1
|
Delgado-Ocaña S, Cuesta S. From microbes to mind: germ-free models in neuropsychiatric research. mBio 2024; 15:e0207524. [PMID: 39207144 PMCID: PMC11481874 DOI: 10.1128/mbio.02075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The gut-microbiota-brain axis refers to the bidirectional communication system between the gut, its microbial community, and the brain. This interaction involves a complex interplay of neural pathways, chemical transmitters, and immunological mechanisms. Germ-free animal models have been extensively employed to investigate gut-microbiota-brain interactions, significantly contributing to our current understanding of the role of intestinal microbes in brain function. However, despite the many benefits, this absence of microbiota is not futile. Germ-free animals present physiological and neurodevelopmental alterations that can persist even after reconstitution with normal microbiota. Therefore, the main goal of this minireview is to discuss how some of the inherent limitations of this model can interfere with the conclusion obtained when using these animals to study the complex nature of neuropsychiatric disorders. Furthermore, we examine the inclusion and use of antibiotic-based treatments as an alternative in the research of gut-brain interactions.
Collapse
Affiliation(s)
- Susana Delgado-Ocaña
- Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| | - Santiago Cuesta
- Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
2
|
Wang R, Patel D, Goruk S, Richard C, Field CJ. Feeding Docosahexaenoic Acid and Arachidonic Acid during Suckling and Weaning Contributes to Oral Tolerance Development by Beneficially Modulating the Intestinal Cytokine and Immunoglobulin Levels in an Allergy-Prone Brown Norway Rat Model. J Nutr 2024:S0022-3166(24)01098-8. [PMID: 39401683 DOI: 10.1016/j.tjnut.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Suckling and weaning arachidonic acid (ARA) + docosahexaenoic acid (DHA) supplementation promoted oral tolerance (OT) development in pups, however, the effect of it on the intestine to promote OT development remains unknown. OBJECTIVE We aimed to explore the impact of this supplementation on intestinal fatty acid composition, structure, and indicators that are supportive of OT development. METHODS Allergy-prone Brown Norway dams were randomly assigned to a control (0% ARA, 0% DHA) or ARA + DHA diet (0.45% ARA, 0.8% DHA) during suckling (0-3 wk). At weaning (3-8 wk), offspring were randomly assigned to a control (0% ARA, 0% DHA) or ARA + DHA diet (0.5% ARA, 0.5% DHA). At 3 wk, offspring in each group received an oral gavage of sucrose or ovalbumin (OVA) solution for five consecutive days. At 7 wk, all offspring received an intraperitoneal OVA injection. At 8 wk, offspring were terminated to evaluate jejunum morphology and measure mucosal food allergy-related secretory immunoglobulin A (sIgA) and cytokines, ileum phospholipid and triglyceride fatty acid compositions, and fecal calprotectin. RESULTS Weaning ARA + DHA resulted in a higher percentage of DHA in ileum phospholipids and triglycerides (both P < 0.001), without affecting the percentage of ARA. Despite no lasting effect of suckling ARA + DHA on the DHA content in ileum phospholipids, a programming effect was found on the allergy-related intestinal immune profile [higher concentrations of mucosal IL-2 (P = 0.049) and sIgA (P = 0.033)]. OVA treatment resulted in a lower concentration of mucosal IL-6 (P = 0.026) regardless of dietary interventions. Offspring fed ARA + DHA during suckling and/or weaning had a higher concentration of mucosal transforming growth factor-beta (TGF-β) after OVA treatment but this was not observed in offspring fed control diets during suckling and weaning (P = 0.04). CONCLUSIONS Early life dietary ARA + DHA supplementation to allergy-prone rats enhanced the DHA concentration in intestinal phospholipids (weaning period) and increased the mucosal sIgA, IL-2, and TGF-β levels (suckling and weaning period), indicating its ability to create a tolerogenic intestinal environment to support OT development.
Collapse
Affiliation(s)
- Ren Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dhruvesh Patel
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Yang W, Cui H, Wang C, Wang X, Yan C, Cheng W. A review of the pathogenesis of epilepsy based on the microbiota-gut-brain-axis theory. Front Mol Neurosci 2024; 17:1454780. [PMID: 39421261 PMCID: PMC11484502 DOI: 10.3389/fnmol.2024.1454780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of epilepsy is related to the microbiota-gut-brain axis, but the mechanism has not been clarified. The microbiota-gut-brain axis is divided into the microbiota-gut-brain axis (upward pathways) and the brain-gut-microbiota axis (downward pathways) according to the direction of conduction. Gut microorganisms are involved in pathological and physiological processes in the human body and participate in epileptogenesis through neurological, immunological, endocrine, and metabolic pathways, as well as through the gut barrier and blood brain barrier mediated upward pathways. After epilepsy, the downward pathway mediated by the HPA axis and autonomic nerves triggers "leaky brain "and "leaky gut," resulting in the formation of microbial structures and enterobacterial metabolites associated with epileptogenicity, re-initiating seizures via the upward pathway. Characteristic changes in microbial and metabolic pathways in the gut of epileptic patients provide new targets for clinical prevention and treatment of epilepsy through the upward pathway. Based on these changes, this review further redescribes the pathogenesis of epilepsy and provides a new direction for its prevention and treatment.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Cui
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaojie Wang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuan Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ciai Yan
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weiping Cheng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Que M, Li S, Xia Q, Li X, Luo X, Zhan G, Luo A. Microbiota-gut-brain axis in perioperative neurocognitive and depressive disorders: Pathogenesis to treatment. Neurobiol Dis 2024; 200:106627. [PMID: 39111702 DOI: 10.1016/j.nbd.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
An increasing number of people undergo anesthesia and surgery. Perioperative neurocognitive and depressive disorders are common central nervous system complications with similar pathogeneses. These conditions pose a deleterious threat to human health and a significant societal burden. In recent years, numerous studies have focused on the role of the gut microbiota and its metabolites in the central nervous system via the gut-brain axis. Its involvement in perioperative neurocognitive and depressive disorders has attracted considerable attention. This review aimed to elucidate the role of the gut microbiota and its metabolites in the pathogenesis of perioperative neurocognitive and depressive disorders, as well as the value of targeted interventions and treatments.
Collapse
Affiliation(s)
- Mengxin Que
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Thacker N, Duncanson K, Eslick GD, Dutt S, O'Loughlin EV, Hoedt EC, Collins CE. Antibiotics, passive smoking, high socioeconomic status and sweetened foods contribute to the risk of paediatric inflammatory bowel disease: A systematic review with meta-analysis. J Pediatr Gastroenterol Nutr 2024; 79:610-621. [PMID: 39020449 DOI: 10.1002/jpn3.12303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE Genetic and environmental factors influence pathogenesis and rising incidence of paediatric inflammatory bowel disease (PIBD). The aim was to meta-analyse evidence of diet and environmental factors in PIBD. METHODS A systematic search was conducted to identify diet and environmental factors with comparable risk outcome measures and had been reported in two or more PIBD studies for inclusion in meta-analyses. Those with ≥2 PIBD risk estimates were combined to provide pooled risk estimates. RESULTS Of 4763 studies identified, 36 studies were included. PIBD was associated with higher risk with exposure to ≥/=4 antibiotic courses (includes prescriptions/purchases/courses), passive smoking, not being breastfed, sugary drink intake, being a non-Caucasian child living in a high-income country and infection history (odds ratio [OR] range: 2-3.8). Paediatric Crohn's disease (CD) was associated with higher risk with exposure to antibiotics during early childhood, ≥/=4 antibiotic courses, high socioeconomic status (SES), maternal smoking, history of atopic conditions and infection history (OR range: 1.6-4.4). A history of infection was also associated with higher risk of paediatric ulcerative colitis (UC) (OR: 3.73). Having a higher number of siblings (≥2) was associated with lower risk of paediatric CD (OR: 0.6) and paediatric UC (OR: 0.7). Pet exposure was associated with lower risk of paediatric UC (OR: 0.5). CONCLUSION Several factors associated with PIBD risk were identified that could potentially be used to develop a disease screening tool. Future research is needed to address risk reduction in PIBD.
Collapse
Affiliation(s)
- Nisha Thacker
- School of Health Sciences, College of Health Medicine and Wellbeing, The University of Newcastle, Sydney, New South Wales, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Kerith Duncanson
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, The University of Newcastle, Sydney, New South Wales, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Sydney, New South Wales, Australia
| | - Guy D Eslick
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Sydney, New South Wales, Australia
| | - Shoma Dutt
- Department of Gastroenterology, The Children's Hospital at Westmead, Sydney Children's Hospital Network, Westmead, New South Wales, Australia
- Children's Hospital at Westmead Clinical School, Sydney Medical Program, University of Sydney, Sydney, New South Wales, Australia
| | - Edward V O'Loughlin
- Department of Gastroenterology, The Children's Hospital at Westmead, Sydney Children's Hospital Network, Westmead, New South Wales, Australia
| | - Emily C Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Sydney, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Sydney, New South Wales, Australia
| | - Clare E Collins
- School of Health Sciences, College of Health Medicine and Wellbeing, The University of Newcastle, Sydney, New South Wales, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
6
|
Zhao M, Tian J, Hou W, Yin L, Li W. Global research trends on the associations between the microbiota and lung cancer: a visualization bibliometric analysis (2008-2023). Front Microbiol 2024; 15:1416385. [PMID: 39282557 PMCID: PMC11392740 DOI: 10.3389/fmicb.2024.1416385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Numerous papers have been published on the microbiota in lung cancer in recent years. However, there is still a lack of bibliometric analysis of the microbiota in lung cancer in this field. Our paper did bibliometric analyses and elucidated the knowledge structure and study hotspots related to the microbiota in lung cancer patients. We screened publications reporting on the microbiota in lung cancer from 2008 to 2023 from the Web of Science Core Collection (WoSCC) database, and carried out bibliometric analyses by the application of the VOSviewers, CiteSpace and R package "bibliometrix." The 684 documents enrolled in the analysis were obtained from 331 institutions in 67 regions by 4,661 authors and were recorded in 340 journals. Annual papers are growing rapidly, and the countries of China, the United States and Italy are contributing the most to this area of research. Zhejiang University is the main research organization. Science and Cancer had significant impacts on this area. Zhang Yan had the most articles, and the Bertrand Routy had the most co-cited times. Exploring the mechanism of action of the lung and/or gut microbiota in lung cancer and therapeutic strategies involving immune checkpoint inhibitors in lung cancer are the main topics. Moreover, "gut microbiota," "immunotherapy," and "short-chain fatty acids" are important keywords for upcoming study hotspots. In conclusion, microbiota research offers promising opportunities in lung cancer, with pivotal studies exploring the mechanisms that link lung and gut microbiota to therapeutic strategies, particularly through immune checkpoint inhibitors. Moreover, the gut-lung axis emerges as a novel target for innovative treatments. Further research is essential to unravel the detailed mechanisms of this connection.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Lung Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wang Hou
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyuan Yin
- Lung Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Ribatti D. Microbiota and angiogenesis in the intestinal vasculature. Tissue Cell 2024; 89:102466. [PMID: 38986346 DOI: 10.1016/j.tice.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota is responsible for several metabolic functions, producing various metabolites with numerous roles for the host. The gut microbiota plays a key role in constructing the microvascular network in the intestinal villus, depending on the Paneth cells, strategically positioned to coordinate the development of both the microbiota and the microvasculature. The gut microbiota secretes several molecules and chemokines involved in the induction of the secretion of pro-angiogenic factors.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
8
|
Dold CA, Bavaro SL, Chen Y, Callanan MJ, Kennedy D, Cassidy J, Tobin J, Sahin AW, Lawlor PG, Brodkorb A, Giblin L. Infant milk formula, produced by membrane filtration, promotes mucus production in the upper small intestine of young pigs. Food Res Int 2024; 187:114343. [PMID: 38763636 DOI: 10.1016/j.foodres.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.
