1
|
Fu J, Deng T, Zheng T, Shi P, Zhu W, Tao M, Wen Z, Wu X. Development and Validation of a Predictive Nomogram for Myelosuppression Risk in Chronic Hepatitis B Patients Treated with Peginterferon. Infect Drug Resist 2025; 18:1793-1805. [PMID: 40225103 PMCID: PMC11994083 DOI: 10.2147/idr.s508538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
Purpose Peginterferon (Peg-IFN) is a common treatment for chronic hepatitis B (CHB); however, some patients developing myelosuppression as a side-effect. In this study, we identified risk factors associated with increased myelosuppression, and incorporated them into a predictive nomogram. Patients and Methods This study is designed as a case-control study. A total of 312 CHB patients treated with Peg-IFN from two medical centers were retrospectively enrolled between December 2019 and December 2022. Patients from the First Affiliated Hospital of Nanchang University were randomly divided into a training cohort (n=153) and a test cohort (n=55) at a 3:1 ratio. Patients from the Jiangxi Provincial People's Hospital composed the validation cohort (n= 104). In the training cohort, based on the blood routine results of patients 1 week after Peg-IFN treatment, patients were further divided into Normal (myelosuppression grades 0-I) and Myelosuppression (grades II-IV) groups. Then uni- and multivariate logistic regression analyses were carried out to identify myelosuppression risk factors, which were subsequently incorporated into a predictive nomogram. The capability of the predictive nomogram was validated using an area under the curve (AUC) of the receiver operating characteristic (ROC) curve. The Hosmer-Lemeshow test, calibration curves, and decision curve analysis (DCA) were used to evaluate the nomogram. Finally, the developed predictive nomogram was validated both internally and externally using separate test and validation cohorts. Results Body mass index (BMI; odds ratio [OR]=0.841, 95% confidence interval [CI] 0.738-0.959, P=0.010), white blood cell counts (WBC; OR=0.657, 95% CI 0.497-0.868, P=0.003), globulin (GLB; OR=0.796, 95% CI 0.713-0.889, P<0.001) and serum creatinine levels (SCR; OR=1.029, 95% CI 1.002-1.058, P=0.038) are independent risk factors for myelosuppression in Peg-IFN-treated CHB patients. A predictive nomogram was constructed by incorporating the above independent risk factors, and its performance was assessed across the training, test, and validation cohorts. The model demonstrated AUC values of 0.824 (95% CI 0.757-0.891), 0.812 (95% CI 0.701-0.923), and 0.870 (95% CI 0.802-0.940), respectively, highlighting its good predictive accuracy. As for Hosmer-Lemeshow, it was P=0.351, (χ2= 8.898) for training, P=0.514 (χ2=6.226) for the test, and P=0.442 (χ2=7.918) for the validation cohort. The results of the calibration curves and DCA demonstrated good concordance between predicted probabilities and observed outcomes, with the model showing higher clinical net benefit. Conclusion Lower BMI, WBC counts, GLB, and higher SCR levels are independent risk factors for myelosuppression among Peg-IFN-treated CHB patients. The predictive nomogram, based on those factors, is able to identify high-risk individuals for myelosuppression, thereby aiding in early alleviation of this side-effect.
Collapse
Affiliation(s)
- Jiwei Fu
- Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Ting Deng
- Second Department of Cardiovascular Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Ting Zheng
- Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Pei Shi
- Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Wentao Zhu
- Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Mengyu Tao
- Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Zhilong Wen
- Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| | - Xiaoping Wu
- Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, People’s Republic of China
| |
Collapse
|
2
|
Chen H, Charles PD, Gu Q, Liberatori S, Robertson DL, Palmarini M, Wilson SJ, Mohammed S, Castello A. Omics analyses uncover host networks defining virus-permissive and -hostile cellular states. Mol Cell Proteomics 2025:100966. [PMID: 40204275 DOI: 10.1016/j.mcpro.2025.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025] Open
Abstract
The capacity of host cells to sustain or restrict virus infection is influenced by their proteome. Understanding the compendium of proteins defining cellular permissiveness is key to many questions in fundamental virology. Here, we apply a multiomic approach to determine the proteins that are associated with highly permissive, intermediate, and hostile cellular states. We observed two groups of differentially regulated genes: i) with robust changes in mRNA and protein levels, and ii) with protein/RNA discordances. Whereas many of the latter are classified as interferon stimulated genes (ISGs), most exhibit no antiviral effects in overexpression screens. This suggest that IFN-dependent protein changes can be better indicators of antiviral function than mRNA levels. Phosphoproteomics revealed an additional regulatory layer involving non-signalling proteins with altered phosphorylation. Indeed, we confirmed that several permissiveness-associated proteins with changes in abundance or phosphorylation regulate infection fitness. Altogether, our study provides a comprehensive and systematic map of the cellular alterations driving virus susceptibility.
Collapse
Affiliation(s)
- Honglin Chen
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland (UK); Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | | | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland (UK)
| | - Sabrina Liberatori
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland (UK)
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland (UK)
| | - Sam J Wilson
- Cambridge Institute of Therapeutic Immunol & Infect Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK; The Rosalind Franklin Institute, Oxfordshire, UK; Department of Chemistry, University of Oxford, Mansfield Road, Oxford, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland (UK).
| |
Collapse
|
3
|
Song Y, Lu J, Qin P, Chen H, Chen L. Interferon-I modulation and natural products: Unraveling mechanisms and therapeutic potential in severe COVID-19. Cytokine Growth Factor Rev 2025; 82:18-30. [PMID: 39261232 DOI: 10.1016/j.cytogfr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose a significant global public health threat, particularly to older adults, pregnant women, and individuals with underlying chronic conditions. Dysregulated immune responses to SARS-CoV-2 infection are believed to contribute to the progression of COVID-19 in severe cases. Previous studies indicates that a deficiency in type I interferon (IFN-I) immunity accounts for approximately 15 %-20 % of patients with severe pneumonia caused by COVID-19, highlighting the potential therapeutic importance of modulating IFN-I signals. Natural products and their derivatives, due to their structural diversity and novel scaffolds, play a crucial role in drug discovery. Some of these natural products targeting IFN-I have demonstrated applications in infectious diseases and inflammatory conditions. However, the immunomodulatory potential of IFN-I in critical COVID-19 pneumonia and the natural compounds regulating the related signal pathway remain not fully understood. In this review, we offer a comprehensive assessment of the association between IFN-I and severe COVID-19, exploring its mechanisms and integrating information on natural compounds effective for IFN-I regulation. Focusing on the primary targets of IFN-I, we also summarize the regulatory mechanisms of natural products, their impact on IFNs, and their therapeutic roles in viral infections. Collectively, by synthesizing these findings, our goal is to provide a valuable reference for future research and to inspire innovative treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yuheng Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Henan University, Kaifeng 475001, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Ma X, Guo S, Liu F, Li C, Shi X, Liu W, Qi L, Yuan Y, Xie X, Wang P, Borish L, Feng X. Unveiling the prevalence and impact of silent rhinovirus infection in chronic rhinosinusitis with nasal polyps. Ann Allergy Asthma Immunol 2025; 134:420-430.e1. [PMID: 39892505 PMCID: PMC11972899 DOI: 10.1016/j.anai.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNPs) involves persistent sinus inflammation, with emerging evidence suggesting a potential role of rhinovirus (RV) in its pathophysiology. However, whether RV exists in nasal tissues and affects the nasal mucosa after the resolution of infection symptoms remains unknown. OBJECTIVE To investigate the prevalence and impact of silent RV infection in nasal tissues. METHODS RV loads were detected in the nasal tissues of 47 controls and 101 patients with CRSwNP without respiratory infection. Participants were categorized into RV-positive (+), RV-negative (-), and the "gray zone" groups. Quantitative polymerase chain reaction, Western blotting, and immunofluorescence assays were used to analyze the impact of silent RV infection on the immune status of nasal tissues. RESULTS Silent RV infection was prevalent in both control (34%) and CRSwNP (30.7%) tissues, with higher viral loads observed in the nasal polyps. In controls, it was associated with high expression of types 1 and 2 interferon (IFN), type 2 inflammation, interleukin (IL)-17A, and IL-10. In patients with CRSwNP, silent RV infection was associated with lower levels of type 1 IFN, IL-17A, type 2 inflammation, and IL-10 but higher levels of type 2 IFN compared with those without RV infection. Meanwhile, RV (+) nasal polyps exhibited fewer tissue eosinophils and neutrophils than RV (-) nasal polyps. CONCLUSION Silent RV infection was prevalent in the nasal tissues, with a higher viral load detected in the nasal polyps. This silent RV infection is associated with distinct immune responses in healthy controls and patients with CRSwNP, involving differential modulation of IFNs, TH2 cytokines, IL-17A, IL-10, and eosinophil and neutrophil levels.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Shu Guo
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Fangying Liu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Changqing Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xueyun Shi
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Weiyuan Liu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Lijie Qi
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Ye Yuan
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xinyu Xie
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Pin Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Larry Borish
- Departments of Medicine and Microbiology, University of Virginia Health System, Charlottesville, Virginia
| | - Xin Feng
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology (Shandong University), Shandong Provincial Key Medical and Health Discipline of Qilu Hospital of Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
5
|
Nguyen DH, Tian J, Shanahan SL, Wang CK, Jacks T, Wang X, Li P. A tissue-scale strategy for sensing threats in barrier organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644134. [PMID: 40166266 PMCID: PMC11957033 DOI: 10.1101/2025.03.19.644134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Barrier organs rely on a limited set of pattern recognition receptors (PRRs) to detect diverse immunogenic challenges. How organs assess threats and adjust immune responses to balance host protection with collateral tissue damage remains unclear. Here, by analyzing influenza infection in the lung using single-molecule imaging and spatial transcriptomics, we discovered a tiered threat-sensing strategy at the tissue scale, where the probability of detecting and responding to infection is lowest in the outermost epithelia and highest in the inner stroma. This strategy emerges from spatially graded PRR expression that results in cell-type-specific probabilities of threat-sensing across the tissue, a design broadly adopted by barrier organs. Selectively increasing PRR expression in lung epithelia in vivo exacerbated tissue damage upon inflammatory challenge. These results reveal a spatially tiered strategy to tolerate threats restricted within the epithelia, and yet enable progressively potent immune responses as threats invade deeper into the tissue.
Collapse
|
6
|
Alrasheed AR, Awadalla M, Alnajran H, Alammash MH, Almaqati AM, Qadri I, Alosaimi B. Harnessing immunotherapeutic molecules and diagnostic biomarkers as human-derived adjuvants for MERS-CoV vaccine development. Front Immunol 2025; 16:1538301. [PMID: 40181980 PMCID: PMC11965926 DOI: 10.3389/fimmu.2025.1538301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
The pandemic potential of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) highlights the critical need for effective vaccines due to its high fatality rate of around 36%. In this review, we identified a variety of immunotherapeutic molecules and diagnostic biomarkers that could be used in MERS vaccine development as human-derived adjuvants. We identified immune molecules that have been incorporated into standard clinical diagnostics such as CXCL10/IP10, CXCL8/IL-8, CCL5/RANTES, IL-6, and the complement proteins Ca3 and Ca5. Utilization of different human monoclonal antibodies in the treatment of MERS-CoV patients demonstrates promising outcomes in combatting MERS-CoV infections in vivo, such as hMS-1, 4C2H, 3B11-N, NBMS10-FC, HR2P-M2, SAB-301, M336, LCA60, REGN3051, REGN3048, MCA1, MERs-4, MERs-27, MERs-gd27, and MERs-gd33. Host-derived adjuvants such as CCL28, CCL27, RANTES, TCA3, and GM-CSF have shown significant improvements in immune responses, underscoring their potential to bolster both systemic and mucosal immunity. In conclusion, we believe that host-derived adjuvants like HBD-2, CD40L, and LL-37 offer significant advantages over synthetic options in vaccine development, underscoring the need for clinical trials to validate their efficacy.
