1
|
Shi Y, Wu X, Meng G, Ma X, La Y, Bao P, Chu M, Yan P. Identification and Analysis of Circular RNAs in Mammary Gland from Yaks Between Lactation and Dry Period. Animals (Basel) 2025; 15:89. [PMID: 39795032 PMCID: PMC11718809 DOI: 10.3390/ani15010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Lactation is a complex physiological process regulated by numerous genes and factors. Circular RNA (circRNA), a non-coding RNA, acts as a molecular sponge that sequesters microRNAs (miRNAs) to regulate target gene expression. Although circRNA has been linked to mammary gland lactation, its specific role in yaks remains underexplored. This study employed circular RNA sequencing (circRNA-seq) to examine the differential expression of circRNAs in yak mammary tissues during lactation and the dry period. Additionally, an enrichment analysis of the differentially expressed circRNAs (DECs) was performed. A competing endogenous RNA (ceRNA) network was then constructed to explore the potential of their roles in lactation and mammary gland development. We detected 18,905 circRNAs in yak mammary tissue, among which 302 showed differential expression. The host genes of these DECs were enriched in functions and pathways associated with yak milk synthesis and composition. Through the construction of a ceRNA network and the enrichment analysis of associated mRNAs, this study identified ceRNAs potentially involved in regulating lactation and mammary gland development. In conclusion, circRNAs in yak mammary tissues were identified and analyzed across lactation and dry periods, establishing a ceRNA network related to lactation regulation. These findings provide novel insights into the regulatory mechanisms governing lactation in yaks (Bos grunniens).
Collapse
Affiliation(s)
- Yilin Shi
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Y.S.); (X.W.); (G.M.); (X.M.); (Y.L.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Y.S.); (X.W.); (G.M.); (X.M.); (Y.L.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Guangyao Meng
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Y.S.); (X.W.); (G.M.); (X.M.); (Y.L.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Y.S.); (X.W.); (G.M.); (X.M.); (Y.L.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Y.S.); (X.W.); (G.M.); (X.M.); (Y.L.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Y.S.); (X.W.); (G.M.); (X.M.); (Y.L.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Y.S.); (X.W.); (G.M.); (X.M.); (Y.L.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Y.S.); (X.W.); (G.M.); (X.M.); (Y.L.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 931100, China
| |
Collapse
|
2
|
Folacci M, Chalmers SB, Davis FM. Methods for Imaging Intracellular Calcium Signals in the Mouse Mammary Epithelium in Two and Three Dimensions. Methods Mol Biol 2025; 2861:195-212. [PMID: 39395107 DOI: 10.1007/978-1-0716-4164-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
The mammary gland has a central role in optimal mammalian development and survival. Contractions of smooth muscle-like basal (or myoepithelial) cells in the functionally mature mammary gland in response to oxytocin are essential for milk ejection and are tightly regulated by intracellular calcium (Ca2+). Using mice expressing a genetically encoded Ca2+ indicator (GCaMP6f), we present in this chapter a method to visualize at high spatiotemporal resolution changes in intracellular Ca2+ in mammary epithelial cells, both in vitro (2D) and ex vivo (3D). The procedure to optimally prepare mammary tissue and primary cells is presented in detail.
Collapse
Affiliation(s)
| | | | - Felicity M Davis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark.
- Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Shams A. Impact of prolactin treatment on enhancing the cellular responses of MCF7 breast cancer cells to tamoxifen treatment. Discov Oncol 2024; 15:797. [PMID: 39692941 DOI: 10.1007/s12672-024-01701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
Breast cancer remains one of the most challenging diseases to treat due to its heterogeneity, propensity to recur, capacity to spread to distant vital organs, and, ultimately, patient death. Estrogen receptor-positive illness comprises the most common breast cancer subtype. Preclinical progress is hampered by the scarcity of medication-naïve estrogen receptor-positive tumour models that recapitulate metastatic development and treatment resistance. It is becoming increasingly clear that loss of differentiation and increased cellular stemness and plasticity are important causes of cancer evolution, heterogeneity, recurrence, metastasis, and treatment failure. Therefore, it has been suggested that reprogramming cancer cell differentiation could offer an effective method of reversing cancer through terminal differentiation and maturation. In this context, the hormone prolactin is well recognized for its pivotal involvement in the development of the mammary glands lobuloalveolar tissue and the terminal differentiation that drives the production of the milk protein gene and lactation. Additionally, numerous studies have examined the engagement of prolactin in breast cancer as a differentiation player that resulted in the ablation of tumour growth and progression. Here, we showed that a pre-treatment of the estrogen-positive breast cancer cell line with prolactin led to a considerable improvement in the sensitivity of this cancer cell to Tamoxifen endocrine therapy. We also showed a favourable prognostic value of prolactin receptors/estrogen receptors 1 (or alpha) co-expression on breast cancer patients outcomes, and this co-expression is highly correlated with the well-differentiated breast tumour type. Our results revealed a fruitful aspect of the effects of prolactin in improving the responses of breast cancer cells to conventional endocrine therapy. Moreover, these findings further validated the ability of prolactin as a persuader of a more differentiated and less aggressive breast cancer phenotype. Hence, it suggested a potential implication of prolactin as a therapeutic candidate.
Collapse
Affiliation(s)
- Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Taif, Saudi Arabia.
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research,, Taif University, Taif 26432, Taif, Saudi Arabia.
- High Altitude Research Center, Taif University, P.O. Box 11099, Taif 21944, Taif, Saudi Arabia.
| |
Collapse
|
4
|
Algieri C, Bernardini C, La Mantia D, Trombetti F, Forni M, Nesci S. A comparative study of bioenergetic metabolism on mammary epithelial cells from humans and Göttingen Minipigs. Biochim Biophys Acta Gen Subj 2024; 1868:130728. [PMID: 39437974 DOI: 10.1016/j.bbagen.2024.130728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Mammary epithelial cells (MECs) of humans (h) and Göttingen Minipigs (mp) were analyzed to compare their ability to perform ATP production by oxidative phosphorylation and glycolysis. The ATP production under basal and stressor situations highlights the same metabolic potential of both primary cell lines. However, quantitively the ATP production rate of hMECs was higher than mpMECs. Conversely, oxidative cell respiration in mpMECs exploits a maximum respiratory capacity to support pathophysiological circumstances or stress conditions that could require an excessive effort of cell metabolism. Since mpMECs primarily utilize an oxidative metabolism similar to hMECs, the metabolic characterization conducted allows us to confirm that mpMECs represent a potential alternative cellular model in the translational medicine approach.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy
| | - Monica Forni
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Italy.