Collapse
Affiliation(s)
- Cathal A Dold
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork T12 CY82, Ireland.
| | - Simona L Bavaro
- ISPA-CNR, Institute of Sciences of Food Production of National Research Council of Italy, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Yihong Chen
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Michael J Callanan
- Department of Biological Sciences, Munster Technological University, Cork T12 P928, Ireland.
| | - Deirdre Kennedy
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Joe Cassidy
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - John Tobin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Aylin W Sahin
- School of Food and Nutritional Sciences, University College Cork, Cork T12 CY82, Ireland.
| | - Peadar G Lawlor
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| |
Collapse
|
9
|
Xu Y, Tan X, Yang Q, Fang Z, Chen W. Akkermansia muciniphila outer membrane protein regulates recruitment of CD8 + T cells in lung adenocarcinoma and through JAK-STAT signalling pathway. Microb Biotechnol 2024; 17:e14522. [PMID: 39016683 PMCID: PMC11253302 DOI: 10.1111/1751-7915.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
As a Gram-negative anaerobic bacterium, Akkermansia muciniphila (AKK) participates in the immune response in many cancers. Our study focused on the factors and molecular mechanisms of AKK affecting immune escape in lung adenocarcinoma (LUAD). We cultured AKK bacteria, prepared AKK outer membrane protein Amuc_1100 and constructed a subcutaneous graft tumour mouse model. A549, NCI-H1395 cells and mice were respectively treated with inactivated AKK, Amuc_1100, Ruxolitinib (JAK inhibitor) and RO8191 (JAK activator). CD8+ T cells that penetrated the membrane were counted in the Transwell assay. The toxicity of CD8+ T cells was evaluated by lactate dehydrogenase assay. Western blot was applied to determine JAK/STAT-related protein and PD-L1 expression, whilst CCL5, granzyme B and INF-γ expression were assessed through enzyme-linked immunosorbent assay (ELISA). The proportion of tumour-infiltrating CD8+ T cells and the levels of granzyme B and INF-γ were determined by flow cytometry. AKK markedly accelerated A549 and NCI-H1395 recruiting CD8+ T cells and enhanced CD8+ T cell toxicity. Amuc_1100 purified from AKK exerted the same promoting effects. Besides, Amuc_1100 dramatically suppressed PD-L1, p-STAT and p-JAK expression and enhanced CCL5, granzyme B and INF-γ expression. Treatment with Ruxolitinib accelerated A549 and NCI-H1395 cells recruiting CD8+ T cells, enhanced CD8+ T cell toxicity, CCL5, granzyme B and INF-γ expression, and inhibited PD-L1 expression. In contrast, the RO8191 treatment slowed down the changes induced by Amuc_1100. Animal experiments showed that Amuc_1100 was found to increase the number of tumour-infiltrating CD8+ T cells, increase the levels of granzyme B and INF-γ and significantly inhibit the expression of PD-L1, p-STAT and p-JAK, which exerted an antitumour effect in vivo. In conclusion, through inhibiting the JAK/STAT signalling pathway, AKK outer membrane protein facilitated the recruitment of CD8+ T cells in LUAD and suppressed the immune escape of cells.
Collapse
Affiliation(s)
- Yufen Xu
- Department of OncologyThe Affiliated Hospital of Jiaxing UniversityJiaxing CityChina
| | - Xiaoli Tan
- Department of Respiratory MedicineThe Affiliated Hospital of Jiaxing UniversityJiaxing CityChina
| | - Qi Yang
- Department of Respiratory MedicineThe Affiliated Hospital of Jiaxing UniversityJiaxing CityChina
| | - Zhixian Fang
- Department of Respiratory MedicineThe Affiliated Hospital of Jiaxing UniversityJiaxing CityChina
| | - Wenyu Chen
- Department of Respiratory MedicineThe Affiliated Hospital of Jiaxing UniversityJiaxing CityChina
| |
Collapse
|
10
|
Giugliano FP, Navis M, Ouahoud S, Garcia TM, Kreulen IA, Ferrantelli E, Meisner S, Vermeulen JL, van Roest M, Billaud JN, Koster J, Dawood Y, de Bakker BS, Picavet-Havik DI, Schimmel IM, van der Wel NN, Koelink PJ, Wildenberg ME, Derikx JP, de Jonge WJ, Renes IB, van Elburg RM, Muncan V. Pro-inflammatory T cells-derived cytokines enhance the maturation of the human fetal intestinal epithelial barrier. iScience 2024; 27:109909. [PMID: 38812539 PMCID: PMC11134877 DOI: 10.1016/j.isci.2024.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/31/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Small intestine (SI) maturation during early life is pivotal in preventing the onset of gut diseases. In this study we interrogated the milestones of SI development by gene expression profiling and ingenuity pathway analyses. We identified a set of cytokines as main regulators of changes observed across different developmental stages. Upon cytokines stimulation, with IFNγ as the most contributing factor, human fetal organoids (HFOs) increase brush border gene expression and enzyme activity as well as trans-epithelial electrical resistance. Electron microscopy revealed developed brush border and loss of fetal cell characteristics in HFOs upon cytokine stimulation. We identified T cells as major source of IFNγ production in the fetal SI lamina propria. Co-culture of HFOs with T cells recapitulated the major effects of cytokine stimulation. Our findings underline pro-inflammatory cytokines derived from T cells as pivotal factors inducing functional SI maturation in vivo and capable of modulating the barrier maturation of HFOs in vitro.
Collapse
Affiliation(s)
- Francesca P. Giugliano
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Marit Navis
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Sarah Ouahoud
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Irini A.M. Kreulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Evelina Ferrantelli
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Jacqueline L.M. Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Noël Billaud
- QIAGEN Digital Insights, 1001 Marshall Street, Redwood City, CA, USA
- DNAnexus, 204 El Camino Real, Mountain View, CA, USA
| | - Jan Koster
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Yousif Dawood
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development research institute, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Bernadette S. de Bakker
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development research institute, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Daisy I. Picavet-Havik
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Irene M. Schimmel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Nicole N. van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Pim J. Koelink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Manon E. Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Joep P.M. Derikx
- Department of Pediatric Surgery, Pediatric Surgery Center of Amsterdam, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Wouter J. de Jonge
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Ingrid B. Renes
- Department of Pediatrics, Amsterdam University Medical Center (AUMC), Emma Children’s Hospital, Amsterdam, the Netherlands
- Danone Nutricia Research, Utrecht, the Netherlands
| | - Ruurd M. van Elburg
- Department of Pediatrics, Amsterdam University Medical Center (AUMC), Emma Children’s Hospital, Amsterdam, the Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Pichichero ME, Xu L, Gonzalez E, Pham M, Kaur R. Variability of Vaccine Responsiveness in Young Children. J Infect Dis 2024; 229:1856-1865. [PMID: 37992188 PMCID: PMC11175707 DOI: 10.1093/infdis/jiad524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Variability in vaccine responsiveness among young children is poorly understood. METHODS Nasopharyngeal secretions were collected in the first weeks of life for measurement of cytokines/chemokines seeking a biomarker, and blood samples were collected at age 1 year to identify vaccine responsiveness status, defined as low vaccine responder (LVR), normal vaccine responder (NVR), and high vaccine responder (HVR), to test for vaccine antigen-induced immune memory and for antigen-presenting cell (APC) function. RESULTS Significantly lower specific cytokine/chemokine levels as biosignatures, measurable in nasopharyngeal secretions at infant age 1-3 weeks, predicted LVR status compared to NVR and HVR children. Antibiotic exposures were correlated with increased occurrence of LVR. At age 1 year, LVRs had fewer CD4+ T-helper 1 and T-helper 2 memory cells responsive to specific vaccine antigens. APC responses observed among LVRs, both at rest and in response to Toll-like receptor 7/8 stimulation by R848, were suboptimal, suggesting that altered innate immunity may contribute to immune deficiency in LVRs. CONCLUSIONS Cytokine biosignatures in the first weeks of life may predict vaccine responsiveness in children during the first year of life. Antibiotic exposure is associated with LVR in children. CD4+ T-cell memory induction and APC deficiencies occur in LVR children.
Collapse
Affiliation(s)
- Michael E Pichichero
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NewYork
| | - Lei Xu
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NewYork
| | - Eduardo Gonzalez
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NewYork
| | - Minh Pham
- Lam College of Business, San Francisco State University, San Francisco, California
| | - Ravinder Kaur
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NewYork
| |
Collapse
|
12
|
Campo JJ, Seppo AE, Randall AZ, Pablo J, Hung C, Teng A, Shandling AD, Truong J, Oberai A, Miller J, Iqbal NT, Peñataro Yori P, Kukkonen AK, Kuitunen M, Guterman LB, Morris SK, Pell LG, Al Mahmud A, Ramakrishan G, Heinz E, Kirkpatrick BD, Faruque AS, Haque R, Looney RJ, Kosek MN, Savilahti E, Omer SB, Roth DE, Petri WA, Järvinen KM. Human milk antibodies to global pathogens reveal geographic and interindividual variations in IgA and IgG. J Clin Invest 2024; 134:e168789. [PMID: 39087469 PMCID: PMC11290967 DOI: 10.1172/jci168789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUNDThe use of high-throughput technologies has enabled rapid advancement in the knowledge of host immune responses to pathogens. Our objective was to compare the repertoire, protection, and maternal factors associated with human milk antibodies to infectious pathogens in different economic and geographic locations.METHODSUsing multipathogen protein microarrays, 878 milk and 94 paired serum samples collected from 695 women in 5 high and low-to-middle income countries (Bangladesh, Finland, Peru, Pakistan, and the United States) were assessed for specific IgA and IgG antibodies to 1,607 proteins from 30 enteric, respiratory, and bloodborne pathogens.RESULTSThe antibody coverage across enteric and respiratory pathogens was highest in Bangladeshi and Pakistani cohorts and lowest in the U.S. and Finland. While some pathogens induced a dominant IgA response (Campylobacter, Klebsiella, Acinetobacter, Cryptosporidium, and pertussis), others elicited both IgA and IgG antibodies in milk and serum, possibly related to the invasiveness of the infection (Shigella, enteropathogenic E. coli "EPEC", Streptococcus pneumoniae, Staphylococcus aureus, and Group B Streptococcus). Besides the differences between economic regions and decreases in concentrations over time, human milk IgA and IgG antibody concentrations were lower in mothers with high BMI and higher parity, respectively. In Bangladeshi infants, a higher specific IgA concentration in human milk was associated with delayed time to rotavirus infection, implying protective properties of antirotavirus antibodies, whereas a higher IgA antibody concentration was associated with greater incidence of Campylobacter infection.CONCLUSIONThis comprehensive assessment of human milk antibody profiles may be used to guide the development of passive protection strategies against infant morbidity and mortality.FUNDINGBill and Melinda Gates Foundation grant OPP1172222 (to KMJ); Bill and Melinda Gates Foundation grant OPP1066764 funded the MDIG trial (to DER); University of Rochester CTSI and Environmental Health Sciences Center funded the Rochester Lifestyle study (to RJL); and R01 AI043596 funded PROVIDE (to WAP).