Collapse
Affiliation(s)
- Abdullah R. Alrasheed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maaweya Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Hadeel Alnajran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Adil M. Almaqati
- Riyadh Regional Laboratory, Ministry of Health, Riyadh, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Nosaka T, Naito T, Akazawa Y, Takahashi K, Matsuda H, Ohtani M, Nishizawa T, Okamoto H, Nakamoto Y. Identification of novel antiviral host factors by functional gene expression analysis using in vitro HBV infection assay systems. PLoS One 2025; 20:e0314581. [PMID: 40048440 PMCID: PMC11884705 DOI: 10.1371/journal.pone.0314581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/12/2024] [Indexed: 03/09/2025] Open
Abstract
To cure hepatitis B virus (HBV) infection, it is essential to elucidate the function of hepatocyte host factors in regulating the viral life cycle. Signaling and transcription activator of transcription (STAT)1 play important roles in immune responses, but STAT1-independent pathways have also been shown to have important biological reactivity. Using an in vitro HBV infection assay system, the current study aimed to investigate the STAT1-independent host factors that contribute to the control of viral infection by comprehensive functional screening. The in vitro HBV infection system was established using primary human hepatocytes (PXB cells) infected with HBV derived from a plasmid containing the 1.3-mer HBV genome. Comprehensive functional studies were performed using small interfering RNA (siRNA) and vector transfection and analyzed using microarrays. Knockdown of STAT1 increased viral products in HBV-transfected HepG2 cells, but decreased in HBV-infected PXB cells. RNA microarray was performed using HBV-infected PXB cells with STAT1 knockdown. Fumarylacetoacetate hydrolase (FAH) was extracted by siRNA of genes in PXB cells altered by STAT1 knockdown. Transfection of FAH inhibited HBV replication. Dimethyl fumarate (DMF), the methyl ester of FAH metabolite, showed antiviral effects by inducing autophagy and anti-HBV-related genes. Independently of STAT1, FAH was identified as a host factor that contributes to the control of viral infection, and its metabolite, DMF, exhibited antiviral activity. These results suggest that the novel host factor FAH and its metabolites may be an innovative therapeutic strategy to control the HBV life cycle.
Collapse
Affiliation(s)
- Takuto Nosaka
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tatsushi Naito
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yu Akazawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kazuto Takahashi
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidetaka Matsuda
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masahiro Ohtani
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
8
|
Iida K, Ajiro M, Nakano-Kobayashi A, Muramoto Y, Takenaga T, Denawa M, Kurosawa R, Noda T, Hagiwara M. Switching of OAS1 splicing isoforms overcomes SNP-derived vulnerability to SARS-CoV-2 infection. BMC Biol 2025; 23:60. [PMID: 40025489 PMCID: PMC11874701 DOI: 10.1186/s12915-025-02173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 01/27/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic provided important insights into the relationship between infectious diseases and the human genome. A genomic region encoding the 2'-5'-oligoadenylate synthetase (OAS) family proteins that sense viral genomic RNAs and trigger an antiviral response contains single nucleotide polymorphisms (SNPs) associated with SARS-CoV-2 infection susceptibility. A high-risk SNP identified at the splice acceptor site of OAS1 exon 6-a terminal exon-alters the proportion of various splicing isoforms of OAS1 and its activity. However, the actual causality of this SNP or splicing to infection susceptibility remains unknown. RESULTS In this study, it was found that serine-arginine-rich splicing factor 6 (SRSF6) binds to the splice donor site of the human OAS1 exon 5. SRSF6 determines the selected alternative terminal exon when the risk allele disrupts the splice acceptor site. Subsequently, an inhibitor for CDC-like kinase was rationally selected as a candidate splicing modulator. RNA-Seq and RT-PCR analyses revealed that this inhibitor can induce splice switching of OAS1 mRNAs in the human lung adenocarcinoma cell line Calu-3. Under the inhibitor treatment, the cells exhibited reduced SARS-CoV-2 infection rates. Meanwhile, the colonic epithelial cell line Caco-2 expressed non-risk type OAS1 mRNA isoforms that did not undergo splice-switching or demonstrate altered SARS-CoV-2 sensitivity following treatment with the inhibitor. CONCLUSIONS These results indicate that a high-risk SNP in OAS1 influences cell susceptibility to SARS-CoV-2 infection by inducing splice-switching at its terminal exon. Additionally, chemical splicing modifiers may prove beneficial in overcoming this genomic vulnerability.
Collapse
Affiliation(s)
- Kei Iida
- Medical Research Support Center, Graduate School of Medicine, Kyoto University Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan.
- Present address: Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Masahiko Ajiro
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
- Present address: Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Akiko Nakano-Kobayashi
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
- Laboratory of Tumor Tissue Response, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Toru Takenaga
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Masatsugu Denawa
- Medical Research Support Center, Graduate School of Medicine, Kyoto University Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Ryo Kurosawa
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Masatoshi Hagiwara
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
9
|
Li X, Chen F, Li Y, Zhen Y, Ju J, Li Z, Huang S, Sun Q. Downregulation of RSAD2 ameliorates keratinocyte hyperproliferation and skin inflammation in psoriasis via the TAK1/NF-κB axis. Biochem Pharmacol 2025; 233:116764. [PMID: 39848474 DOI: 10.1016/j.bcp.2025.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Immune cell infiltration and keratinocyte (KC) hyperproliferation are characteristics of psoriasis. Radical S-adenosyl methionine domain-containing 2 (RSAD2) plays an integral role in the innate immune response and is associated with various immune-related diseases. However, RSAD2's expression and role in modulating immune responses in psoriasis remain unexplored. In this study, we demonstrated a significant upregulation of RSAD2 expression in both psoriatic lesions and psoriasis-like mouse epidermis, with its expression positively correlated with psoriasis severity. In psoriatic cell models, RSAD2 was shown to promote the proliferation and secretion of pro-inflammatory cytokines by activating the transforming growth factor-β-activated kinase 1 (TAK1)-mediated nuclear factor kappa-B (NF-κB) signaling pathway. Additionally, it was found that the expression of RSAD2 is increased by the action of interferon regulatory factor-1 (IRF1), which binds to the promoter region of RSAD2. Therefore, the function of RSAD2 in psoriasis is regulated by IRF1. Notably, RSAD2 inhibition decreased epidermal hyperplasia and alleviated imiquimod (IMQ)-induced psoriatic dermatitis. In summary, our study highlights the modulation of the IRF1-RSAD2-TAK1 axis as a potential innovative therapeutic approach for psoriasis, offering new insights into the molecular mechanisms by which KCs drive inflammation in psoriasis.
Collapse
Affiliation(s)
- Xueqing Li
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China
| | - Fuqiang Chen
- Department of Dermatology, The First Hospital of China Medical University Shenyang Liaoning China
| | - Yunqian Li
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China
| | - Yunyue Zhen
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China
| | - Jiaoying Ju
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China
| | - Zhengjun Li
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China
| | - Shan Huang
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China.
| | - Qing Sun
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China.
| |
Collapse
|
10
|
Dai L, Mei B, Zhu M, Zhou H, Shao Y, Peng L. Heterogeneity of OAS family expression in tuberculosis and the impact of different sample selection: a comprehensive analysis. Diagn Microbiol Infect Dis 2025; 111:116692. [PMID: 39864306 DOI: 10.1016/j.diagmicrobio.2025.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
The 2'-5' oligoadenylate synthetase (OAS)family, comprising OAS1, OAS2, OAS3, and OASL, has been shown to participate in the host immune response against Mycobacterium tuberculosis (Mtb). However, their expression profiles in tuberculosis (TB) remain inconsistent. In two TB-related datasets, the OAS family exhibits contrasting expression trends. To further investigate, we examined the expression of the OAS family in whole blood, peripheral blood mononuclear cells (PBMC), and pleural fluid mononuclear cells (PFMC) as study samples, focusing on pulmonary tuberculosis (PTB) and tuberculous pleuritis (TPE). The results revealed differing expression patterns of the OAS family in the two diseases. In PFMC samples from TPE patients, the OAS family showed overall upregulation. Additionally, matched samples from nine TPE patients indicated overlapping expression of the OAS family in both PBMC and PFMC samples.
Collapse
Affiliation(s)
- Lingshan Dai
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Bin Mei
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Mingzhi Zhu
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Hongjuan Zhou
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Yanqin Shao
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Lijun Peng
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
11
|
Chen Z, Li Z, Wang Y, Dushimova Z, Gulnara K, Takeda S, Zhou Z, Xu X. ISGylation: is our genome yearning for such a modification? Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40103488 DOI: 10.3724/abbs.2025028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
ISGylation is the post-translational modification of protein substrates covalently conjugated with the ubiquitin-like protein, interferon-stimulated gene 15 (ISG15). Although initially linked to antiviral immunity, recent evidence highlights important roles for ISGylation in various biological processes, such as maintaining genomic stability, promoting tumourigenesis, and being involved in other pathological conditions. In this review, we examine the molecular mechanisms underlying ISGylation, its interplay with other post-translational modifications, and its involvement in diverse biological and pathological processes. We propose future research directions to advance the field and discuss how ISGylation might be harnessed to ensure human health, particularly genome instability-associated diseases.
Collapse
Affiliation(s)
- Zheng Chen
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua 362500, China
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zheng Li
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua 362500, China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zaure Dushimova
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Kapanova Gulnara
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Shunichi Takeda
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, University of Hong Kong, Hong Kong 999077, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
12
|
Cappelletti G, Brambilla L, Strizzi S, Limanaqi F, Melzi V, Rizzuti M, Nizzardo M, Saulle I, Trabattoni D, Corti S, Clerici M, Biasin M. iPSC-derived human cortical organoids display profound alterations of cellular homeostasis following SARS-CoV-2 infection and Spike protein exposure. FASEB J 2025; 39:e70396. [PMID: 39950320 PMCID: PMC11826378 DOI: 10.1096/fj.202401604rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025]
Abstract
COVID-19 commonly leads to respiratory issues, yet numerous patients also exhibit a diverse range of neurological conditions, suggesting a detrimental impact of SARS-CoV-2 or the viral Spike protein on the central nervous system. Nonetheless, the molecular pathway behind neurological pathology and the presumed neurotropism of SARS-CoV-2 remains largely unexplored. We generated human cortical organoids (HCOs) derived from human induced pluripotent stem cells (hiPSC) to assess: (1) the expression of SARS-CoV-2 main entry factors; (2) their vulnerability to SARS-CoV-2 infection; and (3) the impact of SARS-CoV-2 infection and exposure to the Spike protein on their transcriptome. Results proved that (1) HCOs express the main SARS-CoV-2 receptors and co-receptors; (2) HCOs may be productively infected by SARS-CoV-2; (3) the viral particles released by SARS-CoV-2-infected HCOs are able to re-infect another cellular line; and (4) the infection resulted in the activation of apoptotic and stress pathways, along with inflammatory processes. Notably, these effects were recapitulated when HCOs were exposed to the Spike protein alone. The data obtained demonstrate that SARS-CoV-2 likely infects HCOs probably through the binding of ACE2, CD147, and NRP1 entry factors. Furthermore, exposure to the Spike protein alone proved sufficient to disrupt their homeostasis and induce neurotoxic effects, potentially contributing to the onset of long-COVID symptoms.
Collapse
Affiliation(s)
- Gioia Cappelletti
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Lorenzo Brambilla
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Sergio Strizzi
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Fiona Limanaqi
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Valentina Melzi
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Mafalda Rizzuti
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Monica Nizzardo
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Irma Saulle
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Daria Trabattoni
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Stefania Corti
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience SectionUniversity of MilanMilanItaly
- Neuromuscular and Rare Diseases Unit, Department of NeuroscienceFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Mario Clerici
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Don C. Gnocchi FoundationIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) FoundationMilanItaly
| | - Mara Biasin
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| |
Collapse
|
13
|
Ramirez Reyes B, Madden S, Meyer KA, Bartsch B, Wright AP, Constant DA, Nice TJ. Homeostatic antiviral protection of the neonatal gut epithelium by interferon lambda. Cell Rep 2025; 44:115243. [PMID: 39893635 PMCID: PMC11913526 DOI: 10.1016/j.celrep.2025.115243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Cell-intrinsic antiviral gene expression by intestinal epithelial cells (IECs) limits infection by enteric viral pathogens. Here, we find that neonatal IECs express antiviral genes at homeostasis that depend on interferon lambda (IFN-λ) and are required for early control of mouse rotavirus (mRV) infection. Neonatal homeostatic IFN-λ responses are independent of microbiota and pervasively distributed among IECs, distinguishing them from the homeostatic responses of adult mice. Developmental differences in homeostatic IFN-stimulated gene signatures of the intestine are regulated by maturation during the suckling-to-weanling transition, which includes reduced expression of Prdm1 by mature IECs. These studies identify developmental regulation of the homeostatic IFN-λ response, which is present in the neonatal intestine from birth, stimulated independent of microbiota, and preemptively protects IECs from viral infection. This intrinsically programmed antiviral response in early life is particularly important due to the absence of a robust microbiota or protective immune memory at birth, when the risk of enteric infection is high.
