1
|
Chen L, Zheng H, Cheng K, Li C, Qin X, Wang G, Yang F, Du H, Wang L, Xu Y. Deciphering the acidophilia and acid resistance in Acetilactobacillus jinshanensis dominating baijiu fermentation through multi-omics analysis. Food Microbiol 2025; 125:104655. [PMID: 39448165 DOI: 10.1016/j.fm.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/09/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Lactic acid bacteria (LAB) are pivotal in constructing the intricate bio-catalytic networks underlying traditional fermented foods such as Baijiu. However, LAB and their metabolic mechanisms are partially understood in Moutai flavor Baijiu fermentation. Here, we found that Acetilactobacillus jinshanensis became the· dominant species with relative abundance reaching 92%, where the acid accumulated rapidly and peaked at almost 30 g/kg in Moutai flavor Baijiu. After separation, purification, and cultivation, A. jinshanensis exhibited pronounced acidophilia and higher acid resistance compared to other LAB. Further integrated multi-omics analysis revealed that fatty acid synthesis, cell membrane integrity, pHi and redox homeostasis maintenance, protein and amide syntheses were possibly crucial acid-resistant mechanisms in A. jinshanensis. Structural proteomics indicated that the surfaces of A. jinshanensis proteases contained more positively charged amino acid residues to maintain protein stability in acidic environments. The genes HSP20 and acpP were identified as acid-resistant genes for A. jinshanensis by heterologous expression analysis. These findings not only enhance our understanding of LAB in Baijiu, providing a scientific basis for acid regulation for production process, but also offer valuable insights for studying core species in other fermentation systems.
Collapse
Affiliation(s)
- Liangqiang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; Moutai Institute, Renhuai, 564500, Guizhou, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai, 564500, Guizhou, China
| | - Huizhen Zheng
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai, 564500, Guizhou, China
| | - Keqi Cheng
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Chao Li
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai, 564500, Guizhou, China
| | - Xing Qin
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai, 564500, Guizhou, China
| | - Guozheng Wang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai, 564500, Guizhou, China
| | - Fan Yang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai, 564500, Guizhou, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| | - Li Wang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai, 564500, Guizhou, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| |
Collapse
|
2
|
Li L, Fan B, Zhang Y, Zhao M, Kong Z, Wang F, Li M. Cannabidiol exposure during embryonic period caused serious malformation in embryos and inhibited the development of reproductive system in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175315. [PMID: 39111451 DOI: 10.1016/j.scitotenv.2024.175315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Cannabidiol (CBD) is a non-psychoactive component of cannabis with potential applications in biomedicine, food, and cosmetics due to its analgesic, anti-inflammatory, and anticonvulsant properties. However, increasing reports of adverse CBD exposure events underscore the necessity of evaluating its toxicity. In this study, we investigated the developmental toxicity of CBD in zebrafish during the embryonic (0-4 dpf, days post fertilization) and early larval stages (5-7 dpf). The median lethal concentration of CBD in embryos/larvae is 793.28 μg/L. CBD exhibited concentration-dependent manner (ranging from 250 to 1500 μg/L) in inducing serious malformed somatotypes, like shorter body length, pericardial cysts, vitelline cysts, spinal curvature, and smaller eyes. However, no singular deformity predominates. The 5-month-old zebrafish treated with 100 and 200 μg/L of CBD during the embryonic and early larval stages produced fewer offspring with higher natural mortality and malformation rate. Gonadal growth and gamete development were inhibited. Transcriptomic and metabolomic analyses conducted with 400 μg/L CBD on embryos/larvae from 0 to 5 dpf suggested that CBD promoted the formation and transportation of extracellular matrix components on 1 dpf, promoting abnormal cell division and migration, probably resulting in random malformed somatotypes. It inhibited optical vesicle development and photoreceptors formation on 2 and 3 dpf, resulting in damaged sight and smaller eye size. CBD also induced an integrated stress response on 4 and 5 dpf, disrupting redox, protein, and cholesterol homeostasis, contributing to cellular damage, physiological dysfunction, embryonic death, and inhibited reproductive system and ability in adult zebrafish. At the tested concentrations, CBD exhibited developmental toxicity, lethal toxicity, and reproductive inhibition in zebrafish. These findings demonstrate that CBD threatens the model aquatic animal, highlighting the need for additional toxicological evaluations of CBD before its inclusion in dietary supplements, edible food, and other products.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Bei Fan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China
| | - Yifan Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Mengying Zhao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengzhong Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China.
| |
Collapse
|
3
|
Fisher AL, Arora K, Maehashi S, Schweitzer D, Akefe IO. Unveiling the neurolipidome of obsessive-compulsive disorder: A scoping review navigating future diagnostic and therapeutic applications. Neurosci Biobehav Rev 2024; 166:105885. [PMID: 39265965 DOI: 10.1016/j.neubiorev.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Obsessive-Compulsive Disorder (OCD) poses a multifaceted challenge in psychiatry, with various subtypes and severities greatly impacting well-being. Recent scientific attention has turned towards lipid metabolism, particularly the neurolipidome, in response to clinical demands for cost-effective diagnostics and therapies. This scoping review integrates recent animal, translational, and clinical studies to explore impaired neurolipid metabolism mechanisms in OCD's pathogenesis, aiming to enhance future diagnostics and therapeutics. Five key neurolipids - endocannabinoids, lipid peroxidation, phospholipids, cholesterol, and fatty acids - were identified as relevant. While the endocannabinoid system shows promise in animal models, its clinical application remains limited. Conversely, lipid peroxidation and disruptions in phospholipid metabolism exhibit significant impacts on OCD's pathophysiology based on robust clinical data. However, the role of cholesterol and fatty acids remains inconclusive. The review emphasises the importance of translational research in linking preclinical findings to real-world applications, highlighting the potential of the neurolipidome as a potential biomarker for OCD detection and monitoring. Further research is essential for advancing OCD understanding and treatment modalities.
Collapse
Affiliation(s)
- Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
4
|
Matsumoto A, Uesono Y. Establishment of the Meyer-Overton correlation in an artificial membrane without protein. Biochim Biophys Acta Gen Subj 2024; 1868:130717. [PMID: 39343251 DOI: 10.1016/j.bbagen.2024.130717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The potency of anesthetics with various structures increases exponentially with lipophilicity, which is the Meyer-Overton (MO) correlation discovered over 120 years ago. The MO correlation was also observed with various biological effects and chemicals, including alcohols; thus, the correlation represents a fundamental relationship between chemicals and organisms. The MO correlation was explained by the lipid and protein theories, although the principle remains unknown because these are still debating. METHODS The gentle hydration method was used to form giant unilamellar vesicles (GUVs) consisting of high- and low-melting phospholipids and cholesterol in the presence of n-alcohols (C2-C12). Confocal fluorescence microscopy was used to determine the percentage of GUVs with domains in relation to the n-alcohol concentrations. RESULTS n-Alcohols inhibited the domain formation of GUVs, and the half inhibitory concentration (IC50) in the aqueous phase (Cw) decreased exponentially with increasing chain length (lipophilicity). In contrast, the membrane concentrations (Cm) of alcohols for the inhibition, which is a product of the membrane-water partition coefficient and the IC50 values, remained constant irrespective of the chain length. CONCLUSIONS The MO correlation is established in GUVs, which supports the lipid theory. When alcohols reach the same critical concentration in the membrane, similar biological effects appear irrespective of the chain length, which is the principle underlying the MO correlation. GENERAL SIGNIFICANCE The protein theory states that a highly lipophilic compound targets minor membrane proteins due to the low Cw. However, our lipid theory states that the compound targets various membrane proteins due to the high Cm.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yukifumi Uesono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
5
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Yao C, Peng A, Wu P, Zuo J, Pan J, Kong C, Qian Z, Jin Z, Feng H. Side-chain-engineered fluorescent dyes for 3D and long-term dynamic tracking of the plasma membrane in living cells. Talanta 2024; 279:126583. [PMID: 39053364 DOI: 10.1016/j.talanta.2024.126583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The plasma membrane involves in many important biological events such as cell fusion and programmed cell death, but most of current plasma membrane probes cannot meet the requirement of long-term specific anchoring to the plasma membrane. Herein, we propose a molecular side-chain engineering strategy to modulate the long-term imaging performance of fluorescent dyes to the plasma membrane by regulating the cell permeability and anchoring ability. A series of FMR dyes with different lengths of side chains were designed and synthesized, and their transmembrane behaviours and staining performance were evaluated in living HeLa cells. We found that short-chain and medium-chain FMR dyes have excellent cell permeability without the labeling ability to the plasma membrane while the long-chain FMR dyes specifically stain the plasma membrane and can be firmly anchored to the plasma membrane for a long period of time. These long-chain FMR dyes have high stain specificality to the plasma membrane, and C10-FMR can be anchored to the plasma membrane of living cells for 2 h, which enables it to continuously monitor dynamic changes of the plasma membrane. The three-dimensional precision imaging of various cells was achieved using C10-FMR, which provides an opportunity to obtain complete information on the three-dimensional spatial morphology of the plasma membrane. The PEG-induced cell fusion of chicken red blood cells and H2O2-induced apoptosis of HeLa cells were monitored by real-time tracking of dynamic changes of the plasma membrane during these processes, which provide solid examples to prove the usefulness of these fluorescent dyes as long-term imaging tools. This work validates the hypothesis that cell permeability of membrane dyes can be readily regulated by tuning the side chains, and provides the effective design strategy of fluorescent dyes for 3D and long-term dynamic tracking of the plasma membrane of diverse animal cells.
Collapse
Affiliation(s)
- Chuangye Yao
- Key Laboratory of the Ministry for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Aohui Peng
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Penglei Wu
- Key Laboratory of the Ministry for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Jiaqi Zuo
- Key Laboratory of the Ministry for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Junjun Pan
- Key Laboratory of the Ministry for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Chuixi Kong
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Zhigang Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Hui Feng
- Key Laboratory of the Ministry for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, PR China.
| |
Collapse
|
7
|
Hanashima S, Yamanaka A, Ibata Y, Yasuda T, Umegawa Y, Murata M. Lipid Compositions of Liquid-Ordered and Liquid-Disordered Phases in Ternary Membranes of Sphingomyelin, Cholesterol, and Dioleoylphosphatidylcholine Determined by 2H NMR: Stearoyl-Sphingomyelin Compared with Its Palmitoyl Counterpart. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22973-22981. [PMID: 39429033 DOI: 10.1021/acs.langmuir.4c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sphingomyelin (SM) and cholesterol are the major lipids in the signaling platforms of cell membranes, known as lipid rafts. In particular, SM with a stearoyl chain (C18-SM) is abundant in specific tissues such as the brain, the most cholesterol-rich organ, whereas the distribution of palmitoyl (C16)-SM is ubiquitous. Here, we reveal the differences between palmitoyl- and stearoyl-SM in lipid-lipid interactions based on the tie lines obtained from the 2H solid-state NMR spectra of bilayer systems composed of SM/dioleoylphosphatidylcholine/cholesterol 33:33:33 and 40:40:20. Lipid probes carrying position-selective deuterations, 10',10'-d2-SM, 24-d1-cholesterol, and 6″,6″-d2-dioleoyl-phosphatidylcholine, were incorporated into the membranes. 2H NMR peaks from these probes in the membranes directly provide the lipid compositions of the liquid-ordered (Lo) and liquid-disordered (Ld) regions. Without using bulky fluorescent groups, these probes allow us to obtain the end points of the tie lines in a ternary phase diagram based on the lever rule. Consequently, the tie lines of the stearoyl-SM membranes were steeper than those of the palmitoyl-SM membranes, indicating that cholesterol content was higher in the Lo domains of stearoyl-SM, regardless of the total concentration of unsaturated phospholipids. When comparing the content of unsaturated lipids in the Lo domain, the stearoyl-SM membranes had a higher content than palmitoyl-SM membranes. These results revealed that stearoyl-SM is suitable for stabilizing biologically functional microdomains in cholesterol-rich organs, whereas palmitoyl-SM may be better suited for stabilizing domains in tissue membranes with normal cholesterol content. The small but significant differences in the lipid interactions between stearoyl-SM and palmitoyl-SM may be related to the spatiotemporal formation of functional domains in biological environments.