Collapse
Affiliation(s)
| | - Antti E. Seppo
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine, Rochester, New York, USA
| | | | - Jozelyn Pablo
- Antigen Discovery Incorporated, Irvine, California, USA
| | - Chris Hung
- Antigen Discovery Incorporated, Irvine, California, USA
| | - Andy Teng
- Antigen Discovery Incorporated, Irvine, California, USA
| | | | | | - Amit Oberai
- Antigen Discovery Incorporated, Irvine, California, USA
| | - James Miller
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Najeeha Talat Iqbal
- Department of Paediatrics and Child Health, Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Anna Kaarina Kukkonen
- New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikael Kuitunen
- New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - L. Beryl Guterman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Shaun K. Morris
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa G. Pell
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abdullah Al Mahmud
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Girija Ramakrishan
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Wellcome Sanger Institute, Parasites and Microbes, Cambridge, UK
| | - Beth D. Kirkpatrick
- Vaccine Testing Center and Department of Microbiology and Molecular Genetics, The University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Abu S.G. Faruque
- Emerging Infection and Parasitology Laboratory, Division of Infectious Diseases, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Rashidul Haque
- Emerging Infection and Parasitology Laboratory, Division of Infectious Diseases, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - R. John Looney
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Margaret N. Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Erkki Savilahti
- New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Saad B. Omer
- Peter O’Donnell Jr. School of Public Health, Dallas, Texas, USA
| | - Daniel E. Roth
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Kirsi M. Järvinen
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
13
|
Li J, Xie F, Wang X, Zhang W, Cheng C, Wu X, Li M, Huo X, Gao X, Wang W. Distribution characteristics of gastric mucosal colonizing microorganisms in different glandular regions of Bactrian camels and their relationship with local mucosal immunity. PLoS One 2024; 19:e0300316. [PMID: 38814894 PMCID: PMC11139325 DOI: 10.1371/journal.pone.0300316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 06/01/2024] Open
Abstract
Bactrian camels inhabiting desert and semi-desert regions of China are valuable animal models for studying adaptation to desert environments and heat stress. In this study, 16S rRNA technology was employed to investigate the distribution characteristics and differences of mucosal microorganisms in the anterior gland area, posterior gland area, third gland area, cardia gland area, gastric fundic gland area and pyloric gland area of 5-peak adult healthy Bactrian camels. We aimed to explore the possible reasons for the observed microbial distribution from the aspects of histological structure and mucosal immunity. Bacteroides and Fibrobacteria accounted for 59.54% and 3.22% in the gland area, respectively, and 52.37% and 1.49% in the wrinkled stomach gland area, respectively. The gland area showed higher abundance of Bacteroides and Fibrobacteria than the wrinkled stomach gland area. Additionally, the anterior gland area, posterior gland area, third gland area, and cardia gland area of Bactrian camels mainly secreted acidic mucus, while the gastric fundic gland area mainly secreted neutral mucus and the pyloric region mainly secreted a mixture of acidic and neutral mucus. The results of immunohistochemistry techniques demonstrated that the number of IgA+ cells in the anterior glandular area, posterior glandular area, third glandular area, and cardia gland area was significantly higher than that in the fundic and pyloric gland area (p < 0.05), and the difference in IgA+ between the fundic and pyloric gland area was not significant (p > 0.05). The study revealed a large number of bacteria that can digest and degrade cellulose on the mucosa of the gastric gland area of Bactrian camels. The distribution of IgA+ cells, the structure of the mucosal tissue in the glandular region, and the composition of the mucus secreted on its surface may have a crucial influence on microbial fixation and differential distribution.
Collapse
Affiliation(s)
- Jianfei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Fie Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Xueyan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Cuicui Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Xiuping Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Min Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Xingmin Huo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Xin Gao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| |
Collapse
|
14
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2024. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
15
|
Chen M, Che Y, Liu M, Xiao X, Zhong L, Zhao S, Zhang X, Chen A, Guo J. Genetic insights into the gut microbiota and risk of facial skin aging: A Mendelian randomization study. Skin Res Technol 2024; 30:e13636. [PMID: 38424726 PMCID: PMC10904881 DOI: 10.1111/srt.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND A growing number of experimental studies have shown an association between the gut microbiota (GM) and facial skin aging. However, the causal relationship between GM and facial skin aging remains unclear to date. METHODS We conducted a two-sample Mendelian randomization (MR) analysis to investigate the potential causal relationship between GM and facial skin aging. MR analysis was mainly performed using the inverse-variance weighting (IVW) method, complemented by the weighted median (MW) method, MR-Egger regression, and weighted mode, and sensitivity analysis was used to test the reliability of MR analysis results. RESULTS Eleven GM taxa associated with facial skin aging were identified by IVW method analysis, Family Victivallaceae (p = 0.010), Genus Eubacterium coprostanoligenes group (p = 0.038), and Genus Parasutterella (p = 0.011) were negatively associated with facial skin aging, while Phylum Verrucomicrobia (p = 0.034), Family Lactobacillaceae (p = 0.017) and its subgroups Genus Lactobacillus (p = 0.038), Genus Parabacteroides (p = 0.040), Genus Eggerthella (p = 0.049), Genus Family XIII UCG001 (p = 0.036), Genus Phascolarctobacterium (p = 0.027), and Genus Ruminococcaceae UCG005 (p = 0.012) were positively associated with facial skin aging. At Class and Order levels, we did not find a causal relationship between GM and facial skin aging. Results of sensitivity analyses did not show evidence of pleiotropy and heterogeneity. CONCLUSION Our findings confirm the causal relationship between GM and facial skin aging, providing a new perspective on delaying facial aging.
Collapse
Affiliation(s)
- Mulan Chen
- Chengdu University of Traditional Chinese MedicineChengduChina
| | - Yuhui Che
- Chengdu University of Traditional Chinese MedicineChengduChina
| | - Mengsong Liu
- Chengdu University of Traditional Chinese MedicineChengduChina
| | - Xinyu Xiao
- Chengdu University of Traditional Chinese MedicineChengduChina
| | - Lin Zhong
- Chengdu University of Traditional Chinese MedicineChengduChina
| | - Siqi Zhao
- Chengdu University of Traditional Chinese MedicineChengduChina
| | - Xueer Zhang
- Chengdu University of Traditional Chinese MedicineChengduChina
| | - Anjing Chen
- Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
16
|
Chai T, Shen J, Sheng Y, Huang Y, Liang W, Zhang Z, Zhao R, Shang H, Cheng W, Zhang H, Chen X, Huang X, Zhang Y, Liu J, Yang H, Wang L, Pan S, Chen Y, Han L, Qiu Q, Gao A, Wei H, Fang X. Effects of flora deficiency on the structure and function of the large intestine. iScience 2024; 27:108941. [PMID: 38333708 PMCID: PMC10850757 DOI: 10.1016/j.isci.2024.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The significant anatomical changes in large intestine of germ-free (GF) mice provide excellent material for understanding microbe-host crosstalk. We observed significant differences of GF mice in anatomical and physiological involving in enlarged cecum, thinned mucosal layer and enriched water in cecal content. Furthermore, integration analysis of multi-omics data revealed the associations between the structure of large intestinal mesenchymal cells and the thinning of the mucosal layer. Increased Aqp8 expression in GF mice may contribute to enhanced water secretion or altered hydrodynamics in the cecum. In addition, the proportion of epithelial cells, nutrient absorption capacity, immune function and the metabolome of cecum contents of large intestine were also significantly altered. Together, this is the first systematic study of the transcriptome and metabolome of the cecum and colon of GF mice, and these findings contribute to our understanding of the intricate interactions between microbes and the large intestine.
Collapse
Affiliation(s)
- Tailiang Chai
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
- BGI, Shenzhen, Guangdong, China
| | | | - Yifei Sheng
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
- BGI, Shenzhen, Guangdong, China
| | | | | | - Zhao Zhang
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
- BGI, Shenzhen, Guangdong, China
| | - Ruizhen Zhao
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
- BGI, Shenzhen, Guangdong, China
| | - Haitao Shang
- Sun Yat-sen University First Affiliated Hospital, Precision Medicine Institute, Guangzhou, Guangdong, China
| | - Wei Cheng
- Huazhong Agricultural University, College of Animal Sciences and Technology, Wuhan, Hubei, China
| | - Hang Zhang
- Huazhong Agricultural University, College of Animal Sciences and Technology, Wuhan, Hubei, China
| | - Xueting Chen
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
- BGI, Shenzhen, Guangdong, China
| | - Xiang Huang
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
| | - Yin Zhang
- University of the Chinese Academy of Sciences, College of Life Sciences, Beijing, Beijing, China
- BGI, Shenzhen, Guangdong, China
| | | | | | | | | | - Yang Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lijuan Han
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd. (KMHD), Shenzhen, China
| | - Qinwei Qiu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Wei
- Sun Yat-sen University First Affiliated Hospital, Precision Medicine Institute, Guangzhou, Guangdong, China
| | - Xiaodong Fang
- BGI, Shenzhen, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Geng R, Kang SG, Huang K, Tong T. Dietary Isoeugenol Supplementation Attenuates Chronic UVB-Induced Skin Photoaging and Modulates Gut Microbiota in Mice. Nutrients 2024; 16:481. [PMID: 38398805 PMCID: PMC10892115 DOI: 10.3390/nu16040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Photoaging, the primary cause of skin aging damage, results from chronic ultraviolet (UV) exposure, leading to dryness and wrinkle formation. Nutritional intervention has emerged as a practical approach for preventing and addressing the effect of skin photoaging. The primary aromatic compound isolated from clove oil, isoeugenol (IE), has antibacterial, anti-inflammatory, and antioxidant qualities that work to effectively restrict skin cancer cell proliferation. This investigation delved into the advantages of IE in alleviating skin photoaging using UVB-irradiated skin fibroblasts and female SKH-1 hairless mouse models. IE alleviated UVB-induced photodamage in Hs68 dermal fibroblasts by inhibiting matrix metalloproteinase secretion and promoting extracellular matrix synthesis. In photoaged mice, dietary IE reduced wrinkles, relieved skin dryness, inhibited epidermal thickening, and prevented collagen loss. Additionally, the intestinal dysbiosis caused by prolonged UVB exposure was reduced with an IE intervention. The results of Spearman's analysis showed a strong correlation between skin photoaging and gut microbiota. Given the almost unavoidable UVB exposure in contemporary living, this research demonstrated the efficacy of dietary IE in reversing skin photoaging, presenting a promising approach to tackle concerns related to extrinsic skin aging.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea;
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.G.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| |
Collapse
|
18
|
Stephan Y, Müller HH, Kühnert M, Meinhold-Heerlein I, Ibrahimi G, Reitz M, Schemmann H, Oehmke F, Köhler S, Renz H. The effect of early skin-to-skin contact after cesarean section on breastfeeding duration and development of atopic-allergic diseases. Eur J Midwifery 2024; 8:EJM-8-04. [PMID: 38269325 PMCID: PMC10807137 DOI: 10.18332/ejm/176213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Breastfeeding to strengthen the immune system suggests allergy prevention as a possible option. The connection between breastfeeding and the development of atopic-allergic diseases is being discussed. The primary aim of this work was to investigate an association of the first early skin-to-skin contact following cesarean section with the development of atopic diseases within the 1st year of life. METHODS The present study was conducted as a bicentric prospective cohort study in central Germany with a 15-month recruitment period. Data collection was by telephone interviews with a follow-up of 12 months. The statistical evaluation procedure was based on a hierarchical test of the association of early skin-to-skin contact between mother and child with the two main outcome measures. The primary outcome is the duration of breastfeeding. The second outcome is the onset of atopic-allergic disease within the 1st year of life. RESULTS Mothers breastfed longer if they had skin-to-skin contact within the first 30 minutes postpartum [χ²(df=5) = 19.020, p=0.002], if they breastfed their newborns early immediately after birth (p<0.001), and if the first skin-to-skin contact lasted more than one hour [χ²(df=4) = 19.617, p<0.001]. Regarding atopic-allergic diseases, no significant effects of skin-to-skin contact were found in relation to disease development. Regarding breastfeeding, no significant effects of atopic-allergic diseases could be detected either. CONCLUSIONS The results of this study reflect the benefits of skin-to-skin contact in the context of breastfeeding and atopic disease. The current scientific knowledge regarding skin contact and the development of atopic-allergic diseases should be extended and deepened.