| |
Collapse
|
5
|
Habanjar O, Nehme R, Goncalves-Mendes N, Cueff G, Blavignac C, Aoun J, Decombat C, Auxenfans C, Diab-Assaf M, Caldefie-Chézet F, Delort L. The obese inflammatory microenvironment may promote breast DCIS progression. Front Immunol 2024; 15:1384354. [PMID: 39072314 PMCID: PMC11272476 DOI: 10.3389/fimmu.2024.1384354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Ductal carcinoma in situ (DCIS), characterized by a proliferation of neoplastic cells confined within the mammary ducts, is distinctly isolated from the surrounding stroma by an almost uninterrupted layer of myoepithelial cells (MECs) and by the basement membrane. Heightened interactions within the adipose microenvironment, particularly in obese patients, may play a key role in the transition from DCIS to invasive ductal carcinoma (IDC), which is attracting growing interest in scientific research. Adipose tissue undergoes metabolic changes in obesity, impacting adipokine secretion and promoting chronic inflammation. This study aimed to assess the interactions between DCIS, including in situ cancer cells and MECs, and the various components of its inflammatory adipose microenvironment (adipocytes and macrophages). Methods To this end, a 3D co-culture model was developed using bicellular bi-fluorescent DCIS-like tumoroids, adipose cells, and macrophages to investigate the influence of the inflammatory adipose microenvironment on DCIS progression. Results The 3D co-culture model demonstrated an inhibition of the expression of genes involved in apoptosis (BAX, BAG1, BCL2, CASP3, CASP8, and CASP9), and an increase in genes related to cell survival (TP53, JUN, and TGFB1), inflammation (TNF-α, PTGS2, IL-6R), invasion and metastasis (TIMP1 and MMP-9) in cancer cells of the tumoroids under inflammatory conditions versus a non-inflammatory microenvironment. On the contrary, it confirmed the compromised functionality of MECs, resulting in the loss of their protective effects against cancer cells. Adipocytes from obese women showed a significant increase in the expression of all studied myofibroblast-associated genes (myoCAFs), such as FAP and α-SMA. In contrast, adipocytes from normal-weight women expressed markers of inflammatory fibroblast phenotypes (iCAF) characterized by a significant increase in the expression of LIF and inflammatory cytokines such as TNF-α, IL-1β, IL-8, and CXCL-10. These changes also influenced macrophage polarization, leading to a pro-inflammatory M1 phenotype. In contrast, myoCAF-associated adipocytes, and the cancer-promoting microenvironment polarized macrophages towards an M2 phenotype, characterized by high CD163 receptor expression and IL-10 and TGF-β secretion. Discussion Reciprocal interactions between the tumoroid and its microenvironment, particularly in obesity, led to transcriptomic changes in adipocytes and macrophages, may participate in breast cancer progression while disrupting the integrity of the MEC layer. These results underlined the importance of adipose tissue in cancer progression.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Gwendal Cueff
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Christelle Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - Jessy Aoun
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Céline Auxenfans
- Banque de tissus et de cellules, Hôpital Edouard-Herriot, Lyon, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beirut, Lebanon
| | | | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| |
Collapse
|
6
|
Hua K, Liu D, Xu Q, Peng Y, Sun Y, He R, Luo R, Jin H. The role of hormones in the regulation of lactogenic immunity in porcine and bovine species. Domest Anim Endocrinol 2024; 88:106851. [PMID: 38733944 DOI: 10.1016/j.domaniend.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Colostrum and milk offer a complete diet and vital immune protection for newborn mammals with developing immune systems. High immunoglobulin levels in colostrum serve as the primary antibody source for newborn piglets and calves. Subsequent milk feeding support continued local antibody protection against enteric pathogens, as well as maturation of the developing immune system and provide nutrients for newborn growth. Mammals have evolved hormonal strategies that modulate the levels of immunoglobulins in colostrum and milk to facilitate effective lactational immunity. In addition, hormones regulate the gut-mammary gland-secretory immunoglobulin A (sIgA) axis in pregnant mammals, controlling the levels of sIgA in milk, which serves as the primary source of IgA for piglets and helps them resist pathogens such as PEDV and TGEV. In the present study, we review the existing studies on the interactions between hormones and the gut-mammary-sIgA axis/lactogenic immunity in mammals and explore the potential mechanisms of hormonal regulation that have not been studied in detail, to draw attention to the role of hormones in influencing the immune response of pregnant and lactating mammals and their offspring, and highlight the effect of hormones in regulating sIgA-mediated anti-infection processes in colostrum and milk. Discussion of the relationship between hormones and lactogenic immunity may lead to a better way of improving lactogenic immunity by determining a better injection time and developing new vaccines.