Collapse
Affiliation(s)
- Shinya Hanashima
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyamacho-minami 4-101, Tottori 680-8550, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, Koyamacho-minami 4-101, Tottori 680-8550, Japan
| | - Ayana Yamanaka
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Ibata
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Tomokazu Yasuda
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Centre for Fundamental Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
8
|
Insausti S, Ramos-Caballero A, Wiley B, González-Resines S, Torralba J, Elizaga-Lara A, Shamblin C, Ojida A, Caaveiro JMM, Zwick MB, Rujas E, Domene C, Nieva JL. Generation of a Nonbilayer Lipid Nanoenvironment after Epitope Binding Potentiates Neutralizing HIV-1 MPER Antibody. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39446590 DOI: 10.1021/acsami.4c13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Establishment of interactions with the envelope lipids is a cardinal feature of broadly neutralizing antibodies (bnAbs) that recognize the Env membrane-proximal external region (MPER) of HIV. The lipid envelope constitutes a relevant component of the full "quinary" MPER epitope, and thus antibodies may be optimized through engineering their capacity to interact with lipids. However, the role of the chemically complex lipid nanoenvironment in the mechanism of MPER molecular recognition and viral neutralization remains poorly understood. To approach this issue, we computationally and experimentally investigated lipid interactions of broadly neutralizing antibody 10E8 and optimized versions engineered to enhance their epitope and membrane affinity by grafting bulky aromatic compounds. Our data revealed a correlation between neutralization potency and the establishment of favorable interactions with small headgroup lipids cholesterol and phosphatidylethanolamine, evolving after specific engagement with MPER. Molecular dynamics simulations of chemically modified Fabs in complex with an MPER-Transmembrane Domain helix supported the generation of a nanoenvironment causing localized deformation of the thick, rigid viral membrane and identified sphingomyelin preferentially occupying a phospholipid-binding site of 10E8. Together, these interactions appear to facilitate insertion of the Fabs through their engagement with the MPER epitope. These findings implicate individual lipid molecules in the neutralization function of MPER bnAbs, validate targeted chemical modification as a method to optimize MPER antibodies, and suggest pathways for MPER peptide-liposome vaccine development.
Collapse
Affiliation(s)
- Sara Insausti
- Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| | - Ander Ramos-Caballero
- Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| | - Brian Wiley
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Saul González-Resines
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Johana Torralba
- Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| | - Anne Elizaga-Lara
- Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| | - Christine Shamblin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Akio Ojida
- Department of Chemical Biology, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Jose M M Caaveiro
- Laboratory of Protein Drug Discovery, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Edurne Rujas
- Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria 01006, Spain
- Basque Foundation for Science, Ikerbasque, Bilbao48013, Spain
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - José L Nieva
- Instituto Biofisika (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, Bilbao 48080, Spain
| |
Collapse
|
9
|
Saha Roy D, Singh A, Vaidya VA, Huster D, Mote KR, Maiti S. Effects of a Serotonergic Psychedelic on the Lipid Bilayer. ACS Chem Neurosci 2024. [PMID: 39431923 DOI: 10.1021/acschemneuro.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Serotonergic psychedelics, known for their hallucinogenic effects, have attracted interest due to their ability to enhance neuronal plasticity and potential therapeutic benefits. Although psychedelic-enhanced neuroplasticity is believed to require activation of 5-hydroxytryptamine (serotonin) 2A receptors (5-HT2ARs), serotonin itself is less effective in promoting such plasticity. Also, the psychoplastogenic effects of these molecules correlate with their lipophilicity, leading to suggestions that they act by influencing the intracellular receptors. However, their lipophilicity also implies that a significant quantity of lipids is accumulated in the lipid bilayer, potentially altering the physical properties of the membrane. Here, we probe whether the serotonergic psychedelic 2,5-dimethoxy-4-iodoamphetamine (DOI) can affect the properties of artificial lipid bilayers and if that can potentially affect processes such as membrane fusion. Solid-state NMR spectroscopy shows that the DOI strongly induces disorder in the lipid acyl chains. Atomic force microscopy shows that it can shrink the ordered domains in a biphasic lipid bilayer and can reduce the force needed to form nanopores in the membrane. Fluorescence correlation spectroscopy shows that DOI can promote vesicle association, and total internal fluorescence microscopy shows that it enhances vesicle fusion to a supported lipid bilayer. While serotonin has also recently been shown to cause similar effects, DOI is more than two orders of magnitude more potent in evoking these. Our results suggest that the receptor-independent effects of serotonergic psychedelics on lipid membranes may contribute to their biological actions, especially those that require significant membrane remodeling, such as neuronal plasticity.
Collapse
Affiliation(s)
- Debsankar Saha Roy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ankit Singh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, Medical Department, Leipzig University, Härtelstr. 16-18, Leipzig D-04107, Germany
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
- Department of Biological Sciences and Department of Physics, Birla Institute of Technology and Science (BITS-Pilani), Hyderabad Campus Jawahar Nagar, Shameerpet, Hyderabad 400078, India
| |
Collapse
|
10
|
Tan Z, Calandrini V, Dhont JKG, Nägele G. Quasi-two-dimensional dispersions of Brownian particles with competitive interactions: phase behavior and structural properties. SOFT MATTER 2024. [PMID: 39415718 DOI: 10.1039/d4sm00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Competing short-range attractive (SA) and long range repulsive (LR) particle interactions can be used to describe three-dimensional charge-stabilized colloid or protein dispersions at low added salt concentrations, as well as membrane proteins with interaction contributions mediated by lipid molecules. Using Langevin dynamics (LD) simulations, we determine the generalized phase diagram, cluster shapes and size distributions of a generic quasi-two-dimensional (Q2D) dispersion of spherical SALR particles confined to in-plane motion inside a bulk fluid. The SA and LR interaction parts are modelled by a generalized Lennard-Jones potential and a screened Coulomb potential, respectively. The microstructures of the detected equilibrium and non-equilibrium Q2D phases are distinctly different from those observed in three-dimensional (3D) SALR systems, by exhibiting different levels of hexagonal ordering. We discuss a thermodynamic perturbation theory prediction for the metastable binodal line of a reference system of particles with SA interactions only, which in the explored Q2D-SALR phase diagram region separates cluster from non-clustered phases. The transition from the high-temperature (small SA) dispersed fluid (DF) phase to the lower-temperature equilibrium cluster (EC) fluid phase is characterised by a low-wavenumber peak height of the static structure factor (corresponding to a thermal correlation length of about twice the particle diameter) featuring a distinctly smaller value (≈1.4) than in 3D SALR systems. With decreasing temperature (increasing SA), the cluster morphology changes from disk-like shapes in the equilibrium cluster phase, to double-stranded anisotropic hexagonal cluster segments formed in a cluster-percolated (CP) gel-like phase. This transition can be quantified by a hexagonal order parameter distribution function. The mean cluster size and coordination number of particles in the CP phase are insensitive to changes in the attraction strength.
Collapse
Affiliation(s)
- Zihan Tan
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
- Computational Biomedicine, Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrβe 36, 10623 Berlin, Germany.
| | - Vania Calandrini
- Computational Biomedicine, Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Jan K G Dhont
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Gerhard Nägele
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Ambattu LA, Del Rosal B, Conn CE, Yeo LY. High-frequency MHz-order vibration enables cell membrane remodeling and lipid microdomain manipulation. Biophys J 2024:S0006-3495(24)00679-9. [PMID: 39415451 DOI: 10.1016/j.bpj.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
We elucidate the mechanism underpinning a recently discovered phenomenon in which cells respond to MHz-order mechanostimuli. Deformations induced along the plasma membrane under these external mechanical cues are observed to decrease the membrane tension, which, in turn, drives transient and reversible remodeling of its lipid structure. In particular, the increase and consequent coalescence of ordered lipid microdomains leads to closer proximity to mechanosensitive ion channels-Piezo1, in particular-that, due to crowding, results in their activation to mobilize influx of calcium (Ca2+) ions into the cell. It is the modulation of this second messenger that is responsible for the downstream signaling and cell fates that ensue. In addition, we show that such spatiotemporal control over the membrane microdomains in cells-without necessitating biochemical factors-facilitates aggregation and association of intrinsically disordered tau proteins in neuroblastoma cells, and their transformation to pathological conditions implicated in neurodegenerative diseases, thereby paving the way for the development of therapeutic intervention strategies.
Collapse
Affiliation(s)
- Lizebona A Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, Australia
| | | | | | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Zeng Y, Luo Y, Zhao K, Liu S, Wu K, Wu Y, Du K, Pan W, Dai Y, Liu Y, Ren M, Tian F, Zhou L, Gu C. m6A-Mediated Induction of 7-Dehydrocholesterol Reductase Stimulates Cholesterol Synthesis and cAMP Signaling to Promote Bladder Cancer Metastasis. Cancer Res 2024; 84:3402-3418. [PMID: 39047230 DOI: 10.1158/0008-5472.can-23-3703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Dysregulation of cholesterol homeostasis occurs in multiple types of tumors and promotes cancer progression. Investigating the specific processes that induce abnormal cholesterol metabolism could identify therapeutic targets to improve cancer treatment. In this investigation, we observed upregulation of 7-dehydrocholesterol reductase (DHCR7), a vital enzyme involved in the synthesis of cholesterol, within bladder cancer tissues in comparison to normal tissues, which was correlated with increased bladder cancer metastasis. Increased expression of DHCR7 in bladder cancer was attributed to decreased mRNA degradation mediated by YTHDF2. Loss or inhibition of DHCR7 reduced bladder cancer cell invasion in vitro and metastasis in vivo. Mechanistically, DHCR7 promoted bladder cancer metastasis by activating the cAMP/protein kinase A/FAK pathway. Specifically, DHCR7 increased cAMP levels by elevating cholesterol content in lipid rafts, thereby facilitating the transduction of signaling pathways mediated by cAMP receptors. DHCR7 additionally enhanced the cAMP signaling pathway by reducing the concentration of 7-dehydrocholesterol and promoting the transcription of the G protein-coupled receptor, namely gastric inhibitory polypeptide receptor. Overall, these findings demonstrate that DHCR7 plays an important role in bladder cancer invasion and metastasis by modulating cholesterol synthesis and cAMP signaling. Furthermore, inhibition of DHCR7 shows promise as a viable therapeutic strategy for suppressing bladder cancer invasion and metastasis. Significance: Inhibiting DHCR7 induces cholesterol metabolism reprogramming and lipid raft remodeling to inactivate the cAMP/protein kinase A/FAK axis and suppress bladder cancer metastasis, indicating the therapeutic potential of targeting DHCR7.