Collapse
Affiliation(s)
- Yvonne Stephan
- Institute of Laboratory Medicine and Pathobiochemistry Molecular Diagnostics, Philipps University Marburg, Marburg, Germany
- Faculty of Health, Technische Hochschule Mittelhessen, University of Applied Sciences, Giessen, Germany
| | - Hans-Helge Müller
- Institute of Laboratory Medicine and Pathobiochemistry Molecular Diagnostics, Philipps University Marburg, Marburg, Germany
| | - Maritta Kühnert
- Department of Obstetrics and Gynecology, Division of Obstetrics, University Hospital Giessen and Marburg GmbH, Marburg, Germany
| | - Ivo Meinhold-Heerlein
- Department of Obstetrics and Gynecology, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Gentiana Ibrahimi
- Department of Obstetrics and Gynecology, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Maleen Reitz
- Department of Obstetrics and Gynecology, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Hannah Schemmann
- Institute of Laboratory Medicine and Pathobiochemistry Molecular Diagnostics, Philipps University Marburg, Marburg, Germany
| | - Frank Oehmke
- Department of Obstetrics and Gynecology, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Siegmund Köhler
- Department of Obstetrics and Gynecology, Division of Obstetrics, University Hospital Giessen and Marburg GmbH, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry Molecular Diagnostics, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
19
|
Huang Y, Chen L, Liu F, Xiong X, Ouyang Y, Deng Y. Tryptophan, an important link in regulating the complex network of skin immunology response in atopic dermatitis. Front Immunol 2024; 14:1300378. [PMID: 38318507 PMCID: PMC10839033 DOI: 10.3389/fimmu.2023.1300378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024] Open
Abstract
Atopic dermatitis (AD) is a common chronic relapsing inflammatory skin disease, of which the pathogenesis is a complex interplay between genetics and environment. Although the exact mechanisms of the disease pathogenesis remain unclear, the immune dysregulation primarily involving the Th2 inflammatory pathway and accompanied with an imbalance of multiple immune cells is considered as one of the critical etiologies of AD. Tryptophan metabolism has long been firmly established as a key regulator of immune cells and then affect the occurrence and development of many immune and inflammatory diseases. But the relationship between tryptophan metabolism and the pathogenesis of AD has not been profoundly discussed throughout the literatures. Therefore, this review is conducted to discuss the relationship between tryptophan metabolism and the complex network of skin inflammatory response in AD, which is important to elucidate its complex pathophysiological mechanisms, and then lead to the development of new therapeutic strategies and drugs for the treatment of this frequently relapsing disease.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lingna Chen
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fuming Liu
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yongliang Ouyang
- Department of Dermatology & Sexually Transmitted Disease (STD), Chengdu First People’s Hospital, Chengdu, Sichuan, China
- Health Management Center, Luzhou People’s Hospital, Luzhou, China
| | - Yongqiong Deng
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Dermatology & Sexually Transmitted Disease (STD), Chengdu First People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Woo YR, Kim HS. Interaction between the microbiota and the skin barrier in aging skin: a comprehensive review. Front Physiol 2024; 15:1322205. [PMID: 38312314 PMCID: PMC10834687 DOI: 10.3389/fphys.2024.1322205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The interplay between the microbes and the skin barrier holds pivotal significance in skin health and aging. The skin and gut, both of which are critical immune and neuroendocrine system, harbor microbes that are kept in balance. Microbial shifts are seen with aging and may accelerate age-related skin changes. This comprehensive review investigates the intricate connection between microbe dynamics, skin barrier, and the aging process. The gut microbe plays essential roles in the human body, safeguarding the host, modulating metabolism, and shaping immunity. Aging can perturb the gut microbiome which in turn accentuates inflammaging by further promoting senescent cell accumulation and compromising the host's immune response. Skin microbiota diligently upholds the epidermal barrier, adeptly fending off pathogens. The aging skin encompasses alterations in the stratum corneum structure and lipid content, which negatively impact the skin's barrier function with decreased moisture retention and increased vulnerability to infection. Efficacious restoration of the skin barrier and dysbiosis with strategic integration of acidic cleansers, emollients with optimal lipid composition, antioxidants, and judicious photoprotection may be a proactive approach to aging. Furthermore, modulation of the gut-skin axis through probiotics, prebiotics, and postbiotics emerges as a promising avenue to enhance skin health as studies have substantiated their efficacy in enhancing hydration, reducing wrinkles, and fortifying barrier integrity. In summary, the intricate interplay between microbes and skin barrier function is intrinsically woven into the tapestry of aging. Sound understanding of these interactions, coupled with strategic interventions aimed at recalibrating the microbiota and barrier equilibrium, holds the potential to ameliorate skin aging. Further in-depth studies are necessary to better understand skin-aging and develop targeted strategies for successful aging.
Collapse
Affiliation(s)
- Yu Ri Woo
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
21
|
Amato KR, Pradhan P, Mallott EK, Shirola W, Lu A. Host-gut microbiota interactions during pregnancy. Evol Med Public Health 2024; 12:7-23. [PMID: 38288320 PMCID: PMC10824165 DOI: 10.1093/emph/eoae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalian pregnancy is characterized by a well-known suite of physiological changes that support fetal growth and development, thereby positively affecting both maternal and offspring fitness. However, mothers also experience trade-offs between current and future maternal reproductive success, and maternal responses to these trade-offs can result in mother-offspring fitness conflicts. Knowledge of the mechanisms through which these trade-offs operate, as well as the contexts in which they operate, is critical for understanding the evolution of reproduction. Historically, hormonal changes during pregnancy have been thought to play a pivotal role in these conflicts since they directly and indirectly influence maternal metabolism, immunity, fetal growth and other aspects of offspring development. However, recent research suggests that gut microbiota may also play an important role. Here, we create a foundation for exploring this role by constructing a mechanistic model linking changes in maternal hormones, immunity and metabolism during pregnancy to changes in the gut microbiota. We posit that marked changes in hormones alter maternal gut microbiome composition and function both directly and indirectly via impacts on the immune system. The gut microbiota then feeds back to influence maternal immunity and metabolism. We posit that these dynamics are likely to be involved in mediating maternal and offspring fitness as well as trade-offs in different aspects of maternal and offspring health and fitness during pregnancy. We also predict that the interactions we describe are likely to vary across populations in response to maternal environments. Moving forward, empirical studies that combine microbial functional data and maternal physiological data with health and fitness outcomes for both mothers and infants will allow us to test the evolutionary and fitness implications of the gestational microbiota, enriching our understanding of the ecology and evolution of reproductive physiology.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
| | - Priyanka Pradhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wesley Shirola
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
22
|
Wang X, Ding C, Li HB. The crosstalk between enteric nervous system and immune system in intestinal development, homeostasis and diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:41-50. [PMID: 37672184 DOI: 10.1007/s11427-023-2376-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/19/2023] [Indexed: 09/07/2023]
Abstract
The gut is the largest digestive and absorptive organ, which is essential for induction of mucosal and systemic immune responses, and maintenance of metabolic-immune homeostasis. The intestinal components contain the epithelium, stromal cells, immune cells, and enteric nervous system (ENS), as well as the outers, such as gut microbiota, metabolites, and nutrients. The dyshomeostasis of intestinal microenvironment induces abnormal intestinal development and functions, even colon diseases including dysplasia, inflammation and tumor. Several recent studies have identified that ENS plays a crucial role in maintaining the immune homeostasis of gastrointestinal (GI) microenvironment. The crosstalk between ENS and immune cells, mainly macrophages, T cells, and innate lymphoid cells (ILCs), has been found to exert important regulatory roles in intestinal tissue programming, homeostasis, function, and inflammation. In this review, we mainly summarize the critical roles of the interactions between ENS and immune cells in intestinal homeostasis during intestinal development and diseases progression, to provide theoretical bases and ideas for the exploration of immunotherapy for gastrointestinal diseases with the ENS as potential novel targets.
Collapse
Affiliation(s)
- Xindi Wang
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenbo Ding
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
23
|
Dénes B, Fuller RN, Kelin W, Levin TR, Gil J, Harewood A, Lőrincz M, Wall NR, Firek AF, Langridge WHR. A CTB-SARS-CoV-2-ACE-2 RBD Mucosal Vaccine Protects Against Coronavirus Infection. Vaccines (Basel) 2023; 11:1865. [PMID: 38140268 PMCID: PMC10747655 DOI: 10.3390/vaccines11121865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Mucosal vaccines protect against respiratory virus infection by stimulating the production of IgA antibodies that protect against virus invasion of the mucosal epithelium. In this study, a novel protein subunit mucosal vaccine was constructed for protection against infection by the beta coronavirus SARS-CoV-2. The vaccine was assembled by linking a gene encoding the SARS-CoV-2 virus S1 angiotensin converting enzyme receptor binding domain (ACE-2-RBD) downstream from a DNA fragment encoding the cholera toxin B subunit (CTB), a mucosal adjuvant known to stimulate vaccine immunogenicity. A 42 kDa vaccine fusion protein was identified in homogenates of transformed E. coli BL-21 cells by acrylamide gel electrophoresis and by immunoblotting against anti-CTB and anti-ACE-2-RBD primary antibodies. The chimeric CTB-SARS-CoV-2-ACE-2-RBD vaccine fusion protein was partially purified from clarified bacterial homogenates by nickel affinity column chromatography. Further vaccine purification was accomplished by polyacrylamide gel electrophoresis and electro-elution of the 42 kDa chimeric vaccine protein. Vaccine protection against SARS-CoV-2 infection was assessed by oral, nasal, and parenteral immunization of BALB/c mice with the CTB-SARS-CoV-2-ACE-2-RBD protein. Vaccine-induced SARS-CoV-2 specific antibodies were quantified in immunized mouse serum by ELISA analysis. Serum from immunized mice contained IgG and IgA antibodies that neutralized SARS-CoV-2 infection in Vero E6 cell cultures. In contrast to unimmunized mice, cytological examination of cell necrosis in lung tissues excised from immunized mice revealed no detectable cellular abnormalities. Mouse behavior following vaccine immunization remained normal throughout the duration of the experiments. Together, our data show that a CTB-adjuvant-stimulated CTB-SARS-CoV-2-ACE-2-RBD chimeric mucosal vaccine protein synthesized in bacteria can produce durable and persistent IgA antibodies in mice that neutralize the SARS-CoV-2 subvariant Omicron BA.1.1.
Collapse
Affiliation(s)
- Béla Dénes
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary;
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Ryan N. Fuller
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Wayne Kelin
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Tessa R. Levin
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Jaipuneet Gil
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Aaren Harewood
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Department of Basic Sciences, Oakwood University, Huntsville, AL 35896, USA
| | - Márta Lőrincz
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary;
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Nathan R. Wall
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Anthony F. Firek
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Comparative Effectiveness and Clinical Outcomes Research Center (CECORC), Riverside University Health System Medical Center, Moreno Valley, CA 92555, USA
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
24
|
Carlé C, Boucher D, Morelli L, Larue C, Ovtchinnikova E, Battut L, Boumessid K, Airaud M, Quaranta-Nicaise M, Ravanat JL, Dietrich G, Menard S, Eberl G, Barnich N, Mas E, Carriere M, Al Nabhani Z, Barreau F. Perinatal foodborne titanium dioxide exposure-mediated dysbiosis predisposes mice to develop colitis through life. Part Fibre Toxicol 2023; 20:45. [PMID: 37996842 PMCID: PMC10666382 DOI: 10.1186/s12989-023-00555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Perinatal exposure to titanium dioxide (TiO2), as a foodborne particle, may influence the intestinal barrier function and the susceptibility to develop inflammatory bowel disease (IBD) later in life. Here, we investigate the impact of perinatal foodborne TiO2 exposure on the intestinal mucosal function and the susceptibility to develop IBD-associated colitis. Pregnant and lactating mother mice were exposed to TiO2 until pups weaning and the gut microbiota and intestinal barrier function of their offspring was assessed at day 30 post-birth (weaning) and at adult age (50 days). Epigenetic marks was studied by DNA methylation profile measuring the level of 5-methyl-2'-deoxycytosine (5-Me-dC) in DNA from colic epithelial cells. The susceptibility to develop IBD has been monitored using dextran-sulfate sodium (DSS)-induced colitis model. Germ-free mice were used to define whether microbial transfer influence the mucosal homeostasis and subsequent exacerbation of DSS-induced colitis. RESULTS In pregnant and lactating mice, foodborne TiO2 was able to translocate across the host barriers including gut, placenta and mammary gland to reach embryos and pups, respectively. This passage modified the chemical element composition of foetus, and spleen and liver of mothers and their offspring. We showed that perinatal exposure to TiO2 early in life alters the gut microbiota composition, increases the intestinal epithelial permeability and enhances the colonic cytokines and myosin light chain kinase expression. Moreover, perinatal exposure to TiO2 also modifies the abilities of intestinal stem cells to survive, grow and generate a functional epithelium. Maternal TiO2 exposure increases the susceptibility of offspring mice to develop severe DSS-induced colitis later in life. Finally, transfer of TiO2-induced microbiota dysbiosis to pregnant germ-free mice affects the homeostasis of the intestinal mucosal barrier early in life and confers an increased susceptibility to develop colitis in adult offspring. CONCLUSIONS Our findings indicate that foodborne TiO2 consumption during the perinatal period has negative long-lasting consequences on the development of the intestinal mucosal barrier toward higher colitis susceptibility. This demonstrates to which extent environmental factors influence the microbial-host interplay and impact the long-term mucosal homeostasis.
