1
|
Nogalska A, Eerdeng J, Akre S, Vergel-Rodriguez M, Lee Y, Bramlett C, Chowdhury AY, Wang B, Cess CG, Finley SD, Lu R. Age-associated imbalance in immune cell regeneration varies across individuals and arises from a distinct subset of stem cells. Cell Mol Immunol 2024:10.1038/s41423-024-01225-y. [PMID: 39443746 DOI: 10.1038/s41423-024-01225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The age-associated decline in immunity manifests as imbalanced adaptive and innate immune cells, which originate from the aging of the stem cells that sustain their regeneration. Aging variation across individuals is well recognized, but its mechanism remains unclear. Here, we used high-throughput single-cell technologies to compare mice of the same chronological age that exhibited early or delayed immune aging phenotypes. We found that some hematopoietic stem cells (HSCs) in early aging mice upregulated genes related to aging, myeloid differentiation, and stem cell proliferation. Delayed aging was instead associated with genes involved in stem cell regulation and the response to external signals. These molecular changes align with shifts in HSC function. We found that the lineage biases of 30% to 40% of the HSC clones shifted with age. Moreover, their lineage biases shifted in opposite directions in mice exhibiting an early or delayed aging phenotype. In early aging mice, the HSC lineage bias shifted toward the myeloid lineage, driving the aging phenotype. In delayed aging mice, HSC lineage bias shifted toward the lymphoid lineage, effectively counteracting aging progression. Furthermore, the anti-aging HSC clones did not increase lymphoid production but instead decreased myeloid production. Additionally, we systematically quantified the frequency of various changes in HSC differentiation and their roles in driving the immune aging phenotype. Taken together, our findings suggest that temporal variation in the aging of immune cell regeneration among individuals primarily arises from differences in the myelopoiesis of a distinct subset of HSCs. Therefore, interventions to delay aging may be possible by targeting a subset of stem cells.
Collapse
Affiliation(s)
- Anna Nogalska
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Jiya Eerdeng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Samir Akre
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Mary Vergel-Rodriguez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Yeachan Lee
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Charles Bramlett
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Adnan Y Chowdhury
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Bowen Wang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Colin G Cess
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Stacey D Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, Los Angeles, CA, 90033, USA.
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
2
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Mizuguchi H, Ito T, Nishida K, Wakugawa T, Nakano T, Tanabe A, Watano T, Kitamura N, Kaminuma O, Kimura K, Ishida T, Matsunaga A, Ohta K, Shimono R, Kutsuna H, Yasuda T, Yabumoto M, Kitamura Y, Takeda N, Fukui H. Structure-activity relationship studies of pyrogallol as a calcineurin/NFAT signaling suppressor. J Pharmacol Sci 2024; 155:140-147. [PMID: 38880548 DOI: 10.1016/j.jphs.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Previously, we have shown that pyrogallol alleviated nasal symptoms and suppressed IL-9 gene up-regulation in allergy model rats by inhibiting calcineurin/NFAT signaling. As pyrogallol has antioxidative activity, it may be responsible for inhibiting calcineurin/NFAT signaling-mediated IL-9 gene expression. However, the relationship between antioxidative activity and suppression of IL-9 gene expression has not been elucidated yet. Here, we conducted the structure-activity relationship studies of pyrogallol and its structurally related compounds to understand the mechanism of IL-9 gene suppression by pyrogallol. 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging assay showed that the antioxidative activity of catechol, resorcinol, phloroglucinol, and gallic acid is 60.1%, 10.4%, 18.8%, and 113.5% of pyrogallol, respectively. Catechol, resorcinol, and phloroglucinol did not suppress NFAT dephosphorylation. Gallic acid suppressed dephosphorylation of NFAT. Gallic acid also suppressed ionomycin-induced up-regulation of IL-9 gene expression with the IC50 value of 82.6 μM. However, catechol, resorcinol and phloroglucinol showed no suppressive activity. In addition, using gallic acid-immobilized beads, we isolated and identified Poly(U)-binding-splicing factor 60 (PUF60) as a pyrogallol binding protein. These results suggest that the antioxidative activity of pyrogallol is not likely to be the mechanism of IL-9 gene suppression. Data also suggest that PUF60 is one of its target molecules responsible for the suppression of calcineurin/NFAT signaling by pyrogallol.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Laboratory of Pharmacology Faculty of Pharmacy Osaka Ohtani University, Osaka, 584-8540, Japan.
| | - Tomohira Ito
- Department of Molecular Pharmacology, Tokushima University, Tokushima, 770-8505, Japan
| | - Kohei Nishida
- Department of Molecular Pharmacology, Tokushima University, Tokushima, 770-8505, Japan
| | - Tomoharu Wakugawa
- Department of Molecular Pharmacology, Tokushima University, Tokushima, 770-8505, Japan
| | - Tomohiro Nakano
- Department of Molecular Pharmacology, Tokushima University, Tokushima, 770-8505, Japan
| | - Akie Tanabe
- Laboratory of Pharmacology Faculty of Pharmacy Osaka Ohtani University, Osaka, 584-8540, Japan
| | - Tomokazu Watano
- Laboratory of Pharmacology Faculty of Pharmacy Osaka Ohtani University, Osaka, 584-8540, Japan
| | - Noriko Kitamura
- Allergy and Immunology Project, The Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Osamu Kaminuma
- Department of Disease Model Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Katsunori Kimura
- Food Microbiology and Function Research Laboratories, R & D Division. Meiji Co., Ltd., Tokyo, 192-0919, Japan
| | - Tatsuya Ishida
- Faculty of Health and Sports Sciences, Toyo University, Tokyo, 115-8650, Japan
| | | | - Kazumi Ohta
- Ohta Child Allergy Clinic, Kyoto, 607-8152, Japan
| | | | - Haruo Kutsuna
- Medical Corporation Kinshukai, Osaka, 558-0011, Japan
| | - Taiei Yasuda
- Medical Corporation Kinshukai, Osaka, 558-0011, Japan
| | | | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| | - Hiroyuki Fukui
- Laboratory of Pharmacology Faculty of Pharmacy Osaka Ohtani University, Osaka, 584-8540, Japan; Medical Corporation Kinshukai, Osaka, 558-0011, Japan
| |
Collapse
|
5
|
Van Der Byl W, Nüssing S, Peters TJ, Ahn A, Li H, Ledergor G, David E, Koh AS, Wagle MV, Deguit CDT, de Menezes MN, Travers A, Sampurno S, Ramsbottom KM, Li R, Kallies A, Beavis PA, Jungmann R, Bastings MMC, Belz GT, Goel S, Trapani JA, Crabtree GR, Chang HY, Amit I, Goodnow CC, Luciani F, Parish IA. The CD8 + T cell tolerance checkpoint triggers a distinct differentiation state defined by protein translation defects. Immunity 2024; 57:1324-1344.e8. [PMID: 38776918 DOI: 10.1016/j.immuni.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Peripheral CD8+ T cell tolerance is a checkpoint in both autoimmune disease and anti-cancer immunity. Despite its importance, the relationship between tolerance-induced states and other CD8+ T cell differentiation states remains unclear. Using flow cytometric phenotyping, single-cell RNA sequencing (scRNA-seq), and chromatin accessibility profiling, we demonstrated that in vivo peripheral tolerance to a self-antigen triggered a fundamentally distinct differentiation state separate from exhaustion, memory, and functional effector cells but analogous to cells defectively primed against tumors. Tolerant cells diverged early and progressively from effector cells, adopting a transcriptionally and epigenetically distinct state within 60 h of antigen encounter. Breaching tolerance required the synergistic actions of strong T cell receptor (TCR) signaling and inflammation, which cooperatively induced gene modules that enhanced protein translation. Weak TCR signaling during bystander infection failed to breach tolerance due to the uncoupling of effector gene expression from protein translation. Thus, tolerance engages a distinct differentiation trajectory enforced by protein translation defects.
Collapse
Affiliation(s)
- Willem Van Der Byl
- The Kirby Institute for Infection and Immunity, UNSW, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia
| | - Simone Nüssing
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Timothy J Peters
- Garvan Institute of Medical Research, Sydney, NSW, Australia; University of New South Wales Sydney, Sydney, NSW, Australia
| | - Antonio Ahn
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Hanjie Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Ledergor
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Andrew S Koh
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Mayura V Wagle
- Garvan Institute of Medical Research, Sydney, NSW, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia
| | | | - Maria N de Menezes
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Avraham Travers
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Shienny Sampurno
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kelly M Ramsbottom
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maartje M C Bastings
- Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Interfaculty Bioengineering Institute, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gabrielle T Belz
- The Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Shom Goel
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Gerald R Crabtree
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA; Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Chris C Goodnow
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Fabio Luciani
- The Kirby Institute for Infection and Immunity, UNSW, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia.
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia.
| |
Collapse
|
6
|
Ahn T, Bae EA, Seo H. Decoding and overcoming T cell exhaustion: Epigenetic and transcriptional dynamics in CAR-T cells against solid tumors. Mol Ther 2024; 32:1617-1627. [PMID: 38582965 PMCID: PMC11184340 DOI: 10.1016/j.ymthe.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/14/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
T cell exhaustion, which is observed in various chronic infections and malignancies, is characterized by elevated expression of multiple inhibitory receptors, impaired effector functions, decreased proliferation, and reduced cytokine production. Notably, while adoptive T cell therapies, such as chimeric antigen receptor (CAR)-T therapy, have shown promise in treating cancer and other diseases, the efficacy of these therapies is often compromised by T cell exhaustion. It is imperative, therefore, to understand the mechanisms underlying this exhaustion to promote advances in T cell-related therapies. Here, we divided exhausted T cells into three distinct subsets according to their developmental and functional profiles: stem-like progenitor cells, intermediately exhausted cells, and terminally exhausted cells. These subsets are carefully regulated by synergistic mechanisms that involve transcriptional and epigenetic modulators. Key transcription factors, such as TCF1, BACH2, and TOX, are crucial for defining and sustaining exhaustion phenotypes. Concurrently, epigenetic regulators, such as TET2 and DNMT3A, shape the chromatin dynamics that direct T cell fate. The interplay of these molecular drivers has recently been highlighted in CAR-T research, revealing promising therapeutic directions. Thus, a profound understanding of exhausted T cell hierarchies and their molecular complexities may reveal innovative and improved tumor treatment strategies.
Collapse
Affiliation(s)
- Taeyoung Ahn
- Laboratory of Cell & Gene Therapy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungseok Seo
- Laboratory of Cell & Gene Therapy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Liu Y, Li J, Zhang Y, Wang F, Su J, Ma C, Zhang S, Du Y, Fan C, Zhang H, Liu K. Robotic Actuation-Mediated Quantitative Mechanogenetics for Noninvasive and On-Demand Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401611. [PMID: 38509850 PMCID: PMC11186056 DOI: 10.1002/advs.202401611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Cell mechanotransduction signals are important targets for physical therapy. However, current physiotherapy heavily relies on ultrasound, which is generated by high-power equipment or amplified by auxiliary drugs, potentially causing undesired side effects. To address current limitations, a robotic actuation-mediated therapy is developed that utilizes gentle mechanical loads to activate mechanosensitive ion channels. The resulting calcium influx precisely regulated the expression of recombinant tumor suppressor protein and death-associated protein kinase, leading to programmed apoptosis of cancer cell line through caspase-dependent pathway. In stark contrast to traditional gene therapy, the complete elimination of early- and middle-stage tumors (volume ≤ 100 mm3) and significant growth inhibition of late-stage tumor (500 mm3) are realized in tumor-bearing mice by transfecting mechanogenetic circuits and treating daily with quantitative robotic actuation in a form of 5 min treatment over the course of 14 days. Thus, this massage-derived therapy represents a quantitative strategy for cancer treatment.