Collapse
Affiliation(s)
- Youmiao Zeng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongbo Luo
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keyuan Zhao
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Sheng Liu
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Kaiwen Wu
- Shenyang Medical College, Shenyang, China
| | - Yudong Wu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaixuan Du
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbang Pan
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiheng Dai
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanhao Liu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengda Ren
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengyan Tian
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijie Zhou
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaohui Gu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Poruthoor AJ, Stallone JJ, Miaro M, Sharma A, Grossfield A. System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers. J Chem Phys 2024; 161:145101. [PMID: 39382132 DOI: 10.1063/5.0225753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
The "lipid raft" hypothesis proposes that cell membranes contain distinct domains of varying lipid compositions, where "rafts" of ordered lipids and cholesterol coexist with disordered lipid regions. Experimental and theoretical phase diagrams of model membranes have revealed multiple coexisting phases. Molecular dynamics (MD) simulations can also capture spontaneous phase separation of bilayers. However, these methods merely determine the sign of the free energy change upon phase separation-whether or not it is favorable-but not the amplitude. Recently, we developed a workflow to compute the free energy of phase separation from MD simulations using the weighted ensemble method. However, while theoretical treatments generally focus on infinite systems and experimental measurements on mesoscopic to macroscopic systems, MD simulations are comparatively small. Therefore, if we are to put the results of these calculations into the appropriate context, we need to understand the effects the finite size of the simulation has on the computed free energy landscapes. In this study, we investigate this phenomenon by computing free energy profiles for a model phase-separating system as a function of system size, ranging from 324 to 10 110 lipids. The results suggest that, within the limits of statistical uncertainty, bulk-like behavior emerges once the systems contain roughly 4000 lipids.
Collapse
Affiliation(s)
- Ashlin J Poruthoor
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Jack J Stallone
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Megan Miaro
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Akshara Sharma
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
14
|
Ruzzi F, Cappello C, Semprini MS, Scalambra L, Angelicola S, Pittino OM, Landuzzi L, Palladini A, Nanni P, Lollini PL. Lipid rafts, caveolae, and epidermal growth factor receptor family: friends or foes? Cell Commun Signal 2024; 22:489. [PMID: 39394159 PMCID: PMC11468060 DOI: 10.1186/s12964-024-01876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024] Open
Abstract
Lipid rafts are dynamic microdomains enriched with cholesterol and sphingolipids that play critical roles in cellular processes by organizing and concentrating specific proteins involved in signal transduction. The interplay between lipid rafts, raft-associated caveolae and the human epidermal growth factor receptors has significant implications in cancer biology, particularly in breast and gastric cancer therapy resistance. This review examines the structural and functional characteristics of lipid rafts, their involvement in EGFR and HER2 signaling, and the impact of lipid rafts/CXCL12/CXCR4/HER2 axis on bone metastasis. We also discuss the potential of targeting lipid rafts and caveolin-1 to enhance therapeutic strategies against HER2-positive cancers and the impact of co-localization of trastuzumab or antibody drug conjugates with caveolin-1 on therapy response. Emerging evidence suggests that disrupting lipid raft integrity or silencing caveolin-1, through several strategies including cholesterol-lowering molecules, can influence HER2 availability and internalization, enhancing anti-HER2 targeted therapy and offering a novel approach to counteract drug resistance and improve treatment efficacy.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Chiara Cappello
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Stefania Angelicola
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
- IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, 40138, Italy
| | - Olga Maria Pittino
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, 27100, Italy
- Unità Operativa di Oncologia, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy.
- IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, 40138, Italy.
| |
Collapse
|
15
|
Sharma VK, Srinivasan H, Gupta J, Mitra S. Lipid lateral diffusion: mechanisms and modulators. SOFT MATTER 2024; 20:7763-7796. [PMID: 39315599 DOI: 10.1039/d4sm00597j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The lateral diffusion of lipids within a membrane is of paramount importance, serving as a central mechanism in numerous physiological processes including cell signaling, membrane trafficking, protein activity regulation, and energy transduction pathways. This review offers a comprehensive overview of lateral lipid diffusion in model biomembrane systems explored through the lens of neutron scattering techniques. We examine diverse models of lateral diffusion and explore the various factors influencing this fundamental process in membrane dynamics. Additionally, we offer a thorough summary of how different membrane-active compounds, including drugs, antioxidants, stimulants, and membrane proteins, affect lipid lateral diffusion. Our analysis unveils the intricate interplay between these additives and membranes, shedding light on their dynamic interactions. We elucidate that this interaction is governed by a complex combination of multiple factors including the physical state and charge of the membrane, the concentration of additives, the molecular architecture of the compounds, and their spatial distribution within the membrane. In conclusion, we briefly discuss the future directions and areas requiring further investigation in the realm of lateral lipid diffusion, highlighting the need to study more realistic membrane systems.
Collapse
Affiliation(s)
- V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - J Gupta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
16
|
Cheng S, Zhang J, Zhang Y, Wang H, Wang H. In Situ Synthesis and Visualization of Membrane SNAP25 Nano-Organization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20977-20985. [PMID: 39330215 DOI: 10.1021/acs.langmuir.4c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Cryo-electron tomography (cryo-ET) can provide insights into the structure and states of natural membrane environments to explore the role of SNARE proteins at membrane fusion and understand the relationship between their subcellular localization/formation and action mechanism. Nevertheless, the identification of individual molecules in crowded and low signal-to-noise ratio membrane environments remains a significant challenge. In this study, cryo-ET is employed to image near-physiological state 293T cell membranes, specifically utilizing in situ synthesized gold nanoparticles (AuNPs) bound with cysteine-rich protein tags to single-molecularly labeled synaptosomal-associated protein 25 (SNAP25) on the membrane surface. The high-resolution images reveal that SNAP25 is predominantly located in regions of high molecular density within the cell membrane and aggregates into smaller clusters, which may increase the fusion efficiency. Remarkably, a zigzag arrangement of SNAP25 is observed on the cell membrane. These findings provide valuable insights into the functional mechanisms of SNARE proteins.
Collapse
Affiliation(s)
- Sihang Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jinrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Yaxuan Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Huili Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
17
|
Tan KA, Qiao Z, Lim ZZE, Yeo JY, Yong Y, Do PH, Rya E, Gao YG. Cryo-EM structure of the SPFH-NfeD family protein complex QmcA-YbbJ. Structure 2024; 32:1603-1610.e3. [PMID: 39181124 DOI: 10.1016/j.str.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
The SPFH (stomatin, prohibitin, flotillin, and HflK/C) protein family is universally present and encompasses the evolutionarily conserved SPFH domain. These proteins are predominantly localized in lipid raft and implicated in various biological processes. The NfeD (nodulation formation efficiency D) protein family is often encoded in tandem with SPFH proteins, suggesting a close functional relationship. Here, we elucidate the cryoelectron microscopy (cryo-EM) structure of the Escherichia coli QmcA-YbbJ complex belonging to the SPFH and NfeD families, respectively. Our findings reveal that the QmcA-YbbJ complex forms an intricate cage-like structure composed of 26 copies of QmcA-YbbJ heterodimers. The transmembrane helices of YbbJ act as adhesive elements bridging adjacent QmcA molecules, while the oligosaccharide-binding domain of YbbJ encapsulates the SPFH domain of QmcA. Our structural study significantly contributes to understanding the functional role of the NfeD protein family and sheds light on the interplay between SPFH and NfeD family proteins.
Collapse
Affiliation(s)
- Kwan Ann Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Zachary Ze En Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Joshua Yi Yeo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Yonlada Yong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Phong Hoa Do
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Ero Rya
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
18
|
Veretenenko II, Trofimov YA, Krylov NA, Efremov RG. Nanoscale lipid domains determine the dynamic molecular portraits of mixed DOPC/DOPS bilayers in a fluid phase: A computational insight. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184376. [PMID: 39111381 DOI: 10.1016/j.bbamem.2024.184376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Lateral heterogeneity, or mosaicity, is a fundamental property inherent to cell membranes that is crucial for their functioning. While microscopic inhomogeneities (e.g. rafts) are easily detected experimentally, lipid domains with nanoscale dimensions (nanoclusters of nanodomains, NDs) resist reliable characterization by instrumental methods. In such a case, important insight can be gained via computer modeling. Here, NDs composed of lipid's head groups in the mixed zwitterionic dioleoylphosphatidylcholine (DOPC) and negatively charged dioleoylphosphatidylserine (DOPS) bilayers were studied by molecular dynamics. A new algorithm has been developed to identify NDs. Unlike most similar methods, it implicitly considers the heterogeneous distribution of lipid head atomic density and does not require subjectively chosen parameters. In DOPS-rich membranes, lipids form more compact and stable NDs due to strong interlipid interactions. In DOPC-rich systems, NDs arise due to the "packing" effect of weakly bound lipid heads. The clustering picture is related to the physical properties of the bilayer surface: DOPS-rich systems show more pronounced surface heterogeneity of hydrophilic/hydrophobic regions compared to DOPC-rich ones. The results obtained are important for the effective quantitative characterization of the "dynamic molecular portrait" of a membrane surface - its "fingerprint" characterizing dynamical distribution of its physicochemical properties.
Collapse
Affiliation(s)
- Irina I Veretenenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region 141701, Russia.
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region 141701, Russia; National Research University Higher School of Economics, Moscow 101000, Russia.
| |
Collapse
|
19
|
Collins TJC, Morgan PK, Man K, Lancaster GI, Murphy AJ. The influence of metabolic disorders on adaptive immunity. Cell Mol Immunol 2024; 21:1109-1119. [PMID: 39134802 PMCID: PMC11442657 DOI: 10.1038/s41423-024-01206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
The immune system plays a crucial role in protecting the body from invading pathogens and maintaining tissue homoeostasis. Maintaining homoeostatic lipid metabolism is an important aspect of efficient immune cell function and when disrupted immune cell function is impaired. There are numerous metabolic diseases whereby systemic lipid metabolism and cellular function is impaired. In the context of metabolic disorders, chronic inflammation is suggested to be a major contributor to disease progression. A major contributor to tissue dysfunction in metabolic disease is ectopic lipid deposition, which is generally caused by diet and genetic factors. Thus, we propose the idea, that similar to tissue and organ damage in metabolic disorders, excessive accumulation of lipid in immune cells promotes a dysfunctional immune system (beyond the classical foam cell) and contributes to disease pathology. Herein, we review the evidence that lipid accumulation through diet can modulate the production and function of immune cells by altering cellular lipid content. This can impact immune cell signalling, activation, migration, and death, ultimately affecting key aspects of the immune system such as neutralising pathogens, antigen presentation, effector cell activation and resolving inflammation.