Collapse
Affiliation(s)
- Caroline Carlé
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Delphine Boucher
- M2iSH, Université Clermont Auvergne, UMR1071 INSERM, USC INRAE 1382, Clermont-Ferrand, France
| | - Luisa Morelli
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland
| | - Camille Larue
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Ekaterina Ovtchinnikova
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Louise Battut
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Kawthar Boumessid
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Melvin Airaud
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Muriel Quaranta-Nicaise
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Jean-Luc Ravanat
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, Grenoble, France
| | - Gilles Dietrich
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Sandrine Menard
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Gérard Eberl
- Institut Pasteur, Microenvironment and Immunity Unit, 75724, Paris, France
- INSERM U1224, Paris, France
| | - Nicolas Barnich
- M2iSH, Université Clermont Auvergne, UMR1071 INSERM, USC INRAE 1382, Clermont-Ferrand, France
| | - Emmanuel Mas
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
- Gastroenterology, Hepatology, Nutrition, Diabetology and Hereditary Metabolic Diseases Unit, Hôpital des Enfants, CHU de Toulouse, 31300, Toulouse, France
| | - Marie Carriere
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, Grenoble, France
| | - Ziad Al Nabhani
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland.
| | - Frédérick Barreau
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France.
| |
Collapse
|
25
|
Cecchini L, Barmaz C, Cea MJC, Baeschlin H, Etter J, Netzer S, Bregy L, Marchukov D, Trigo NF, Meier R, Hirschi J, Wyss J, Wick A, Zingg J, Christensen S, Radan AP, Etter A, Müller M, Kaess M, Surbek D, Yilmaz B, Macpherson AJ, Sokollik C, Misselwitz B, Ganal-Vonarburg SC. The Bern Birth Cohort (BeBiCo) to study the development of the infant intestinal microbiota in a high-resource setting in Switzerland: rationale, design, and methods. BMC Pediatr 2023; 23:560. [PMID: 37946167 PMCID: PMC10637001 DOI: 10.1186/s12887-023-04198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/17/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Microbiota composition is fundamental to human health with the intestinal microbiota undergoing critical changes within the first two years of life. The developing intestinal microbiota is shaped by maternal seeding, breast milk and its complex constituents, other nutrients, and the environment. Understanding microbiota-dependent pathologies requires a profound understanding of the early development of the healthy infant microbiota. METHODS Two hundred and fifty healthy pregnant women (≥20 weeks of gestation) from the greater Bern area will be enrolled at Bern University hospital's maternity department. Participants will be followed as mother-baby pairs at delivery, week(s) 1, 2, 6, 10, 14, 24, 36, 48, 96, and at years 5 and 10 after birth. Clinical parameters describing infant growth and development, morbidity, and allergic conditions as well as socio-economic, nutritional, and epidemiological data will be documented. Neuro-developmental outcomes and behavior will be assessed by child behavior checklists at and beyond 2 years of age. Maternal stool, milk, skin and vaginal swabs, infant stool, and skin swabs will be collected at enrolment and at follow-up visits. For the primary outcome, the trajectory of the infant intestinal microbiota will be characterized by 16S and metagenomic sequencing regarding composition, metabolic potential, and stability during the first 2 years of life. Secondary outcomes will assess the cellular and chemical composition of maternal milk, the impact of nutrition and environment on microbiota development, the maternal microbiome transfer at vaginal or caesarean birth and thereafter on the infant, and correlate parameters of microbiota and maternal milk on infant growth, development, health, and mental well-being. DISCUSSION The Bern birth cohort study will provide a detailed description and normal ranges of the trajectory of microbiota maturation in a high-resource setting. These data will be compared to data from low-resource settings such as from the Zimbabwe-College of Health-Sciences-Birth-Cohort study. Prospective bio-sampling and data collection will allow studying the association of the microbiota with common childhood conditions concerning allergies, obesity, neuro-developmental outcomes , and behaviour. Trial registration The trial has been registered at www. CLINICALTRIALS gov , Identifier: NCT04447742.
Collapse
Affiliation(s)
- Luca Cecchini
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Colette Barmaz
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Maria José Coloma Cea
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hannah Baeschlin
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Julian Etter
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Stefanie Netzer
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Leonie Bregy
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Dmitrij Marchukov
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Nerea Fernandez Trigo
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Rachel Meier
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Jasmin Hirschi
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Jacqueline Wyss
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Andrina Wick
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Joelle Zingg
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Sandro Christensen
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Anda-Petronela Radan
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Annina Etter
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Martin Müller
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Andrew J Macpherson
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Christiane Sokollik
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Benjamin Misselwitz
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland.
| | - Stephanie C Ganal-Vonarburg
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| |
Collapse
|
26
|
Pichichero ME. Variability of vaccine responsiveness in early life. Cell Immunol 2023; 393-394:104777. [PMID: 37866234 DOI: 10.1016/j.cellimm.2023.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Vaccinations in early life elicit variable antibody and cellular immune responses, sometimes leaving fully vaccinated children unprotected against life-threatening infectious diseases. Specific immune cell populations and immune networks may have a critical period of development and calibration in a window of opportunity occurring during the first 100 days of early life. Among the early life determinants of vaccine responses, this review will focus on modifiable factors involving development of the infant microbiota and metabolome: antibiotic exposure, breast versus formula feeding, and Caesarian section versus vaginal delivery of newborns. How microbiota may serve as natural adjuvants for vaccine responses and how microbiota-derived metabolites influence vaccine responses are also reviewed. Early life poor vaccine responsiveness can be linked to increased infection susceptibility because both phenotypes share similar immunity dysregulation profiles. An early life pre-vaccination endotype, when interventions have the highest potential for success, should be sought that predicts vaccine response trajectories.
Collapse
Affiliation(s)
- Michael E Pichichero
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, 1425 Portland Ave, Rochester, NY 14621, USA.
| |
Collapse
|
27
|
Shaffer M, Best K, Tang C, Liang X, Schulz S, Gonzalez E, White CH, Wyche TP, Kang J, Wesseling H, Topçuoğlu BD, Cairns T, Sana TR, Kaufhold RM, Maritz JM, Woelk CH, Swaminathan G, Norton JE, Pichichero ME. Very early life microbiome and metabolome correlates with primary vaccination variability in children. mSystems 2023; 8:e0066123. [PMID: 37610205 PMCID: PMC10654091 DOI: 10.1128/msystems.00661-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE We show that simultaneous study of stool and nasopharyngeal microbiome reveals divergent timing and patterns of maturation, suggesting that local mucosal factors may influence microbiome composition in the gut and respiratory system. Antibiotic exposure in early life as occurs commonly, may have an adverse effect on vaccine responsiveness. Abundance of gut and/or nasopharyngeal bacteria with the machinery to produce lipopolysaccharide-a toll-like receptor 4 agonist-may positively affect future vaccine protection, potentially by acting as a natural adjuvant. The increased levels of serum phenylpyruvic acid in infants with lower vaccine-induced antibody levels suggest an increased abundance of hydrogen peroxide, leading to more oxidative stress in low vaccine-responding infants.
Collapse
Affiliation(s)
- Michael Shaffer
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Katharine Best
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Catherine Tang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Steven Schulz
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, Rochester, New York, USA
| | - Eduardo Gonzalez
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, Rochester, New York, USA
| | - Cory H. White
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Thomas P. Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - John Kang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Hendrik Wesseling
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Begüm D. Topçuoğlu
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Thomas Cairns
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Theodore R. Sana
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Robin M. Kaufhold
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Julia M. Maritz
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | | | - Gokul Swaminathan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - James E. Norton
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - Michael E. Pichichero
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, Rochester, New York, USA
| |
Collapse
|
28
|
SHODA A, MURATA M, KIMURA M, HARA Y, YONOICHI S, ISHIDA Y, MANTANI Y, YOKOYAMA T, HIRANO T, IKENAKA Y, HOSHI N. Transgenerational effects of developmental neurotoxicity induced by exposure to a no-observed-adverse-effect level (NOAEL) of neonicotinoid pesticide clothianidin. J Vet Med Sci 2023; 85:1023-1029. [PMID: 37544714 PMCID: PMC10539822 DOI: 10.1292/jvms.23-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/01/2023] [Indexed: 08/08/2023] Open
Abstract
Neonicotinoid pesticides (NNs) transfer rapidly from mother to offspring, which exhibit neurobehavioral effects. However, no studies have investigated NNs' transgenerational effects. We exposed F0 generation mice (mothers) to a no-observed-adverse-effect level (NOAEL) of clothianidin (CLO) during gestation and lactation, and examined the adult neurobehavioral effects of three generations of offspring (F1, F2, F3). F1 had lower birth weight, decreased locomotor activity, and increased anxiety-like behavior. In F2, body weight was affected, and there was a decreasing trend in locomotor activity and an increasing trend in anxiety-like behavior. In F3, locomotor activity tended to increase. Thus, even when only the mothers were exposed, the effects of CLOs were still observed in F1, F2, and F3 but the effects became smaller.
Collapse
Affiliation(s)
- Asuka SHODA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Midori MURATA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Mako KIMURA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yukako HARA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Sakura YONOICHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Yuya ISHIDA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei MANTANI
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi YOKOYAMA
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Tetsushi HIRANO
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nobuhiko HOSHI
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
29
|
Paraskevaidis I, Xanthopoulos A, Tsougos E, Triposkiadis F. Human Gut Microbiota in Heart Failure: Trying to Unmask an Emerging Organ. Biomedicines 2023; 11:2574. [PMID: 37761015 PMCID: PMC10526035 DOI: 10.3390/biomedicines11092574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
There is a bidirectional relationship between the heart and the gut. The gut microbiota, the community of gut micro-organisms themselves, is an excellent gut-homeostasis keeper since it controls the growth of potentially harmful bacteria and protects the microbiota environment. There is evidence suggesting that a diet rich in fatty acids can be metabolized and converted by gut microbiota and hepatic enzymes to trimethyl-amine N-oxide (TMAO), a product that is associated with atherogenesis, platelet dysfunction, thrombotic events, coronary artery disease, stroke, heart failure (HF), and, ultimately, death. HF, by inducing gut ischemia, congestion, and, consequently, gut barrier dysfunction, promotes the intestinal leaking of micro-organisms and their products, facilitating their entrance into circulation and thus stimulating a low-grade inflammation associated with an immune response. Drugs used for HF may alter the gut microbiota, and, conversely, gut microbiota may modify the pharmacokinetic properties of the drugs. The modification of lifestyle based mainly on exercise and a Mediterranean diet, along with the use of pre- or probiotics, may be beneficial for the gut microbiota environment. The potential role of gut microbiota in HF development and progression is the subject of this review.