Collapse
Affiliation(s)
- Bryan Ramirez Reyes
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shelby Madden
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kimberly A Meyer
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Brenden Bartsch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
14
|
Packer JM, Giammo SG, Wangler LM, Davis AC, Bray CE, Godbout JP. Diffuse Traumatic Brain Injury Induced Stimulator of Interferons (STING) Signaling in Microglia Drives Cortical Neuroinflammation, Neuronal Dysfunction, and Impaired Cognition. RESEARCH SQUARE 2025:rs.3.rs-5960640. [PMID: 40034431 PMCID: PMC11875282 DOI: 10.21203/rs.3.rs-5960640/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neuropsychiatric complications including depression and cognitive impairment develop, persist, and worsen in the years after traumatic brain injury (TBI), negatively affecting life and lifespan. Inflammatory responses mediated by microglia are associated with the transition from acute to chronic neuroinflammation after TBI. Moreover, type I interferon (IFN-I) signaling is a key mediator of inflammation during this transition. Thus, the purpose of this study was to determine the degree to which a microglia-specific knockout of the stimulator of interferons (STING) influenced TBI-induced neuroinflammation, neuronal dysfunction, and cognitive impairment. Here, microglial inducible STING knockout (CX₃CR1Cre/ERT2 x STING fl/fl ) mice were created and validated (mSTING -/- ). Diffuse brain injury (midline fluid percussion) in male and female mice increased STING expression in microglia, promoted microglial morphological restructuring, and induced robust cortical inflammation and pathology 7 days post injury (dpi). These TBI-associated responses were attenuated in mSTING -/- mice. Increased cortical astrogliosis and rod-shaped microglia induced by TBI were independent of mSTING -/- . 7 dpi, TBI induced 237 differentially expressed genes (DEG) in the cortex of functionally wildtype (STING +/+ ) associated with STING, NF- κB, and Interferon Alpha signaling and 85% were attenuated by mSTING -/- . Components of neuronal injury including reduced NeuN expression, increased cortical lipofuscin, and increased neurofilament light chain in plasma were increased by TBI and dependent on mSTING. TBI-associated cognitive tasks (novel object recognition/location, NOR/NOL) at 7 dpi were dependent on mSTING. Notably, the TBI-induced cognitive deficits in NOR/NOL and increased cortical inflammation 7 dpi were unaffected in global interferon-α/β receptor 1 knockout (IFNAR1) mice. In the final study, the RNA profile of neurons after TBI in STING +/+ and mSTING -/- mice was assessed 7 dpi by single nucleus RNA-sequencing. There was a TBI-dependent suppression of cortical neuronal homeostasis with reductions in CREB signaling, synaptogenesis, and oxytocin signaling and increases in cilium assembly and PTEN signaling. Overall, mSTING -/- prevented 50% of TBI-induced DEGs in cortical neurons. Collectively, ablation of STING in microglia attenuates TBI-induced IFN-dependent responses, cortical inflammation, neuronal dysfunction, neuronal pathology, and cognitive impairment.
Collapse
|
15
|
Schiffman A, Cheng Z, Ourthiague D, Hoffmann A. Gene regulatory logic of the interferon-β enhancer contains multiple selectively deployed modes of transcription factor synergy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636520. [PMID: 39975349 PMCID: PMC11838565 DOI: 10.1101/2025.02.04.636520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type I interferon IFNβ is a key regulator of the immune response, and its dysregulated expression causes disease. The regulation of IFNβ promoter activity has been a touchpoint of mammalian gene control research since the discovery of functional synergy between two stimulus-responsive transcription factors (TFs) nuclear factor kappa B (NFκB) and interferon regulatory factors (IRF). However, subsequent gene knockout studies revealed that this synergy is condition-dependent such that either NFκB or IRF activation can be dispensable, leaving the precise regulatory logic of IFNβ transcription an open question. Here, we developed a series of quantitative enhancer states models of IFNβ expression control and evaluated them with stimulus-response data from TF knockouts. Our analysis confirmed that TF synergy is a hallmark of the regulatory logic but that it need not involve NFκB, as synergy between two adjacent IRF dimers is sufficient. We found that a sigmoidal binding curve at the distal site renders the dual IRF synergy mode ultrasensitive, allowing it only in conditions of high IRF activity upon viral infection. In contrast, the proximal site has high affinity and enables expression in response to bacterial exposure through synergy with NFκB. However, its accessibility is controlled by the competitive repressor p50:p50, which prevents basal IRF levels from synergizing with NFκB, such that NFκB-only stimuli do not activate IFNβ expression. The enhancer states model identifies multiple synergy modes that are accessed differentially in response to different immune threats, enabling a highly stimulus-specific but also versatile regulatory logic for stimulus-specific IFNβ expression.
Collapse
Affiliation(s)
- Allison Schiffman
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Zhang Cheng
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Diana Ourthiague
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| |
Collapse
|
16
|
Toubanaki DK, Tzortzatos OP, Efstathiou A, Bakopoulos V, Karagouni E. Influence of Viral Re-Infection on Head Kidney Transcriptome of Nervous Necrosis Virus-Resistant and -Susceptible European Sea Bass ( Dicentrarchus labrax, L.). Viruses 2025; 17:230. [PMID: 40006985 PMCID: PMC11860166 DOI: 10.3390/v17020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Fish viral infections have great environmental and economic implications in aquaculture. Nervous necrosis virus (NNV) is a pathogen affecting more than 120 different species, causing high mortality and morbidity. Herein, we study how NNV re-infection affects the European sea bass (Dicentrarchus labrax, L.) head kidney transcriptome in disease-resistant and -susceptible sea bass families. To determine how each family responds to re-infection, we performed the RNA-sequencing analysis of experimentally NNV-infected D. labrax. Fish were experimentally infected in a long-term study, and one month after the last recorded death, all surviving fish were re-infected by the same NNV strain. Fish tissues were sampled 7 days upon re-infection. The transcriptome profiles of infected vs. non-infected fish revealed 103 differentially expressed genes (DEGs) for the resistant family and 336 DEGs for the susceptible family. Only a few pathways were commonly enriched in the two families, further indicating that the resistant and susceptible families utilize completely different mechanisms to fight the NNV re-infection. Protein-protein interaction analysis identified a variety of hub genes for the resistant and the susceptible families, quite distinct in their function on NNV resistance. In conclusion, NNV-resistant and -sensitive sea bass transcriptomes were analyzed following NNV survivors' viral re-infection, offering a glimpse into how host attempts to control the infection depending on its genetic background in relation with virus resistance.
Collapse
Affiliation(s)
- Dimitra K. Toubanaki
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.-P.T.); (A.E.)
| | - Odysseas-Panagiotis Tzortzatos
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.-P.T.); (A.E.)
| | - Antonia Efstathiou
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.-P.T.); (A.E.)
| | - Vasileios Bakopoulos
- Department of Marine Sciences, School of The Environment, University of the Aegean, University Hill, Lesvos, 81100 Mytilene, Greece;
| | - Evdokia Karagouni
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.-P.T.); (A.E.)
| |
Collapse
|
17
|
Oliveira-Rizzo C, Colantuono CL, Fernández-Alvarez AJ, Boccaccio GL, Garat B, Sotelo-Silveira JR, Khan S, Ignatchenko V, Lee YS, Kislinger T, Liu SK, Fort RS, Duhagon MA. Multi-Omics Study Reveals Nc886/vtRNA2-1 as a Positive Regulator of Prostate Cancer Cell Immunity. J Proteome Res 2025; 24:433-448. [PMID: 39723625 DOI: 10.1021/acs.jproteome.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Noncoding RNA 886 has emerged as a pivotal regulatory RNA with distinct functions across tissues, acting as a regulator of protein activity by directly binding to protein partners. While it is well recognized as a tumor suppressor in prostate cancer, the underlying molecular mechanisms remain elusive. To discover the principal pathways regulated by nc886 in prostate cancer, we used a transcriptomic and proteomic approach analyzing malignant DU145, LNCaP, PC3, and benign RWPE-1 prostate cell line models transiently transfected with in vitro transcribed nc886 or antisense oligonucleotides. Multiomics revelead a significant enrichment of immune system-related pathways across the cell lines, including cytokines and interferon signaling. The interferon response provoked by nc886 was validated by functional assays. The invariability of PKR phosphorylation and NF-κB activity in the gain/loss of nc886 function experiments and the positive regulation of innate immunity suggest a PKR-independent mechanism of nc886 action. Accordingly, the GSEA of the PRAD-TCGA data set revealed immune stimulation as the nc886 most associated node also in the clinical setting. Our study showed that the reduction of nc886 leads to a blunted immune response in prostate cancer.
Collapse
Affiliation(s)
- Carolina Oliveira-Rizzo
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Camilla L Colantuono
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana J Fernández-Alvarez
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1405, Argentina
| | - Graciela L Boccaccio
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1405, Argentina
- Departamento de Fisiología y Biología Molecular y Celular (FBMyC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Beatriz Garat
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
| | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Shahbaz Khan
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
| | | | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Thomas Kislinger
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Odette Cancer Centre and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| | - Rafael S Fort
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
| | - María A Duhagon
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
18
|
Niethamer TK, Planer JD, Morley MP, Babu A, Zhao G, Basil MC, Cantu E, Frank DB, Diamond JM, Nottingham AN, Li S, Sharma A, Hallquist H, Levin LI, Zhou S, Vaughan AE, Morrisey EE. Longitudinal single-cell profiles of lung regeneration after viral infection reveal persistent injury-associated cell states. Cell Stem Cell 2025; 32:302-321.e6. [PMID: 39818203 PMCID: PMC11805657 DOI: 10.1016/j.stem.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/12/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
Functional regeneration of the lung's gas exchange surface following injury requires the coordination of a complex series of cell behaviors within the alveolar niche. Using single-cell transcriptomics combined with lineage tracing of proliferating progenitors, we examined mouse lung regeneration after influenza injury, demonstrating an asynchronously phased response across different cellular compartments. This longitudinal atlas of injury responses has produced a catalog of transient and persistent transcriptional alterations in cells as they transit across axes of differentiation. These cell states include an injury-induced capillary endothelial cell (iCAP) that arises after injury, persists indefinitely, and shares hallmarks with developing lung endothelium and endothelial aberrations found in degenerative human lung diseases. This dataset provides a foundational resource to understand the complexity of cellular and molecular responses to injury and correlations to responses found in human development and disease.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Joseph D Planer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gan Zhao
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Cantu
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David B Frank
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua M Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ana N Nottingham
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnav Sharma
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Hannah Hallquist
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lillian I Levin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew E Vaughan
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
20
|
Wu D, Kao JH, Piratvisuth T, Wang X, Kennedy PTF, Otsuka M, Ahn SH, Tanaka Y, Wang G, Yuan Z, Li W, Lim YS, Niu J, Lu F, Zhang W, Gao Z, Kaewdech A, Han M, Yan W, Ren H, Hu P, Shu S, Kwo PY, Wang FS, Yuen MF, Ning Q. Update on the treatment navigation for functional cure of chronic hepatitis B: Expert consensus 2.0. Clin Mol Hepatol 2025; 31:S134-S164. [PMID: 39838828 PMCID: PMC11925436 DOI: 10.3350/cmh.2024.0780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/21/2025] [Indexed: 01/23/2025] Open
Abstract
As new evidence emerges, treatment strategies toward the functional cure of chronic hepatitis B are evolving. In 2019, a panel of national hepatologists published a Consensus Statement on the functional cure of chronic hepatitis B. Currently, an international group of hepatologists has been assembled to evaluate research since the publication of the original consensus, and to collaboratively develop the updated statements. The 2.0 Consensus was aimed to update the original consensus with the latest available studies, and provide a comprehensive overview of the current relevant scientific literatures regarding functional cure of hepatitis B, with a particular focus on issues that are not yet fully clarified. These cover the definition of functional cure of hepatitis B, its mechanisms and barriers, the effective strategies and treatment roadmap to achieve this endpoint, in particular new surrogate biomarkers used to measure efficacy or to predict response, and the appropriate approach to pursuing a functional cure in special populations, the development of emerging antivirals and immunomodulators with potential for curing hepatitis B. The statements are primarily intended to offer international guidance for clinicians in their practice to enhance the functional cure rate of chronic hepatitis B.