Collapse
Affiliation(s)
- Thomas J C Collins
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Pooranee K Morgan
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Kevin Man
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Graeme I Lancaster
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
20
|
Luo JS, Zhai WH, Ding LL, Zhang XJ, Han J, Ning JQ, Chen XM, Jiang WC, Yan RY, Chen MJ. MAMs and Mitochondrial Quality Control: Overview and Their Role in Alzheimer's Disease. Neurochem Res 2024; 49:2682-2698. [PMID: 39002091 DOI: 10.1007/s11064-024-04205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) represents the most widespread neurodegenerative disorder, distinguished by a gradual onset and slow progression, presenting a substantial challenge to global public health. The mitochondrial-associated membrane (MAMs) functions as a crucial center for signal transduction and material transport between mitochondria and the endoplasmic reticulum, playing a pivotal role in various pathological mechanisms of AD. The dysregulation of mitochondrial quality control systems is considered a fundamental factor in the development of AD, leading to mitochondrial dysfunction and subsequent neurodegenerative events. Recent studies have emphasized the role of MAMs in regulating mitochondrial quality control. This review will delve into the molecular mechanisms underlying the imbalance in mitochondrial quality control in AD and provide a comprehensive overview of the role of MAMs in regulating mitochondrial quality control.
Collapse
Affiliation(s)
- Jian-Sheng Luo
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Wen-Hu Zhai
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Ling-Ling Ding
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xian-Jie Zhang
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Jia Han
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Jia-Qi Ning
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xue-Meng Chen
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Wen-Cai Jiang
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Ru-Yu Yan
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Meng-Jie Chen
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| |
Collapse
|
21
|
Vergoz D, Schaumann A, Schmitz I, Afonso C, Dé E, Loutelier-Bourhis C, Alexandre S. Lipidome of Acinetobacter baumannii antibiotic persister cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159539. [PMID: 39067686 DOI: 10.1016/j.bbalip.2024.159539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Persister cells constitute a bacterial subpopulation able to survive to high concentrations of antibiotics. This phenotype is temporary and reversible, and thus could be involved in the recurrence of infections and emergence of antibiotic resistance. To better understand how persister cells survive to such high antibiotic concentration, we examined changes in their lipid composition. We thus compared the lipidome of Acinetobacter baumannii ATCC 19606T persister cells formed under ciprofloxacin treatment with the lipidome of control cells grown without antibiotic. Using matrix assisted laser desorption ionisation-Fourier transform ion cyclotron resonance mass spectrometry, we observed a higher abundance of short chains and secondary chains without hydroxylation for lipid A in persister cells. Using liquid chromatography-tandem mass spectrometry, we found that persister cells produced particular phosphatidylglycerols, as LPAGPE and PAGPE, but also lipids with particular acyl chains containing additional hydroxyl group or uncommon di-unsaturation on C18 and C16 acyl chains. In order to determine the impact of these multiple lipidome modifications on membrane fluidity, fluorescence anisotropy assays were performed. They showed an increase of rigidity for the membrane of persister cells, inducing likely a decrease membrane permeability to protect cells during dormancy. Finally, we highlighted that A. baumannii persister cells also produced particular wax esters, composed of two fatty acids and a fatty diol. These uncommon storage lipids are key metabolites allowing a rapid bacterial regrow when antibiotic pressure disappears. These overall changes in persister lipidome may constitute new therapeutic targets to combat these particular dormant cells.
Collapse
Affiliation(s)
- Delphine Vergoz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Annick Schaumann
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France
| | - Isabelle Schmitz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Emmanuelle Dé
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France
| | - Corinne Loutelier-Bourhis
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Stéphane Alexandre
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France.
| |
Collapse
|
22
|
Kim YS, Choi SH, Kim KY, Navia-Pelaez JM, Perkins GA, Choi S, Kim J, Nazarenkov N, Rissman RA, Ju WK, Ellisman MH, Miller YI. AIBP controls TLR4 inflammarafts and mitochondrial dysfunction in a mouse model of Alzheimer's disease. J Neuroinflammation 2024; 21:245. [PMID: 39342323 PMCID: PMC11439205 DOI: 10.1186/s12974-024-03214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Microglia-driven neuroinflammation plays an important role in the development of Alzheimer's disease. Microglia activation is accompanied by the formation and chronic expression of TLR4 inflammarafts, defined as enlarged and cholesterol-rich lipid rafts serving as an assembly platform for TLR4 dimers and complexes of other inflammatory receptors. The secreted apoA-I binding protein (APOA1BP or AIBP) binds TLR4 and selectively targets cholesterol depletion machinery to TLR4 inflammaraft-expressing inflammatory, but not homeostatic microglia. Here we demonstrated that amyloid-beta (Aβ) induced formation of TLR4 inflammarafts in microglia in vitro and in the brain of APP/PS1 mice. Mitochondria in Apoa1bp-/- APP/PS1 microglia were hyperbranched and cupped, which was accompanied by increased reactive oxygen species and the dilated endoplasmic reticulum. The size and number of Aβ plaques and neuronal cell death were significantly increased, and the animal survival was decreased in Apoa1bp-/-APP/PS1 compared to APP/PS1 female mice. These results suggest that AIBP exerts control of TLR4 inflammarafts and mitochondrial dynamics in microglia and plays a protective role in Alzheimer's disease associated oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Juliana M Navia-Pelaez
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Seunghwan Choi
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Nicolaus Nazarenkov
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Won-Kyu Ju
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
23
|
Pandey S, Wohland T. EGFR does not directly interact with cortical actin: A SRRF'n'TIRF study. Biophys J 2024:S0006-3495(24)00634-9. [PMID: 39340155 DOI: 10.1016/j.bpj.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) governs pivotal signaling pathways in cell proliferation and survival, with mutations implicated in numerous cancers. The organization of EGFR on the plasma membrane (PM) is influenced by the lipids and the cortical actin (CA) cytoskeleton. Despite the presence of a putative actin-binding domain (ABD) spanning 13 residues, a direct interaction between EGFR and CA has not been definitively established. While disrupting the cytoskeleton can impact EGFR behavior, suggesting a connection, the influence of the static actin cytoskeleton has been found to be indirect. Here, we investigate the potential interaction between EGFR and CA, as well as the extent to which CA regulates EGFR's distribution on the PM using SRRF'n'TIRF, a spatiotemporal super-resolution microscopy technique that provides sub-100 nm resolution and ms-scale dynamics from the same data set. To label CA, we constructed PMT-mEGFP-F-tractin, which combines an inner leaflet targeting domain PMT, fluorescent probe mEGFP, and the actin-binding protein F-tractin. In addition to EGFR-mEGFP, we included two control constructs: 1) an ABD deletion mutant, EGFRΔABD-mEGFP serving as a negative control and 2) EGFR-mApple-F-tractin, where F-tractin is fused to the C-terminus of EGFR-mApple, serving as the positive control. We find that EGFR-mEGFP and EGFRΔABD-mEGFP show similar membrane dynamics, implying that EGFR-mEGFP dynamics and organization are independent of CA. EGFR dynamics show CA dependence when F-tractin is anchored to the cytoplasmic tail. Together, our results demonstrate that EGFR does not directly interact with the CA in its resting and activated state.
Collapse
Affiliation(s)
- Shambhavi Pandey
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
24
|
Pham U, Chundi A, Stępniewski TM, Darbha S, Eiger DS, Gazula S, Gardner J, Hicks C, Selent J, Rajagopal S. Location-biased β-arrestin conformations direct GPCR signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614742. [PMID: 39386521 PMCID: PMC11463559 DOI: 10.1101/2024.09.24.614742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
β-arrestins are multifunctional intracellular proteins that regulate the desensitization, internalization and signaling of over 800 different G protein-coupled receptors (GPCRs) and interact with a diverse array of cellular partners1,2. Beyond the plasma membrane, GPCRs can initiate unique signaling cascades from various subcellular locations, a phenomenon known as "location bias"3,4. Here, we investigate how β-arrestins direct location-biased signaling of the angiotensin II type I receptor (AT1R). Using novel bioluminescence resonance energy transfer (BRET) conformational biosensors and extracellular signal-regulated kinase (ERK) activity reporters, we reveal that in response to the endogenous agonist Angiotensin II and the β-arrestin-biased agonist TRV023, β-arrestin 1 and β-arrestin 2 adopt distinct conformations across different subcellular locations, which are intricately linked to differential ERK activation profiles. We also uncover a population of receptor-free catalytically activated β-arrestins in the plasma membrane that exhibits insensitivity to different agonists and promotes ERK activation on the plasma membrane independent of G proteins. These findings deepen our understanding of GPCR signaling complexity and also highlight the nuanced roles of β-arrestins beyond traditional G protein pathways.
Collapse
Affiliation(s)
- Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anand Chundi
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tomasz Maciej Stępniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- InterAx Biotech AG, PARK InnovAARE, 5234 Villigen, Switzerland
| | | | - Dylan Scott Eiger
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Sonia Gazula
- Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Gardner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chloe Hicks
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
25
|
Daddi-Moussa-Ider A, Tjhung E, Pradas M, Richter T, Menzel AM. Rotational dynamics of a disk in a thin film of weakly nematic fluid subject to linear friction. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:58. [PMID: 39322774 PMCID: PMC11424714 DOI: 10.1140/epje/s10189-024-00452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Dynamics at low Reynolds numbers experiences recent revival in the fields of biophysics and active matter. While in bulk isotropic fluids it is exhaustively studied, this is less so in anisotropic fluids and in confined situations. Here, we combine the latter two by studying the rotation of a disk-like inclusion in a uniaxially anisotropic, globally oriented, incompressible two-dimensional fluid film. In terms of a perturbative expansion in parameters that quantify anisotropies in viscosity and in additional linear friction with a supporting substrate or other type of confinement, we derive analytical expressions for the resulting hydrodynamic flow and pressure fields as well as for the resistance and mobility coefficients of the rotating disk. It turns out that, in contrast to translational motion, the solutions remain well-behaved also in the absence of the additional linear friction. Comparison with results from finite-element simulations shows very good agreement with those from our analytical calculations. Besides applications to describe technological systems, for instance, in the area of microfluidics and thin cells of aligned nematic liquid crystals, our solutions are important for quantitative theoretical approaches to fluid membranes and thin films in general featuring a preferred direction.