Collapse
Affiliation(s)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Filippos Triposkiadis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| |
Collapse
|
30
|
He G, Cao Y, Ma H, Guo S, Xu W, Wang D, Chen Y, Wang H. Causal Effects between Gut Microbiome and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Two-Sample Mendelian Randomization Study. Front Microbiol 2023; 14:1190894. [PMID: 37485509 PMCID: PMC10359717 DOI: 10.3389/fmicb.2023.1190894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Evidence from previous studies have implicated an important association between gut microbiota (GM) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), but whether there is a definite causal relationship between GM and ME/CFS has not been elucidated. Method This study obtained instrumental variables of 211 GM taxa from the Genome Wide Association Study (GWAS), and mendelian randomization (MR) study was carried out to assess the effect of gut microbiota on ME/CFS risk from UK Biobank GWAS (2076 ME/CFS cases and 460,857 controls). Inverse variance weighted (IVW) was the primary method to analyze causality in this study, and a series of sensitivity analyses was performed to validate the robustness of the results. Results The inverse variance weighted (IVW) method indicated that genus Paraprevotella (OR:1.001, 95%CI:1.000-1.003, value of p < 0.05) and Ruminococca- ceae_UCG_014 (OR 1.003, 95% CI 1.000 to 1.005, value of p < 0.05) were positively associated with ME/CFS risk. Results from the weighted median method supported genus Paraprevotella (OR 1.003, 95% CI 1.000 to 1.005, value of p < 0.05) as a risk factor for ME/CFS. Conclusion This study reveals a causal relationship between genus paraprevotella, genus Ruminococcaceae_UCG_014 and ME/CFS, and our findings provide novel insights for further elucidating the developmental mechanisms mediated by the gut microbiota of ME/CFS.
Collapse
Affiliation(s)
- Gang He
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Yu Cao
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Honghao Ma
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Siran Guo
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Wangzi Xu
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Dai Wang
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Yongquan Chen
- Department of Clinical Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Houzhao Wang
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
- Department of Clinical Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
31
|
Schwarz J, Rühle J, Stephan K, Dietz S, Geißert J, Schoppmeier U, Frick JS, Hudalla H, Lajqi T, Poets CF, Gille C, Köstlin-Gille N. HIF-1α targeted deletion in myeloid cells decreases MDSC accumulation and alters microbiome in neonatal mice. Eur J Immunol 2023; 53:e2250144. [PMID: 37044112 DOI: 10.1002/eji.202250144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 04/14/2023]
Abstract
The newborn's immune system is faced with the challenge of having to learn quickly to fight off infectious agents, but tolerating the colonization of the body surfaces with commensals without reacting with an excessive inflammatory response. Myeloid-derived suppressor cells (MDSC) are innate immune cells with suppressive activity on other immune cells that regulate fetal-maternal tolerance during pregnancy and control intestinal inflammation in neonates. Until now, nothing is known about the role of MDSC in microbiome establishment. One of the transcription factors regulating MDSC homeostasis is the hypoxia-inducible factor 1α (HIF-1α). We investigated the impact of HIF-1α on MDSC accumulation and microbiome establishment during the neonatal period in a mouse model with targeted deletion of HIF-1α in myeloid cells (Hif1a loxP/loxP LysMCre+). We show that in contrast to wildtype mice, where an extensive expansion of MDSC was observed, MDSC expansion in neonatal Hif1a loxP/loxP LysMCre+ mice was dramatically reduced both systemically and locally in the intestine. This was accompanied by an altered microbiome composition and intestinal T-cell homeostasis. Our results point toward a role of MDSC in inflammation regulation in the context of microbiome establishment and thus reveal a new aspect of the biological role of MDSC during the neonatal period.
Collapse
Affiliation(s)
- Julian Schwarz
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Jessica Rühle
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Kevin Stephan
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Stefanie Dietz
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| | - Janina Geißert
- Institute for Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
- NGS-Competence Center Tuebingen, Institute for Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
| | - Ulrich Schoppmeier
- Institute for Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
| | - Julia S Frick
- Institute for Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
- MVZ Laboratory Ludwigsburg GbR, Germany
| | - Hannes Hudalla
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| | - Trim Lajqi
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| | - Christian F Poets
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Christian Gille
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| |
Collapse
|
32
|
Chen L, Ou Q, Kou X. Extracellular vesicles and their indispensable roles in pathogenesis and treatment of inflammatory bowel disease: A comprehensive review. Life Sci 2023; 327:121830. [PMID: 37286163 DOI: 10.1016/j.lfs.2023.121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Inflammatory bowel disease (IBD) is a global disease with rising incidence worldwide, and its debilitating symptoms and dissatisfactory therapies have brought heavy burdens for patients. Extracellular vesicles (EVs), a heterogeneous population of lipid bilayer membranes containing abundant bioactive molecules, have been indicated to play important roles in the pathogenesis and treatment of many diseases. However, to our knowledge, comprehensive reviews summarizing the various roles of diverse source-derived EVs in the pathogenesis and treatment of IBD are still lacking. This review, not only summarizes the EV characteristics, but also focuses on the multiple roles of diverse EVs in IBD pathogenesis and their treatment potential. In addition, hoping to push forward the research frontiers, we point out several challenges that the researchers are faced, about EVs in current IBD research and future therapeutic applications. We also put forward our prospects on future exploration regarding EVs in IBD treatment, including developing IBD vaccines and paying more attention on apoptotic vesicles. This review is aimed to enrich the knowledge on the indispensable roles of EVs in IBD pathogenesis and treatment, providing ideas and reference for future therapeutic strategy for IBD treatment.
Collapse
Affiliation(s)
- Linling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Qianmin Ou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
33
|
Liu Y, Feng Y, Yang X, Lv Z, Li P, Zhang M, Wei F, Jin X, Hu Y, Guo Y, Liu D. Mining chicken ileal microbiota for immunomodulatory microorganisms. THE ISME JOURNAL 2023; 17:758-774. [PMID: 36849630 PMCID: PMC10119185 DOI: 10.1038/s41396-023-01387-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The gut microbiota makes important contributions to host immune system development and resistance to pathogen infections, especially during early life. However, studies addressing the immunomodulatory functions of gut microbial individuals or populations are limited. In this study, we explore the systemic impact of the ileal microbiota on immune cell development and function of chickens and identify the members of the microbiota involved in immune system modulation. We initially used a time-series design with six time points to prove that ileal microbiota at different succession stages is intimately connected to immune cell maturation. Antibiotics perturbed the microbiota succession and negatively affected immune development, whereas early exposure to the ileal commensal microbiota from more mature birds promoted immune cell development and facilitated pathogen elimination after Salmonella Typhimurium infection, illustrating that early colonization of gut microbiota is an important driver of immune development. Five bacterial strains, Blautia coccoides, Bacteroides xylanisolvens, Fournierella sp002159185, Romboutsia lituseburensis, and Megamonas funiformis, which are closely related to the immune system development of broiler chickens, were then screened out and validated for their immunomodulatory properties. Our results provide insight into poultry immune system-microbiota interactions and also establish a foundation for targeted immunological interventions aiming to combat infectious diseases and promote poultry health and production.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Zhengtian Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
34
|
Pabst O, Hornef MW, Schaap FG, Cerovic V, Clavel T, Bruns T. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00771-6. [PMID: 37085614 DOI: 10.1038/s41575-023-00771-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
The gut and the liver are characterized by mutual interactions between both organs, the microbiome, diet and other environmental factors. The sum of these interactions is conceptualized as the gut-liver axis. In this Review we discuss the gut-liver axis, concentrating on the barriers formed by the enterohepatic tissues to restrict gut-derived microorganisms, microbial stimuli and dietary constituents. In addition, we discuss the establishment of barriers in the gut and liver during development and their cooperative function in the adult host. We detail the interplay between microbial and dietary metabolites, the intestinal epithelium, vascular endothelium, the immune system and the various host soluble factors, and how this interplay establishes a homeostatic balance in the healthy gut and liver. Finally, we highlight how this balance is disrupted in diseases of the gut and liver, outline the existing therapeutics and describe the cutting-edge discoveries that could lead to the development of novel treatment approaches.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Frank G Schaap
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
35
|
Vonderohe C, Guthrie G, Burrin DG. Fibroblast growth factor 19 secretion and function in perinatal development. Am J Physiol Gastrointest Liver Physiol 2023; 324:G190-G195. [PMID: 36648144 PMCID: PMC9942882 DOI: 10.1152/ajpgi.00208.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Limited work has focused on fibroblast growth factor-19 (FGF19) secretion and function in the perinatal period. FGF19 is a potent growth factor that coordinates development of the brain, eye, inner ear, and skeletal system in the embryo, but after birth, FGF19 transitions to be an endocrine regulator of the classic pathway of hepatic bile acid synthesis. FGF19 has emerged as a mediator of metabolism and bile acid synthesis in aged animals and adults in the context of liver disease and metabolic dysfunction. FGF19 has also been shown to have systemic insulin-sensitizing and skeletal muscle hypertrophic effects when induced or supplemented at supraphysiological levels in adult rodent models. These effects could be beneficial to improve growth and nutritional outcomes in preterm infants, which are metabolically resistant to the anabolic effects of enteral nutrition. Existing clinical data on FGF19 secretion and function in the perinatal period in term and preterm infants has been equivocal. Studies in pigs show that FGF19 expression and secretion are upregulated with gestational age and point to molecular and endocrine factors that may be involved. Work focused on FGF19 in pediatric diseases suggests that augmentation of FGF19 secretion by activation of gut FXR signaling is associated with benefits in diseases such as short bowel syndrome, parenteral nutrition-associated liver disease, and biliary atresia. Future work should focus on characterization of FGF19 secretion and the mechanism underpinning the transition of FGF19 function as an embryological growth factor to metabolic and bile acid regulator.
Collapse
Affiliation(s)
- Caitlin Vonderohe
- United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States
| | - Gregory Guthrie
- United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States
| | - Douglas G Burrin
- United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
36
|
Dou X, Yan D, Liu S, Gao N, Ma Z, Shi Z, Dong N, Shan A. Host Defense Peptides in Nutrition and Diseases: A Contributor of Immunology Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3125-3140. [PMID: 36753427 DOI: 10.1021/acs.jafc.2c08522] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Host defense peptides (HDPs) are primary components of the innate immune system with diverse biological functions, such as antibacterial ability and immunomodulatory function. HDPs are produced and released by immune and epithelial cells against microbial invasion, which are widely distributed in humans, animals, plants, and microbes. Notably, there are great differences in endogenous HDP distribution and expression in humans and animals. Moreover, HDP expression could be regulated by exogenous substances, such as nutrients, and different physiological statuses in health and disease. In this review, we systematically assessed the regulation of expression and mechanism of endogenous HDPs from nutrition and disease perspectives, providing a basis to identify the specificity and regularity of HDP expression. Furthermore, the regulation mechanism of HDP expression was summarized systematically, and the differences in the regulation between nutrients and diseases were explored. From this review, we provide novel ideas targeted the immune regulation of HDPs for protecting host health in nutrition and practical and effective new ideas using the immune regulation theory for further research on protecting host health from pathogenic infection and excessive immunity diseases under the global challenge of the antibiotic-abuse-induced series of problems, including food security and microbial resistance.
Collapse
Affiliation(s)
- Xiujing Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Di Yan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Siqi Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Nan Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ziwen Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Zixuan Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
37
|
Wang WB, Lin YD, Zhao L, Liao C, Zhang Y, Davila M, Sun J, Chen Y, Xiong N. Developmentally programmed early-age skin localization of iNKT cells supports local tissue development and homeostasis. Nat Immunol 2023; 24:225-238. [PMID: 36624165 DOI: 10.1038/s41590-022-01399-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023]
Abstract
Skin is exposed to various environmental assaults and undergoes morphological changes immediately after birth. Proper localization and function of immune cells in the skin is crucial for protection and establishment of skin tissue homeostasis. Here we report the discovery of a developmentally programmed process that directs preferential localization of invariant natural killer T (iNKT) cells to the skin for early local homeostatic regulation. We show that iNKT cells are programmed predominantly with a CCR10+ skin-homing phenotype during thymic development in infant and young mice. Early skin localization of iNKT cells is critical for proper commensal bacterial colonization and tissue development. Mechanistically, skin iNKT cells provide a local source of transferrin that regulates iron metabolism in hair follicle progenitor cells and helps hair follicle development. These findings provide molecular insights into the establishment and physiological functions of iNKT cells in the skin during early life.