Collapse
Affiliation(s)
- Yangyi Liu
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Yi Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Juanjuan Su
- Center of Materials Science and Optoelectronics EngineeringCollege of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Shuyi Zhang
- School of Pharmaceutical SciencesTsinghua UniversityBeijing100084China
| | - Yanan Du
- Department of Biomedical EngineeringSchool of MedicineTsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084China
| | - Chunhai Fan
- Xiangfu LaboratoryJiaxing314102China
- School of Chemistry and Chemical EngineeringNew Cornerstone Science LaboratoryFrontiers Science Center for Transformative MoleculesZhangjiang Institute for Advanced Study and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- Xiangfu LaboratoryJiaxing314102China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- Xiangfu LaboratoryJiaxing314102China
| |
Collapse
|
8
|
Böttcher J, Fuchs JE, Mayer M, Kahmann J, Zak KM, Wunberg T, Woehrle S, Kessler D. Ligandability assessment of the C-terminal Rel-homology domain of NFAT1. Arch Pharm (Weinheim) 2024; 357:e2300649. [PMID: 38396281 DOI: 10.1002/ardp.202300649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Transcription factors are generally considered challenging, if not "undruggable", targets but they promise new therapeutic options due to their fundamental involvement in many diseases. In this study, we aim to assess the ligandability of the C-terminal Rel-homology domain of nuclear factor of activated T cells 1 (NFAT1), a TF implicated in T-cell regulation. Using a combination of experimental and computational approaches, we demonstrate that small molecule fragments can indeed bind to this protein domain. The newly identified binder is the first small molecule binder to NFAT1 validated with biophysical methods and an elucidated binding mode by X-ray crystallography. The reported eutomer/distomer pair provides a strong basis for potential exploration of higher potency binders on the path toward degrader or glue modalities.
Collapse
Affiliation(s)
- Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | | | - Simon Woehrle
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| |
Collapse
|
9
|
Lang Y, Huang H, Jiang H, Wu S, Chen Y, Xu B, Liu Y, Zhu D, Zheng X, Chen L, Jiang J. TIGIT Blockade Reshapes the Tumor Microenvironment Based on the Single-cell RNA-Sequencing Analysis. J Immunother 2024; 47:172-181. [PMID: 38545758 DOI: 10.1097/cji.0000000000000511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/26/2024] [Indexed: 05/09/2024]
Abstract
SUMMARY Immune checkpoint blockade therapy is a pivotal approach in treating malignant tumors. TIGIT has emerged as a focal point of interest among the diverse targets for tumor immunotherapy. Nonetheless, there is still a lack of comprehensive understanding regarding the immune microenvironment alterations following TIGIT blockade treatment. To bridge this knowledge gap, we performed single-cell sequencing on mice both before and after the administration of anti-TIGIT therapy. Our analysis revealed that TIGIT was predominantly expressed on T cells and natural killer (NK) cells. The blockade of TIGIT exhibited inhibitory effects on Treg cells by downregulating the expression of Foxp3 and reducing the secretion of immunosuppressive cytokines. In addition, TIGIT blockade facilitated the activation of NK cells, leading to an increase in cell numbers, and promoted cDC1 maturation through the secretion of XCL1 and Flt3L. This activation, in turn, stimulated the TCR signaling of CD8 + T cells, thereby enhancing their antitumor effect. Consequently, anti-TIGIT therapy demonstrated substantial potential for cancer immunotherapy. Our research provided novel insights into future therapeutic strategies targeting TIGIT for patients with cancer.
Collapse
Affiliation(s)
- Yanyan Lang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Hao Huang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Hongwei Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Yaping Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Bin Xu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Yingting Liu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Dawei Zhu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Abdoul-Azize S, Hami R, Riou G, Derambure C, Charbonnier C, Vannier JP, Guzman ML, Schneider P, Boyer O. Glucocorticoids paradoxically promote steroid resistance in B cell acute lymphoblastic leukemia through CXCR4/PLC signaling. Nat Commun 2024; 15:4557. [PMID: 38811530 PMCID: PMC11136999 DOI: 10.1038/s41467-024-48818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Glucocorticoid (GC) resistance in childhood relapsed B-cell acute lymphoblastic leukemia (B-ALL) represents an important challenge. Despite decades of clinical use, the mechanisms underlying resistance remain poorly understood. Here, we report that in B-ALL, GC paradoxically induce their own resistance by activating a phospholipase C (PLC)-mediated cell survival pathway through the chemokine receptor, CXCR4. We identify PLC as aberrantly activated in GC-resistant B-ALL and its inhibition is able to induce cell death by compromising several transcriptional programs. Mechanistically, dexamethasone (Dex) provokes CXCR4 signaling, resulting in the activation of PLC-dependent Ca2+ and protein kinase C signaling pathways, which curtail anticancer activity. Treatment with a CXCR4 antagonist or a PLC inhibitor improves survival of Dex-treated NSG mice in vivo. CXCR4/PLC axis inhibition significantly reverses Dex resistance in B-ALL cell lines (in vitro and in vivo) and cells from Dex resistant ALL patients. Our study identifies how activation of the PLC signalosome in B-ALL by Dex limits the upfront efficacy of this chemotherapeutic agent.
Collapse
Affiliation(s)
| | - Rihab Hami
- Univ Brest, Inserm, UMR 1101, F-29200, Brest, France
| | - Gaetan Riou
- Univ Rouen Normandie, Inserm, UMR 1234, F-76000, Rouen, France
| | | | | | | | - Monica L Guzman
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Pascale Schneider
- Univ Rouen Normandie, Inserm, UMR 1234, F-76000, Rouen, France
- Rouen University Hospital, Department of Pediatric Immuno-Hemato-Oncology, F-76000, Rouen, France
| | - Olivier Boyer
- Univ Rouen Normandie, Inserm, UMR 1234, F-76000, Rouen, France
- Rouen University Hospital, Department of Immunology and Biotherapy, F-76000, Rouen, France
| |
Collapse
|
11
|
Vendramini-Costa DB, Francescone R, Franco-Barraza J, Luong T, Graves M, de Aquino AM, Steele N, Gardiner JC, Dos Santos SAA, Ogier C, Malloy E, Borghaei L, Martinez E, Zhigarev DI, Tan Y, Lee H, Zhou Y, Cai KQ, Klein-Szanto AJ, Wang H, Andrake M, Dunbrack RL, Campbell K, Cukierman E. Netrin G1 Ligand is a new stromal immunomodulator that promotes pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594354. [PMID: 38798370 PMCID: PMC11118300 DOI: 10.1101/2024.05.15.594354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding pancreatic cancer biology is fundamental for identifying new targets and for developing more effective therapies. In particular, the contribution of the stromal microenvironment to pancreatic cancer tumorigenesis requires further exploration. Here, we report the stromal roles of the synaptic protein Netrin G1 Ligand (NGL-1) in pancreatic cancer, uncovering its pro-tumor functions in cancer-associated fibroblasts and in immune cells. We observed that the stromal expression of NGL-1 inversely correlated with patients' overall survival. Moreover, germline knockout (KO) mice for NGL-1 presented decreased tumor burden, with a microenvironment that is less supportive of tumor growth. Of note, tumors from NGL-1 KO mice produced less immunosuppressive cytokines and displayed an increased percentage of CD8 + T cells than those from control mice, while preserving the physical structure of the tumor microenvironment. These effects were shown to be mediated by NGL-1 in both immune cells and in the local stroma, in a TGF-β-dependent manner. While myeloid cells lacking NGL-1 decreased the production of immunosuppressive cytokines, NGL-1 KO T cells showed increased proliferation rates and overall polyfunctionality compared to control T cells. CAFs lacking NGL-1 were less immunosuppressive than controls, with overall decreased production of pro-tumor cytokines and compromised ability to inhibit CD8 + T cells activation. Mechanistically, these CAFs downregulated components of the TGF-β pathway, AP-1 and NFAT transcription factor families, resulting in a less tumor-supportive phenotype. Finally, targeting NGL-1 genetically or using a functionally antagonistic small peptide phenocopied the effects of chemotherapy, while modulating the immunosuppressive tumor microenvironment (TME), rather than eliminating it. We propose NGL-1 as a new local stroma and immunomodulatory molecule, with pro-tumor roles in pancreatic cancer. Statement of Significance Here we uncovered the pro-tumor roles of the synaptic protein NGL-1 in the tumor microenvironment of pancreatic cancer, defining a new target that simultaneously modulates tumor cell, fibroblast, and immune cell functions. This study reports a new pathway where NGL-1 controls TGF-β, AP-1 transcription factor members and NFAT1, modulating the immunosuppressive microenvironment in pancreatic cancer. Our findings highlight NGL-1 as a new stromal immunomodulator in pancreatic cancer.
Collapse
|
12
|
Xiao Z, Wang S, Chen J, Li Y, Jiang Y, Tin VP, Liu J, Hu H, Wong MP, Pan Y, Yam JWP. The Dual Role of the NFATc2/galectin-9 Axis in Modulating Tumor-Initiating Cell Phenotypes and Immune Suppression in Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306059. [PMID: 38528665 PMCID: PMC11132051 DOI: 10.1002/advs.202306059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Tumor-initiating cells (TICs) resilience and an immunosuppressive microenvironment are aggressive oncogenic phenotypes that contribute to unsatisfactory long-term outcomes in lung adenocarcinoma (LUAD) patients. The molecular mechanisms mediating the interaction between TICs and immune tolerance have not been elucidated. The role of Galectin-9 in oncogenesis and immunosuppressive microenvironment is still unknown. This study explored the potential role of galectin-9 in TIC regulation and immune modulation in LUAD. The results show that galectin-9 supports TIC properties in LUAD. Co-culture of patient-derived organoids and matched peripheral blood mononuclear cells showed that tumor-secreted galectin-9 suppressed T cell cytotoxicity and induced regulatory T cells (Tregs). Clinically, galectin-9 is upregulated in human LUAD. High expression of galectin-9 predicted poor recurrence-free survival and correlated with high levels of Treg infiltration. LGALS9, the gene encoding galectin-9, is found to be transcriptionally regulated by the nuclear factor of activated T cells 2 (NFATc2), a previously reported TIC regulator, via in silico prediction and luciferase reporter assays. Overall, the results suggest that the NFATc2/galectin-9 axis plays a dual role in TIC regulation and immune suppression.
Collapse
Affiliation(s)
- Zhi‐Jie Xiao
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational ResearchThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Si‐Qi Wang
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Jun‐Jiang Chen
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510000China
| | - Yun Li
- Department of Thoracic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
| | - Yuchen Jiang
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Vicky Pui‐Chi Tin
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Jia Liu
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Huiyi Hu
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Maria Pik Wong
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Yihang Pan
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| |
Collapse
|
13
|
Stefanidis E, Semilietof A, Pujol J, Seijo B, Scholten K, Zoete V, Michielin O, Sandaltzopoulos R, Coukos G, Irving M. Combining SiRPα decoy-coengineered T cells and antibodies augments macrophage-mediated phagocytosis of tumor cells. J Clin Invest 2024; 134:e161660. [PMID: 38828721 PMCID: PMC11142748 DOI: 10.1172/jci161660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antigens, Differentiation/immunology
- Antigens, Neoplasm/immunology
- CD47 Antigen/immunology
- Cell Line, Tumor
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/genetics
- Immunotherapy, Adoptive
- Macrophages/immunology
- Macrophages/metabolism
- Phagocytosis
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- T-Lymphocytes/immunology
- Xenograft Model Antitumor Assays
- Male
- Female
Collapse
Affiliation(s)
- Evangelos Stefanidis
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aikaterini Semilietof
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julien Pujol
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Bili Seijo
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Kirsten Scholten
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Vincent Zoete
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Olivier Michielin
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Oncology, University Hospital of Geneva (HUG), Geneva, Switzerland
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| |
Collapse
|
14
|
Boccarelli A, Del Buono N, Esposito F. Review of Patient Gene Profiles Obtained through a Non-Negative Matrix Factorization-Based Framework to Determine the Role Inflammation Plays in Neuroblastoma Pathogenesis. Int J Mol Sci 2024; 25:4406. [PMID: 38673990 PMCID: PMC11050151 DOI: 10.3390/ijms25084406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. It is a highly heterogeneous tumor consisting of different subcellular types and genetic abnormalities. Literature data confirm the biological and clinical complexity of this cancer, which requires a wider availability of gene targets for the implementation of personalized therapy. This paper presents a study of neuroblastoma samples from primary tumors of untreated patients. The focus of this analysis is to evaluate the impact that the inflammatory process may have on the pathogenesis of neuroblastoma. Eighty-eight gene profiles were selected and analyzed using a non-negative matrix factorization framework to extract a subset of genes relevant to the identification of an inflammatory phenotype, whose targets (PIK3CG, NFATC2, PIK3R2, VAV1, RAC2, COL6A2, COL6A3, COL12A1, COL14A1, ITGAL, ITGB7, FOS, PTGS2, PTPRC, ITPR3) allow further investigation. Based on the genetic signals automatically derived from the data used, neuroblastoma could be classified according to stage rather than as a "cold" or "poorly immunogenic" tumor.