Collapse
Affiliation(s)
| | - Elsen Tjhung
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Marc Pradas
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Thomas Richter
- Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany
| |
Collapse
|
26
|
Zhang C, Calderin JD, Hurst LR, Gokbayrak ZD, Hrabak MR, Balutowski A, Rivera-Kohr DA, Kazmirchuk TDD, Brett CL, Fratti RA. Sphingolipids containing very long-chain fatty acids regulate Ypt7 function during the tethering stage of vacuole fusion. J Biol Chem 2024; 300:107808. [PMID: 39307308 DOI: 10.1016/j.jbc.2024.107808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024] Open
Abstract
Sphingolipids are essential in membrane trafficking and cellular homeostasis. Here, we show that sphingolipids containing very long-chain fatty acids (VLCFAs) promote homotypic vacuolar fusion in Saccharomyces cerevisiae. The elongase Elo3 adds the last two carbons to VLCFAs that are incorporated into sphingolipids. Cells lacking Elo3 have fragmented vacuoles, which is also seen when WT cells are treated with the sphingolipid synthesis inhibitor Aureobasidin-A. Isolated elo3Δ vacuoles show acidification defects and increased membrane fluidity, and this correlates with deficient fusion. Fusion arrest occurs at the tethering stage as elo3Δ vacuoles fail to cluster efficiently in vitro. Unlike HOPS and fusogenic lipids, GFP-Ypt7 does not enrich at elo3Δ vertex microdomains, a hallmark of vacuole docking prior to fusion. Pulldown assays using bacterially expressed GST-Ypt7 showed that HOPS from elo3Δ vacuole extracts failed to bind GST-Ypt7 while HOPS from WT extracts interacted strongly with GST-Ypt7. Treatment of WT vacuoles with the fluidizing anesthetic dibucaine recapitulates the elo3Δ phenotype and shows increased membrane fluidity, mislocalized GFP-Ypt7, inhibited fusion, and attenuated acidification. Together these data suggest that sphingolipids contribute to Rab-mediated tethering and docking required for vacuole fusion.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | | | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
27
|
Badiola I. What we need in colorectal cancer research, and why? ADVANCES IN GENETICS 2024; 112:1-29. [PMID: 39396835 DOI: 10.1016/bs.adgen.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Cancer is a complex disease that includes tumour and healthy cells surrounding and infiltrating the tumour. During cancer development, tumour cells release many extracellular signals in an autocrine and paracrine way, producing deep phenotypic changes in the surrounding cells, becoming protumoral actors. The entire entity composed of tumour cells and the recruited elements is known as the tumour microenvironment. Immune cells, fibroblasts and endothelial cells, mainly with the extracellular matrix, are the most common elements in different cancer types and coexist in a complex balance of protumoral and antitumoral factors. In this context, the spatial disposition of the tumour microenvironment elements is crucial to knowing the role of each one in the disease development, and the multiplex spatial technology is the way to map the tumours. The combination of spatial study with transcriptomic, proteomic, and epigenomic studies is the most modern tool in the hands of cancer researchers, and it has opened a new era in the study of cancer biology.
Collapse
Affiliation(s)
- Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
28
|
Amoakon JP, Lee J, Liyanage P, Arora K, Karlstaedt A, Mylavarapu G, Amin R, Naren AP. Defective CFTR modulates mechanosensitive channels TRPV4 and PIEZO1 and drives endothelial barrier failure. iScience 2024; 27:110703. [PMID: 39252977 PMCID: PMC11382128 DOI: 10.1016/j.isci.2024.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Despite reports of CFTR expression on endothelial cells, pulmonary vascular perturbations, and perfusion deficits in CF patients, the mechanism of pulmonary vascular disease in CF remains unclear. Here, our pilot study of 40 CF patients reveals a loss of small pulmonary blood vessels in patients with severe lung disease. Using a vessel-on-a-chip model, we establish a shear-stress-dependent mechanism of endothelial barrier failure in CF involving TRPV4, a mechanosensitive channel. Furthermore, we demonstrate that CFTR deficiency downregulates the function of PIEZO1, another mechanosensitive channel involved in angiogenesis and wound repair, and exacerbates loss of small pulmonary blood vessel. We also show that CFTR directly interacts with PIEZO1 and enhances its function. Our study identifies key cellular targets to mitigate loss of small pulmonary blood vessels in CF.
Collapse
Affiliation(s)
- Jean-Pierre Amoakon
- Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jesun Lee
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pramodha Liyanage
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kavisha Arora
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Goutham Mylavarapu
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raouf Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anjaparavanda P Naren
- Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
29
|
Tosi G, Paoli A, Zuccolotto G, Turco E, Simonato M, Tosoni D, Tucci F, Lugato P, Giomo M, Elvassore N, Rosato A, Cogo P, Pece S, Santoro MM. Cancer cell stiffening via CoQ 10 and UBIAD1 regulates ECM signaling and ferroptosis in breast cancer. Nat Commun 2024; 15:8214. [PMID: 39294175 PMCID: PMC11410950 DOI: 10.1038/s41467-024-52523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
CoQ10 (Coenzyme Q10) is an essential fat-soluble metabolite that plays a key role in cellular metabolism. A less-known function of CoQ10 is whether it may act as a plasma membrane-stabilizing agent and whether this property can affect cancer development and progression. Here, we show that CoQ10 and its biosynthetic enzyme UBIAD1 play a critical role in plasmamembrane mechanical properties that are of interest for breast cancer (BC) progression and treatment. CoQ10 and UBIAD1 increase membrane fluidity leading to increased cell stiffness in BC. Furthermore, CoQ10 and UBIAD1 states impair ECM (extracellular matrix)-mediated oncogenic signaling and reduce ferroptosis resistance in BC settings. Analyses on human patients and mouse models reveal that UBIAD1 loss is associated with BC development and progression and UBIAD1 expression in BC limits CTCs (circulating tumor cells) survival and lung metastasis formation. Overall, this study reveals that CoQ10 and UBIAD1 can be further investigated to develop therapeutic interventions to treat BC patients with poor prognosis.
Collapse
Affiliation(s)
- Giovanni Tosi
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Alessandro Paoli
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Emilia Turco
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Manuela Simonato
- Pediatric Research Institute "Città della Speranza", Padova, Italy
| | | | | | - Pietro Lugato
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy
| | - Monica Giomo
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Paola Cogo
- Pediatric Research Institute "Città della Speranza", Padova, Italy
- Division of Pediatrics, Department of Medicine, Udine University, Udine, Italy
| | - Salvatore Pece
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milano, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
30
|
Markotić A, Omerović J, Marijan S, Režić-Mužinić N, Čikeš Čulić V. Biochemical Pathways Delivering Distinct Glycosphingolipid Patterns in MDA-MB-231 and MCF-7 Breast Cancer Cells. Curr Issues Mol Biol 2024; 46:10200-10217. [PMID: 39329960 PMCID: PMC11430773 DOI: 10.3390/cimb46090608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The complex structure of glycosphingolipids (GSLs) supports their important role in cell function as modulators of growth factor receptors and glutamine transporters in plasma membranes. The aberrant composition of clustered GSLs within signaling platforms, so-called lipid rafts, inevitably leads to tumorigenesis due to disturbed growth factor signal transduction and excessive uptake of glutamine and other molecules needed for increased energy and structural molecule cell supply. GSLs are also involved in plasma membrane processes such as cell adhesion, and their transition converts cells from epithelial to mesenchymal with features required for cell migration and metastasis. Glutamine activates the mechanistic target of rapamycin complex 1 (mTORC1), resulting in nucleotide synthesis and proliferation. In addition, glutamine contributes to the cancer stem cell GD2 ganglioside-positive phenotype in the triple-negative breast cancer cell line MDA-MB-231. Thieno[2,3-b]pyridine derivative possesses higher cytotoxicity against MDA-MB-231 than against MCF-7 cells and induces a shift to aerobic metabolism and a decrease in S(6)nLc4Cer GSL-positive cancer stem cells in the MDA-MB-231 cell line. In this review, we discuss findings in MDA-MB-231, MCF-7, and other breast cancer cell lines concerning their differences in growth factor receptors and recent knowledge of the main biochemical pathways delivering distinct glycosphingolipid patterns during tumorigenesis and therapy.
Collapse
Affiliation(s)
- Anita Markotić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Jasminka Omerović
- Department of Immunology, University of Split School of Medicine, 21000 Split, Croatia
| | - Sandra Marijan
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Nikolina Režić-Mužinić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
31
|
Ghadrdoost Nakhchi B, Kosuru R, Chrzanowska M. Towards Targeting Endothelial Rap1B to Overcome Vascular Immunosuppression in Cancer. Int J Mol Sci 2024; 25:9853. [PMID: 39337337 PMCID: PMC11432579 DOI: 10.3390/ijms25189853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The vascular endothelium, a specialized monolayer of endothelial cells (ECs), is crucial for maintaining vascular homeostasis by controlling the passage of substances and cells. In the tumor microenvironment, Vascular Endothelial Growth Factor A (VEGF-A) drives tumor angiogenesis, leading to endothelial anergy and vascular immunosuppression-a state where ECs resist cytotoxic CD8+ T cell infiltration, hindering immune surveillance. Immunotherapies have shown clinical promise. However, their effectiveness is significantly reduced by tumor EC anergy. Anti-angiogenic treatments aim to normalize tumor vessels and improve immune cell infiltration. Despite their potential, these therapies often cause significant systemic toxicities, necessitating new treatments. The small GTPase Rap1B emerges as a critical regulator of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) signaling in ECs. Our studies using EC-specific Rap1B knockout mice show that the absence of Rap1B impairs tumor growth, alters vessel morphology, and increases CD8+ T cell infiltration and activation. This indicates that Rap1B mediates VEGF-A's immunosuppressive effects, making it a promising target for overcoming vascular immunosuppression in cancer. Rap1B shares structural and functional similarities with RAS oncogenes. We propose that targeting Rap1B could enhance therapies' efficacy while minimizing adverse effects by reversing endothelial anergy. We briefly discuss strategies successfully developed for targeting RAS as a model for developing anti-Rap1 therapies.
Collapse
Affiliation(s)
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
| | - Magdalena Chrzanowska
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
32
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Cheng M, Zhang R, Li J, Ma W, Li L, Jiang N, Liu B, Wu J, Zheng N, Wu Z. MβCD inhibits SFTSV entry by disrupting lipid raft structure of the host cells. Antiviral Res 2024; 231:106004. [PMID: 39265655 DOI: 10.1016/j.antiviral.2024.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), recently named as Dabie bandavirus, belongs to the family Phenuiviridae of the order Bunyavirales, is a newly-identified bunyavirus with a case fatality rate of up to 30%, posing a serious threat to public health. Lipid rafts on plasm membranes are important for the entry of enveloped viruses; however, the role of lipid rafts in bunyavirus entry remains unclear. In this study, we found that methyl-beta-cyclodextrin (MβCD), a drug that disrupts cholesterol in lipid rafts of cell membranes, inhibits SFTSV infection. Additionally, there is a back-complementary effect of SFTSV infection upon the addition of cholesterol. Moreover, the concentration of SFTSV particles in lipid rafts during entry directly indicated the role of lipid rafts as a gateway, whereas MβCD could inhibit SFTSV entry by affecting the structure of lipid rafts. In an in vivo study, MβCD also reduced the susceptibility of mice to SFTSV infection. Our results suggest that SFTSV can interact with Talin1 proteins on lipid rafts to enter host cells by endocytosis of lipid rafts and reveal the potential therapeutic value of MβCD for SFTSV infection.