Collapse
Affiliation(s)
- Di Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| | - Xiaojing Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Patrick T F Kennedy
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Academic Fields of Medicine, Dentistry, and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenhui Li
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Young-Suk Lim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Junqi Niu
- Department of Hepatology, First Hospital of Jilin University, Jilin University, Jilin, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Meifang Han
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Paul Yien Kwo
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Fu-Sheng Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine & State Key Laboratory of Liver Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Falvo CA, Crowley DE, Benson E, Hall MN, Schwarz B, Bohrnsen E, Ruiz-Aravena M, Hebner M, Ma W, Schountz T, Rynda-Apple A, Plowright RK. Diet-induced changes in metabolism influence immune response and viral shedding in Jamaican fruit bats. Proc Biol Sci 2025; 292:20242482. [PMID: 39968620 PMCID: PMC11836708 DOI: 10.1098/rspb.2024.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Land-use change may drive viral spillover from bats into humans, partly through dietary shifts caused by decreased availability of native foods and increased availability of cultivated foods. We experimentally manipulated diets of Jamaican fruit bats to investigate whether diet influences viral shedding. To reflect dietary changes experienced by wild bats during periods of nutritional stress, Jamaican fruit bats were fed either a standard diet or a putative suboptimal diet, which was deprived of protein (suboptimal-sugar diet) and/or supplemented with fat (suboptimal-fat diet). Upon H18N11 influenza A-virus infection, bats fed on the suboptimal-sugar diet shed the most viral RNA for the longest period, but bats fed the suboptimal-fat diet shed the least viral RNA for the shortest period. Bats on both suboptimal diets ate more food than the standard diet, suggesting nutritional changes may alter foraging behaviour. This study serves as an initial step in understanding whether and how dietary shifts may influence viral dynamics in bats, which alters the risk of spillover to humans.
Collapse
Affiliation(s)
- Caylee A. Falvo
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY14853, USA
| | - Daniel E. Crowley
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY14853, USA
| | - Evelyn Benson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT59717, USA
| | - Monica N. Hall
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT59717, USA
| | - Benjamin Schwarz
- Research and Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT59840, USA
| | - Eric Bohrnsen
- Research and Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT59840, USA
| | - Manuel Ruiz-Aravena
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY14853, USA
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, MS39762, USA
| | - Madison Hebner
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT59717, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211, USA
| | - Tony Schountz
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO80523, USA
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT59717, USA
| | - Raina K. Plowright
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
22
|
Chen M, Hu J, Zhou X, Gao M, Li N, Yang G, Chi X, Wang S. Long Non-Coding RNA THRIL Promotes Influenza Virus Replication by Inhibiting the Antiviral Innate Immune Response. Viruses 2025; 17:153. [PMID: 40006907 PMCID: PMC11861671 DOI: 10.3390/v17020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) have been recognized for their crucial roles in the replication processes of various viruses. However, the specific functions and regulatory mechanisms of many lncRNAs in influenza A virus (IAV) pathogenesis remain poorly understood. In this study, we identified lncRNA THRIL and observed a significant reduction in its expression following IAV infection in A549 cells. The treatment of cells with the viral mimic poly (I:C), or with type I and type III interferons, resulted in a substantial decrease in THRIL expression. Furthermore, THRIL overexpression significantly enhanced IAV replication, while its silencing markedly reduced IAV replication. Additionally, IAV infection led to notable reductions in the expression levels of type I and type III interferons in cell lines overexpressing THRIL compared to control groups; conversely, cell lines with THRIL knockdown exhibited significantly higher interferon levels than control groups. Moreover, THRIL was found to inhibit the expression of several critical interferon-stimulated genes (ISGs), which are essential for an effective antiviral response. Notably, our findings demonstrated that THRIL impaired the activation of IRF3, a key transcription factor in the interferon signaling pathway, thereby suppressing host innate immunity. These results highlight THRIL's potential as a therapeutic target for antiviral strategies.
Collapse
Affiliation(s)
- Mengying Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingyun Hu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinni Zhou
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming Gao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ning Li
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guihong Yang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaojuan Chi
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Rao Y, Qin C, Savas AC, Liu Q, Feng S, Hou G, Xie T, Feng P. Pyrimidine synthesis enzyme CTP synthetase 1 suppresses antiviral interferon induction by deamidating IRF3. Immunity 2025; 58:74-89.e6. [PMID: 39719712 PMCID: PMC11735333 DOI: 10.1016/j.immuni.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/14/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
Metabolism is typically contextualized in conjunction with proliferation and growth. The roles of metabolic enzymes beyond metabolism-such as in innate immune responses-are underexplored. Using a focused short hairpin RNA (shRNA)-mediated screen, we identified CTP synthetase 1 (CTPS1), a rate-limiting enzyme of pyrimidine synthesis, as a negative regulator of interferon induction. Mechanistically, CTPS1 interacts with and deamidates interferon regulatory factor 3 (IRF3). Deamidation at N85 impairs IRF3 binding to promoters containing IRF3-responsive elements, thus muting interferon (IFN) induction. Employing CTPS1 conditional deletion and IRF3 deamidated or deamidation-resistant knockin mice, we demonstrated that CTPS1-driven IRF3 deamidation restricts IFN induction in response to viral infection in vivo. However, during immune activation, IRF3 deamidation by CTPS1 is inhibited by glycogen synthase kinase 3 beta (GSK3β) to promote IFN induction. This work demonstrates how CTPS1 tames innate immunity independent of its role in pyrimidine synthesis, thus expanding the functional repertoire of metabolic enzymes into immune regulation.
Collapse
Affiliation(s)
- Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Qizhi Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Shu Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Guoli Hou
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Taolin Xie
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
24
|
Ru S, Tang S, Xu H, Yin J, Guo Y, Song L, Jin Z, Lee D, Chan YH, Chen X, Buerer L, Fairbrother W, Jia W, Casanova JL, Zhang SY, Gao D. Human DBR1 deficiency impairs stress granule-dependent PKR antiviral immunity. J Exp Med 2025; 222:e20240010. [PMID: 39636299 PMCID: PMC11619777 DOI: 10.1084/jem.20240010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/25/2024] [Accepted: 09/20/2024] [Indexed: 12/07/2024] Open
Abstract
The molecular mechanism by which inborn errors of the human RNA lariat-debranching enzyme 1 (DBR1) underlie brainstem viral encephalitis is unknown. We show here that the accumulation of RNA lariats in human DBR1-deficient cells interferes with stress granule (SG) assembly, promoting the proteasome degradation of at least G3BP1 and G3BP2, two key components of SGs. In turn, impaired assembly of SGs, which normally recruit PKR, impairs PKR activation and activity against viruses, including HSV-1. Remarkably, the genetic ablation of PKR abolishes the corresponding antiviral effect of DBR1 in vitro. We also show that Dbr1Y17H/Y17H mice are susceptible to similar viral infections in vivo. Moreover, cells and brain samples from Dbr1Y17H/Y17H mice exhibit decreased G3BP1/2 expression and PKR phosphorylation. Thus, the debranching of RNA lariats by DBR1 permits G3BP1/2- and SG assembly-mediated PKR activation and cell-intrinsic antiviral immunity in mice and humans. DBR1-deficient patients are prone to viral disease because of intracellular lariat accumulation, which impairs G3BP1/2- and SG assembly-dependent PKR activation.
Collapse
Affiliation(s)
- Shuo Ru
- Division Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center Advanced Interdisciplinary Science and Biomedicine IHM, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Sisi Tang
- Division Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center Advanced Interdisciplinary Science and Biomedicine IHM, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Hui Xu
- Division Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center Advanced Interdisciplinary Science and Biomedicine IHM, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Jiahao Yin
- Division Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center Advanced Interdisciplinary Science and Biomedicine IHM, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Yan Guo
- Division Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center Advanced Interdisciplinary Science and Biomedicine IHM, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Liuping Song
- Division Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center Advanced Interdisciplinary Science and Biomedicine IHM, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Zhenyu Jin
- Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Xingyao Chen
- Division of Life Sciences and Medicine, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Luke Buerer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - William Fairbrother
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Weidong Jia
- Division Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center Advanced Interdisciplinary Science and Biomedicine IHM, University of Science and Technology of China, Hefei, China
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Daxing Gao
- Division Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center Advanced Interdisciplinary Science and Biomedicine IHM, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| |
Collapse
|
25
|
Li L, Ji L, Chen J, Hou S, Yang Y, Wang W, Lei B, Zhang W, Zhao K, Zhao Z, Yuan W. Host-derived Bacillus antagonistic novel duck reovirus infection by regulating gut microbiota-mediated immune responses. Vet Microbiol 2025; 300:110332. [PMID: 39647218 DOI: 10.1016/j.vetmic.2024.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
The Novel Duck Reovirus (NDRV) infection poses a significant health risk to ducks, primarily attributed to the absence of efficacious preventive measures. This research aimed to investigate whether the administration of isolated Bacillus could protect antagonistic NDRV infection in a Cherry Valley duck model. Four indigenous Bacillus strains from the feces of healthy ducks demonstrated promising biosafety profiles. One-day-old ducklings were inoculated intramuscularly with NDRV and subsequently subjected to a 28-day regimen of mixed Bacillus (Bac) treatment. The effects of Bac on pathological symptoms, immune response and intestinal flora were analyzed. The results showed that Bac significantly reduced weight loss, clinical symptoms, and viral loading. Moreover, Bac treatment significantly decreased neutrophils, monocytes proportion, the TNF-α, IL-1β and IL-6 expression, increased platelets, lymphocytes proportion, the IFN-β and IL-10 expression, and restored immune dysfunction. In addition, Bac has increased the relative abundance of Enterococcaceae, Lactobacillales, Bacilli, Ruminococcaceae, Clostridium and Phascolarctobacterium. Moreover, the metabolism of short-chain fatty acids (SCFAs) was further regulated, thereby enhancing the acetate content. The correlation analysis showed that a positive association between acetate levels and IFN-β expression, while a negative correlation was observed with viral loading. In conclusion, the results suggest that the anti-NDRV mechanism of Bac may involve the modulation of gut microbiota to elicit an immune response that inhibits viral infection. This study presents a novel approach for the prevention and treatment of NDRV, thereby establishing a theoretical foundation for the future development of probiotics in the prevention and treatment of NDRV.
Collapse
Affiliation(s)
- Lijie Li
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Longhai Ji
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Jiawei Chen
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Suli Hou
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Yuchuan Yang
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Weizhu Wang
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China
| | - Zhuo Zhao
- Beijing Centrebio Biological Co., Ltd, Beijing 102629, China.