Collapse
Affiliation(s)
- Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Polo Jonico, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121 Bari, Italy;
| | - Nicoletta Del Buono
- Department of Mathematics, University of Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy;
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy;
| |
Collapse
|
15
|
Ochs-Balcom HM, Preus L, Du Z, Elston RC, Teerlink CC, Jia G, Guo X, Cai Q, Long J, Ping J, Li B, Stram DO, Shu XO, Sanderson M, Gao G, Ahearn T, Lunetta KL, Zirpoli G, Troester MA, Ruiz-Narváez EA, Haddad SA, Figueroa J, John EM, Bernstein L, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Mancuso N, Press MF, Deming SL, Rodriguez-Gil JL, Yao S, Ogundiran TO, Ojengbede O, Bolla MK, Dennis J, Dunning AM, Easton DF, Michailidou K, Pharoah PDP, Sandler DP, Taylor JA, Wang Q, O’Brien KM, Weinberg CR, Kitahara CM, Blot W, Nathanson KL, Hennis A, Nemesure B, Ambs S, Sucheston-Campbell LE, Bensen JT, Chanock SJ, Olshan AF, Ambrosone CB, Olopade OI, the Ghana Breast Health Study Team, Conti DV, Palmer J, García-Closas M, Huo D, Zheng W, Haiman C. Novel breast cancer susceptibility loci under linkage peaks identified in African ancestry consortia. Hum Mol Genet 2024; 33:687-697. [PMID: 38263910 PMCID: PMC11000665 DOI: 10.1093/hmg/ddae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Expansion of genome-wide association studies across population groups is needed to improve our understanding of shared and unique genetic contributions to breast cancer. We performed association and replication studies guided by a priori linkage findings from African ancestry (AA) relative pairs. METHODS We performed fixed-effect inverse-variance weighted meta-analysis under three significant AA breast cancer linkage peaks (3q26-27, 12q22-23, and 16q21-22) in 9241 AA cases and 10 193 AA controls. We examined associations with overall breast cancer as well as estrogen receptor (ER)-positive and negative subtypes (193,132 SNPs). We replicated associations in the African-ancestry Breast Cancer Genetic Consortium (AABCG). RESULTS In AA women, we identified two associations on chr12q for overall breast cancer (rs1420647, OR = 1.15, p = 2.50×10-6; rs12322371, OR = 1.14, p = 3.15×10-6), and one for ER-negative breast cancer (rs77006600, OR = 1.67, p = 3.51×10-6). On chr3, we identified two associations with ER-negative disease (rs184090918, OR = 3.70, p = 1.23×10-5; rs76959804, OR = 3.57, p = 1.77×10-5) and on chr16q we identified an association with ER-negative disease (rs34147411, OR = 1.62, p = 8.82×10-6). In the replication study, the chr3 associations were significant and effect sizes were larger (rs184090918, OR: 6.66, 95% CI: 1.43, 31.01; rs76959804, OR: 5.24, 95% CI: 1.70, 16.16). CONCLUSION The two chr3 SNPs are upstream to open chromatin ENSR00000710716, a regulatory feature that is actively regulated in mammary tissues, providing evidence that variants in this chr3 region may have a regulatory role in our target organ. Our study provides support for breast cancer variant discovery using prioritization based on linkage evidence.
Collapse
Affiliation(s)
- Heather M Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 270 Farber Hall, Buffalo, NY 14214, United States
| | - Leah Preus
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 270 Farber Hall, Buffalo, NY 14214, United States
| | - Zhaohui Du
- Department of Preventive Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States
- Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N. Seattle, WA 98109, United States
| | - Robert C Elston
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Craig C Teerlink
- Department of Internal Medicine, University of Utah School of Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, Salt Lake City, UT 84112, United States
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 707 Light Hall 2215 Garland Avenue, Nashville, TN 37232, United States
| | - Daniel O Stram
- Department of Preventive Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, 1005 Dr. DB Todd Jr, Blvd. Nashville, TN 37208, United States
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, United States
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD 20892, United States
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University, 715 Albany St, Boston, MA 02118, United States
| | - Gary Zirpoli
- Slone Epidemiology Center, Boston University, L-7, 72 East Concord Street, Boston, MA 02118, United States
| | - Melissa A Troester
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB 7435, Chapel Hill, NC 27599, United States
| | - Edward A Ruiz-Narváez
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1860 SPH I, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Stephen A Haddad
- Slone Epidemiology Center, Boston University, L-7, 72 East Concord Street, Boston, MA 02118, United States
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD 20892, United States
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, 9 Little France Road, Edinburgh, EH16 4UX, United Kingdom
- Cancer Research UK Edinburgh Centre, Crewe Rd S, Edinburgh, EH4 2XR, United Kingdom
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, 3145 Porter Dr, Suite E223, MC 5393, Palo Alto, CA 94304, United States
- Department of Medicine (Oncology), Stanford University School of Medicine, 291 Campus Drive Li Ka Shing Building, Stanford, CA 94305, United States
| | - Leslie Bernstein
- Division of Biomarkers of Early Detection and Prevention Department of Population Sciences, Beckman Research Institute of the City of Hope, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, United States
| | - Jennifer J Hu
- Sylvester Comprehensive Cancer Center and Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14th St, CRB 1511, Miami, FL 33136, United States
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD 20892, United States
| | - Sarah Nyante
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, 130 Mason Farm Rd., Chapel Hill, NC 27599, United States
| | - Elisa V Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, 120 Albany Street, Tower 2, 8th Floor, New Brunswick, NJ 08903, United States
| | - Sue A Ingles
- Department of Preventive Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States
| | - Nicholas Mancuso
- Department of Preventive Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States
| | - Michael F Press
- Department of Pathology, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave., Los Angeles, CA 90033, United States
| | - Sandra L Deming
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, 31 Center Dr, Bethesda, MD 20894, United States
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, 750 Highland Ave., Madison, WI 53705, United States
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Temidayo O Ogundiran
- Department of Surgery, College of Medicine, University of Ibadan, Queen Elizabeth II Road, Ibadan, 200285, Nigeria
| | - Oladosu Ojengbede
- Center for Population and Reproductive Health, College of Medicine, University of Ibadan, UCH, Queen Elizabeth II Road, Ibadan, 200285, Nigeria
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Iroon Avenue 6, 2371 Ayius Dometios, Nicosia, Cyprus
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, United States
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, United States
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Katie M O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, United States
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, United States
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD 20892, United States
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
- International Epidemiology Institute, 1455 Research Boulevard, Rockville, MD 20850, United States
| | - Katherine L Nathanson
- Department of Medicine, Abramson Cancer Center, The Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19140, United States
| | - Anselm Hennis
- Chronic Disease Research Centre and Faculty of Medical Sciences, University of the West Indies, Jemmotts Lane, Avalon, Bridgetown, Barbados
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, United States
| | - Lara E Sucheston-Campbell
- College of Pharmacy, The Ohio State University, 217 Lloyd M. Parks Hall, 500 West 12th Ave., Columbus, OH 43210, United States
- College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, United States
| | - Jeannette T Bensen
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB 7435, Chapel Hill, NC 27599, United States
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD 20892, United States
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, 170 Rosenau Hall, CB #7400, 135 Dauer Drive, Chapel Hill, NC 27599, United States
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL 60637, United States
| | | | - David V Conti
- Department of Preventive Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States
| | - Julie Palmer
- Slone Epidemiology Center, Boston University, L-7, 72 East Concord Street, Boston, MA 02118, United States
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD 20892, United States
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, United States
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Christopher Haiman
- Department of Preventive Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States
| |
Collapse
|
16
|
Chomiak AA, Tiedemann RL, Liu Y, Kong X, Cui Y, Wiseman AK, Thurlow KE, Cornett EM, Topper MJ, Baylin SB, Rothbart SB. Select EZH2 inhibitors enhance viral mimicry effects of DNMT inhibition through a mechanism involving NFAT:AP-1 signaling. SCIENCE ADVANCES 2024; 10:eadk4423. [PMID: 38536911 PMCID: PMC10971413 DOI: 10.1126/sciadv.adk4423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
DNA methyltransferase inhibitor (DNMTi) efficacy in solid tumors is limited. Colon cancer cells exposed to DNMTi accumulate lysine-27 trimethylation on histone H3 (H3K27me3). We propose this Enhancer of Zeste Homolog 2 (EZH2)-dependent repressive modification limits DNMTi efficacy. Here, we show that low-dose DNMTi treatment sensitizes colon cancer cells to select EZH2 inhibitors (EZH2is). Integrative epigenomic analysis reveals that DNMTi-induced H3K27me3 accumulates at genomic regions poised with EZH2. Notably, combined EZH2i and DNMTi alters the epigenomic landscape to transcriptionally up-regulate the calcium-induced nuclear factor of activated T cells (NFAT):activating protein 1 (AP-1) signaling pathway. Blocking this pathway limits transcriptional activating effects of these drugs, including transposable element and innate immune response gene expression involved in viral defense. Analysis of primary human colon cancer specimens reveals positive correlations between DNMTi-, innate immune response-, and calcium signaling-associated transcription profiles. Collectively, we show that compensatory EZH2 activity limits DNMTi efficacy in colon cancer and link NFAT:AP-1 signaling to epigenetic therapy-induced viral mimicry.
Collapse
Affiliation(s)
- Alison A. Chomiak
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Xiangqian Kong
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ying Cui
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ashley K. Wiseman
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kate E. Thurlow
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Evan M. Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Michael J. Topper
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen B. Baylin
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Scott B. Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
17
|
Wei Y, Li M, Hu Y, Lu J, Wang L, Yin Q, Hong X, Tian J, Wang H. PCC0208057 as a small molecule inhibitor of TRPC6 in the treatment of prostate cancer. Front Pharmacol 2024; 15:1352373. [PMID: 38567350 PMCID: PMC10986179 DOI: 10.3389/fphar.2024.1352373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Prostate cancer (PCa) is a common malignant tumor, whose morbidity and mortality keep the top three in the male-related tumors in developed countries. Abnormal ion channels, such as transient receptor potential canonical 6 (TRPC6), are reported to be involved in the carcinogenesis and progress of prostate cancer and have become potential drug targets against prostate cancer. Here, we report a novel small molecule inhibitor of TRPC6, designated as PCC0208057, which can suppress the proliferation and migration of prostate cancer cells in vitro, and inhibit the formation of Human umbilical vein endothelial cells cell lumen. PCC0208057 can effectively inhibit the growth of xenograft tumor in vivo. Molecular mechanism studies revealed that PCC0208057 could directly bind and inhibit the activity of TRPC6, which then induces the prostate cancer cells arrested in G2/M phase via enhancing the phosphorylation of Nuclear Factor of Activated T Cells (NFAT) and Cdc2. Taken together, our study describes for the first time that PCC0208057, a novel TRPC6 inhibitor, might be a promising lead compound for treatment of prostate cancer.