Collapse
Affiliation(s)
- Min Cheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jianshu Li
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Wenyuan Ma
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Linrun Li
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Bingxin Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Jing Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
34
|
Prior R, Silva A, Vangansewinkel T, Idkowiak J, Tharkeshwar AK, Hellings TP, Michailidou I, Vreijling J, Loos M, Koopmans B, Vlek N, Agaser C, Kuipers TB, Michiels C, Rossaert E, Verschoren S, Vermeire W, de Laat V, Dehairs J, Eggermont K, van den Biggelaar D, Bademosi AT, Meunier FA, vandeVen M, Van Damme P, Mei H, Swinnen JV, Lambrichts I, Baas F, Fluiter K, Wolfs E, Van Den Bosch L. PMP22 duplication dysregulates lipid homeostasis and plasma membrane organization in developing human Schwann cells. Brain 2024; 147:3113-3130. [PMID: 38743588 PMCID: PMC11370802 DOI: 10.1093/brain/awae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited peripheral neuropathy caused by a 1.5 Mb tandem duplication of chromosome 17 harbouring the PMP22 gene. This dose-dependent overexpression of PMP22 results in disrupted Schwann cell myelination of peripheral nerves. To obtain better insights into the underlying pathogenic mechanisms in CMT1A, we investigated the role of PMP22 duplication in cellular homeostasis in CMT1A mouse models and in patient-derived induced pluripotent stem cells differentiated into Schwann cell precursors (iPSC-SCPs). We performed lipidomic profiling and bulk RNA sequencing (RNA-seq) on sciatic nerves of two developing CMT1A mouse models and on CMT1A patient-derived iPSC-SCPs. For the sciatic nerves of the CMT1A mice, cholesterol and lipid metabolism was downregulated in a dose-dependent manner throughout development. For the CMT1A iPSC-SCPs, transcriptional analysis unveiled a strong suppression of genes related to autophagy and lipid metabolism. Gene ontology enrichment analysis identified disturbances in pathways related to plasma membrane components and cell receptor signalling. Lipidomic analysis confirmed the severe dysregulation in plasma membrane lipids, particularly sphingolipids, in CMT1A iPSC-SCPs. Furthermore, we identified reduced lipid raft dynamics, disturbed plasma membrane fluidity and impaired cholesterol incorporation and storage, all of which could result from altered lipid storage homeostasis in the patient-derived CMT1A iPSC-SCPs. Importantly, this phenotype could be rescued by stimulating autophagy and lipolysis. We conclude that PMP22 duplication disturbs intracellular lipid storage and leads to a more disordered plasma membrane owing to an alteration in the lipid composition, which might ultimately lead to impaired axo-glial interactions. Moreover, targeting lipid handling and metabolism could hold promise for the treatment of patients with CMT1A.
Collapse
Affiliation(s)
- Robert Prior
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Alessio Silva
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Tim Vangansewinkel
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Jakub Idkowiak
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10, Czech Republic
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Tom P Hellings
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Jeroen Vreijling
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Maarten Loos
- InnoSer Nederland B.V., 2333 CK Leiden, The Netherlands
| | | | - Nina Vlek
- InnoSer Nederland B.V., 2333 CK Leiden, The Netherlands
| | - Cedrick Agaser
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Thomas B Kuipers
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Christine Michiels
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Elisabeth Rossaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Stijn Verschoren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Wendy Vermeire
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Kristel Eggermont
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Diede van den Biggelaar
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frederic A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin vandeVen
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Ivo Lambrichts
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Esther Wolfs
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| |
Collapse
|
35
|
Sharma KD, Doktorova M, Waxham MN, Heberle FA. Cryo-EM images of phase-separated lipid bilayer vesicles analyzed with a machine-learning approach. Biophys J 2024; 123:2877-2891. [PMID: 38689500 PMCID: PMC11393711 DOI: 10.1016/j.bpj.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
Lateral lipid heterogeneity (i.e., raft formation) in biomembranes plays a functional role in living cells. Three-component mixtures of low- and high-melting lipids plus cholesterol offer a simplified experimental model for raft domains in which a liquid-disordered (Ld) phase coexists with a liquid-ordered (Lo) phase. Using such models, we recently showed that cryogenic electron microscopy (cryo-EM) can detect phase separation in lipid vesicles based on differences in bilayer thickness. However, the considerable noise within cryo-EM data poses a significant challenge for accurately determining the membrane phase state at high spatial resolution. To this end, we have developed an image-processing pipeline that utilizes machine learning (ML) to predict the bilayer phase in projection images of lipid vesicles. Importantly, the ML method exploits differences in both the thickness and molecular density of Lo compared to Ld, which leads to improved phase identification. To assess accuracy, we used artificial images of phase-separated lipid vesicles generated from all-atom molecular dynamics simulations of Lo and Ld phases. Synthetic ground-truth data sets mimicking a series of compositions along a tieline of Ld + Lo coexistence were created and then analyzed with various ML models. For all tieline compositions, we find that the ML approach can correctly identify the bilayer phase with >90% accuracy, thus providing a means to isolate the intensity profiles of coexisting Ld and Lo phases, as well as accurately determine domain-size distributions, number of domains, and phase-area fractions. The method described here provides a framework for characterizing nanoscopic lateral heterogeneities in membranes and paves the way for a more detailed understanding of raft properties in biological contexts.
Collapse
Affiliation(s)
- Karan D Sharma
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, Texas
| | | |
Collapse
|
36
|
Virk R, Cook K, Cavazos A, Wassall SR, Gowdy KM, Shaikh SR. How Membrane Phospholipids Containing Long-Chain Polyunsaturated Fatty Acids and Their Oxidation Products Orchestrate Lipid Raft Dynamics to Control Inflammation. J Nutr 2024; 154:2862-2870. [PMID: 39025329 PMCID: PMC11393169 DOI: 10.1016/j.tjnut.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Long-chain PUFA (LC-PUFA) influence varying aspects of inflammation. One mechanism by which they regulate inflammation is by controlling the size and molecular composition of lipid rafts. Lipid rafts are sphingolipid/cholesterol-enriched plasma membrane microdomains that compartmentalize signaling proteins and thereby control downstream inflammatory gene expression and cytokine production. OBJECTIVES This review summarizes developments in our understanding of how LC-PUFA acyl chains of phospholipids, in addition to oxidized derivatives of LC-PUFAs such as oxidized 1-palmitoyl-2-arachidonyl-phosphatidylcholine (oxPAPC), manipulate formation of lipid rafts and thereby inflammation. METHODS We reviewed the literature, largely from the past 2 decades, on the impact of LC-PUFA acyl chains and oxidized products of LC-PUFAs on lipid raft biophysical organization of myeloid and lymphoid cells. The majority of the studies are based on rodent or cellular experiments with supporting mechanistic studies using biomimetic membranes and molecular dynamic simulations. These studies have focused largely on the LC-PUFA docosahexaenoic acid, with some studies addressing eicosapentaenoic acid. A few studies have investigated the role of oxidized phospholipids on rafts. RESULTS The biophysical literature suggests a model in which n-3 LC-PUFAs, in addition to oxPAPC, localize predominately to nonraft regions and impart a disordering effect in this environment. Rafts become larger because of the ensuing increase in the difference in order between raft and nonrafts. Biochemical studies suggest that some n-3 LC-PUFAs can be found within rafts. This deviation from homeostasis is a potential trigger for controlling aspects of innate and adaptive immunity. CONCLUSION Overall, select LC-PUFA acyl chains and oxidized acyl chains of phospholipids control lipid raft dynamics and downstream inflammation. Gaps in knowledge remain, particularly on underlying molecular mechanisms by which plasma membrane receptor organization is controlled in response to oxidized LC-PUFA acyl chains of membrane phospholipids. Validation in humans is also an area for future study.
Collapse
Affiliation(s)
- Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katie Cook
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andres Cavazos
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
37
|
Torra J, Campelo F, Garcia-Parajo MF. Tensing Flipper: Photosensitized Manipulation of Membrane Tension, Lipid Phase Separation, and Raft Protein Sorting in Biological Membranes. J Am Chem Soc 2024; 146:24114-24124. [PMID: 39162019 PMCID: PMC11363133 DOI: 10.1021/jacs.4c08580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The lateral organization of proteins and lipids in the plasma membrane is fundamental to regulating a wide range of cellular processes. Compartmentalized ordered membrane domains enriched with specific lipids, often termed lipid rafts, have been shown to modulate the physicochemical and mechanical properties of membranes and to drive protein sorting. Novel methods and tools enabling the visualization, characterization, and/or manipulation of membrane compartmentalization are crucial to link the properties of the membrane with cell functions. Flipper, a commercially available fluorescent membrane tension probe, has become a reference tool for quantitative membrane tension studies in living cells. Here, we report on a so far unidentified property of Flipper, namely, its ability to photosensitize singlet oxygen (1O2) under blue light when embedded into lipid membranes. This in turn results in the production of lipid hydroperoxides that increase membrane tension and trigger phase separation. In biological membranes, the photoinduced segregated domains retain the sorting ability of intact phase-separated membranes, directing raft and nonraft proteins into ordered and disordered regions, respectively, in contrast to radical-based photo-oxidation reactions that disrupt raft protein partitioning. The dual tension reporting and photosensitizing abilities of Flipper enable simultaneous visualization and manipulation of the mechanical properties and lateral organization of membranes, providing a powerful tool to optically control lipid raft formation and to explore the interplay between membrane biophysics and cell function.
Collapse
Affiliation(s)
- Joaquim Torra
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona 08860, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona 08860, Spain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona 08860, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
38
|
Bagheri Y, Rouches M, Machta B, Veatch SL. Prewetting couples membrane and protein phase transitions to greatly enhance coexistence in models and cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609758. [PMID: 39253471 PMCID: PMC11383005 DOI: 10.1101/2024.08.26.609758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Both membranes and biopolymers can individually separate into coexisting liquid phases. Here we explore biopolymer prewetting at membranes, a phase transition that emerges when these two thermodynamic systems are coupled. In reconstitution, we couple short poly-L-Lysine and poly-L-Glutamic Acid polyelectrolytes to membranes of saturated lipids, unsaturated lipids, and cholesterol, and detect coexisting prewet and dry surface phases well outside of the region of coexistence for each individual system. Notability, polyelectrolyte prewetting is highly sensitive to membrane lipid composition, occurring at 10 fold lower polymer concentration in a membrane close to its phase transition compared to one without a phase transition. In cells, protein prewetting is achieved using an optogenetic tool that enables titration of condensing proteins and tethering to the plasma membrane inner leaflet. Here we show that protein prewetting occurs for conditions well outside those where proteins condense in the cytoplasm, and that the stability of prewet domains is sensitive to perturbations of plasma membrane composition and structure. Our work presents an example of how thermodynamic phase transitions can impact cellular structure outside their individual coexistence regions, suggesting new possible roles for phase-separation-prone systems in cell biology.