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, NO.2596 Lekai South Street, Baoding, Hebei 071000, China; Veterinary Biological Technology Innovation Centre of Hebei Province, Baoding, Hebei 071000, China.
| |
Collapse
|
26
|
Zhong W, Wang C, Wang J, Chen T. Machine learning models to further identify advantaged populations that can achieve functional cure of chronic hepatitis B virus infection after receiving Peg-IFN alpha treatment. Int J Med Inform 2025; 193:105660. [PMID: 39454328 DOI: 10.1016/j.ijmedinf.2024.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVE Functional cure is currently the highest goal of hepatitis B virus(HBV) treatment.Pegylated interferon(Peg-IFN) alpha is an important drug for this purpose,but even in the hepatitis B e antigen(HBeAg)-negative population,there is still a portion of the population respond poorly to it.Therefore,it is important to explore the influencing factors affecting the response rate of Peg-IFN alpha and establish a prediction model to further identify advantaged populations. METHODS We retrospectively analyzed 382 patients.297 patients were in the training set and 85 patients from another hospital were in the test set.The intersect features were extracted from all variables using the recursive feature elimination(RFE) algorithm, Boruta algorithm, and least absolute shrinkage and selection operator(LASSO) regression algorithm in the training dataset.Then,we employed six machine learning(ML) algorithms-Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),K Nearest Neighbors(KNN),Light Gradient Boosting Machine(LightGBM) and Extreme Gradient Boosting(XGBoost)-to develop the model.Internal 10-fold cross-validation helped determine the best-performing model,which was then tested externally.Model performance was assessed using metrics such as area under the curve(AUC) and other metrics.SHapley Additive exPlanations(SHAP) plots were used to interpret variable significance. RESULTS 138/382(36.13 %) patients achieved functional cure.HBsAg at baseline,HBsAg decline at week12,non-alcoholic fatty liver disease(NAFLD) and age were identified as significant variables.RF performed the best,with AUC value of 0.988,and maintained good performance in test set.The SHapley Additive exPlanations(SHAP) plot highlighted HBsAg at baseline and HBsAg decline at week 12 are the top two predictors.The web-calculator was designed to predict functional cure more conveniently(https://www.xsmartanalysis.com/model/list/predict/model/html?mid = 17054&symbol = 317ad245Hx628ko3uW51). CONCLUSION We developed a prediction model,which can be used to not only accurately identifies advantageous populations with Peg-IFN alpha,but also determines whether to continue subsequent Peg-IFN alpha.
Collapse
Affiliation(s)
- Wenting Zhong
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Che Wang
- Department of Radiology Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jia Wang
- Department of Infectious Disease, The Eight Hospital of Xi'an, Xi'an, Shaanxi, China
| | - Tianyan Chen
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
27
|
Hu T, Li Y, Yan S, Sun L, Lian R, Yu J, Chen J, Liu X, Zhang G. Application of myxovirus resistance protein A in the etiological diagnosis of infections in adults. World J Emerg Med 2025; 16:35-42. [PMID: 39906110 PMCID: PMC11788119 DOI: 10.5847/wjem.j.1920-8642.2025.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Inappropriate antibiotic treatment for patients with viral infections has led to a surge in antimicrobial resistance, increasing mortality and healthcare costs. Viral and bacterial infections are often difficult to distinguish. Myxovirus resistance protein A (MxA), an essential antiviral factor induced by interferon after viral infection, holds promise for distinguishing between viral and bacterial infections. This study aimed to determine the ability of MxA to distinguish viral from bacterial infections. METHODS We quantified MxA in 121 infected patients via dry immunofluorescence chromatography. The Kruskal-Wallis test and receiver operating characteristic (ROC) curve analysis were used to determine the diagnostic value of MxA, either alone or in combination with C-reactive protein (CRP) or procalcitonin (PCT), in patients with viral, bacterial, or co-infections. RESULTS The value of MxA (ng/mL) was significantly higher in patients with viral infections than in those with bacterial and co-infections (82.3 [24.5-182.9] vs. 16.4 [10.8-26.5], P<0.0001) (82.3 [24.5-182.9] vs. 28.5 [10.2-106.8], P=0.0237). The area under the curve (AUC) of the ROC curve for distinguishing between viral and bacterial infections was 0.799 (95% confidence interval [95% CI] 0.696-0.903), with a sensitivity of 68.9% (95% CI 54.3%-80.5%) and specificity of 90.0% (95% CI 74.4%-96.5%) at the threshold of 50.3 ng/mL. Combining the MxA level with the CRP or PCT level improved its ability. MxA expression was low in cytomegalovirus (15.8 [9.6-47.6] ng/mL) and Epstein-Barr virus (12.9 [8.5-21.0] ng/mL) infections. CONCLUSION Our study showed the diagnostic efficacy of MxA in distinguishing between viral and bacterial infections, with further enhancement when it was combined with CRP or PCT. Moreover, Epstein-Barr virus and human cytomegalovirus infections did not elicit elevated MxA expression.
Collapse
Affiliation(s)
- Tianpeng Hu
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Li
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shengtao Yan
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lichao Sun
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Rui Lian
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jieqiong Yu
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Chen
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoyu Liu
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Guoqiang Zhang
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
28
|
Li J, Zhu J, Yang H, Hou F. Sterile activation of RNA-sensing pathways in autoimmunity. J Mol Cell Biol 2024; 16:mjae029. [PMID: 39143032 PMCID: PMC11659683 DOI: 10.1093/jmcb/mjae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/27/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024] Open
Abstract
RNA-sensing pathways play a pivotal role in host defense against pathogenic infections to maintain cellular homeostasis. However, in the absence of infection, certain endogenous RNAs can serve as the activators of RNA-sensing pathways as well. The inappropriate activation of RNA-sensing pathways by self-ligands leads to systemic inflammation and autoimmune diseases. In this review, we summarize current findings on the sterile activation of RNA sensors, as well as its implications in autoimmunity, inflammatory diseases, and therapeutics.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Junyan Zhu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fajian Hou
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
29
|
Liu C, Joehanes R, Ma J, Xie J, Yang J, Wang M, Huan T, Hwang SJ, Wen J, Sun Q, Cumhur DY, Heard-Costa NL, Orchard P, Carson AP, Raffield LM, Reiner A, Li Y, O'Connor G, Murabito JM, Munson P, Levy D. Integrating Whole Genome and Transcriptome Sequencing to Characterize the Genetic Architecture of Isoform Variation and its Implications for Health and Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318434. [PMID: 39677465 PMCID: PMC11643148 DOI: 10.1101/2024.12.04.24318434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
We created a comprehensive whole blood splice variation quantitative trait locus (sQTL) resource by analyzing isoform expression ratio (isoform-to-gene) in Framingham Heart Study (FHS) participants (discovery: n=2,622; validation: n=1,094) with whole genome (WGS) and transcriptome sequencing (RNA-seq) data. External replication was conducted using WGS and RNA-seq from the Jackson Heart Study (JHS, n=1,020). We identified over 3.5 million cis -sQTL-isoform pairs ( p <5e-8), comprising 1,176,624 cis -sQTL variants and 10,883 isoform transcripts from 4,971 sGenes, with significant change in isoform-to-gene ratio due to allelic variation. We validated 61% of these pairs in the FHS validation sample ( p <1e-4). External validation ( p <1e-4) in JHS for the top 10,000 and 100,000 most significant cis -sQTL-isoform pairs was 88% and 69%, respectively, while overall pairs validated at 23%. For 20% of cis -sQTLs in the FHS discovery sample, allelic variation did not significantly correlate with overall gene expression. sQTLs are enriched in splice donor and acceptor sites, as well as in GWAS SNPs, methylation QTLs, and protein QTLs. We detailed several sentinel cis -sQTLs influencing alternative splicing, with potential causal effects on cardiovascular disease risk. Notably, rs12898397 (T>C) affects splicing of ULK3 , lowering levels of the full-length transcript ENST00000440863.7 and increasing levels of the truncated transcript ENST00000569437.5, encoding proteins of different lengths. Mendelian randomization analysis demonstrated that a lower ratio of the full-length isoform is causally associated with lower diastolic blood pressure and reduced lymphocyte percentages. This sQTL resource provides valuable insights into how transcriptomic variation may influence health outcomes.
Collapse
|
30
|
Maiti AK. MDA5 Is a Major Determinant of Developing Symptoms in Critically Ill COVID-19 Patients. Clin Rev Allergy Immunol 2024; 67:58-72. [PMID: 39460899 DOI: 10.1007/s12016-024-09008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Apart from the skin and mucosal immune barrier, the first line of defense of the human immune system includes MDA5 (ifih1 gene) which acts as a cellular sensor protein for certain viruses including SARS-CoV-2. Upon binding with viral RNA, MDA5 activates cell-intrinsic innate immunity, humoral responses, and MAVS (mitochondrial antiviral signaling). MAVS signaling induces type I and III interferon (IFN) expressions that further induce ISGs (interferon stimulatory genes) expressions to initiate human cell-mediated immune responses and attenuate viral replication. SARS-CoV-2 counteracts by producing NSP1, NSP2, NSP3, NSP5, NSP7, NSP12, ORF3A, ORF9, N, and M protein and directs anti-MDA5 antibody production presumably to antagonize IFN signaling. Furthermore, COVID-19 resembles several diseases that carry anti-MDA5 antibodies and the current COVID-19 vaccines induced anti-MDA5 phenotypes in healthy individuals. GWAS (genome-wide association studies) identified several polymorphisms (SNPs) in the ifih1-ifn pathway genes including rs1990760 in ifih1 that are strongly associated with COVID-19, and the associated risk allele is correlated with reduced IFN production. The genetic association of SNPs in ifih1 and ifih1-ifn pathway genes reinforces the molecular findings of the critical roles of MDA5 in sensing SARS-CoV-2 and subsequently the IFN responses to inhibit viral replication and host immune evasion. Thus, MDA5 or its pathway genes could be targeted for therapeutic development of COVID-19.
Collapse
Affiliation(s)
- Amit K Maiti
- Mydnavar, Department of Genetics and Genomics, 28475 Greenfield Rd, Southfield, MI, USA.
| |
Collapse
|
31
|
Feng S, Xie N, Liu Y, Qin C, Savas AC, Wang TY, Li S, Rao Y, Shambayate A, Chou TF, Brenner C, Huang C, Feng P. Cryptic phosphoribosylase activity of NAMPT restricts the virion incorporation of viral proteins. Nat Metab 2024; 6:2300-2318. [PMID: 39572750 DOI: 10.1038/s42255-024-01162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/04/2024] [Indexed: 12/21/2024]
Abstract
As obligate intracellular pathogens, viruses activate host metabolic enzymes to supply intermediates that support progeny production. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of salvage nicotinamide adenine dinucleotide (NAD+) synthesis, is an interferon-inducible protein that inhibits the replication of several RNA and DNA viruses through unknown mechanisms. Here, we show that NAMPT restricts herpes simplex virus type 1 (HSV-1) replication by impeding the virion incorporation of viral proteins owing to its phosphoribosyl-hydrolase (phosphoribosylase) activity, which is independent of the role of NAMPT in NAD+ synthesis. Proteomics analysis of HSV-1-infected cells identifies phosphoribosylated viral structural proteins, particularly glycoproteins and tegument proteins, which are de-phosphoribosylated by NAMPT in vitro and in cells. Chimeric and recombinant HSV-1 carrying phosphoribosylation-resistant mutations show that phosphoribosylation promotes the incorporation of structural proteins into HSV-1 virions and subsequent virus entry. Loss of NAMPT renders mice highly susceptible to HSV-1 infection. Our work describes an additional enzymatic activity of a metabolic enzyme in viral infection and host defence, offering a system to interrogate the roles of protein phosphoribosylation in metazoans.
Collapse
Affiliation(s)
- Shu Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Na Xie
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China, School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ting-Yu Wang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Shutong Li
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Alexandra Shambayate
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China, School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Tuck OT, Adler BA, Armbruster EG, Lahiri A, Hu JJ, Zhou J, Pogliano J, Doudna JA. Genome integrity sensing by the broad-spectrum Hachiman antiphage defense complex. Cell 2024; 187:6914-6928.e20. [PMID: 39395413 DOI: 10.1016/j.cell.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/14/2024]
Abstract
Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman is a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease. HamB is the sensor helicase. HamB constrains HamA activity during surveillance of intact double-stranded DNA (dsDNA). When the HamAB complex detects DNA damage, HamB helicase activity activates HamA, unleashing nuclease activity. Hachiman activation degrades all DNA in the cell, creating "phantom" cells devoid of both phage and host DNA. We demonstrate Hachiman activation in the absence of phage by treatment with DNA-damaging agents, suggesting that Hachiman responds to aberrant DNA states. Phylogenetic similarities between the Hachiman helicase and enzymes from eukaryotes and archaea suggest deep functional symmetries with other important helicases across domains of life.