Collapse
Affiliation(s)
- Wei-Bei Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Luming Zhao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Chang Liao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Micha Davila
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jasmine Sun
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yidong Chen
- Department of Population Health Sciences, and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
- Department of Medicine-Division of Dermatology and Cutaneous Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
38
|
Long Y, Khan A, Rzhetsky A. Peri- and Post-natal Risk Factors Associated with Health of Newborns: A pregnant mother's infections and immune diseases, and her baby's delivery method predict immune health of the newborn. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.12.23284503. [PMID: 36711636 PMCID: PMC9882552 DOI: 10.1101/2023.01.12.23284503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Designing prophylactic strategies for newborns requires understanding of the factors that contribute to immunity and resistance to infection. We analyzed 1,892,035 mother-newborn pairs in which both the mother and newborn were observed continuously for at least one year before and after birth. As part of this study, we considered maternal exposures to infections and immune disorders during pregnancy, exposures to anti-infection medications by both mother and newborn, as well as the newborn's delivery type and reported complications. According to our analyses, infection rates and immune disorder rates were over-dispersed among newborns. The most consequential factors predicting newborns' immune health were preterm birth, with 276.3% and 193.9% risk increases for newborn bacterial infections. Newborn anti-infective prescriptions were associated with considerable increases in risk of diseases affecting immune health, while maternal prescriptions were associated with fewer outcomes and with mixed signs. The Cesarean section mode of delivery, the mother's age, the sex of the newborn, and the mother's exposure to infections all showed significant but smaller effects on the newborn's immune health. Female newborn appeared to be better protected against diseases with immune system etiology, except for miscellaneous infections.
Collapse
Affiliation(s)
- Yanan Long
- Department of Chemistry, The University of Chicago, 900 E. 57 Street, Chicago, 60637, IL, USA
- Department of Medicine, The University of Chicago, 900 E. 57 Street, Chicago, 60637, IL, USA
| | - Atif Khan
- Department of Medicine, The University of Chicago, 900 E. 57 Street, Chicago, 60637, IL, USA
| | - Andrey Rzhetsky
- Department of Medicine, The University of Chicago, 900 E. 57 Street, Chicago, 60637, IL, USA
- Department of Human Genetics and Committee on Quantitative Methods in Social, Behavioral, and Health Sciences, The University of Chicago, 900 E. 57 Street, Chicago, 60637, IL, USA
| |
Collapse
|
39
|
Valverde-Molina J, García-Marcos L. Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients 2023; 15:nu15030486. [PMID: 36771193 PMCID: PMC9921812 DOI: 10.3390/nu15030486] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The importance of the microbiome, and of the gut-lung axis in the origin and persistence of asthma, is an ongoing field of investigation. The process of microbial colonisation in the first three years of life is fundamental for health, with the first hundred days of life being critical. Different factors are associated with early microbial dysbiosis, such as caesarean delivery, artificial lactation and antibiotic therapy, among others. Longitudinal cohort studies on gut and airway microbiome in children have found an association between microbial dysbiosis and asthma at later ages of life. A low α-diversity and relative abundance of certain commensal gut bacterial genera in the first year of life are associated with the development of asthma. Gut microbial dysbiosis, with a lower abundance of Phylum Firmicutes, could be related with increased risk of asthma. Upper airway microbial dysbiosis, especially early colonisation by Moraxella spp., is associated with recurrent viral infections and the development of asthma. Moreover, the bacteria in the respiratory system produce metabolites that may modify the inception of asthma and is progression. The role of the lung microbiome in asthma development has yet to be fully elucidated. Nevertheless, the most consistent finding in studies on lung microbiome is the increased bacterial load and the predominance of proteobacteria, especially Haemophilus spp. and Moraxella catarrhalis. In this review we shall update the knowledge on the association between microbial dysbiosis and the origins of asthma, as well as its persistence, phenotypes, and severity.
Collapse
Affiliation(s)
- José Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
| | - Luis García-Marcos
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, University of Murcia and IMIB Biomedical Research Institute, 20120 Murcia, Spain
- Correspondence:
| |
Collapse
|
40
|
Cai Y, Wei K. Comparative analysis of intestinal microbiota composition and transcriptome in diploid and triploid Carassius auratus. BMC Microbiol 2023; 23:1. [PMID: 36593453 PMCID: PMC9806896 DOI: 10.1186/s12866-022-02709-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Polyploidy and the microbiome are crucial factors in how a host organism responds to disease. However, little is known about how triploidization and microbiome affect the immune response and disease resistance in the fish host. Therefore, this study aims to identify the relationship between intestinal microbiota composition, transcriptome changes, and disease resistance in triploid Carassius auratus (3nCC). In China's central Dongting lake water system, diploid (2nCC) and triploid Carassius auratus were collected, then 16S rRNA and mRNA sequencing were used to examine the microbes and gene expression in the intestines. 16S rRNA sequencing demonstrated that triploidization altered intestinal richness, as well as the diversity of commensal bacteria in 3nCC. In addition, the abundance of the genus Vibrio in 3nCC was increased compared to 2nCC (P < 0.05). Furthermore, differential expression analysis of 3nCC revealed profound up-regulation of 293 transcripts, while 324 were down-regulated. Several differentially expressed transcripts were related to the immune response pathway in 3nCC, including NLRP3, LY9, PNMA1, MR1, PELI1, NOTCH2, NFIL3, and NLRC4. Taken together, triploidization can alter bacteria composition and abundance, which can in turn result in changes in expression of genes. This study offers an opportunity for deciphering the molecular mechanism underlying disease resistance after triploidization.
Collapse
Affiliation(s)
- Yidan Cai
- grid.488482.a0000 0004 1765 5169Medical College, Hunan University of Chinese Medicine, Changsha, 410208 Hunan China
| | - Ke Wei
- grid.488482.a0000 0004 1765 5169Medical College, Hunan University of Chinese Medicine, Changsha, 410208 Hunan China
| |
Collapse
|
41
|
Issa M, Rivière G, Houdeau E, Adel-Patient K. Perinatal exposure to foodborne inorganic nanoparticles: A role in the susceptibility to food allergy? FRONTIERS IN ALLERGY 2022; 3:1067281. [PMID: 36545344 PMCID: PMC9760876 DOI: 10.3389/falgy.2022.1067281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Food allergy (FA) is an inappropriate immune response against dietary antigens. Various environmental factors during perinatal life may alter the establishment of intestinal homeostasis, thereby predisposing individuals to the development of such immune-related diseases. Among these factors, recent studies have emphasized the chronic dietary exposure of the mother to foodborne inorganic nanoparticles (NP) such as nano-sized silicon dioxide (SiO2), titanium dioxide (TiO2) or silver (Ag). Indeed, there is growing evidence that these inorganic agents, used as food additives in various products, as processing aids during food manufacturing or in food contact materials, can cross the placental barrier and reach the developing fetus. Excretion in milk is also suggested, hence continuing to expose the neonate during a critical window of susceptibility. Due to their immunotoxical and biocidal properties, such exposure may disrupt the host-intestinal microbiota's beneficial exchanges and may interfere with intestinal barrier and gut-associated immune system development in fetuses then the neonates. The resulting dysregulated intestinal homeostasis in the infant may significantly impede the induction of oral tolerance, a crucial process of immune unresponsiveness to food antigens. The current review focuses on the possible impacts of perinatal exposure to foodborne NP during pregnancy and early life on the susceptibility to developing FA.
Collapse
Affiliation(s)
- Mohammad Issa
- Département Médicaments et Technologies Pour la Santé (MTS), SPI/Laboratoire d’Immuno-Allergie Alimentaire, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Gilles Rivière
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES, Agence Nationale De Sécurité Sanitaire De l’alimentation, De l’environnement et du Travail), Direction de l’Evaluation des Risques, Maisons-Alfort, France
| | - Eric Houdeau
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Karine Adel-Patient
- Département Médicaments et Technologies Pour la Santé (MTS), SPI/Laboratoire d’Immuno-Allergie Alimentaire, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| |
Collapse
|
42
|
Chen YCS, Lee-Sarwar KA, Mirzakhani H, O'Connor GT, Bacharier LB, Zeiger RS, Knihtilä HM, Jha A, Kelly RS, Laranjo N, Fichorova RN, Luu N, Weiss ST, Litonjua AA. The Association of Prenatal C-Reactive Protein Levels With Childhood Asthma and Atopy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:3213-3219.e11. [PMID: 36108928 PMCID: PMC10088546 DOI: 10.1016/j.jaip.2022.08.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The pathogenesis of childhood asthma is complex, and determinants of risk may begin in utero. OBJECTIVE To describe the association of systemic prenatal inflammation, measured by plasma C-reactive protein (CRP), with childhood asthma, eczema, and allergic rhinitis. METHODS A total of 522 maternal-offspring pairs from the Vitamin D Antenatal Asthma Reduction Trial were included. Prenatal plasma CRP level was measured between 10 and 18 weeks of gestation and between 32 and 38 weeks of gestation. Offspring asthma, eczema, and allergic rhinitis were assessed quarterly between birth and age 6 years. We performed mediation analyses of prenatal CRP on the association between several maternal characteristics and offspring asthma. RESULTS Elevated early and late prenatal CRP and an increase in CRP from early to late pregnancy were associated with asthma by age 6 years (early: adjusted odds ratio [aOR], 1.76, 95% CI, 1.12-2.82, P = .02; late: aOR, 2.45, 95% CI, 1.47-4.18, P < .001; CRP increase: aOR, 2.06, 95% CI, 1.26-3.39, P < .004). Prenatal CRP and childhood asthma associations were strengthened among offspring with atopic asthma (early: aOR, 3.78, 95% CI, 1.49-10.64, P = .008; late: aOR, 4.84, 95% CI, 1.68-15.50, P = .005; CRP increase: aOR, 3.01, 95% CI, 1.06-9.16, P = .04). Early and late prenatal CRP mediated 96% and 86% of the association between maternal prepregnancy body mass index and offspring asthma, respectively. CONCLUSIONS Higher prenatal CRP and an increase in CRP from early to late pregnancy are associated with childhood asthma. Systemic inflammation during pregnancy associated with modifiable maternal characteristics may be an important determinant of childhood asthma risk.
Collapse
Affiliation(s)
- Yih-Chieh S Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Kathleen A Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - George T O'Connor
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Leonard B Bacharier
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Robert S Zeiger
- Departments of Allergy and Research and Evaluation, Kaiser Permanente Southern California, San Diego and Pasadena, Calif; Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, Calif
| | - Hanna M Knihtilä
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif
| | - Anjali Jha
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Nancy Laranjo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Ngan Luu
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at Strong, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
43
|
Younes M, Aquilina G, Castle L, Degen G, Engel K, Fowler PJ, Frutos Fernandez MJ, Fürst P, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wright M, Dusemund B, Mortensen A, Turck D, Wölfle D, Barmaz S, Mech A, Rincon AM, Tard A, Vianello G, Gundert‐Remy U. Opinion on the re-evaluation of sodium carboxy methyl cellulose (E 466) as a food additive in foods for infants below 16 weeks of age and follow-up of its re-evaluation as food additive for uses in foods for all population groups. EFSA J 2022; 20:e07665. [PMID: 36514369 PMCID: PMC9732683 DOI: 10.2903/j.efsa.2022.7665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sodium carboxy methyl cellulose (E 466) was re-evaluated in 2018 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to this assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of E 466 for its uses as a food additive in food for infants below 16 weeks of age belonging to food categories (FC) 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants) in line with Regulation (EC) No 1333/2008. In addition, the FAF Panel was requested to address the issues already identified during the re-evaluation of the food additive when used in food for the general population, including the safety assessment for FC 13.1.5.1 and 13.1.5.2 (Dietary foods for babies and young children for special medical purposes as defined in directive 1999/21/EC). The process involved the publication of a call for data. Based on the received data, the Panel concluded that the technical data provided by the interested business operator support an amendment of the specifications for sodium carboxy methyl cellulose (E 466) laid down in Commission Regulation (EU) No 231/2012. The interested business operators declared that E 466 is not used in food for infants below 16 weeks of age and in FC 13.1.5.1. Due to the lack of data, an assessment has not been performed for this FC and age group. The interested business operators did not provide biological and toxicological data to support the uses of E 466 in FC 13.1.5.2. Due to the almost unchanged database compared to the situation before the call for data, the FAF Panel confirmed the previous EFSA ANS Panel conclusion according to which the available data did not allow for an adequate assessment of the safety of use of sodium carboxy methyl cellulose (E 466) in infants and young children consuming foods belonging to the FC 13.1.5.2. ©2022 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.
