatory Anti-Inflammatory Response Syndrome
- CVVH, Continuous Veno-Venous Hemodialysis
- DAMPS, Damage Associated Molecular Pattern
- DWI, Diffusion-Weighted Imaging
- EEG, Electroencephalography
- FLAIR, Fluid-Attenuated Inversion Recovery
- HE, Hepatic Encephalopathy
- LT, Liver Transplantation
- MPT, Mitochondrial Permeability Transition
- PET, Positron Emission Tomography
- SIRS, Systemic Inflammatory Response Syndrome
- acute liver failure
- cerebral oedema
- hepatic encephalopathy
- neurological dysfunction
Collapse
Affiliation(s)
- Anil C. Anand
- Address for correspondence: Anil C. Anand, Senior Consultant, Gastroenterology & Hepatology, Indraprastha Apollo Hospital, New Delhi 110076, India.
| | | |
Collapse
|