Collapse
Affiliation(s)
- Yingjie Wei
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Min Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xuechuan Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
18
|
Ge L, Rui Y, Wang C, Wu Y, Wang H, Wang J. The RNA m 6A reader IGF2BP3 regulates NFAT1/IRF1 axis-mediated anti-tumor activity in gastric cancer. Cell Death Dis 2024; 15:192. [PMID: 38448411 PMCID: PMC10917814 DOI: 10.1038/s41419-024-06566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
N6-methyladenosine (m6A) and its associated reader protein insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) are involved in tumor initiation and progression via regulating RNA metabolism. This study aims to investigate the biological function and clinical significance of IGF2BP3 in gastric cancer (GC). The clinical significance of IGF2BP3 was evaluated using tumor related databases and clinical tissues. The biological role and molecular mechanism of IGF2BP3 in GC progression were investigated by multi-omics analysis including Ribosome sequence (Ribo-seq), RNA sequence (RNA-seq) and m6A sequence (m6A-seq) combined with gain- and loss- of function experiments. IGF2BP3 expression is significantly elevated in GC tissues and associated with poor prognosis of GC patients. Knockdown of IGF2BP3 significantly weakens the migration and clonogenic ability, promotes the apoptosis, inhibits translation, and suppresses in vitro growth and progression of GC cells. Mechanistically, IGF2BP3 regulates the mRNA stability and translation of the nuclear factor of activated T cells 1(NFAT1) in a m6A dependent manner. Then NFAT1 induced by IGF2BP3 acts as a transcription factor (TF) to negatively regulates the promoter activities of interferon regulatory factor 1 (IRF1) to inhibit its expression. Inhibition of IGF2BP3-induced expression of IRF1 activates interferon (IFN) signaling pathway and then exerts its anti-tumor effect. Elevated IGF2BP3 promotes in vivo and in vitro GC progression via regulation of NFAT1/IRF1 pathways. Targeted inhibition of IGF2BP3 might be a potential therapeutic approach for GC treatment.
Collapse
Affiliation(s)
- Lichen Ge
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yalan Rui
- Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yingmin Wu
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550009, China
| | - Hongsheng Wang
- Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Junjun Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
19
|
Hanaki S, Habara M, Sato Y, Tomiyasu H, Miki Y, Shibutani S, Shimada M. Dephosphorylation of NFAT by Calcineurin inhibits Skp2-mediated degradation. J Biochem 2024; 175:235-244. [PMID: 38030387 DOI: 10.1093/jb/mvad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
The transcription factor NFAT plays key roles in multiple biological activities, such as immune responses, tissue development and malignant transformation. NFAT is dephosphorylated by calcineurin, which is activated by intracellular calcium levels, and translocated into the nucleus, resulting in transcriptional activation. Calcineurin dephosphorylates various target proteins and regulates their functions. However, the regulation of NFAT degradation is largely unknown, and it is unclear whether calcineurin contributes to the stability of NFAT. We investigated the effect of calcineurin inhibition on NFAT protein stability and found that the dephosphorylation of NFAT by calcineurin promotes the NFAT stabilization, whereas calcineurin mutant that is defective in phosphatase activity was unable to stabilize NFAT. Increased intracellular calcium ion concentration, which is essential for calcineurin activation, also induced NFAT stability. In addition, we identified S-phase kinase associated protein 2 (Skp2), an F-box protein of the SCF ubiquitin ligase complex, as a factor mediating degradation of NFAT when calcineurin was depleted. In summary, these findings revealed that the dephosphorylation of NFAT by calcineurin protects NFAT from degradation by Skp2 and promotes its protein stability.
Collapse
Affiliation(s)
- Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Yuki Sato
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Haruki Tomiyasu
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Yosei Miki
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Shusaku Shibutani
- Laboratory of Veterinary Hygiene, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
- Department of Molecular Biology, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
20
|
Zhang Y, Song Y, Wang X, Shi M, Lin Y, Tao D, Han S. An NFAT1-C3a-C3aR Positive Feedback Loop in Tumor-Associated Macrophages Promotes a Glioma Stem Cell Malignant Phenotype. Cancer Immunol Res 2024; 12:363-376. [PMID: 38289255 DOI: 10.1158/2326-6066.cir-23-0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/15/2023] [Accepted: 12/19/2023] [Indexed: 03/06/2024]
Abstract
Extensive infiltration by tumor-associated macrophages (TAM) in combination with myeloid-derived suppressor cells constitute the immunosuppressive microenvironment and promote the malignant phenotype of gliomas. The aggressive mesenchymal (MES)-subtype glioma stem cells (GSC) are prominent in the immunosuppressive microenvironment of gliomas. However, the underlying immune-suppressive mechanisms are still unknown. The current study showed that the antitumor immune microenvironment was activated in glioma in Nfat1-/- mice, suggesting induction of the immune-suppressive microenvironment by nuclear factor of activated T cells-1 (NFAT1). In TAMs, NFAT1 could upregulate the transcriptional activity of complement 3 (C3) and increase the secretion of C3a, which could then bind to C3aR and promote M2-like macrophage polarization by activating TIM-3. Simultaneously, C3a/C3aR activated the Ca2+-NFAT1 pathway, forming a positive feedback loop for the M2-like polarization of TAMs, which further promoted the MES transition of GSCs. Finally, disruption of this feedback loop using a C3aR inhibitor significantly inhibited glioma growth both in vitro and in vivo. The current study demonstrated that a NFAT1-C3a-C3aR positive feedback loop induces M2-like TAMs and further promotes the malignant phenotype of GSCs, which might be the potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Yaochuan Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Xiaoliang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Mengwu Shi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Yibin Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Dongxia Tao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
21
|
Guo Y, Feng Y, Jiang F, Hu L, Shan T, Li H, Liao H, Bao H, Shi H, Si Y. Down-regulating nuclear factor of activated T cells 1 alleviates cognitive deficits in a mouse model of sepsis-associated encephalopathy, possibly by stimulating hippocampal neurogenesis. Brain Res 2024; 1826:148731. [PMID: 38154504 DOI: 10.1016/j.brainres.2023.148731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, and has been associated with increased morbidity and mortality. Nuclear factor of activated T cells (NFATs) 1, a transcriptional factor that regulates T cell development, activation and differentiation, has been implicated in neuronal plasticity. Here we examined the potential role of NFAT1 in sepsis-associated encephalopathy in mice. Adult male C57BL/6J mice received intracerebroventricular injections of short interfering RNA against NFAT1 or sex-determining region Y-box 2 (SOX2), or a scrambled control siRNA prior to cecal ligation and perforation (CLP). A group of mice receiving sham surgery were included as an additional control. CLP increased escape latency and decreased the number of crossings into, and total time spent within, the target quadrant in the Morris water maze test. CLP also decreased the freezing time in context-dependent, but not context-independent, fear conditioning test. Knockdown of either NFAT1 or SOX2 attenuated these behavioral deficits. NFAT1 knockdown also attenuated CLP-induced upregulation of SOX2, increased the numbers of nestin-positive cells and newborn astrocytes, reduced the number of immature newborn neurons, and promoted the G1 to S transition of neural stem cells in hippocampus. These findings suggest that NFAT1 may contribute to sepsis-induced behavioral deficits, possibly by promoting SOX2 signaling and neurogenesis.
Collapse
Affiliation(s)
- Yaoyi Guo
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Yue Feng
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Fan Jiang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Liang Hu
- Department of Pharmacology, Nanjing Medical University, No. 101 Longmiandadao Road, Jiangning District, Nanjing, Jiangsu Province 211166, People's Republic of China
| | - Tao Shan
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Haojia Li
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Hongsen Liao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Hongwei Shi
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China
| | - Yanna Si
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, Jiangsu Province 210006, People's Republic of China.
| |
Collapse
|
22
|
Lei X, Liao R, Chen X, Wang Z, Cao Q, Bai L, Ma C, Deng X, Ma Y, Wu X, Li J, Dai Z, Dong C. IMPA2 promotes basal-like breast cancer aggressiveness by a MYC-mediated positive feedback loop. Cancer Lett 2024; 582:216527. [PMID: 38048842 DOI: 10.1016/j.canlet.2023.216527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Basal-like breast cancer (BLBC) is the most aggressive subtype with poor prognosis; however, the mechanisms underlying aggressiveness in BLBC remain poorly understood. In this study, we showed that in contrast to other subtypes, inositol monophosphatase 2 (IMPA2) was dramatically increased in BLBC. Mechanistically, IMPA2 expression was upregulated due to copy number amplification, hypomethylation of IMPA2 promoter and MYC-mediated transcriptional activation. IMPA2 promoted MI-PI cycle and IP3 production, and IP3 then elevated intracellular Ca2+ concentration, leading to efficient activation of NFAT1. In turn, NFAT1 up-regulated MYC expression, thereby fulfilling a positive feedback loop that enhanced aggressiveness of BLBC cells. Knockdown of IMPA2 expression caused the inhibition of tumorigenicity and metastasis of BLBC cells in vitro and in vivo. Clinically, high IMPA2 expression was strongly correlated with large tumor size, high grade, metastasis and poor survival, indicating poor prognosis in breast cancer patients. These findings suggest that IMPA2-mediated MI-PI cycle allows crosstalk between metabolic and oncogenic pathways to promote BLBC progression.
Collapse
Affiliation(s)
- Xingyu Lei
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ruocen Liao
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xingyu Chen
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenzhen Wang
- Department of Ultrasound Medicine, Cancer Center, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qianhua Cao
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Longchang Bai
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chenglong Ma
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xinyue Deng
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yihua Ma
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xuebiao Wu
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Pathophysiology, Gannan Medical University, Gannan, China
| | - Jun Li
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhijun Dai
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Chaudhry MZ, Borkner L, Kulkarni U, Berberich-Siebelt F, Cicin-Sain L. NFAT signaling is indispensable for persistent memory responses of MCMV-specific CD8+ T cells. PLoS Pathog 2024; 20:e1012025. [PMID: 38346075 PMCID: PMC10890734 DOI: 10.1371/journal.ppat.1012025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/23/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cytomegalovirus (CMV) induces a unique T cell response, where antigen-specific populations do not contract, but rather inflate during viral latency. It has been proposed that subclinical episodes of virus reactivation feed the inflation of CMV-specific memory cells by intermittently engaging T cell receptors (TCRs), but evidence of TCR engagement has remained lacking. Nuclear factor of activated T cells (NFAT) is a family of transcription factors, where NFATc1 and NFATc2 signal downstream of TCR in mature T lymphocytes. We show selective impacts of NFATc1 and/or NFATc2 genetic ablations on the long-term inflation of MCMV-specific CD8+ T cell responses despite largely maintained responses to acute infection. NFATc1 ablation elicited robust phenotypes in isolation, but the strongest effects were observed when both NFAT genes were missing. CMV control was impaired only when both NFATs were deleted in CD8+ T cells used in adoptive immunotherapy of immunodeficient mice. Transcriptome analyses revealed that T cell intrinsic NFAT is not necessary for CD8+ T cell priming, but rather for their maturation towards effector-memory and in particular the effector cells, which dominate the pool of inflationary cells.
Collapse
Affiliation(s)
- M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Borkner
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Upasana Kulkarni
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a joint venture of Helmholtz Centre for Infection Research and Medical School Hannover, Hannover, Germany
| |
Collapse
|
24
|
Patalano SD, Fuxman Bass P, Fuxman Bass JI. Transcription factors in the development and treatment of immune disorders. Transcription 2023:1-23. [PMID: 38100543 DOI: 10.1080/21541264.2023.2294623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Immune function is highly controlled at the transcriptional level by the binding of transcription factors (TFs) to promoter and enhancer elements. Several TF families play major roles in immune gene expression, including NF-κB, STAT, IRF, AP-1, NRs, and NFAT, which trigger anti-pathogen responses, promote cell differentiation, and maintain immune system homeostasis. Aberrant expression, activation, or sequence of isoforms and variants of these TFs can result in autoimmune and inflammatory diseases as well as hematological and solid tumor cancers. For this reason, TFs have become attractive drug targets, even though most were previously deemed "undruggable" due to their lack of small molecule binding pockets and the presence of intrinsically disordered regions. However, several aspects of TF structure and function can be targeted for therapeutic intervention, such as ligand-binding domains, protein-protein interactions between TFs and with cofactors, TF-DNA binding, TF stability, upstream signaling pathways, and TF expression. In this review, we provide an overview of each of the important TF families, how they function in immunity, and some related diseases they are involved in. Additionally, we discuss the ways of targeting TFs with drugs along with recent research developments in these areas and their clinical applications, followed by the advantages and disadvantages of targeting TFs for the treatment of immune disorders.