Collapse
Affiliation(s)
- Owen T Tuck
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jason J Hu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
33
|
Sheveleva O, Protasova E, Grigor’eva E, Butorina N, Kuziaeva V, Antonov D, Melnikova V, Medvedev S, Lyadova I. The Generation of Genetically Engineered Human Induced Pluripotent Stem Cells Overexpressing IFN-β for Future Experimental and Clinically Oriented Studies. Int J Mol Sci 2024; 25:12456. [PMID: 39596521 PMCID: PMC11595023 DOI: 10.3390/ijms252212456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be generated from various adult cells, genetically modified and differentiated into diverse cell populations. Type I interferons (IFN-Is) have multiple immunotherapeutic applications; however, their systemic administration can lead to severe adverse outcomes. One way of overcoming the limitation is to introduce cells able to enter the site of pathology and to produce IFN-Is locally. As a first step towards the generation of such cells, here, we aimed to generate human iPSCs overexpressing interferon-beta (IFNB, IFNB-iPSCs). IFNB-iPSCs were obtained by CRISPR/Cas9 editing of the previously generated iPSC line K7-4Lf. IFNB-iPSCs overexpressed IFNB RNA and produced a functionally active IFN-β. The cells displayed typical iPSC morphology and expressed pluripotency markers. Following spontaneous differentiation, IFNB-iPSCs formed embryoid bodies and upregulated endoderm, mesoderm, and some ectoderm markers. However, an upregulation of key neuroectoderm markers, PAX6 and LHX2, was compromised. A negative effect of IFN-β on iPSC neuroectoderm differentiation was confirmed in parental iPSCs differentiated in the presence of a recombinant IFN-β. The study describes new IFN-β-producing iPSC lines suitable for the generation of various types of IFN-β-producing cells for future experimental and clinical applications, and it unravels an inhibitory effect of IFN-β on stem cell neuroectoderm differentiation.
Collapse
Affiliation(s)
- Olga Sheveleva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia; (E.P.); (N.B.); (V.K.); (D.A.)
| | - Elena Protasova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia; (E.P.); (N.B.); (V.K.); (D.A.)
| | - Elena Grigor’eva
- Laboratory of Developmental Epigenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (E.G.); (S.M.)
| | - Nina Butorina
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia; (E.P.); (N.B.); (V.K.); (D.A.)
| | - Valeriia Kuziaeva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia; (E.P.); (N.B.); (V.K.); (D.A.)
| | - Daniil Antonov
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia; (E.P.); (N.B.); (V.K.); (D.A.)
| | - Victoria Melnikova
- Laboratory of Comparative Developmental Physiology, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia;
| | - Sergey Medvedev
- Laboratory of Developmental Epigenetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (E.G.); (S.M.)
| | - Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia; (E.P.); (N.B.); (V.K.); (D.A.)
| |
Collapse
|
34
|
Gao T, Liu J, Huang N, Zhou Y, Li C, Chen Y, Hong Z, Deng X, Liang X. Sangju Cold Granule exerts anti-viral and anti-inflammatory activities against influenza A virus in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118521. [PMID: 38969152 DOI: 10.1016/j.jep.2024.118521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sangju Cold Granule (SJCG) is a classical traditional Chinese medicine (TCM) prescription described in "Item Differentiation of Warm Febrile Diseases". Historically, SJCG was employed to treat respiratory illnesses. Despite its popular usage, the alleviating effect of SJCG on influenza A virus infection and its mechanisms have not been fully elucidated. AIM OF THE STUDY Influenza is a severe respiratory disease that threatens human health. This study aims to assess the therapeutic potential of SJCG and the possible molecular mechanism underlying its activity against influenza A virus in vitro and in vivo. MATERIALS AND METHODS Ultrahigh-performance liquid chromatography (UPLC)-Q-Exactive was used to identify the components of SJCG. The 50% cytotoxic concentration of SJCG in MDCK and A549 cells were determined using the CCK-8 assay. The activity of SJCG against influenza A virus H1N1 was evaluated in vitro using plaque reduction and progeny virus titer reduction assays. RT-qPCR was performed to obtain the expression levels of inflammatory mediators and the transcriptional regulation of RIG-I and MDA5 in H1N1-infected A549 cells. Then, the mechanism of SJCG effect on viral replication and inflammation was further explored by measuring the expressions of proteins of the RIG-I/NF-kB/IFN(I/III) signaling pathway by Western blot. The impact of SJCG was explored in vivo in an intranasally H1N1-infected BALB/c mouse pneumonia model treated with varying doses of SJCG. The protective role of SJCG in this model was evaluated by survival, body weight monitoring, lung viral titers, lung index, lung histological changes, lung inflammatory mediators, and peripheral blood leukocyte count. RESULTS The main SJCG chemical constituents were flavonoids, carbohydrates and glycosides, amino acids, peptides, and derivatives, organic acids and derivatives, alkaloids, fatty acyls, and terpenes. The CC50 of SJCG were 24.43 mg/mL on MDCK cells and 20.54 mg/mL on A549 cells, respectively. In vitro, SJCG significantly inhibited H1N1 replication and reduced the production of TNF-α, IFN-β, IL-6, IL-8, IL-13, IP-10, RANTES, TRAIL, and SOCS1 in infected A549 cells. Intracellularly, SJCG reduced the expression of RIG-I, MDA5, P-NF-κB P65 (P-P65), P-IκBα, P-STAT1, P-STAT2, and IRF9. In vivo, SJCG enhanced the survival rate and decreased body weight loss in H1N1-infected mice. Mice with H1N1-induced pneumonia treated with SJCG showed a lower lung viral load and lung index than untreated mice. SJCG effectively alleviated lung damage and reduced the levels of TNF-α, IFN-β, IL-6, IP-10, RANTES, and SOCS1 in lung tissue. Moreover, SJCG significantly ameliorated H1N1-induced leukocyte changes in peripheral blood. CONCLUSIONS SJCG significantly reduced influenza A virus and virus-mediated inflammation through inhibiting the RIG-I/NF-kB/IFN(I/III) signaling pathway. Thus, SJCG could provide an effective TCM for influenza treatment.
Collapse
Affiliation(s)
- Taotao Gao
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinbing Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, China; Department of Ultrasound Medicine, Liwan Central Hospital of Guangzhou, 35 Liwan Road, Guangzhou, 510000, Guangdong, China
| | - Nan Huang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yingxuan Zhou
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Conglin Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yintong Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zifan Hong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoyan Deng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xiaoli Liang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
35
|
Zhao SS, Qian Q, Wang Y, Qiao S, Li R. Porcine reproductive and respiratory syndrome virus degrades TANK-binding kinase 1 via chaperon-mediated autophagy to suppress type I interferon production and facilitate viral proliferation. Vet Res 2024; 55:151. [PMID: 39543624 PMCID: PMC11566183 DOI: 10.1186/s13567-024-01392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 11/17/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has led to significant economic losses in the global swine industry. Type I interferon (IFN-I) plays a crucial role in the host's resistance to PRRSV infection. Despite extensive research showing that PRRSV employs multiple strategies to antagonise IFN-I induction, the underlying mechanisms remain to be fully elucidated. In this study, we have discovered that PRRSV inhibits the production of IFN-I by degrading TANK-binding kinase 1 (TBK1) through chaperon-mediated autophagy (CMA). From a mechanistic standpoint, PRRSV nonstructural protein 2 (Nsp2) increases the interaction between the heat shock protein member 8 (HSPA8) and TBK1. This interaction leads to the translocation of TBK1 into lysosomes for degradation, mediated by lysosomal-associated membrane protein 2A (LAMP2A). As a result, the downstream activation of IFN regulatory factor 3 (IRF3) and the production of IFN-I are hindered. Together, these results reveal a new mechanism by which PRRSV suppresses host innate immunity and contribute to the development of new antiviral strategies against the virus.
Collapse
Affiliation(s)
- Shuang-Shuang Zhao
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
- Institute for Animal Health (Key Laboratory of Animal Immunology), Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Qisheng Qian
- Institute for Animal Health (Key Laboratory of Animal Immunology), Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Yao Wang
- Institute for Animal Health (Key Laboratory of Animal Immunology), Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Songlin Qiao
- Institute for Animal Health (Key Laboratory of Animal Immunology), Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Rui Li
- Institute for Animal Health (Key Laboratory of Animal Immunology), Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
36
|
Chen J, Hui Q, Titanji BK, So-Armah K, Freiberg M, Justice AC, Xu K, Zhu X, Gwinn M, Marconi VC, Sun YV. A multi-trait epigenome-wide association study identified DNA methylation signature of inflammation among men with HIV. Clin Epigenetics 2024; 16:152. [PMID: 39488703 PMCID: PMC11531128 DOI: 10.1186/s13148-024-01763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Inflammation underlies many conditions causing excess morbidity and mortality among people with HIV (PWH). A handful of single-trait epigenome-wide association studies (EWAS) have suggested that inflammation is associated with DNA methylation (DNAm) among PWH. Multi-trait EWAS may further improve statistical power and reveal pathways in common between different inflammatory markers. We conducted single-trait EWAS of three inflammatory markers (soluble CD14, D-dimers and interleukin-6) in the Veterans Aging Cohort Study (n = 920). The study population was all male PWH with an average age of 51 years, and 82.3% self-reported as Black. We then applied two multi-trait EWAS methods-CPASSOC and OmniTest-to combine single-trait EWAS results. CPASSOC and OmniTest identified 189 and 157 inflammation-associated DNAm sites, respectively, of which 112 overlapped. Among the identified sites, 56% were not significant in any single-trait EWAS. Top sites were mapped to inflammation-related genes including IFITM1, PARP9 and STAT1. These genes were significantly enriched in pathways such as "type I interferon signaling" and "immune response to virus." We demonstrate that multi-trait EWAS can improve the discovery of inflammation-associated DNAm sites, genes and pathways. These DNAm sites might hold the key to addressing persistent inflammation in PWH.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA
| | - Qin Hui
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA
| | - Boghuma K Titanji
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Kaku So-Armah
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Matthew Freiberg
- Cardiovascular Medicine Division, Vanderbilt University School of Medicine and Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Amy C Justice
- Connecticut Veteran Health System, West Haven, CT, USA
- Schools of Medicine and Public Health, Yale University, New Haven, CT, USA
| | - Ke Xu
- Connecticut Veteran Health System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Marta Gwinn
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA
| | - Vincent C Marconi
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
- Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA.
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA.
| |
Collapse
|
37
|
Sasaki H, Miyata J, Kawashima Y, Konno R, Ishikawa M, Hasegawa Y, Onozato R, Otsu Y, Matsuyama E, Sunata K, Masaki K, Kabata H, Kimizuka Y, Ueki S, Asano K, Kawana A, Arita M, Fukunaga K. Distinct roles of types 1 and 2 interferons in human eosinophil regulation: A multi-omics analysis. Allergy 2024; 79:3141-3145. [PMID: 38958441 DOI: 10.1111/all.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Affiliation(s)
- Hisashi Sasaki
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Jun Miyata
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tokyo, Kanagawa, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryuta Onozato
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yo Otsu
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Emiko Matsuyama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keeya Sunata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Kimizuka
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tokyo, Kanagawa, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Zhang C, Ren T, Zhao X, Su Y, Wang Q, Zhang T, He B, Chen Y, Wu LY, Sun L, Zhang B, Xia Z. Biologically informed machine learning modeling of immune cells to reveal physiological and pathological aging process. Immun Ageing 2024; 21:74. [PMID: 39449067 PMCID: PMC11515583 DOI: 10.1186/s12979-024-00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The immune system undergoes progressive functional remodeling from neonatal stages to old age. Therefore, understanding how aging shapes immune cell function is vital for precise treatment of patients at different life stages. Here, we constructed the first transcriptomic atlas of immune cells encompassing human lifespan, ranging from newborns to supercentenarians, and comprehensively examined gene expression signatures involving cell signaling, metabolism, differentiation, and functions in all cell types to investigate immune aging changes. By comparing immune cell composition among different age groups, HLA highly expressing NK cells and CD83 positive B cells were identified with high percentages exclusively in the teenager (Tg) group, whereas unknown_T cells were exclusively enriched in the supercentenarian (Sc) group. Notably, we found that the biological age (BA) of pediatric COVID-19 patients with multisystem inflammatory syndrome accelerated aging according to their chronological age (CA). Besides, we proved that inflammatory shift- myeloid abundance and signature correlate with the progression of complications in Kawasaki disease (KD). The shift- myeloid signature was also found to be associated with KD treatment resistance, and effective therapies improve treatment outcomes by reducing this signaling. Finally, based on those age-related immune cell compositions, we developed a novel BA prediction model PHARE ( https://xiazlab.org/phare/ ), which can apply to both scRNA-seq and bulk RNA-seq data. Using this model, we found patients with coronary artery disease (CAD) also exhibit accelerated aging compared to healthy individuals. Overall, our study revealed changes in immune cell proportions and function associated with aging, both in health and disease, and provided a novel tool for successfully capturing features that accelerate or delay aging.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tao Ren
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofan Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Qianhao Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tianzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Boxiao He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yabing Chen
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ling-Yun Wu
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Biomedical Data Science, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
39
|
Martínez-Espinoza I, Babawale PI, Miletello H, Cheemarla NR, Guerrero-Plata A. Interferon Epsilon-Mediated Antiviral Activity Against Human Metapneumovirus and Respiratory Syncytial Virus. Vaccines (Basel) 2024; 12:1198. [PMID: 39460364 PMCID: PMC11511582 DOI: 10.3390/vaccines12101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Interferon epsilon (IFN-ε) is a type I IFN that plays a critical role in the host immune response against pathogens. Despite having demonstrated antiviral activity in macrophages and mucosal tissues such as the female reproductive tract and the constitutive expression in mucosal tissues such as the lung, the relevance of IFN-ε against respiratory viral infections remains elusive. RESULTS We present, for the first time, the expression of IFN-ε in alveolar epithelial cells and primary human bronchial epithelial cells grown in an air-liquid interface (ALI) in response to human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) infection. The molecular characterization of the IFN-ε induction by the viruses indicates that the expression of RIG-I is necessary for an optimal IFN-ε expression. Furthermore, treatment of the airway epithelial cells with rhIFN-ε induced the expression of IFN-stimulated genes (ISGs) and significantly restricted the viral replication of HMPV and RSV. CONCLUSIONS These findings underscore the relevance of IFN-ε against viral infections in the respiratory tract.