Collapse
|
44
|
Bacteriophages as Biocontrol Agents in Livestock Food Production. Microorganisms 2022; 10:microorganisms10112126. [PMID: 36363718 PMCID: PMC9692620 DOI: 10.3390/microorganisms10112126] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Bacteriophages have been regarded as biocontrol agents that can be used in the food industry. They can be used in various applications, such as pathogen detection and bio-preservation. Their potential to improve the quality of food and prevent foodborne illness is widespread. These bacterial viruses can also be utilized in the preservation of various other food products. The specificity and high sensitivity of bacteriophages when they lyse bacterial targets have been regarded as important factors that contribute to their great potential utility in the food industry. This review will provide an overview of their current and potential applications.
Collapse
|
45
|
Kumar A, Sakhare K, Bhattacharya D, Chattopadhyay R, Parikh P, Narayan KP, Mukherjee A. Communication in non-communicable diseases (NCDs) and role of immunomodulatory nutraceuticals in their management. Front Nutr 2022; 9:966152. [PMID: 36211513 PMCID: PMC9532975 DOI: 10.3389/fnut.2022.966152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Conveyance of pathogens between organisms causes communicable diseases. On the other hand, a non-communicable disease (NCD) was always thought to have no causative transmissible infective agents. Today, this clear distinction is increasingly getting blurred and NCDs are found to be associated with some transmissible components. The human microbiota carries a congregation of microbes, the majority and the most widely studied being bacteria in the gut. The adult human gut harbors ginormous inhabitant microbes, and the microbiome accommodates 150-fold more genes than the host genome. Microbial communities share a mutually beneficial relationship with the host, especially with respect to host physiology including digestion, immune responses, and metabolism. This review delineates the connection between environmental factors such as infections leading to gut dysbiosis and NCDs and explores the evidence regarding possible causal link between them. We also discuss the evidence regarding the value of appropriate therapeutic immunomodulatory nutritional interventions to reduce the development of such diseases. We behold such immunomodulatory effects have the potential to influence in various NCDs and restore homeostasis. We believe that the beginning of the era of microbiota-oriented personalized treatment modalities is not far away.
Collapse
Affiliation(s)
- Abhiram Kumar
- Esperer Onco Nutrition Pvt. Ltd., Mumbai, India
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | | | - Purvish Parikh
- Department of Clinical Haematology, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Kumar P. Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
- *Correspondence: Kumar P. Narayan,
| | | |
Collapse
|
46
|
Cerutti A, Filipska M, Fa XM, Tachó-Piñot R. Impact of the mucosal milieu on antibody responses to allergens. J Allergy Clin Immunol 2022; 150:503-512. [PMID: 36075636 DOI: 10.1016/j.jaci.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Respiratory and digestive mucosal surfaces are continually exposed to common environmental antigens, which include potential allergens. Although innocuous in healthy individuals, allergens cause allergy in predisposed subjects and do so by triggering a pathologic TH2 cell response that induces IgE class switching and somatic hypermutation in allergen-specific B cells. The ensuing affinity maturation and plasma cell differentiation lead to the abnormal release of high-affinity IgE that binds to powerful FcεRI receptors on basophils and mast cells. When cross-linked by allergen, FcεRI-bound IgE instigates the release of prestored and de novo-induced proinflammatory mediators. Aside from causing type I hypersensitivity reactions underlying allergy, IgE affords protection against nematodes or venoms from insects and snakes, which raises questions as to the fundamental differences between protective and pathogenic IgE responses. In this review, we discuss the impact of the mucosal environment, including the epithelial and mucus barriers, on the induction of protective IgE responses against environmental antigens. We further discuss how perturbations of these barriers may contribute to the induction of pathogenic IgE production.
Collapse
Affiliation(s)
- Andrea Cerutti
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain; Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York.
| | - Martyna Filipska
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Xavi Marcos Fa
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Roser Tachó-Piñot
- Lydia Becher Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
47
|
Song M, Kim B, Cho JH, Kyoung H, Choe J, Cho JY, Kim Y, Kim HB, Lee JJ. Modification of Gut Microbiota and Immune Responses via Dietary Protease in Soybean Meal-Based Protein Diets. J Microbiol Biotechnol 2022; 32:885-891. [PMID: 35719080 PMCID: PMC9628920 DOI: 10.4014/jmb.2205.05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022]
Abstract
Plant-based protein sources such as soybean meal have low digestibility and are generally promoted accumulation of undigested proteins into the intestine by enzymatic treatments. Moreover, potential intestinal pathogens ferment undigested proteins, producing harmful substances, such as ammonia, amines and phenols, leading to an overactive immune response and diarrhea in weaned pigs. As a solution, dietary proteases hydrolyze soybean-based antinutritive factors, which negatively affect immune responses and gut microbiota. In this study, we investigated the effects of dietary proteases (PRO) in a low-crude protein (CP) commercial diet on the immune responses and gut microbiota of weaned pigs. The experimental design consisted of three dietary treatments: a commercial diet as a positive control (PC; phase1 CP = 23.71%; phase 2 CP: 22.36%), a lower CP diet than PC as negative control (NC; 0.61% less CP than PC), and NC diet supplement with 0.02% PRO. We found that PRO tended to decrease the frequency of diarrhea in the first two weeks after weaning compared with PC and NC. In addition, pigs fed PRO showed decreased TNF-α and TGF-β1 levels compared with those fed PC and NC. The PRO group had a higher relative proportion of the genus Lactobacillus and lower levels of the genus Streptococcus than the PC and NC groups. In conclusion, the addition of PRO to a low CP commercial weaned diet attenuated inflammatory responses and modified gut microbiota in weaned pigs.
Collapse
Affiliation(s)
- Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Byeonghyeon Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Ho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeehwan Choe
- Department of Beef Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Jee-Yeon Cho
- DSM Nutrition Korea Ltd., Seoul 06675, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jeong Jae Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
48
|
Dorbek-Kolin E, Husso A, Niku M, Loch M, Pessa-Morikawa T, Niine T, Kaart T, Iivanainen A, Orro T. Faecal microbiota in two-week-old female dairy calves during acute cryptosporidiosis outbreak - Association with systemic inflammatory response. Res Vet Sci 2022; 151:116-127. [PMID: 35901524 DOI: 10.1016/j.rvsc.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/15/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
In the present study, relationships between the intestinal microbiota and innate immunity response, acute cryptosporidiosis, and weight gain in female dairy calves were investigated. A total of 112 calves born during a natural outbreak of cryptosporidiosis on one dairy farm was included in the study. Microbiota composition was analysed by means of 16S ribosomal RNA gene amplicon sequencing from faecal samples collected during the second week of life, while the status of Cryptosporidium spp. infection was determined using immunofluorescence. Serum samples from the second week of life were colourimetrically analysed for the following markers of acute inflammation: acute-phase proteins (serum amyloid A and haptoglobin) and pro-inflammatory cytokines (interleukin-1 beta, interleukin-6, and tumour necrosis factor-alpha). Statistical analyses were performed using random forest analysis, variance-partitioning, and negative binomial regression. The faecal microbiota of the two-week old calves was composed of the phyla Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria (in order of decreasing abundance). Microbial diversity, measured in terms of the Shannon index, increased with the age of the calves and decreased if a high count of Cryptosporidium spp. oocysts was found in the faeces. Fusobacterium was positively associated with Cryptosporidium spp. oocyst count and serum amyloid A concentration. Peptostreptococcus was positively associated with haptoglobin and serum amyloid A concentrations, and negatively associated with average daily weight gain at 9 months of age. The markers of innate immunity, in combination with age, explained 6% of the microbial variation. These results suggest that some components of the intestinal microbiota may have a long-lasting negative effect on animal growth through the stimulation of the systemic innate immune response.
Collapse
Affiliation(s)
- Elisabeth Dorbek-Kolin
- Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia.
| | - Aleksi Husso
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, Helsinki, Finland
| | - Mikael Niku
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, Helsinki, Finland
| | - Marina Loch
- Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Tiina Pessa-Morikawa
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, Helsinki, Finland
| | - Tarmo Niine
- Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Tanel Kaart
- Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Antti Iivanainen
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, Helsinki, Finland
| | - Toomas Orro
- Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| |
Collapse
|
49
|
Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics (Basel) 2022; 12:diagnostics12071742. [PMID: 35885645 PMCID: PMC9315466 DOI: 10.3390/diagnostics12071742] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
The human microbiome encodes more than three million genes, outnumbering human genes by more than 100 times, while microbial cells in the human microbiota outnumber human cells by 10 times. Thus, the human microbiota and related microbiome constitute a vast source for identifying disease biomarkers and therapeutic drug targets. Herein, we review the evidence backing the exploitation of the human microbiome for identifying diagnostic biomarkers for human disease. We describe the importance of the human microbiome in health and disease and detail the use of the human microbiome and microbiota metabolites as potential diagnostic biomarkers for multiple diseases, including cancer, as well as inflammatory, neurological, and metabolic diseases. Thus, the human microbiota has enormous potential to pave the road for a new era in biomarker research for diagnostic and therapeutic purposes. The scientific community needs to collaborate to overcome current challenges in microbiome research concerning the lack of standardization of research methods and the lack of understanding of causal relationships between microbiota and human disease.
Collapse
|
50
|
Chen L, Meng Q, Li S, Jiang Y, Zhang C, Tang S, Zhong R, Tang X, Zhang S, Feng X, Zhao Y, Zhang H. Multi-Omics Uncover Neonatal Cecal Cell Development Potentials. Front Cell Dev Biol 2022; 10:840298. [PMID: 35912104 PMCID: PMC9334561 DOI: 10.3389/fcell.2022.840298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Although, the cecum plays vital roles in absorption of water, electrolytes, and other small molecules, and harbors trillions of commensal bacteria to shape large intestine immune functions, it is unknown the cecum development potentials at single cell level during the very crucial neonatal developmental period. Using singe cell RNA-seq and proteomics, we have characterized six major types of cecal cells: undifferentiated cells; immune cells (Ims); cecumocytes (CCs); goblet, Paneth like cells (PLCs), and enteroendocrine cells (EECs) with specific markers. CCs mature with a gradual decrease in proportion of cells; however, Ims develop with a continuing increase in proportion of cells. Meanwhile, goblet and EEC cells reduced in proportion of cells from do to d14 or d21; PLCs increased in proportion of cells from d0 to d7 then decreased at d14 and d21. The cells exhibit specific development and maturation trends controlled by transcriptional factors, ligand-receptor pairs, and other factors. As piglets grow, cecal content and mucosal microbial diversity increases dramatically with population of beneficial microbiota, such as lactobacillus. Moreover, cecal mucosal-associated and cecal content microbiota are positively correlated and both show significant correlation with different types of cecal cells and plasma metabolites. This is the first presentation of neonatal cecal cell development and maturation naturally at single cell level with transcript, protein, microbiota and metabolism perspectives. Furthermore, this study provides an important tool for the determination of novel interventions in cecal drug delivery and metabolism studies.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shen Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Jiang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, NY, United States
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yong Zhao, ; Hongfu Zhang,
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yong Zhao, ; Hongfu Zhang,
| |
Collapse
|