Collapse
Affiliation(s)
- Yousef Bagheri
- Program in Biophysics, University of Michigan, Ann Arbor, MI USA
| | - Mason Rouches
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT USA
| | | | - Sarah L. Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
39
|
Barbotin A, Billaudeau C, Sezgin E, Carballido-López R. Quantification of membrane fluidity in bacteria using TIR-FCS. Biophys J 2024; 123:2484-2495. [PMID: 38877702 PMCID: PMC11365102 DOI: 10.1016/j.bpj.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Plasma membrane fluidity is an important phenotypic feature that regulates the diffusion, function, and folding of transmembrane and membrane-associated proteins. In bacterial cells, variations in membrane fluidity are known to affect respiration, transport, and antibiotic resistance. Membrane fluidity must therefore be tightly regulated to adapt to environmental variations and stresses such as temperature fluctuations or osmotic shocks. Quantitative investigation of bacterial membrane fluidity has been, however, limited due to the lack of available tools, primarily due to the small size and membrane curvature of bacteria that preclude most conventional analysis methods used in eukaryotes. Here, we develop an assay based on total internal reflection-fluorescence correlation spectroscopy (TIR-FCS) to directly measure membrane fluidity in live bacteria via the diffusivity of fluorescent membrane markers. With simulations validated by experiments, we could determine how the small size, high curvature, and geometry of bacteria affect diffusion measurements and correct subsequent measurements for unbiased diffusion coefficient estimation. We used this assay to quantify the fluidity of the cytoplasmic membranes of the Gram-positive bacteria Bacillus subtilis (rod-shaped) and Staphylococcus aureus (coccus) at high (37°C) and low (20°C) temperatures in a steady state and in response to a cold shock, caused by a shift from high to low temperature. The steady-state fluidity was lower at 20°C than at 37°C, yet differed between B. subtilis and S. aureus at 37°C. Upon cold shock, the membrane fluidity decreased further below the steady-state fluidity at 20°C and recovered within 30 min in both bacterial species. Our minimally invasive assay opens up exciting perspectives for the study of a wide range of phenomena affecting the bacterial membrane, from disruption by chemicals or antibiotics to viral infection or change in nutrient availability.
Collapse
Affiliation(s)
- Aurélien Barbotin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Cyrille Billaudeau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Rut Carballido-López
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
40
|
Saczuk K, Dudek M, Matczyszyn K, Deiana M. Advancements in molecular disassembly of optical probes: a paradigm shift in sensing, bioimaging, and therapeutics. NANOSCALE HORIZONS 2024; 9:1390-1416. [PMID: 38963132 DOI: 10.1039/d4nh00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The majority of self-assembled fluorescent dyes suffer from aggregation-caused quenching (ACQ), which detrimentally affects their diagnostic and therapeutic effectiveness. While aggregation-induced emission (AIE) active dyes offer a promising solution to overcome this limitation, they may face significant challenges as the intracellular environment often prevents aggregation, leading to disassembly and posing challenges for AIE fluorogens. Recent progress in signal amplification through the disassembly of ACQ dyes has opened new avenues for creating ultrasensitive optical sensors and enhancing phototherapeutic outcomes. These advances are well-aligned with cutting-edge technologies such as single-molecule microscopy and targeted molecular therapies. This work explores the concept of disaggregation-induced emission (DIE), showcasing the revolutionary capabilities of DIE-based dyes from their design to their application in sensing, bioimaging, disease monitoring, and treatment in both cellular and animal models. Our objective is to provide an in-depth comparison of aggregation versus disaggregation mechanisms, aiming to stimulate further advancements in the design and utilization of ACQ fluorescent dyes through DIE technology. This initiative is poised to catalyze scientific progress across a broad spectrum of disciplines.
Collapse
Affiliation(s)
- Karolina Saczuk
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Marta Dudek
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Marco Deiana
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
41
|
Schneider F, Cespedes PF, Karedla N, Dustin ML, Fritzsche M. Quantifying biomolecular organisation in membranes with brightness-transit statistics. Nat Commun 2024; 15:7082. [PMID: 39152104 PMCID: PMC11329664 DOI: 10.1038/s41467-024-51435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Cells crucially rely on the interactions of biomolecules at their plasma membrane to maintain homeostasis. Yet, a methodology to systematically quantify biomolecular organisation, measuring diffusion dynamics and oligomerisation, represents an unmet need. Here, we introduce the brightness-transit statistics (BTS) method based on fluorescence fluctuation spectroscopy and combine information from brightness and transit times to elucidate biomolecular diffusion and oligomerisation in both cell-free in vitro and in vitro systems incorporating living cells. We validate our approach in silico with computer simulations and experimentally using oligomerisation of EGFP tethered to supported lipid bilayers. We apply our pipeline to study the oligomerisation of CD40 ectodomain in vitro and endogenous CD40 on primary B cells. While we find a potential for CD40 to oligomerize in a concentration or ligand depended manner, we do not observe mobile oligomers on B cells. The BTS method combines sensitive analysis, quantification, and intuitive visualisation of dynamic biomolecular organisation.
Collapse
Affiliation(s)
- Falk Schneider
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom.
- Translational Imaging Center, University of Southern California, Los Angeles, California, 90089, United States of America.
| | - Pablo F Cespedes
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Narain Karedla
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, United Kingdom
| | - Michael L Dustin
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom.
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, United Kingdom.
| |
Collapse
|
42
|
Jahnke K, Struve N, Hofmann D, Gote MJ, Bach M, Kriegs M, Hausmann M. Formation of EGFRwt/EGFRvIII homo- and hetero-dimers in glioblastoma cells as detected by single molecule localization microscopy. NANOSCALE 2024; 16:15240-15255. [PMID: 39073345 DOI: 10.1039/d4nr01570c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Super-resolution microscopy has been used to show the formation of receptor clusters and adapted lipid organization of cell membranes for many members of the ErbB receptor family. The clustering behaviour depends on the receptor size and shape, possibly ligand binding or expression activity. Using single molecule localization microscopy (SMLM), we also showed this typical clustering for the epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma multiforme (GBM) cells. EGFRvIII is co-expressed with the wild type (EGFRwt) and both receptors are assumed to preferentially form hetero-dimers leading to transactivation and elevated oncogenic EGFR-signalling in GBM cells. Here, we analysed EGFRvIII and EGFRwt co-localization using our already described model system of the glioblastoma cell line DKMG, displaying endogenous EGFRvIII expression. Using EGFRvIII and EGFRwt specific antibodies, EGFR localization and their potential for dimerization in a given membrane cluster were analysed by dual colour SMLM supported by novel approaches of mathematic evaluations including Ripley statistics, persistent homology and similarity algorithms. Surprisingly, cluster analysis, Ripley point-to-point distance statistics for cluster geometry and persistent homology comparing cluster topology, revealed that both EGFRvIII and EGFRwt do primarily not form hetero-dimers but the results support the hypothesis that they tend to form homo-dimers. The ratio of homo-dimers obtained by this calculation was significantly higher (>5σ, standard deviation) than expected from randomly arranged points. In comparison, hetero-dimer formation was only slightly increased. We confirmed these data by immunoprecipitation, which show no co-precipitation of EGFRvIII and EGFRwt. Furthermore, we showed that the topology of the clusters was more similar among the same type than among the different types of receptors. Taken together, these data indicate that EGFRvIII does induce oncogenic signalling by homo-dimerisation and not preferentially by hetero-dimer formation with EGFRwt. These data offer a new perspective on EGFRvIII signalling which will lead to a better understanding of this tumour associated receptor variant in GBM.
Collapse
Affiliation(s)
- Kevin Jahnke
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Nina Struve
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg - Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Daniel Hofmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Martin Julius Gote
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Margund Bach
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Malte Kriegs
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg - Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| |
Collapse
|
43
|
Tang H, Huang Z, Wang M, Luan X, Deng Z, Xu J, Fan W, He D, Zhou C, Wang L, Li J, Zeng F, Li D, Zhou J. Research progress of migrasomes: from genesis to formation, physiology to pathology. Front Cell Dev Biol 2024; 12:1420413. [PMID: 39206093 PMCID: PMC11349668 DOI: 10.3389/fcell.2024.1420413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Migrasomes are recently identified organelles that form at the ends or forks of retraction fibers (RFs) behind migrating cells and are expelled from the cell through cell migration. Migrasomes contain signaling molecules which are captured by surrounding cells along with migrasomes or released into the extracellular environment following the rupture of the migrasomes. Finally, through the action of these signaling molecules, migrasomes facilitate the entire process of information conveyance. In addition, migrasomes also serves as a "scavenger" by removing damaged mitochondria from the cell to ensure cellular viability. Thus, migrasomes play a pivotal role in the integration of temporal, spatial, specific chemical information and the clearance of cellular harmful substances, critical for grasping migrasomes' functions. This review delves into the latest advancements in migrasomes research, covering aspects such as migrasomes' discovery, distribution, structure and characteristics, genesis and regulation mechanisms, and their correlation with diseases. Additionally, we scrutinize the present investigational findings on migrasomes within the cancer domain, examining their potential impact on cancer and prospective research avenues.
Collapse
Affiliation(s)
- Hua Tang
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Zhe Huang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Zengfu Deng
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jian Xu
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Wei Fan
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Dongsheng He
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Chong Zhou
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Liangbin Wang
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jun Li
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Fanfeng Zeng
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Dongbo Li
- Department of Neurosurgery, The People’s Hospital of Jianyang City, Chengdu, China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Cliniccal Research Center for Neurosurgery, Luzhou, China
- Laboratory of Brain Function, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
44
|
Demey LM, Sinha R, DiRita VJ. An essential host dietary fatty acid promotes TcpH inhibition of TcpP proteolysis promoting virulence gene expression in Vibrio cholerae. mBio 2024; 15:e0072124. [PMID: 38958446 PMCID: PMC11323476 DOI: 10.1128/mbio.00721-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Vibrio cholerae is a Gram-negative gastrointestinal pathogen responsible for the diarrheal disease cholera. Expression of key virulence factors, cholera toxin and toxin-coregulated pilus, is regulated directly by ToxT and indirectly by two transmembrane transcription regulators (TTRs), ToxR and TcpP, that promote the expression of toxT. TcpP abundance and activity are controlled by TcpH, a single-pass transmembrane protein, which protects TcpP from a two-step proteolytic process known as regulated intramembrane proteolysis (RIP). The mechanism of TcpH-mediated protection of TcpP represents a major gap in our understanding of V. cholerae pathogenesis. The absence of tcpH leads to unimpeded degradation of TcpP in vitro and a colonization defect in a neonate mouse model of V. cholerae colonization. Here, we show that TcpH protects TcpP from RIP via direct interaction. We also demonstrate that α-linolenic acid, a dietary fatty acid, promotes TcpH-dependent inhibition of RIP via co-association of TcpP and TcpH molecules within detergent-resistant membranes (DRMs) in a mechanism requiring the TcpH transmembrane domain. Taken together, our data support a model where V. cholerae cells use exogenous α-linolenic acid to remodel the phospholipid bilayer in vivo, leading to co-association of TcpP and TcpH within DRMs where RIP of TcpP is inhibited by TcpH, thereby promoting V. cholerae pathogenicity. IMPORTANCE Vibrio cholerae continues to pose a significant global burden on health and an alternative therapeutic approach is needed, due to evolving multidrug resistance strains. Transcription of toxT, stimulated by TcpP and ToxR, is essential for V. cholerae pathogenesis. Our results show that TcpP, one of the major regulators of toxT gene expression, is protected from proteolysis by TcpH, via direct interaction. Furthermore, we identified a gut metabolite, α-linolenic acid, that stimulates the co-association of TcpP and TcpH within detergent-resistant membranes (also known as lipid-ordered membrane domains), thereby supporting TcpH-dependent antagonism of TcpP proteolysis. Data presented here extend our knowledge of RIP, virulence gene regulation in V. cholerae, and, to the best of our knowledge, provides the first evidence that lipid-ordered membranes exist within V. cholerae. The model presented here also suggests that TTRs, common among bacteria and archaea, and co-component signal transduction systems present in Enterobacteria, could also be influenced similarly.