Collapse
Affiliation(s)
| | | | | | | | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
40
|
Nguyen GT, Le TT, Vu SDT, Nguyen TT, Le MTT, Pham VT, Nguyen HTT, Ho TT, Hoang HTT, Tran HX, Chu HH, Pham NB. A plant-based oligomeric CD2v extracellular domain antigen exhibits equivalent immunogenicity to the live attenuated vaccine ASFV-G-∆I177L. Med Microbiol Immunol 2024; 213:22. [PMID: 39412651 DOI: 10.1007/s00430-024-00804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/07/2024] [Indexed: 12/28/2024]
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a deadly, highly contagious disease in both domestic pigs and wild boar. With mortality up to 100%, the disease has been making a serious impact on the swine industry worldwide. Because no effective antiviral treatment has been observed, proactive prevention such as vaccination remains the key to controlling the outbreak. In the pursuit of expediting vaccine development, our current work has made the first report for heterologous production of the viral outer envelope glycoprotein CD2v extracellular domain (CD2v ED), a proposed promising vaccine antigen candidate in the "green" synthetic host Nicotiana benthamiana. Protein oligomerization strategies were implemented to increase the immunogenicity of the target antigen. Herein, the protein was expressed in oligomeric forms based on the C-terminally fused GCN4pII trimerization motif and GCN4pII_TP oligomerization motif. Quantitative western blot analysis showed significantly higher expression of trimeric CD2v ED_GCN4pII with a yield of about 12 mg/100 g of fresh weight, in comparison to oligomeric CD2v ED_GCN4pII_TP, revealing the former is the better choice for further studies. The results of purification and size determination by size exclusion chromatography (SEC) illustrated that CD2v ED_GCN4pII was successfully produced in stable oligomeric forms throughout the extraction, purification, and analysis process. Most importantly, purified CD2v ED_GCN4pII was demonstrated to induce both humoral and cellular immunity responses in mice to extents equivalent to those of the live attenuated vaccine ASFV-G-∆I177L, suggesting it as the potential subunit vaccine candidate for preventing ASFV.
Collapse
Affiliation(s)
- Giang Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Thanh Thi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Son Duy Thai Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Tra Thi Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - My Thi Tra Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Van Thi Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hien Thi Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Thuong Thi Ho
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hang Thi Thu Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hanh Xuan Tran
- National Veterinary Joint Stock Company - NAVETCO, Ho Chi Minh City, Viet Nam
| | - Ha Hoang Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Ngoc Bich Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam.
| |
Collapse
|
41
|
Zhang B, Li Y, Yang P, He S, Li W, Li M, Hu Q, Zhang M. Herpes Simplex Virus Type 2 Blocks IFN-β Production through the Viral UL24 N-Terminal Domain-Mediated Inhibition of IRF-3 Phosphorylation. Viruses 2024; 16:1601. [PMID: 39459934 PMCID: PMC11512255 DOI: 10.3390/v16101601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is a sexually transmitted virus, the cause of genital herpes, and its infection can increase the risk of HIV-1 infection. After initial infection, HSV-2 can establish lifelong latency within the nervous system, which is likely associated with the virus-mediated immune evasion. In this study, we found that HSV-2 UL24 significantly inhibited the activation of the IFN-β promoter and the production of IFN-β at both mRNA and protein levels. Of importance, the inhibitory effect of HSV-2 on IFN-β production was significantly impaired in the context of HSV-2 infection when UL24 was knocked down. Additional studies revealed that, although the full-length HSV-2 UL24 affected cell cycle and viability to some extent, its N-terminal 1-202AA domain showed no obvious cytotoxicity while its C-terminal 201-281 AA domain had a minimal impact on cell viability. Further studies showed that the N-terminal 1-202 AA domain of HSV-2 UL24 (HSV-2 UL24-N) was the main functional region responsible for the inhibition of IFN-β production mediated by HSV-2 UL24. This domain significantly suppressed the activity of RIG-IN, MAVS, TBK-1, IKK-ε, or the IRF-3/5D-activated IFN-β promoter. Mechanistically, HSV-2 UL24-N suppressed IRF-3 phosphorylation, resulting in the inhibition of IFN-β production. The findings of this study highlight the significance of HSV-2 UL24 in inhibiting IFN-β production, revealing two potential roles of UL24 during HSV-2 infection: facilitating immune evasion and inducing cell cycle arrest.
Collapse
Affiliation(s)
- Binman Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Yang Z, Zhang H, Yuan Z, Chen J, Zheng G, Zou S. The effects of GCRV on various tissues of grass carp (Ctenopharyngodon idella) and identification of differential interferon-stimulating genes (ISGs) through muscle transcriptome analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116956. [PMID: 39208574 DOI: 10.1016/j.ecoenv.2024.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Grass carp hemorrhagic disease is caused by the grass carp reovirus (GCRV). The disease spreads rapidly and has a high fatality rate, which seriously affects grass carp culture. Moreover, the molecular mechanisms underlying grass carp hemorrhagic disease remain unclear. To decipher the effects of GCRV on grass carp tissues, resistant grass carp A (GA) and susceptible grass carp B (GB) were selected through GCRV treatment, and control grass carp C (GC) was also established. The gill, liver, and muscle tissues exhibited different onset symptoms under the influence of GCRV by histological observation. We selected muscle samples with significant differences in symptoms for Illumina RNA sequencing. Analyses using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes revealed 3512, 3074, and 1853 differentially expressed genes between "GC vs. GB," "GC vs. GA," and "GA vs. GB," respectively. Additionally, 40 differential immune-related genes and 28 differential interferon-stimulating genes (ISGs) related to the interferon (IFN) pathway were identified. The expression of immunogene-related genes of GB and GA, such as MDA5, IL-34, NF-KB, TRIM25, SOCS3, CEBPB, and BCL2, and genes associated with the JAK-STAT signaling pathway, such as IRF4, STAT1, STAT3, JAK 1, and JAK 2, was significantly upregulated. The IFN and JAK-STAT signaling pathways were closely related to anti-GCRV infection. The transcriptome data and predicted immune genes and ISGs in this study provide novel insights into the treatment of GCRV.
Collapse
Affiliation(s)
- Ziquan Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Huimei Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Ziming Yuan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guodong Zheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Shuming Zou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
43
|
Jiang D, Sui C, Wu X, Jiang P, Bai J, Hu Y, Cong X, Li J, Yoo D, Miller LC, Lee C, Du Y, Qi J. Swine NONO promotes IRF3-mediated antiviral immune response by Detecting PRRSV N protein. PLoS Pathog 2024; 20:e1012622. [PMID: 39413144 PMCID: PMC11482726 DOI: 10.1371/journal.ppat.1012622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Non-POU domain-containing octamer-binding protein (NONO) is a multi-functional nuclear protein which belongs to the Drosophila behavior/human splicing (DBHS) protein family. NONO is known to regulate multiple important biological processes including host antiviral immune response. However, whether NONO can inhibit porcine reproductive and respiratory syndrome virus (PRRSV) replication is less well understood. In this study, we demonstrated that swine NONO (sNONO) inhibited PRRSV replication, via increasing expression of IFN-β, whereas NONO knockdown or knockout in PAM-KNU cells was more susceptible to PRRSV infection. As an IRF3 positive regulation factor, NONO promoted IFN-β expression by enhancing activation of IRF3. During PRRSV infection, NONO further up-regulated IRF3-mediated IFN-β expression by interacting with PRRSV N protein. Mechanistically, NONO functioned as a scaffold protein to detect PRRSV N protein and formed N-NONO-IRF3 complex in the nucleus. Interestingly, it was found that the NONO protein reversed the inhibitory effect of PRRSV N protein on type I IFN signaling pathway. Taken together, our study provides a novel mechanism for NONO to increase the IRF3-mediated IFN-β activation by interacting with the viral N protein to inhibit PRRSV infection.
Collapse
Affiliation(s)
- Dandan Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chao Sui
- Laboratory Animal Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiangju Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yue Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Juntong Li
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Laura C. Miller
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
44
|
Ruan S, Yu X, Wu H, Lei M, Ku X, Ghonaim AH, Li W, Jiang Y, He Q. Assessing the antiviral activity of antimicrobial peptides Caerin1.1 against PRRSV in Vitro and in Vivo. Vet Microbiol 2024; 297:110210. [PMID: 39128433 DOI: 10.1016/j.vetmic.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
The Porcine reproductive and respiratory syndrome (PRRS) causes severe financial losses to the global swine industry. Due to continuous virus evolution, the protection against the PRRS provided by current vaccines is limited. In order to find new antiviral strategies, this study investigated the antiviral potential of antimicrobial peptides (AMPs) against PRRSV. Given the diversity of PRRSV strains and the limited effectiveness of existing vaccines in controlling PRRSV, this study evaluated the inhibitory effects of KLAK, Cecropin B, Piscidin1, and Caerin1.1 on 3 strains of PRRSV (lineage 5 classical strain, lineage 8 highly pathogenic strain, and lineage 1 NADC30-like strain). Caerin1.1 exhibited significant dose-dependent antiviral activity, with an effective concentration (EC50) of 7.5 μM. Caerin1.1 effectively inhibited PRRSV replication when added before or in early infection but showed reduced effectiveness when added in late infection, indicating its potential involvement in targeting early transcription mechanisms of viral RNA polymerase and significantly upregulating cytokine gene expression. In the NADC30 strain-based animal infection model, Caerin1.1 treatment significantly reduced lung viral loads and inflammation in the lungs of PRRSV-infected pigs, with a mortality rate of 0 % (0/5) in the treated group compared to 66.67 % (4/6) in the untreated group, indicating a reduction in the mortality rate. Additionally, compared with the untreated group, the Caerin1.1-treated group showed significant improvements, such as lighter fever, more daily weight gain, less clinical symptoms, less viral load in blood, and less virus oral shedding (P < 0.05). These findings reveal the potential of antimicrobial peptides as PRRSV therapeutic agents and suggest that Caerin1.1 is a promising candidate for a novel anti-PRRSV drug.