Collapse
Affiliation(s)
- Samantha D Patalano
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Paula Fuxman Bass
- Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I Fuxman Bass
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
25
|
Kirikovich SS, Levites EV, Proskurina AS, Ritter GS, Peltek SE, Vasilieva AR, Ruzanova VS, Dolgova EV, Oshihmina SG, Sysoev AV, Koleno DI, Danilenko ED, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. The Molecular Aspects of Functional Activity of Macrophage-Activating Factor GcMAF. Int J Mol Sci 2023; 24:17396. [PMID: 38139225 PMCID: PMC10743851 DOI: 10.3390/ijms242417396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Group-specific component macrophage-activating factor (GcMAF) is the vitamin D3-binding protein (DBP) deglycosylated at Thr420. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, DBP conversion to GcMAF, and the analysis of the activating potency of GcMAF was developed in this study. Data unveiling the molecular causes of macrophage activation were obtained. GcMAF was found to interact with three CLEC10A derivatives having molecular weights of 29 kDa, 63 kDa, and 65 kDa. GcMAF interacts with high-molecular-weight derivatives via Ca2+-dependent receptor engagement. Binding to the 65 kDa or 63 kDa derivative determines the pro- and anti-inflammatory direction of cytokine mRNA expression: 65 kDa-pro-inflammatory (TNF-α, IL-1β) and 63 kDa-anti-inflammatory (TGF-β, IL-10). No Ca2+ ions are required for the interaction with the canonical 29 kDa CLEC10A. Both forms, DBP protein and GcMAF, bind to the 29 kDa CLEC10A. This interaction is characterized by the stochastic mRNA synthesis of the analyzed cytokines. Ex vivo experiments have demonstrated that when there is an excess of GcMAF ligand, CLEC10A forms aggregate, and the mRNA synthesis of analyzed cytokines is inhibited. A schematic diagram of the presumable mechanism of interaction between the CLEC10A derivatives and GcMAF is provided. The principles and elements of standardizing the GcMAF preparation are elaborated.
Collapse
Affiliation(s)
- Svetlana S. Kirikovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Evgeniy V. Levites
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Genrikh S. Ritter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Sergey E. Peltek
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Asya R. Vasilieva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Vera S. Ruzanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Evgeniya V. Dolgova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Sofya G. Oshihmina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Alexandr V. Sysoev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.S.); (D.I.K.)
| | - Danil I. Koleno
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.S.); (D.I.K.)
| | - Elena D. Danilenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (E.D.D.); (O.S.T.)
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (E.D.D.); (O.S.T.)
| | - Alexandr A. Ostanin
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.O.); (E.R.C.)
| | - Elena R. Chernykh
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.O.); (E.R.C.)
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| |
Collapse
|
26
|
Fu Y, Wang J, Liu C, Liao K, Gao X, Tang R, Fan B, Hong Y, Xiao N, Xiao C, Liu WH. Glycogen synthase kinase 3 controls T-cell exhaustion by regulating NFAT activation. Cell Mol Immunol 2023; 20:1127-1139. [PMID: 37553428 PMCID: PMC10541428 DOI: 10.1038/s41423-023-01075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Cellular immunity mediated by CD8+ T cells plays an indispensable role in bacterial and viral clearance and cancers. However, persistent antigen stimulation of CD8+ T cells leads to an exhausted or dysfunctional cellular state characterized by the loss of effector function and high expression of inhibitory receptors during chronic viral infection and in tumors. Numerous studies have shown that glycogen synthase kinase 3 (GSK3) controls the function and development of immune cells, but whether GSK3 affects CD8+ T cells is not clearly elucidated. Here, we demonstrate that mice with deletion of Gsk3α and Gsk3β in activated CD8+ T cells (DKO) exhibited decreased CTL differentiation and effector function during acute and chronic viral infection. In addition, DKO mice failed to control tumor growth due to the upregulated expression of inhibitory receptors and augmented T-cell exhaustion in tumor-infiltrating CD8+ T cells. Strikingly, anti-PD-1 immunotherapy substantially restored tumor rejection in DKO mice. Mechanistically, GSK3 regulates T-cell exhaustion by suppressing TCR-induced nuclear import of NFAT, thereby in turn dampening NFAT-mediated exhaustion-related gene expression, including TOX/TOX2 and PD-1. Thus, we uncovered the molecular mechanisms underlying GSK3 regulation of CTL differentiation and T-cell exhaustion in anti-tumor immune responses.
Collapse
Affiliation(s)
- Yubing Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Jinjia Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chenfeng Liu
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, 230031, Anhui, China
| | - Kunyu Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xianjun Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ronghan Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Binbin Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Changchun Xiao
- Sanofi Institute for Biomedical Research, Suzhou, Jiangsu, 215123, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
27
|
Hui W, Wenhua S, Shuojie Z, Lulin W, Panpan Z, Tongtong Z, Xiaoli X, Juhua D. How does NFAT3 regulate the occurrence of cardiac hypertrophy? IJC HEART & VASCULATURE 2023; 48:101271. [PMID: 37753338 PMCID: PMC10518445 DOI: 10.1016/j.ijcha.2023.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
Cardiac hypertrophy is initially an adaptive response to physiological and pathological stimuli. Although pathological myocardial hypertrophy is the main cause of morbidity and mortality, our understanding of its mechanism is still weak. NFAT3 (nuclear factor of activated T-cell-3) is a member of the nuclear factor of the activated T cells (NFAT) family. NFAT3 plays a critical role in regulating the expression of cardiac hypertrophy genes by inducing their transcription. Recently, accumulating evidence has indicated that NFAT3 is a potent regulator of the progression of cardiac hypertrophy. This review, for the first time, summarizes the current studies on NFAT3 in cardiac hypertrophy, including the pathophysiological processes and the underlying pathological mechanism, focusing on the nuclear translocation and transcriptional function of NFAT3. This review will provide deep insight into the pathogenesis of cardiac hypertrophy and a theoretical basis for identifying new therapeutic targets in the NFAT3 network.
Collapse
Affiliation(s)
- Wang Hui
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su Wenhua
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Cardiology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhang Shuojie
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wang Lulin
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhao Panpan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhang Tongtong
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xie Xiaoli
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dan Juhua
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
28
|
Liang SY, Xiao HK. The antihypertensive felodipine shows synergistic activity with immune checkpoint blockade and inhibits tumor growth via NFAT1 in LUSC. Open Med (Wars) 2023; 18:20230801. [PMID: 37750075 PMCID: PMC10518203 DOI: 10.1515/med-2023-0801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
This study aimed to explore the role and mechanism of felodipine in lung cancer therapy. Murine subcutaneous lung squamous cancer (LUSC) models constructed by KLN-205 cells were utilized to assess the effect of felodipine monotherapy and in combination with the programmed cell death protein 1 antibody (PD1ab) and cytotoxic T lymphocyte-associated antigen-4 (CTLA4ab). Immunohistochemistry analysis was subsequently applied to detect the number of CD8+ T cells and Ki67+ cells. Lastly, a series of in vitro and in vivo experiments were performed to evaluate the effects of felodipine on human LUSC cells and explore the preliminary mechanism underlying felodipine inhibition. The results revealed that felodipine monotherapy exerted a significant inhibitory effect on LUSC growth and synergistic antitumoral activity with PD1ab and CTLA4ab. Meanwhile, immunohistochemistry analysis displayed that felodipine promoted CD8+ T-cell infiltration and downregulated Ki67 expression in tumor cells. Moreover, in vitro and in vivo experiments utilizing human LUSC cells determined that felodipine impaired the proliferative and migratory abilities of cancer cells. In addition, TCGA data analysis uncovered that nuclear factor of activated T cell (NFAT1) expression was positively correlated with overall survival and disease-free survival. Finally, the cell counting kit-8 assay signaled that felodipine might suppress tumor growth by modulating NFAT1.
Collapse
Affiliation(s)
- Si-Yu Liang
- Department of Cardiology, The Fourth Affiliated Hospital of Guangzhou Medical University, Zengcheng, Guangzhou, China
| | - Hong-Kai Xiao
- Department of Cardiology, The Fourth Affiliated Hospital of Guangzhou Medical University, Zengcheng, Guangzhou, China
| |
Collapse
|
29
|
Miao Y, Qian G, Zhang R, Yuan Y, Zuo Y, Ding Y, Li X, Tang Y, Zheng H, Lv H. Linear ubiquitination improves NFAT1 protein stability and facilitates NFAT1 signalling in Kawasaki disease. FEBS J 2023; 290:4224-4237. [PMID: 36779231 DOI: 10.1111/febs.16749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
NFAT1 is known for its roles in T cell development and activation. So far, the phosphorylation of NFAT1 has been extensively studied, but the other post-translational modifications of NFAT1 remain largely unknown. In this study, we reported that NFAT1 is a linearly ubiquitinated substrate of linear ubiquitin chain assembly complex (LUBAC). LUBAC promoted NFAT1 linear ubiquitination, which in turn inhibited K48-linked polyubiquitination of NFAT1 and therefore increased NFAT1 protein stability. Interestingly, the linear ubiquitination levels of NFAT1 in patients with the Kawasaki disease were upregulated. Further studies demonstrated that the patients with the Kawasaki disease had increased mRNA levels of HOIL-1L. These findings revealed a linearly ubiquitinated substrate of LUBAC and an important biological function of NFAT1 linear ubiquitination in the Kawasaki disease and therefore may provide a novel strategy for the treatment of the Kawasaki disease.
Collapse
Affiliation(s)
- Ying Miao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Renxia Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yukang Yuan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yibo Zuo
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yueyue Ding
- Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Xuan Li
- Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Yunjia Tang
- Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Hui Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatric Cardiology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Lin Y, Song Y, Zhang Y, Shi M, Hou A, Han S. NFAT signaling dysregulation in cancer: Emerging roles in cancer stem cells. Biomed Pharmacother 2023; 165:115167. [PMID: 37454598 DOI: 10.1016/j.biopha.2023.115167] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) was first identified as a transcriptional regulator of activated T cells. The NFAT family is involved in the development of tumors. Furthermore, recent evidence reveals that NFAT proteins regulate the development of inflammatory and immune responses. New discoveries have also been made about the mechanisms by which NFAT regulates cancer progression through cancer stem cells (CSC). Here, we discuss the role of the NFAT family in the immune system and various cancer types.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yaochuan Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mengwu Shi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China.
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
31
|
Sun Y, Tao Y, Geng Z, Zheng F, Wang Y, Wang Y, Fu S, Wang W, Xie C, Zhang Y, Gong F. The activation of CaN/NFAT signaling pathway in macrophages aggravated Lactobacillus casei cell wall extract-induced Kawasaki disease vasculitis. Cytokine 2023; 169:156304. [PMID: 37487381 DOI: 10.1016/j.cyto.2023.156304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES By using GWAS(genome-wide association studies) and linkage disequilibrium analysis to investigate the susceptibility genes of KD(Kawasaki disease), previous studies have identified that the CaN(calcineurin)-NFAT(the nuclear factor of activated T cell) signal pathway were significantly associated with susceptibility to KD. However, little is known about the molecular basis of the CaN/NFAT pathway involved in KD. Therefore, in our study we investigate the role of Ca2+/CaN/NFAT signaling pathway in macrophages in vitro and in vivo on coronary artery lesions induced by LCWE (Lactobacillus casei cell wall extract). METHODS AND RESULTS We observed that LCWE could increase the expression of NFAT1 and NFAT2 in macrophages in vitro, and also enhance the transcriptional activity of NFAT by promoting the nucleus translocation. Similarly, in LCWE-induced mice model, the expression of NFAT1 and NFAT2 and associated proinflammatory factors were increased significantly. In addition, by knocking down or overexpressing NFAT1 or NFAT2 in macrophages, the results indicated that NFAT signaling pathway mediated LCWE-induced immune responses in macrophages and regulated the synthesis of IL(interleukin)-6, IL-1β and TNF(tumor necrosis factor)-α in LCWE-induced macrophage activation. As well, we found that this process could be suppressed by CaN inhibitor CsA(cyclosporinA). CONCLUSIONS Therefore, the CaN/NFAT signaling pathway mediated LCWE-induced immune responses in macrophages, and also participated in the LCWE-induced CALs(coronary artery lesions). And also the inhibitory effect of CsA in LCWE-induced cell model towards a strategy to modulate the CaN/NFAT pathway during the acute course of KD might be helpful in alleviate KD-induced CALs.