Collapse
Affiliation(s)
- Lucas M. Demey
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Ritam Sinha
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Victor J. DiRita
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
45
|
Yang GS, Wagenknecht-Wiesner A, Yin B, Suresh P, London E, Baird BA, Bag N. Lipid-driven interleaflet coupling of plasma membrane order regulates FcεRI signaling in mast cells. Biophys J 2024; 123:2256-2270. [PMID: 37533258 PMCID: PMC11331041 DOI: 10.1016/j.bpj.2023.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Interleaflet coupling-the influence of one leaflet on the properties of the opposing leaflet-is a fundamental plasma membrane organizational principle. This coupling is proposed to participate in maintaining steady-state biophysical properties of the plasma membrane, which in turn regulates some transmembrane signaling processes. A prominent example is antigen (Ag) stimulation of signaling by clustering transmembrane receptors for immunoglobulin E (IgE), FcεRI. This transmembrane signaling depends on the stabilization of ordered regions in the inner leaflet for sorting of intracellular signaling components. The resting inner leaflet has a lipid composition that is generally less ordered than the outer leaflet and that does not spontaneously phase separate in model membranes. We propose that interleaflet coupling can mediate ordering and disordering of the inner leaflet, which is poised in resting cells to reorganize upon stimulation. To test this in live cells, we first established a straightforward approach to evaluate induced changes in membrane order by measuring inner leaflet diffusion of lipid probes by imaging fluorescence correlation spectroscopy, by imaging fluorescence correlation spectroscopy (ImFCS), before and after methyl-α-cyclodexrin (mαCD)-catalyzed exchange of outer leaflet lipids (LEX) with exogenous order- or disorder-promoting phospholipids. We examined the functional impact of LEX by monitoring two Ag-stimulated responses: recruitment of cytoplasmic Syk kinase to the inner leaflet and exocytosis of secretory granules (degranulation). Based on the ImFCS data in resting cells, we observed global increase or decrease of inner leaflet order when outer leaflet is exchanged with order- or disorder-promoting lipids, respectively. We find that the degree of both stimulated Syk recruitment and degranulation correlates positively with LEX-mediated changes of inner leaflet order in resting cells. Overall, our results show that resting-state lipid ordering of the outer leaflet influences the ordering of the inner leaflet, likely via interleaflet coupling. This imposed lipid reorganization modulates transmembrane signaling stimulated by Ag clustering of IgE-FcεRI.
Collapse
Affiliation(s)
- Gil-Suk Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | | | - Boyu Yin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; Department of Chemistry, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|
46
|
Daddi-Moussa-Ider A, Tjhung E, Richter T, Menzel AM. Hydrodynamics of a disk in a thin film of weakly nematic fluid subject to linear friction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:445101. [PMID: 39029503 DOI: 10.1088/1361-648x/ad65ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
To make progress towards the development of a theory on the motion of inclusions in thin structured films and membranes, we here consider as an initial step a circular disk in a two-dimensional, uniaxially anisotropic fluid layer. We assume overdamped dynamics, incompressibility of the fluid, and global alignment of the axis of anisotropy. Motion within this layer is affected by additional linear friction with the environment, for instance, a supporting substrate. We investigate the induced flows in the fluid when the disk is translated parallel or perpendicular to the direction of anisotropy. Moreover, expressions for corresponding mobilities and resistance coefficients of the disk are derived. Our results are obtained within the framework of a perturbative expansion in the parameters that quantify the anisotropy of the fluid. Good agreement is found for moderate anisotropy when compared to associated results from finite-element simulations. At pronounced anisotropy, the induced flow fields are still predicted qualitatively correctly by the perturbative theory, although quantitative deviations arise. We hope to stimulate with our investigations corresponding experimental analyses, for example, concerning fluid flows in anisotropic thin films on uniaxially rubbed supporting substrates.
Collapse
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Elsen Tjhung
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Thomas Richter
- Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
47
|
Park S, Kim J, Oh SS, Choi SQ. Arginine-Rich Cell-Penetrating Peptides Induce Lipid Rearrangements for Their Active Translocation across Laterally Heterogeneous Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404563. [PMID: 38932459 PMCID: PMC11348069 DOI: 10.1002/advs.202404563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Arginine-rich cell-penetrating peptides (CPPs) have emerged as valuable tools for the intracellular delivery of bioactive molecules, but their membrane perturbation during cell penetration is not fully understood. Here, nona-arginine (R9)-mediated membrane reorganization that facilitates the translocation of peptides across laterally heterogeneous membranes is directly visualized. The electrostatic binding of cationic R9 to anionic phosphatidylserine (PS)-enriched domains on a freestanding lipid bilayer induces lateral lipid rearrangements; in particular, in real-time it is observed that R9 fluidizes PS-rich liquid-ordered (Lo) domains into liquid-disordered (Ld) domains, resulting in the membrane permeabilization. The experiments with giant unilamellar vesicles (GUVs) confirm the preferential translocation of R9 through Ld domains without pore formation, even when Lo domains are more negatively charged. Indeed, whenever R9 comes into contact with negatively charged Lo domains, it dissolves the Lo domains first, promoting translocation across phase-separated membranes. Collectively, the findings imply that arginine-rich CPPs modulate lateral membrane heterogeneity, including membrane fluidization, as one of the fundamental processes for their effective cell penetration across densely packed lipid bilayers.
Collapse
Affiliation(s)
- Sujin Park
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jinmin Kim
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Seung Soo Oh
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I‐CREATE)Yonsei UniversityIncheon21983Republic of Korea
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
48
|
Maehashi S, Arora K, Fisher AL, Schweitzer DR, Akefe IO. Neurolipidomic insights into anxiety disorders: Uncovering lipid dynamics for potential therapeutic advances. Neurosci Biobehav Rev 2024; 163:105741. [PMID: 38838875 DOI: 10.1016/j.neubiorev.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Anxiety disorders constitute a spectrum of psychological conditions affecting millions of individuals worldwide, imposing a significant health burden. Historically, the development of anxiolytic medications has been largely focused on neurotransmitter function and modulation. However, in recent years, neurolipids emerged as a prime target for understanding psychiatric pathogenesis and developing novel medications. Neurolipids influence various neural activities such as neurotransmission and cellular functioning, as well as maintaining cell membrane integrity. Therefore, this review aims to elucidate the alterations in neurolipids associated with an anxious mental state and explore their potential as targets of novel anxiolytic medications. Existing evidence tentatively associates dysregulated neurolipid levels with the etiopathology of anxiety disorders. Notably, preclinical investigations suggest that several neurolipids, including endocannabinoids and polyunsaturated fatty acids, may hold promise as potential pharmacological targets. Overall, the current literature tentatively suggests the involvement of lipids in the pathogenesis of anxiety disorders, hinting at potential prospects for future pharmacological interventions.
Collapse
Affiliation(s)
- Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- Academy for Medical Education, The University of Queensland, Herston, QLD 4006, Australia.
| |
Collapse
|
49
|
Zhang Y, Wang Z, Lu Y, Sanchez DJ, Li J, Wang L, Meng X, Chen J, Kien TT, Zhong M, Gao W, Ding X. Region-Specific CD16 + Neutrophils Promote Colorectal Cancer Progression by Inhibiting Natural Killer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403414. [PMID: 38790136 PMCID: PMC11304263 DOI: 10.1002/advs.202403414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The colon is the largest compartment of the immune system, with innate immune cells exposed to antigens in the environment. However, the mechanisms by which the innate immune system is instigated are poorly defined in colorectal cancer (CRC). Here, a population of CD16+ neutrophils that specifically accumulate in CRC tumor tissues by imaging mass cytometry (IMC), immune fluorescence, and flow cytometry, which demonstrated pro-tumor activity by disturbing natural killer (NK) cells are identified. It is found that these CD16+ neutrophils possess abnormal cholesterol accumulation due to activation of the CD16/TAK1/NF-κB axis, which upregulates scavenger receptors for cholesterol intake including CD36 and LRP1. Consequently, these region-specific CD16+ neutrophils not only competitively inhibit cholesterol intake of NK cells, which interrupts NK lipid raft formation and blocks their antitumor signaling but also release neutrophil extracellular traps (NETs) to induce the death of NK cells. Furthermore, CD16-knockout reverses the pro-tumor activity of neutrophils and restored NK cell cytotoxicity. Collectively, the findings suggest that CRC region-specific CD16+ neutrophils can be a diagnostic marker and potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Zien Wang
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Yu Lu
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - David J. Sanchez
- Pharmaceutical Sciences DepartmentCollege of PharmacyWestern University of Health Sciences309 East 2nd StreetHPC 225PomonaCA90025USA
| | - Jiaojiao Li
- School of Biomedical EngineeringFaculty of Engineering and ITUniversity of Technology SydneySydneyNSW2007Australia
| | - Linghao Wang
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xiaoxue Meng
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jianjun Chen
- Department of Gastrointestinal SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Tran Trung Kien
- Oncology departmentUniversity Medical Shing Mark Hospital1054 Highway 51, Long Binh Tan Ward, Bien Hoa CityDong Nai76000Vietnam
| | - Ming Zhong
- Department of Gastrointestinal SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
50
|
Kumachova TK, Voronkov AS. Cutinsomes of Malus Mill. (Rosaceae) leaf and pericarp: genesis, localization, and transport. Micron 2024; 183:103657. [PMID: 38735105 DOI: 10.1016/j.micron.2024.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
New data were obtained on specific bionanostructures, cutinsomes, which are involved in the formation of cuticles on the surface of leaf blades and pericarp of Malus domestica Borkh (Malus Mill., Rosaceae)introduced to the mountains at the altitudes of 1200 and 1700 m above sea level. Cutinsomes, which are electron-dense structures of spherical shape, have been identified by transmission electron microscopy. It was demonstrated that plastids can be involved in the synthesis of their constituent nanocomponents. The greatest number of nanoparticles was observed in the granal thylakoid lumen of the chloroplasts in palisade mesophyll cells and pericarp hypodermal cells. The transmembrane transport of cutinsomes into the cell wall cuticle proper by exocytosis has been visualized for the first time. The plasma membrane is directly involved in the excretion of nanostructures from the cell. Nanoparticles of cutinsomes in the form of necklace-like formations line up in a chain near cell walls, merge into larger conglomerates and are loaded into plasmalemma invaginations, and then, in membrane packing, they move into the cuticle, which covers both outer and inner cell walls of external tissues. The original materials obtained by us supplement the ideas about the non-enzymatic synthesis of cuticle components available in the literature and expand the cell compartment geography involved in this process.
Collapse
Affiliation(s)
- Tamara Kh Kumachova
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskaya 49, Moscow 127550, Russia
| | - Alexander S Voronkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, Moscow 127276, Russia.
| |
Collapse
|