Collapse
Affiliation(s)
- Shengnan Ruan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Xuexiang Yu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Hao Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Mingkai Lei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Xugang Ku
- Detection Laboratory of Animal Disease Diagnostic Center, Huazhong Agricultural University, Wuhan 430000, China
| | - Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China; Desert Research Center, Cairo 11435, Egypt
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China; Detection Laboratory of Animal Disease Diagnostic Center, Huazhong Agricultural University, Wuhan 430000, China
| | - Yunbo Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China; Detection Laboratory of Animal Disease Diagnostic Center, Huazhong Agricultural University, Wuhan 430000, China.
| |
Collapse
|
45
|
Vorona KA, Moroz VD, Gasanov NB, Karabelsky AV. Recombinant VSVs: A Promising Tool for Virotherapy. Acta Naturae 2024; 16:4-14. [PMID: 39877014 PMCID: PMC11771844 DOI: 10.32607/actanaturae.27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/18/2024] [Indexed: 01/31/2025] Open
Abstract
Cancer is one of the leading causes of death worldwide. Traditional cancer treatments include surgery, radiotherapy, and chemotherapy, as well as combinations of these treatments. Despite significant advances in these fields, the search for innovative ways to treat malignant tumors, including the application of oncolytic viruses, remains relevant. One such virus is the vesicular stomatitis virus (VSV), which possess a number of useful oncolytic properties. However, VSV-based drugs are still in their infancy and are yet to be approved for clinical use. This review discusses the mechanisms of oncogenesis, the antiviral response of tumor and normal cells, and markers of tumor cell resistance to VSV virotherapy. In addition, it examines methods for producing and arming recombinant VSV and provides examples of clinical trials. The data presented will allow better assessment of the prospects of using VSV as an oncolytic.
Collapse
Affiliation(s)
- K. A. Vorona
- Sirius University of Science and Technology, Krasnodar Region, Sirius Federal Territory, 354340 Russian Federation
| | - V. D. Moroz
- Sirius University of Science and Technology, Krasnodar Region, Sirius Federal Territory, 354340 Russian Federation
| | - N. B. Gasanov
- Sirius University of Science and Technology, Krasnodar Region, Sirius Federal Territory, 354340 Russian Federation
| | - A. V. Karabelsky
- Sirius University of Science and Technology, Krasnodar Region, Sirius Federal Territory, 354340 Russian Federation
| |
Collapse
|
46
|
Marques JT, Meignin C, Imler JL. An evolutionary perspective to innate antiviral immunity in animals. Cell Rep 2024; 43:114678. [PMID: 39196781 DOI: 10.1016/j.celrep.2024.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/22/2024] [Accepted: 08/08/2024] [Indexed: 08/30/2024] Open
Abstract
Viruses pose a significant threat to cellular organisms. Innate antiviral immunity encompasses both RNA- and protein-based mechanisms designed to sense and respond to infections, a fundamental aspect present in all living organisms. A potent RNA-based antiviral mechanism is RNA interference, where small RNA-programmed nucleases target viral RNAs. Protein-based mechanisms often rely on the induction of transcriptional responses triggered by the recognition of viral infections through innate immune receptors. These responses involve the upregulation of antiviral genes aimed at countering viral infections. In this review, we delve into recent advances in understanding the diversification of innate antiviral immunity in animals. An evolutionary perspective on the gains and losses of mechanisms in diverse animals coupled to mechanistic studies in model organisms such as the fruit fly Drosophila melanogaster is essential to provide deep understanding of antiviral immunity that can be translated to new strategies in the treatment of viral diseases.
Collapse
Affiliation(s)
- Joao T Marques
- Université de Strasbourg, INSERM U1257, CNRS UPR9022, 67084 Strasbourg, France; Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, 67084 Strasbourg, France
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, 67084 Strasbourg, France; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
47
|
Leya M, Yang D, Bao THTN, Jeong H, Oh SI, Kim JH, Kim JW, Kim B. The role of 2'-5'-oligoadenylate synthase-like protein (OASL1) in biliary and hepatotoxin-induced liver injury in mice. Sci Rep 2024; 14:21873. [PMID: 39300174 PMCID: PMC11413013 DOI: 10.1038/s41598-024-72465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024] Open
Abstract
Following an injury, the liver embarks on a process that drives the accumulation and reformation of the extracellular matrix, leading to hepatic fibrosis. Type I interferons (IFNs), including IFN-α and IFN-β, play a crucial role in averting chronic liver injury through the activation of IFN-stimulated genes (ISGs), which are instrumental in sculpting adaptive immunity. The role of 2'-5'-oligoadenylate synthase-like protein 1 (OASL1), an antiviral ISG, in the context of liver fibrosis remains to be elucidated. To elicit liver fibrosis, a diet containing 0.1% diethoxycarbonyl-1,4-dihydrocollidine (DDC) and carbon tetrachloride (CCl4) were employed to induce cholestatic- and hepatotoxin-mediated liver fibrosis, respectively. Histological analyses of both models revealed that OASL1-/- mice exhibited reduced liver damage and, consequently, expressed lower levels of fibrotic mediators, notably α-smooth muscle actin. OASL1-/- mice demonstrated significantly elevated IFN-α and IFN-β mRNA levels, regulated by the IFN regulatory factor 7 (IRF7). Additionally, OASL1-/- ameliorated chronic liver fibrosis through the modulation of nuclear factor-κB (NF-κB) signaling. The effect of OASL1 on type I IFN production in acute liver damage was further explored and OASL1-/- mice consistently showed lower alanine transaminase levels and pro-inflammatory cytokines, but IFN-α and IFN-β mRNA levels were upregulated, leading to amelioration of acute liver injury. Additionally, the study discovered that F4/80-positive cells were observed more frequently in OASL1-/- CCl4 acutely treated mice. This implies that there is a significant synergy in the function of macrophages and OASL1 deficiency. These results demonstrate that in instances of liver injury, OASL1 inhibits the production of type I IFN by modulating the NF-κB signaling pathway, thereby worsening disease.
Collapse
Affiliation(s)
- Mwense Leya
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea
- School of Veterinary Medicine, University of Namibia, P.O. Box 13301, Windhoek, 10005, Namibia
| | - Daram Yang
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea
| | - Tien Huyen Ton Nu Bao
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea
| | - Hyuneui Jeong
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea
| | - Sang-Ik Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea
| | - Jong-Hoon Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea
| | - Jong-Won Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea.
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea.
| |
Collapse
|
48
|
Zhao L, Yuan H, Wang Y, Hou C, Lv P, Zhang H, Yang G, Zhang X. p-STAT3-elevated E3 ubiquitin ligase DTX4 confers the stability of HBV cccDNA by ubiquitinating APOBEC3B in liver. Theranostics 2024; 14:6036-6052. [PMID: 39346550 PMCID: PMC11426250 DOI: 10.7150/thno.99407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024] Open
Abstract
Background: Clinically, the persistence of HBV cccDNA is the major obstacle in anti-HBV therapy. However, the underlying mechanism of HBV cccDNA is poorly understood. The transcriptional factor STAT3 is able to activate HBV replication in liver. Approach & Results: RNA-Seq analysis demonstrated that cucurbitacin I targeting STAT3 was associated with virus replication in liver. HBV-infected human liver chimeric mouse model and HBV hydrodynamic injection mouse model were established. Then, we validated that cucurbitacin I effectively limited the stability of HBV cccDNA and HBV replication in cells, in which cucurbitacin I enhanced the sensitivity of pegylated interferon α (PEG-IFN α) against HBV via combination in vitro and in vivo. Mechanistically, we identified that cucurbitacin I increased the levels of APOBEC3B to control HBV cccDNA by inhibiting p-STAT3 in cells, resulting in the inhibition of HBV replication. Moreover, RNA-Seq data showed that E3 ubiquitin ligase DTX4 might be involved in the events. Then, we observed that HBV particles could upregulate DTX4 by increasing the levels of p-STAT3 in vitro and in vivo. The p-STAT3-elevated DTX4/male-specific lethal 2 (MSL2) independently and synergistically enhanced the stability of HBV cccDNA by facilitating the ubiquitination degradation of APOBEC3B in cells, leading to the HBV replication. Conclusions: p-STAT3-elevated DTX4 confers the stability of HBV cccDNA and HBV replication by facilitating the ubiquitination degradation of APOBEC3B. Cucurbitacin Ⅰ effectively enhances the sensitivity of PEG-IFN α in anti-HBV therapy by inhibiting the p-STAT3/DTX4/MSL2/APOBEC3B signalling. Our finding provides new insights into the mechanism of HBV cccDNA. The p-STAT3 and DTX4/MSL2 might serve as the therapeutical targets of HBV cccDNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guang Yang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaodong Zhang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
49
|
Zhang G, Zhang L, Zhao D, Liu X, Li W, Yan C, Dai T. Protein kinase R is highly expressed in dermatomyositis and promotes interferon-beta-induced muscle damage. Ann Rheum Dis 2024:ard-2024-226057. [PMID: 39237131 DOI: 10.1136/ard-2024-226057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Dermatomyositis (DM) has been consistently linked to the type I interferon (IFN-I) pathway. However, the precise pathogenesis remains incompletely elucidated. We aimed to explore potential molecular mechanisms and identify promising therapeutic targets in DM. METHODS We employed bioinformatics analysis to investigate molecular signatures, aiming to shed light on the pathogenesis of DM. The expression of protein kinase R (PKR) in DM muscle tissues was determined by real-time quantitative PCR, western blot and immunohistochemistry (IHC) analysis. We then assessed the sensitivity and specificity of sarcoplasmic PKR expression by IHC in a consecutive DM cohort and other diseases in this retrospective study. Furthermore, IFN-β was used to stimulate myoblasts and myotubes, and the relationship between PKR and IFN-β-induced pathogenic molecules was investigated in vitro. RESULTS Bioinformatics analysis indicated two primary pathological processes: viral infection and the IFN-I signalling pathway. We subsequently verified that PKR was notably expressed in the cytoplasm of myofibers in DM patients. The sensitivity and specificity of sarcoplasmic PKR expression in DM were 84.6% and 97.6%, respectively. In vitro studies revealed that IFN-β upregulates the expression of PKR, along with several molecules associated with DM muscle damage. Conversely, inhibiting PKR has been shown to downregulate IFN-β-induced pathogenic molecules in both myoblasts and myotubes. CONCLUSIONS We observed that PKR exhibits specific expression in the cytoplasm of DM muscle and inhibiting PKR ameliorates IFN-β-induced muscle damage in vitro. These findings provide insights into the diagnostic and therapeutic roles of PKR in DM.
Collapse
Affiliation(s)
- Guoyong Zhang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
| | - Lining Zhang
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases,Qilu Hospital of Shandong University, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Jinan, Shandong, People's Republic of China
- Department of Rheumatology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Dandan Zhao
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases,Qilu Hospital of Shandong University, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Jinan, Shandong, People's Republic of China
| | - Xiaoyu Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wei Li
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases,Qilu Hospital of Shandong University, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Jinan, Shandong, People's Republic of China
| | - Chuanzhu Yan
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases,Qilu Hospital of Shandong University, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Jinan, Shandong, People's Republic of China
- Qingdao Municipal Key Laboratory of Mitochondria Medicine, Qingdao, Shandong, People's Republic of China
| | - Tingjun Dai
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases,Qilu Hospital of Shandong University, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Jinan, Shandong, People's Republic of China
| |
Collapse
|
50
|
Buchynskyi M, Oksenych V, Kamyshna I, Budarna O, Halabitska I, Petakh P, Kamyshnyi O. Genomic insight into COVID-19 severity in MAFLD patients: a single-center prospective cohort study. Front Genet 2024; 15:1460318. [PMID: 39296547 PMCID: PMC11408174 DOI: 10.3389/fgene.2024.1460318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
This study investigated the influence of single nucleotide polymorphisms (SNPs) in genes associated with the interferon pathway (IFNAR2 rs2236757), antiviral response (OAS1 rs10774671, OAS3 rs10735079), and viral entry (ACE2 rs2074192) on COVID-19 severity and their association with nonalcoholic fatty liver disease (MAFLD). We did not observe a significant association between the investigated SNPs and COVID-19 severity. While the IFNAR2 rs2236757 A allele was correlated with higher creatinine levels upon admission and the G allele was correlated with lower band neutrophils upon discharge, these findings require further investigation. The distribution of OAS gene polymorphisms (rs10774671 and rs10735079) did not differ between MAFLD patients and non-MAFLD patients. Our study population's distribution of ACE2 rs2074192 genotypes and alleles differed from that of the European reference population. Overall, our findings suggest that these specific SNPs may not be major contributors to COVID-19 severity in our patient population, highlighting the potential role of other genetic factors and environmental influences.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Olena Budarna
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Pavlo Petakh
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|