Collapse
Affiliation(s)
- Kexin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Qianshuai Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Yu Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Rongrong He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
7
|
Chadchan SB, Popli P, Liao Z, Andreas E, Dias M, Wang T, Gunderson SJ, Jimenez PT, Lanza DG, Lanz RB, Foulds CE, Monsivais D, DeMayo FJ, Yalamanchili HK, Jungheim ES, Heaney JD, Lydon JP, Moley KH, O'Malley BW, Kommagani R. A GREB1-steroid receptor feedforward mechanism governs differential GREB1 action in endometrial function and endometriosis. Nat Commun 2024; 15:1947. [PMID: 38431630 PMCID: PMC10908778 DOI: 10.1038/s41467-024-46180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Cellular responses to the steroid hormones, estrogen (E2), and progesterone (P4) are governed by their cognate receptor's transcriptional output. However, the feed-forward mechanisms that shape cell-type-specific transcriptional fulcrums for steroid receptors are unidentified. Herein, we found that a common feed-forward mechanism between GREB1 and steroid receptors regulates the differential effect of GREB1 on steroid hormones in a physiological or pathological context. In physiological (receptive) endometrium, GREB1 controls P4-responses in uterine stroma, affecting endometrial receptivity and decidualization, while not affecting E2-mediated epithelial proliferation. Of mechanism, progesterone-induced GREB1 physically interacts with the progesterone receptor, acting as a cofactor in a positive feedback mechanism to regulate P4-responsive genes. Conversely, in endometrial pathology (endometriosis), E2-induced GREB1 modulates E2-dependent gene expression to promote the growth of endometriotic lesions in mice. This differential action of GREB1 exerted by a common feed-forward mechanism with steroid receptors advances our understanding of mechanisms that underlie cell- and tissue-specific steroid hormone actions.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pooja Popli
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zian Liao
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Eryk Andreas
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle Dias
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Stephanie J Gunderson
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patricia T Jimenez
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Charles E Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Emily S Jungheim
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Obstetrics and Gynecology, Fienberg School of Medicine, Chicago, IL, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelle H Moley
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Pan S, Yu W, Zhang J, Guo Y, Qiao X, Xu P, Zhai Y. Environmental chemical TCPOBOP exposure alters milk liposomes and offspring growth trajectories in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116061. [PMID: 38340598 DOI: 10.1016/j.ecoenv.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Exposure to environmental endocrine disruptors (EEDs) has become a global health concern, and EEDs are known to be potent inducers of constitutive androstane receptor (CAR). 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP, hereafter abbreviated as TC), a specific ligand for CAR, has been considered as a potential EED. Here, we analyzed the effect of TC exposure to female mice on the histological morphology of their alveoli in the basic unit of lactation. We quantified differences in the milk metabolome of the control and TC-exposed group while assessing the correlations between metabolites and neonatal growth. Mammary histological results showed that TC exposure inhibited alveolar development. Based on the milk metabolomic data, we identified a total of 1505 differential metabolites in both the positive and negative ion mode, which indicated that TC exposure affected milk composition. As expected, the differential metabolites were significantly enriched in the drug metabolism pathway. Further analyses revealed that differential metabolites were significantly enriched in multiple lipid metabolic pathways, such as fatty acid biosynthesis, suggesting that most differential metabolites were concentrated in lipids. Simultaneously, a quantitative analysis showed that TC exposure led to a decrease in the relative abundance of total milk lipids, affecting the proportion of some lipid subclasses. Notably, a portion of lipid metabolites were associated with neonatal growth. Taken together, these findings suggest that TC exposure may affect milk lipidomes, resulting in the inability of mothers to provide adequate nutrients, ultimately affecting the growth and health of their offspring.