Collapse
Affiliation(s)
- Yameng Sun
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. No. 3333 Binsheng Road, Hangzhou 310052, PR China
| | - Yijing Tao
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. No. 3333 Binsheng Road, Hangzhou 310052, PR China
| | - Zhimin Geng
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. No. 3333 Binsheng Road, Hangzhou 310052, PR China
| | - Fenglei Zheng
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. No. 3333 Binsheng Road, Hangzhou 310052, PR China
| | - Ying Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. No. 3333 Binsheng Road, Hangzhou 310052, PR China
| | - Yujia Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. No. 3333 Binsheng Road, Hangzhou 310052, PR China
| | - Songling Fu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. No. 3333 Binsheng Road, Hangzhou 310052, PR China
| | - Wei Wang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. No. 3333 Binsheng Road, Hangzhou 310052, PR China
| | - Chunhong Xie
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. No. 3333 Binsheng Road, Hangzhou 310052, PR China
| | - Yiying Zhang
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. No. 3333 Binsheng Road, Hangzhou 310052, PR China
| | - Fangqi Gong
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. No. 3333 Binsheng Road, Hangzhou 310052, PR China.
| |
Collapse
|
32
|
Kaye J. Integrating T Cell Activation Signals to Regulate Gene Expression through Cyclosporin-Sensitive NFAT. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:323-324. [PMID: 37987776 DOI: 10.4049/jimmunol.2300224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This Pillars of Immunology article is a commentary on three pivotal articles: “Nuclear factor of activated T cells contains Fos and Jun,” an article written by J. Jain, P. G. McCaffrey, V. E. Valge-Archer, and A. Rao, and published in Nature, in 1992, https://www.nature.com/articles/356801a0; “The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun,” written by J. Jain, P. G. McCaffrey, Z. Miner, T. K. Kerppola, J. N. Lambert, G. L. Verdine, T. Curran, and A. Rao, and published in Nature, in 1993, https://www.nature.com/articles/365352a0; and “Isolation of the cyclosporin-sensitive T cell transcription factor NFATp,” written by P. G. McCaffrey, C. Luo, T. K. Kerppola, J. Jain, T. M. Badalian, A. M. Ho, E. Burgeon, W. S. Lane, J. N. Lambert, T. Curran, et al., and published in Science, in 1993, https://www.science.org/doi/10.1126/science.8235597.
Collapse
Affiliation(s)
- Jonathan Kaye
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
33
|
Richards JR, Shin D, Pryor R, Sorensen LK, Sun Z, So WM, Park G, Wolff R, Truong A, McMahon M, Grossmann AH, Harbour JW, Zhu W, Odelberg SJ, Yoo JH. Activation of NFAT by HGF and IGF-1 via ARF6 and its effector ASAP1 promotes uveal melanoma metastasis. Oncogene 2023; 42:2629-2640. [PMID: 37500798 PMCID: PMC11008337 DOI: 10.1038/s41388-023-02792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Preventing or effectively treating metastatic uveal melanoma (UM) is critical because it occurs in about half of patients and confers a very poor prognosis. There is emerging evidence that hepatocyte growth factor (HGF) and insulin-like growth factor 1 (IGF-1) promote metastasis and contribute to the striking metastatic hepatotropism observed in UM metastasis. However, the molecular mechanisms by which HGF and IGF-1 promote UM liver metastasis have not been elucidated. ASAP1, which acts as an effector for the small GTPase ARF6, is highly expressed in the subset of uveal melanomas most likely to metastasize. Here, we found that HGF and IGF-1 hyperactivate ARF6, leading to its interaction with ASAP1, which then acts as an effector to induce nuclear localization and transcriptional activity of NFAT1. Inhibition of any component of this pathway impairs cellular invasiveness. Additionally, knocking down ASAP1 or inhibiting NFAT signaling reduces metastasis in a xenograft mouse model of UM. The discovery of this signaling pathway represents not only an advancement in our understanding of the biology of uveal melanoma metastasis but also identifies a novel pathway that could be targeted to treat or prevent metastatic uveal melanoma.
Collapse
Affiliation(s)
- Jackson R Richards
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Donghan Shin
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Rob Pryor
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Lise K Sorensen
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Zhonglou Sun
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Won Mi So
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Garam Park
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Roger Wolff
- Department of Pathology, University of Utah, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Amanda Truong
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Martin McMahon
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Department of Dermatology, University of Utah, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- ARUP Laboratories, University of Utah, 500 Chipeta Way, Salt Lake City, UT, 84112, USA
| | - J William Harbour
- Department of Ophthalmology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weiquan Zhu
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT, 84132, USA
| | - Shannon J Odelberg
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA.
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT, 84132, USA.
- Department of Neurobiology, University of Utah, 20 South 2030 East, Salt Lake City, UT, 84112, USA.
| | - Jae Hyuk Yoo
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
34
|
Liao YQ, Fang BB, Wu QX, Dong WY, Deng GM. Verapamil modulates NFAT2 to inhibit tumor growth and potentiates PD1ab immune checkpoint inhibitor therapy in cervical cancer treatment. J Recept Signal Transduct Res 2023; 43:93-101. [PMID: 38070127 DOI: 10.1080/10799893.2023.2291562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/15/2023] [Indexed: 01/23/2024]
Abstract
PURPOSE Current evidence suggests a high co-prevalence of hypertension and cervical cancer. Accordingly, blood pressure control is indicated during anti-tumor drug therapy in this patient population. Over the past few years, immunotherapy has made great strides in treating different cancers. However, the role and clinical significance of verapamil as a first-line anti-hypertensive drug during immunotherapy remain poorly understood, emphasizing the need for further studies. METHODS Murine cervical cancer models were employed to assess the effect of verapamil monotherapy and combination with PD1ab. Immunohistochemistry was conducted to quantify the abundance of CD8+ T cell and Ki67+ cells. Several in-vitro and in-vivo assays were used to study the effects of verapamil and explore the preliminary mechanism. RESULTS Monotherapy with verapamil or PD1ab immune checkpoint inhibitor significantly suppressed the growth of subcutaneously grafted U14 cells in WT BABL/c mice, respectively, with increased survival time of mice. Consistent results were observed in the melanoma model. Furthermore, we substantiated that verapamil significantly impaired tumor proliferation and migration of SiHa human cervical cancer cells in vitro and in vivo. In silico analysis using TCGA data revealed that NFAT2 expression negatively correlated with patient survival. The CCK8 assay revealed that verapamil abrogated the stimulatory effect of NFAT2 after knockdown of NFAT2. CONCLUSIONS Our results suggest that verapamil inhibits tumor growth by modulating NFAT2 expression and enhancing tumor immune responses to PD1ab, which can be harnessed for cervical cancer therapy, especially for patients with comorbid hypertension. Indeed, further clinical trials are warranted to increase the robustness of our findings.
Collapse
Affiliation(s)
- Yao-Qing Liao
- Zhu Hai Center for Maternal and Child Health Care, Zhu Hai Women and Children's Hospital, Zhuhai, Xiangzhou, China
| | - Bin-Bo Fang
- Department of Medicine, Taizhou University, Zhejiang, China
| | - Qing-Xia Wu
- The First People's Hospital of Shunde, Shunde Hospital of Southern Medical University, Foshan, China
| | - Wei-Ying Dong
- Zhu Hai Center for Maternal and Child Health Care, Zhu Hai Women and Children's Hospital, Zhuhai, Xiangzhou, China
| | - Guan-Ming Deng
- Zhu Hai Center for Maternal and Child Health Care, Zhu Hai Women and Children's Hospital, Zhuhai, Xiangzhou, China
| |
Collapse
|
35
|
Murti K, Fender H, Glatzle C, Wismer R, Sampere-Birlanga S, Wild V, Muhammad K, Rosenwald A, Serfling E, Avots A. Calcineurin-independent NFATc1 signaling is essential for survival of Burkitt lymphoma cells. Front Oncol 2023; 13:1205788. [PMID: 37546418 PMCID: PMC10403262 DOI: 10.3389/fonc.2023.1205788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
In Burkitt lymphoma (BL), a tumor of germinal center B cells, the pro-apoptotic properties of MYC are controlled by tonic B cell receptor (BCR) signals. Since BL cells do not exhibit constitutive NF-κB activity, we hypothesized that anti-apoptotic NFATc1 proteins provide a major transcriptional survival signal in BL. Here we show that post-transcriptional mechanisms are responsible for the calcineurin (CN) independent constitutive nuclear over-expression of NFATc1 in BL and Eµ-MYC - induced B cell lymphomas (BCL). Conditional inactivation of the Nfatc1 gene in B cells of Eµ-MYC mice leads to apoptosis of BCL cells in vivo and ex vivo. Inhibition of BCR/SYK/BTK/PI3K signals in BL cells results in cytosolic re-location of NFATc1 and apoptosis. Therefore, NFATc1 activity is an integrated part of tonic BCR signaling and an alternative target for therapeutic intervention in BL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andris Avots
- *Correspondence: Edgar Serfling, ; Andris Avots,
| |
Collapse
|
36
|
Zhang C, Zhang C, Liu X, Sun W, Liu H. Circular RNA PGPEP1 induces colorectal cancer malignancy and immune escape. Cell Cycle 2023; 22:1743-1758. [PMID: 37424115 PMCID: PMC10446806 DOI: 10.1080/15384101.2023.2225923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/10/2022] [Accepted: 05/14/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) is a prevalent gastrointestinal tumor globally. Circular RNAs (circRNAs) have been identified as regulatory players in the pathogenesis of CRC. However, it is unclear whether hsa_circ_0050102 (circPGPEP1) affects the malignant progression and immune escape in CRC. METHODS Bioinformatics analysis and circRNA in vivo precipitation experiments were performed to analyze and identify circRNAs that mediate immune escape in CRC. Using luciferase reporter assay, RIP, RNA pull-down assay, and FISH, the interaction between circPGPEP1, miR-515-5p, and nuclear factor of activated T-cell 5 (NFAT5) was identified. The functional role of circPGPEP1/miR-515-5p/NFAT5 axis in CRC anti-tumor immunity was investigated by co-culture assay, CFSE assay, and flow cytometry of CRC cells and T cells. RESULTS circPGPEP1 was a stable circRNA that was highly expressed in CRC. Functionally, circPGPEP1 silencing not only effectively inhibited CRC cell proliferation, migration, EMT, and immune escape and promoted apoptosis in vitro, but also inhibited CRC tumor growth and immune escape in vivo. In terms of the regulatory mechanism, circIGF2BP3 competitively upregulated NFAT5 expression by sponging miR-515-5p. Furthermore, functional rescue experiments showed that circPGPEP1 acted in CRC by regulating the miR-515-5p/NFAT5 axis. CONCLUSION Collectively, circPGPEP1 exerts an oncogene role in CRC by regulating the miR-515-5p/NFAT5 axis.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - ChengZhao Zhang
- Department of Colorectal Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - XinLu Liu
- Department of Colorectal Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - WenShuo Sun
- Department of Colorectal Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - HuanRan Liu
- Department of Colorectal Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
37
|
Huang W, Lin W, Chen B, Zhang J, Gao P, Fan Y, Lin Y, Wei P. NFAT and NF-κB dynamically co-regulate TCR and CAR signaling responses in human T cells. Cell Rep 2023; 42:112663. [PMID: 37347664 DOI: 10.1016/j.celrep.2023.112663] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/02/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
While it has been established that the responses of T cells to antigens are combinatorially regulated by multiple signaling pathways, it remains elusive what mechanisms cells utilize to quantitatively modulate T cell responses during pathway integration. Here, we show that two key pathways in T cell signaling, calcium/nuclear factor of activated T cells (NFAT) and protein kinase C (PKC)/nuclear factor κB (NF-κB), integrate through a dynamic and combinatorial strategy to fine-tune T cell response genes. At the cis-regulatory level, the two pathways integrate through co-binding of NFAT and NF-κB to immune response genes. Pathway integration is further regulated temporally, where T cell receptor (TCR) and chimeric antigen receptor (CAR) activation signals modulate the temporal relationships between the nuclear localization dynamics of NFAT and NF-κB. Such physical and temporal integrations together contribute to distinct modes of expression modulation for genes. Thus, the temporal relationships between regulators can be modulated to affect their co-targets during immune responses, underscoring the importance of dynamic combinatorial regulation in cellular signaling.