Collapse
Affiliation(s)
- Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wen Yu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jia Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Xiaoxiao Qiao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
9
|
Chen S, Long M, Li XY, Li QM, Pan LH, Luo JP, Zha XQ. Codonopsis lanceolata polysaccharide ameliorates high-fat diet induced-postpartum hypogalactia via stimulating prolactin receptor-mediated Jak2/Stat5 signaling. Int J Biol Macromol 2024; 259:129114. [PMID: 38181915 DOI: 10.1016/j.ijbiomac.2023.129114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
This study aims to investigate the ameliorative effect of Codonopsis lanceolata polysaccharide (PCL) on mice with hypogalatia induced by a high-fat diet (HFD) and the potential underlying mechanism. We found that oral administration of PCL demonstrated significant benefits in countering the negative effects of HFD, including weight gain, hepatic steatosis, mesenteric adipocyte hypertrophy, and abnormal glucose/lipid metabolism. In addition, PCL improved mammary gland development and enhanced lactogenesis performance. Histologically, PCL ameliorated the retardation of ductal growth, reduced mammary fat pad thickness, improved the incomplete linear encapsulation of luminal epithelium and myoepithelium, and increased the proliferation of mammary epithelial cells. Flow cytometry analysis showed that PCL mitigated the detrimental effects of HFD on mammary gland development by promoting the proliferation and differentiation of mammary epithelial cells. Mechanistic studies revealed that PCL upregulated the levels of prolactin (PRL) and its receptor (PRLR) in the mammary gland, activated JAK2/STAT5 signaling pathway, and increased the expression of p63, ERBB4, and NRG1. Overall, PCL can ameliorate HFD-induced hypogalactia by activating PRLR-mediated JAK2/STAT5 signaling. Our findings offer a methodological and theoretical foundation for investigating the functional constituents of traditional Chinese medicine in the treatment of hypogalactia.
Collapse
Affiliation(s)
- Shun Chen
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Miao Long
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
10
|
Jena MK, Khan FB, Ali SA, Abdullah A, Sharma AK, Yadav V, Kancharla S, Kolli P, Mandadapu G, Sahoo AK, Rath PK, Taneera J, Kumar S, Mohanty AK, Goh KW, Ming LC, Ardianto C. Molecular complexity of mammary glands development: a review of lactogenic differentiation in epithelial cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:491-508. [PMID: 37694522 DOI: 10.1080/21691401.2023.2252872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
The mammary gland is a dynamic organ with various physiological processes like cellular proliferation, differentiation, and apoptosis during the pregnancy-lactation-involution cycle. It is essential to understand the molecular changes during the lactogenic differentiation of mammary epithelial cells (MECs, the milk-synthesizing cells). The MECs are organized as luminal milk-secreting cells and basal myoepithelial cells (responsible for milk ejection by contraction) that form the alveoli. The branching morphogenesis and lactogenic differentiation of the MECs prepare the gland for lactation. This process is governed by many molecular mediators including hormones, growth factors, cytokines, miRNAs, regulatory proteins, etc. Interestingly, various signalling pathways guide lactation and understanding these molecular transitions from pregnancy to lactation will help researchers design further research. Manipulation of genes responsible for milk synthesis and secretion will promote augmentation of milk yield in dairy animals. Identifying protein signatures of lactation will help develop strategies for persistent lactation and shortening the dry period in farm animals. The present review article discusses in details the physiological and molecular changes occurring during lactogenic differentiation of MECs and the associated hormones, regulatory proteins, miRNAs, and signalling pathways. An in-depth knowledge of the molecular events will aid in developing engineered cellular models for studies related to mammary gland diseases of humans and animals.