Collapse
Affiliation(s)
- Wen Huang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Lin
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Baoqiang Chen
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhan Zhang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peifen Gao
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yingying Fan
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yihan Lin
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Ping Wei
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
38
|
Seegren PV, Harper LR, Downs TK, Zhao XY, Viswanathan SB, Stremska ME, Olson RJ, Kennedy J, Ewald SE, Kumar P, Desai BN. Reduced mitochondrial calcium uptake in macrophages is a major driver of inflammaging. NATURE AGING 2023:10.1038/s43587-023-00436-8. [PMID: 37277641 DOI: 10.1038/s43587-023-00436-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Mitochondrial dysfunction is linked to age-associated inflammation or inflammaging, but underlying mechanisms are not understood. Analyses of 700 human blood transcriptomes revealed clear signs of age-associated low-grade inflammation. Among changes in mitochondrial components, we found that the expression of mitochondrial calcium uniporter (MCU) and its regulatory subunit MICU1, genes central to mitochondrial Ca2+ (mCa2+) signaling, correlated inversely with age. Indeed, mCa2+ uptake capacity of mouse macrophages decreased significantly with age. We show that in both human and mouse macrophages, reduced mCa2+ uptake amplifies cytosolic Ca2+ oscillations and potentiates downstream nuclear factor kappa B activation, which is central to inflammation. Our findings pinpoint the mitochondrial calcium uniporter complex as a keystone molecular apparatus that links age-related changes in mitochondrial physiology to systemic macrophage-mediated age-associated inflammation. The findings raise the exciting possibility that restoring mCa2+ uptake capacity in tissue-resident macrophages may decrease inflammaging of specific organs and alleviate age-associated conditions such as neurodegenerative and cardiometabolic diseases.
Collapse
Affiliation(s)
- Philip V Seegren
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Logan R Harper
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Taylor K Downs
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xiao-Yu Zhao
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Microbiology, Immunology, and Cancer Biology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Marta E Stremska
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Microbiology, Immunology, and Cancer Biology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Rachel J Olson
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joel Kennedy
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah E Ewald
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Microbiology, Immunology, and Cancer Biology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Pankaj Kumar
- Biochemistry and Molecular Genetics Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia, Bioinformatics Core, Charlottesville, VA, USA
| | - Bimal N Desai
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
39
|
Gamboa M, Kitamura N, Miura K, Noda S, Kaminuma O. Evolutionary mechanisms underlying the diversification of nuclear factor of activated T cells across vertebrates. Sci Rep 2023; 13:6468. [PMID: 37156933 PMCID: PMC10167247 DOI: 10.1038/s41598-023-33751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
The mechanisms of immunity linked to biological evolution are crucial for understanding animal morphogenesis, organogenesis, and biodiversity. The nuclear factor of activated T cells (NFAT) family consists of five members (NFATc1-c4, 5) with different functions in the immune system. However, the evolutionary dynamics of NFATs in vertebrates has not been explored. Herein, we investigated the origin and mechanisms underlying the diversification of NFATs by comparing the gene, transcript and protein sequences, and chromosome information. We defined an ancestral origin of NFATs during the bilaterian development, dated approximately 650 million years ago, where NFAT5 and NFATc1-c4 were derived independently. The conserved parallel evolution of NFATs in multiple species was probably attributed to their innate nature. Conversely, frequent gene duplications and chromosomal rearrangements in the recently evolved taxa have suggested their roles in the adaptive immune evolution. A significant correlation was observed between the chromosome rearrangements with gene duplications and the structural fixation changes in vertebrate NFATs, suggesting their role in NFAT diversification. Remarkably, a conserved gene structure around NFAT genes with vertebrate evolutionary-related breaking points indicated the inheritance of NFATs with their neighboring genes as a unit. The close relationship between NFAT diversification and vertebrate immune evolution was suggested.
Collapse
Affiliation(s)
- Maribet Gamboa
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan.
- Department of Ecology, Faculty of Sciences, Universidad Católica de la Santísima Concepción, 4090541, Concepción, Chile.
| | - Noriko Kitamura
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kento Miura
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Satoko Noda
- Graduate School of Science and Engineering, Ibaraki University, Ibaraki, 310-8512, Japan
| | - Osamu Kaminuma
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan.
| |
Collapse
|
40
|
Im JY, Kang MJ, Kim BK, Won M. DDIAS, DNA damage-induced apoptosis suppressor, is a potential therapeutic target in cancer. Exp Mol Med 2023:10.1038/s12276-023-00974-6. [PMID: 37121974 DOI: 10.1038/s12276-023-00974-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 05/02/2023] Open
Abstract
Increasing evidence indicates that DNA damage-induced apoptosis suppressor (DDIAS) is an oncogenic protein that is highly expressed in a variety of cancers, including colorectal cancer, lung cancer, breast cancer, and hepatocellular carcinoma (HCC). The discovery of DDIAS as a novel therapeutic target and its role in human cancer biology is fascinating and noteworthy. Recent studies have shown that DDIAS is involved in tumorigenesis, metastasis, DNA repair and synthesis, and drug resistance and that it plays multiple roles with distinct binding partners in several human cancers. This review focuses on the function of DDIAS and its regulatory proteins in human cancer as potential targets for cancer therapy, as well as the development and future prospects of DDIAS inhibitors.
Collapse
Affiliation(s)
- Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea.
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- R&D Center, OneCureGEN Co., Ltd., Daejeon, 34141, Republic of Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea.
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- R&D Center, OneCureGEN Co., Ltd., Daejeon, 34141, Republic of Korea.
| |
Collapse
|
41
|
Watanabe M, Motooka D, Yamasaki S. The kinetics of signaling through the common FcRγ chain determine cytokine profiles in dendritic cells. Sci Signal 2023; 16:eabn9909. [PMID: 36881655 DOI: 10.1126/scisignal.abn9909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The common Fc receptor γ (FcRγ) chain is a signaling subunit common to several immune receptors, but cellular responses induced by FcRγ-coupled receptors are diverse. We investigated the mechanisms by which FcRγ generates divergent signals when coupled to Dectin-2 and Mincle, structurally similar C-type lectin receptors that induce the release of different cytokines from dendritic cells. Chronological tracing of transcriptomic and epigenetic changes upon stimulation revealed that Dectin-2 induced early and strong signaling, whereas Mincle-mediated signaling was delayed, which reflects their expression patterns. Generation of early and strong FcRγ-Syk signaling by engineered chimeric receptors was sufficient to recapitulate a Dectin-2-like gene expression profile. Early Syk signaling selectively stimulated the activity of the calcium ion-activated transcription factor NFAT, which rapidly altered the chromatin status and transcription of the Il2 gene. In contrast, proinflammatory cytokines, such as TNF, were induced regardless of FcRγ signaling kinetics. These results suggest that the strength and timing of FcRγ-Syk signaling can alter the quality of cellular responses through kinetics-sensing signaling machineries.
Collapse
Affiliation(s)
- Miyuki Watanabe
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan.,Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
42
|
Castellanos-Martínez R, León-Vega II, Guerrero-Fonseca IM, Vargas-Robles H, Jiménez-Camacho KE, Hernández-Galicia G, Ortiz-Navarrete VF, Rottner K, Medina-Contreras O, Schnoor M. T cell functions and organ infiltration by leukemic T cells require cortactin. J Leukoc Biol 2023; 113:315-325. [PMID: 36808495 DOI: 10.1093/jleuko/qiad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 01/21/2023] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that is still fatal in many cases. T cell blasts are characterized by hyperactivation and strong proliferative and migratory capacities. The chemokine receptor CXCR4 is involved in mediating malignant T cell properties, and cortactin has been shown to control CXCR4 surface localization in T-ALL cells. We have previously shown that cortactin overexpression is correlated with organ infiltration and relapse in B-ALL. However, the role of cortactin in T cell biology and T-ALL remains elusive. Here, we analyzed the functional relevance of cortactin for T cell activation and migration and the implications for T-ALL development. We found that cortactin is upregulated in response to T cell receptor engagement and recruited to the immune synapse in normal T cells. Loss of cortactin caused reduced IL-2 production and proliferation. Cortactin-depleted T cells showed defects in immune synapse formation and migrated less due to impaired actin polymerization in response to T cell receptor and CXCR4 stimulation. Leukemic T cells expressed much higher levels of cortactin compared to normal T cells that correlated with greater migratory capacity. Xenotransplantation assays in NSG mice revealed that cortactin-depleted human leukemic T cells colonized the bone marrow significantly less and failed to infiltrate the central nervous system, suggesting that cortactin overexpression drives organ infiltration, which is a major complication of T-ALL relapse. Thus, cortactin could serve as a potential therapeutic target for T-ALL and other pathologies involving aberrant T cell responses.
Collapse
Affiliation(s)
- Ramón Castellanos-Martínez
- Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Iliana I León-Vega
- Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Idaira M Guerrero-Fonseca
- Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Karina E Jiménez-Camacho
- Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Gabriela Hernández-Galicia
- Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Vianney F Ortiz-Navarrete
- Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, TU Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Oscar Medina-Contreras
- Department of Hemato-oncology, Hospital Infantil "Federico Gómez,", Av. Dr. Márquez 162, 06720 Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico
| |
Collapse
|
43
|
Mangani D, Yang D, Anderson AC. Learning from the nexus of autoimmunity and cancer. Immunity 2023; 56:256-271. [PMID: 36792572 PMCID: PMC9986833 DOI: 10.1016/j.immuni.2023.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The immune system plays critical roles in both autoimmunity and cancer, diseases at opposite ends of the immune spectrum. Autoimmunity arises from loss of T cell tolerance against self, while in cancer, poor immunity against transformed self fails to control tumor growth. Blockade of pathways that preserve self-tolerance is being leveraged to unleash immunity against many tumors; however, widespread success is hindered by the autoimmune-like toxicities that arise in treated patients. Knowledge gained from the treatment of autoimmunity can be leveraged to treat these toxicities in patients. Further, the understanding of how T cell dysfunction arises in cancer can be leveraged to induce a similar state in autoreactive T cells. Here, we review what is known about the T cell response in autoimmunity and cancer and highlight ways in which we can learn from the nexus of these two diseases to improve the application, efficacy, and management of immunotherapies.