Collapse
Affiliation(s)
- Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Farheen Badrealam Khan
- Department of Biology, College of Arts and Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Syed Azmal Ali
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abdullah Abdullah
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower, Pakistan
| | - Amarish Kumar Sharma
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skane University Hospital, Lund University, Malmo, Sweden
| | | | | | | | - Anjan Kumar Sahoo
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | | | - Khang Wen Goh
- Faculty Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
11
|
Wicker MN, Wagner KU. Cellular Plasticity in Mammary Gland Development and Breast Cancer. Cancers (Basel) 2023; 15:5605. [PMID: 38067308 PMCID: PMC10705338 DOI: 10.3390/cancers15235605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Cellular plasticity is a phenomenon where cells adopt different identities during development and tissue homeostasis as a response to physiological and pathological conditions. This review provides a general introduction to processes by which cells change their identity as well as the current definition of cellular plasticity in the field of mammary gland biology. Following a synopsis of the evolving model of the hierarchical development of mammary epithelial cell lineages, we discuss changes in cell identity during normal mammary gland development with particular emphasis on the effect of the gestation cycle on the emergence of new cellular states. Next, we summarize known mechanisms that promote the plasticity of epithelial lineages in the normal mammary gland and highlight the importance of the microenvironment and extracellular matrix. A discourse of cellular reprogramming during the early stages of mammary tumorigenesis that follows focuses on the origin of basal-like breast cancers from luminal progenitors and oncogenic signaling networks that orchestrate diverse developmental trajectories of transforming epithelial cells. In addition to the epithelial-to-mesenchymal transition, we highlight events of cellular reprogramming during breast cancer progression in the context of intrinsic molecular subtype switching and the genesis of the claudin-low breast cancer subtype, which represents the far end of the spectrum of epithelial cell plasticity. In the final section, we will discuss recent advances in the design of genetically engineered models to gain insight into the dynamic processes that promote cellular plasticity during mammary gland development and tumorigenesis in vivo.
Collapse
Affiliation(s)
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI 48201, USA
| |
Collapse
|
12
|
Daneshdoust D, Luo M, Li Z, Mo X, Alothman S, Kallakury B, Schlegel R, Zhang J, Guo D, Furth PA, Liu X, Li J. Unlocking Translational Potential: Conditionally Reprogrammed Cells in Advancing Breast Cancer Research. Cells 2023; 12:2388. [PMID: 37830602 PMCID: PMC10572051 DOI: 10.3390/cells12192388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Preclinical in vitro models play an important role in studying cancer cell biology and facilitating translational research, especially in the identification of drug targets and drug discovery studies. This is particularly relevant in breast cancer, where the global burden of disease is quite high based on prevalence and a relatively high rate of lethality. Predictive tools to select patients who will be responsive to invasive or morbid therapies (radiotherapy, chemotherapy, immunotherapy, and/or surgery) are relatively lacking. To be clinically relevant, a model must accurately replicate the biology and cellular heterogeneity of the primary tumor. Addressing these requirements and overcoming the limitations of most existing cancer cell lines, which are typically derived from a single clone, we have recently developed conditional reprogramming (CR) technology. The CR technology refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. This innovative approach fulfills many of these needs and offers an alternative that surpasses the deficiencies associated with traditional cancer cell lines. These CR cells (CRCs) can be reprogrammed to maintain a highly proliferative state and reproduce the genomic and histological characteristics of the parental tissue. Therefore, CR technology may be a clinically relevant model to test and predict drug sensitivity, conduct gene profile analysis and xenograft research, and undertake personalized medicine. This review discusses studies that have applied CR technology to conduct breast cancer research.