Collapse
Affiliation(s)
- Davide Mangani
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universita della Svizzera Italiana, Bellinzona 6500, Switzerland.
| | - Dandan Yang
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Ahmad A, Rashid S, Chaudhary AA, Alawam AS, Alghonaim MI, Raza SS, Khan R. Nanomedicine as potential cancer therapy via targeting dysregulated transcription factors. Semin Cancer Biol 2023; 89:38-60. [PMID: 36669712 DOI: 10.1016/j.semcancer.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Cancer as a disease possess quite complicated pathophysiological implications and is among the prominent causes of morbidity and mortality on global scales. Anti-cancer chemotherapy, surgery, and radiation therapy are some of the present-day conventional treatment options. However, these therapeutic paradigms own several retreats, including lack of specificity, non-targeted toxicological implications, inefficient drug delivery to targeted cells, and emergence of cancer resistance, ultimately causing ineffective cancer management. Owing to the advanced and better biophysical characteristic features and potentiality for the tailoring and customizations and in several fashions, nanotechnology can entirely transubstantiate the cancer identification and its managements. Additionally, nanotechnology also renders several answers to present-day mainstream limitations springing-up in anti-cancer therapeutics. Nanocarriers, owing to their outstanding physicochemical features including but not limited to their particle size, surface morphological features viz. shape etc., have been employed in nanomedicinal platforms for targeting various transcription factors leading to worthy pharmacological outcomes. This transcription targeting activates the wide array of cellular and molecular events like antioxidant enzyme-induction, apoptotic cell death, cell-cycle arrest etc. These outcomes are obtained after the activation or inactivation of several transcription factors and cellular pathways. Further, nanoformulations have been precisely calibrated and functionalized with peculiar targeting groups for improving their efficiency to deliver the drug-payload to specified and targeted cancerous cells and tissues. This review undertakes an extensive, across-the-board and all-inclusive approach consisting of various studies encompassing different types of tailored and customized nanoformulations and nanomaterials designed for targeting the transcription factors implicated in the process of carcinogenesis, tumor-maturation, growth and metastasis. Various transcription factors viz. nuclear factor kappa (NF-κB), signal transducer and activators of transcription (STAT), Cmyc and Twist-related protein 1 (TWIST1) along with several types of nanoparticles targeting these transcription factors have been summarized here. A section has also been dedicated to the different types of nanoparticles targeting the hypoxia inducing factors. Efforts have been made to summarize several other transcription factors implicated in various stages of cancer development, growth, progression and invasion, and their targeting with different kinds of nanomedicinal agents.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdullah S Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammad Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow 226003, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
45
|
Wang B, Zhang Z, Liu W, Tan B. Targeting regulatory T cells in gastric cancer: Pathogenesis, immunotherapy, and prognosis. Biomed Pharmacother 2023; 158:114180. [PMID: 36586241 DOI: 10.1016/j.biopha.2022.114180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer (GC) remains one of the most common malignancies worldwide. Despite immune-checkpoint inhibitors (ICIs) has revolutionized cancer treatment and obtained durable clinical responses, only a fraction of GC patients benefit from it. As an important component of T cells, regulatory T cells (Tregs) play a vital role in the pathogenesis of GC, keep a core balance between immune suppression and autoimmunity, and function as predictive biomarkers for prognosis of GC patients. In this review, we discuss the role of Tregs in the pathogenesis of GC, and targeting Tregs via influencing their transcription factor, migration, co-stimulatory receptors, immune checkpoints, and cytokines. We also focus on the currently important findings of Tregs metabolism including amino acid, fatty acid, and lactic acid metabolism of GC. The emerging role of microbiome and clinical combined therapy in modulating Tregs in GC treatment is also summarized. Meanwhile, this review recapitulates a novel regulator, magnesium, is involved in mediating Tregs in GC. These research advances on Treg-related strategies provide new insights and challenges for GC progression, treatment, and prognosis. And we hope our review can stimulate further discovery and implication of mediators and pathways targeting Tregs.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Zaibo Zhang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Wenbo Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China.
| |
Collapse
|
46
|
Jaskiewicz L, Romaszko-Wojtowicz A, Doboszynska A, Skowronska A. The Role of Aquaporin 5 (AQP5) in Lung Adenocarcinoma: A Review Article. Cells 2023; 12:cells12030468. [PMID: 36766810 PMCID: PMC9913646 DOI: 10.3390/cells12030468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Aquaporins (AQPs) are selective, transmembrane proteins, which are primarily responsible for the transport of water and small molecules. They have been demonstrated to play a key role in the development and progression of cancer. Lung adenocarcinoma is the most common primary lung cancer diagnosed in patients in Europe and the USA. The research done so far has provided firm evidence that some AQPs can be biomarkers for various diseases. The objective of this review article is to present a potential role of AQP5 in the development of lung adenocarcinoma. Original papers discussing the involvement of AQP5 in carcinogenesis and containing relevant clinical data were identified. In order to analyze the research material in accordance with PRISMA guidelines, a systematic search of the ScienceDirect, Web of Science, and Pubmed databases was conducted. Out of the total number of 199 papers identified, 14 original articles were subject to analysis. This article presents the pathophysiological role of AQP5 in the biology of lung adenocarcinoma as well as its prognostic value. The analysis substantiates the conclusion that the prognostic value of AQP5 in lung cancer requires further research. Another aim of this paper is to disseminate knowledge about AQPs among clinicians.
Collapse
Affiliation(s)
- Lukasz Jaskiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
- Correspondence: (L.J.); (A.R.-W.)
| | - Anna Romaszko-Wojtowicz
- Department of Pulmonology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (L.J.); (A.R.-W.)
| | - Anna Doboszynska
- Department of Pulmonology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
47
|
Körbelin J, Klein J, Matuszcak C, Runge J, Harbaum L, Klose H, Hennigs JK. Transcription factors in the pathogenesis of pulmonary arterial hypertension-Current knowledge and therapeutic potential. Front Cardiovasc Med 2023; 9:1036096. [PMID: 36684555 PMCID: PMC9853303 DOI: 10.3389/fcvm.2022.1036096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by elevated pulmonary vascular resistance and pulmonary artery pressure. Mortality remains high in severe cases despite significant advances in management and pharmacotherapy. Since currently approved PAH therapies are unable to significantly reverse pathological vessel remodeling, novel disease-modifying, targeted therapeutics are needed. Pathogenetically, PAH is characterized by vessel wall cell dysfunction with consecutive remodeling of the pulmonary vasculature and the right heart. Transcription factors (TFs) regulate the process of transcribing DNA into RNA and, in the pulmonary circulation, control the response of pulmonary vascular cells to macro- and microenvironmental stimuli. Often, TFs form complex protein interaction networks with other TFs or co-factors to allow for fine-tuning of gene expression. Therefore, identification of the underlying molecular mechanisms of TF (dys-)function is essential to develop tailored modulation strategies in PAH. This current review provides a compendium-style overview of TFs and TF complexes associated with PAH pathogenesis and highlights their potential as targets for vasculoregenerative or reverse remodeling therapies.
Collapse
Affiliation(s)
- Jakob Körbelin
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Jakob Körbelin,
| | - Julius Klein
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Matuszcak
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Runge
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Harbaum
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Klose
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K. Hennigs
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Jan K. Hennigs,
| |
Collapse
|
48
|
Xu J, Gao C, He Y, Fang X, Sun D, Peng Z, Xiao H, Sun M, Zhang P, Zhou T, Yang X, Yu Y, Li R, Zou X, Shu H, Qiu Y, Zhou X, Yuan S, Yao S, Shang Y. NLRC3 expression in macrophage impairs glycolysis and host immune defense by modulating the NF-κB-NFAT5 complex during septic immunosuppression. Mol Ther 2023; 31:154-173. [PMID: 36068919 PMCID: PMC9840117 DOI: 10.1016/j.ymthe.2022.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 01/28/2023] Open
Abstract
Impairment of innate immune cell function and metabolism underlies immunosuppression in sepsis; however, a promising therapy to orchestrate this impairment is currently lacking. In this study, high levels of NOD-like receptor family CARD domain containing-3 (NLRC3) correlated with the glycolytic defects of monocytes/macrophages from septic patients and mice that developed immunosuppression. Myeloid-specific NLRC3 deletion improved macrophage glycolysis and sepsis-induced immunosuppression. Mechanistically, NLRC3 inhibits nuclear factor (NF)-κB p65 binding to nuclear factor of activated T cells 5 (NFAT5), which further controls the expression of glycolytic genes and proinflammatory cytokines of immunosuppressive macrophages. This is achieved by decreasing NF-κB activation-co-induced by TNF-receptor-associated factor 6 (TRAF6) or mammalian target of rapamycin (mTOR)-and decreasing transcriptional co-activator p300 activity by inducing NLRC3 sequestration of mTOR and p300. Genetic inhibition of NLRC3 disrupted the NLRC3-mTOR-p300 complex and enhanced NF-κB binding to the NFAT5 promoter in concert with p300. Furthermore, intrapulmonary delivery of recombinant adeno-associated virus harboring a macrophage-specific NLRC3 deletion vector significantly improved the defense of septic mice that developed immunosuppression upon secondary intratracheal bacterial challenge. Collectively, these findings indicate that NLRC3 mediates critical aspects of innate immunity that contribute to an immunocompromised state during sepsis and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenggang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangzhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Deyi Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhekang Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hairong Xiao
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Miaomiao Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pei Zhang
- Department of Paediatrics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210016, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Qiu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan 43007, China
| | - Xi Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Institute of Virology, Wuhan 43007, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shanglong Yao
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
49
|
Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol 2022; 19:775-790. [PMID: 36216928 PMCID: PMC10984554 DOI: 10.1038/s41571-022-00689-z] [Citation(s) in RCA: 295] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 12/12/2022]
Abstract
Immunotherapy has been a remarkable clinical advancement in the treatment of cancer. T cells are pivotal to the efficacy of current cancer immunotherapies, including immune-checkpoint inhibitors and adoptive cell therapies. However, cancer is associated with T cell exhaustion, a hypofunctional state characterized by progressive loss of T cell effector functions and self-renewal capacity. The 'un-exhausting' of T cells in the tumour microenvironment is commonly regarded as a key mechanism of action for immune-checkpoint inhibitors, and T cell exhaustion is considered a pathway of resistance for cellular immunotherapies. Several elegant studies have provided important insights into the transcriptional and epigenetic programmes that govern T cell exhaustion. In this Review, we highlight recent discoveries related to the immunobiology of T cell exhaustion that offer a more nuanced perspective beyond this hypofunctional state being entirely undesirable. We review evidence that T cell exhaustion might be as much a reflection as it is the cause of poor tumour control. Furthermore, we hypothesize that, in certain contexts of chronic antigen stimulation, interruption of the exhaustion programme might impair T cell persistence. Therefore, the prioritization of interventions that mitigate the development of T cell exhaustion, including orthogonal cytoreduction therapies and novel cellular engineering strategies, might ultimately confer superior clinical outcomes and the greatest advances in cancer immunotherapy.
Collapse
Affiliation(s)
- Andrew Chow
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Karlo Perica
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher A Klebanoff
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
50
|
Emrich SM, Yoast RE, Fike AJ, Bricker KN, Xin P, Zhang X, Rahman ZSM, Trebak M. The mitochondrial sodium/calcium exchanger NCLX (Slc8b1) in B lymphocytes. Cell Calcium 2022; 108:102667. [PMID: 36308855 DOI: 10.1016/j.ceca.2022.102667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023]
Abstract
Antigen receptor stimulation triggers cytosolic Ca2+ signals, which activate transcriptional and metabolic programs critical for immune function. B-cell receptor (BCR) engagement causes rapid cytosolic Ca2+ rise through the ubiquitous store-operated calcium entry (SOCE) pathway. Slc8b1, which encodes the mitochondrial Na+/Ca2+ exchanger (NCLX), extrudes Ca2+ out of the mitochondria and maintains optimal SOCE activity. Inhibition of NCLX in DT40 and A20 B lymphocyte lines was recently shown to impair cytosolic Ca2+ transients in response to antigen-receptor stimulation, however the downstream functional consequences of this impairment remain unclear. Here, we generated Slc8b1 knockout A20 B-cell lines using CRISPR/Cas9 technology and B-cell specific Slc8b1 knockout mice. Surprisingly, while loss of Slc8b1 in B lymphocytes led to reduction in SOCE, it had a marginal effect on mitochondrial Ca2+ extrusion, suggesting that NCLX is not the major mitochondrial Ca2+ extrusion mechanism in B cells. Furthermore, endoplasmic reticulum (ER) Ca2+ content and rates of ER depletion and refilling remained unaltered in Slc8b1 knockout B cells. Slc8b1 deficiency increased mitochondrial production of oxidants, reduced mitochondrial bioenergetics and altered mitochondrial ultrastructure. B-cell specific Slc8b1 knockout mice showed reduced germinal center B cell responses following foreign antigen and pathogen driven immune responses. Our studies provide novel insights into the function of Slc8b1 in germinal center B cells and its contribution to B-cell signaling and effector function.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Adam J Fike
- Department of Microbiology and Immunology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Kristen N Bricker
- Department of Microbiology and Immunology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ping Xin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|