Collapse
Affiliation(s)
- Danyal Daneshdoust
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mingjue Luo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Zaibo Li
- Departments of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biostatics and Bioinformatics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Sahar Alothman
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Richard Schlegel
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Junran Zhang
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla A. Furth
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology, and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Zhu Y, Ye J, Qin P, Yan X, Gong X, Li X, Liu Y, Li Y, Yu T, Zhang Y, Ling Y, Wang J, Cao H, Fang F. Analysis of serum reproductive hormones and ovarian genes in pubertal female goats. J Ovarian Res 2023; 16:69. [PMID: 37024956 PMCID: PMC10080748 DOI: 10.1186/s13048-023-01150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Age at puberty is an important factor affecting goat fertility, with endocrine and genetic factors playing a crucial role in the onset of puberty. To better understand the relationship between endocrine and genetic factors and mechanisms underlying puberty onset in goats, reproductive hormone levels were analyzed by ELISA and ultraperformance liquid chromatography-multiple reaction monitoring-multistage/mass spectrometry and RNA sequencing was performed to analyze ovarian genes. RESULTS Serum follicle stimulating hormone, luteinizing hormone, estradiol, 11-deoxycortisol, 11-deoxycorticosterone, corticosterone, cortisone, and cortisol levels were found to be higher but progesterone were lower in pubertal goats as compared to those in prepubertal goats (P < 0.05). A total of 18,139 genes were identified in cDNA libraries, and 75 differentially expressed genes (DEGs) were identified (|log2 fold change|≥ 1, P ≤ 0.05), of which 32 were significantly up- and 43 were down-regulated in pubertal goats. Gene ontology enrichment analyses indicated that DEGs were mainly involved in "metabolic process," "signaling," "reproduction," and "growth." Further, DEGs were significantly enriched in 91 Kyoto Encyclopedia of Genes and Genomes pathways, including estrogen signaling pathway, steroid hormone biosynthesis, and cAMP signaling pathway. Bioinformatics analysis showed that PRLR and THBS1 were highly expressed in pubertal ovaries, and ZP3, ZP4, and ASTL showed low expression, suggesting their involvement in follicular development and lutealization. CONCLUSIONS To summarize, serum hormone changes and ovarian DEGs expression were investigated in our study. Further studies are warranted to comprehensively explore the functions of DEGs in goat puberty.
Collapse
Affiliation(s)
- Yanyun Zhu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jing Ye
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ping Qin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xu Yan
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xinbao Gong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiaoqian Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ya Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yunsheng Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Tong Yu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yunhai Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yinghui Ling
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Juhua Wang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Hongguo Cao
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Fugui Fang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
14
|
Neumann NM, Kim DM, Huebner RJ, Ewald AJ. Collective cell migration is spatiotemporally regulated during mammary epithelial bifurcation. J Cell Sci 2023; 136:jcs259275. [PMID: 36602106 PMCID: PMC10112963 DOI: 10.1242/jcs.259275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
Branched epithelial networks are generated through an iterative process of elongation and bifurcation. We sought to understand bifurcation of the mammary epithelium. To visualize this process, we utilized three-dimensional (3D) organotypic culture and time-lapse confocal microscopy. We tracked cell migration during bifurcation and observed local reductions in cell speed at the nascent bifurcation cleft. This effect was proximity dependent, as individual cells approaching the cleft reduced speed, whereas cells exiting the cleft increased speed. As the cells slow down, they orient both migration and protrusions towards the nascent cleft, while cells in the adjacent branches orient towards the elongating tips. We next tested the hypothesis that TGF-β signaling controls mammary branching by regulating cell migration. We first validated that addition of TGF-β1 (TGFB1) protein increased cleft number, whereas inhibition of TGF-β signaling reduced cleft number. Then, consistent with our hypothesis, we observed that pharmacological inhibition of TGF-β1 signaling acutely decreased epithelial migration speed. Our data suggest a model for mammary epithelial bifurcation in which TGF-β signaling regulates cell migration to determine the local sites of bifurcation and the global pattern of the tubular network.
Collapse
Affiliation(s)
- Neil M. Neumann
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniel M. Kim
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert J. Huebner
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrew J. Ewald
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Pan S, Guo Y, Yu W, Hong F, Qiao X, Zhang J, Xu P, Zhai Y. Environmental chemical TCPOBOP disrupts milk lipid homeostasis during pregnancy and lactation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114463. [PMID: 38321682 DOI: 10.1016/j.ecoenv.2022.114463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 02/08/2024]
Abstract
Humans are exposed to different kinds of environmental contaminants or drugs throughout their lifetimes. The widespread presence of these compounds has raised concerns about the consequent adverse effects on lactating women. The constitutive androstane receptor (CAR, Nr1i3) is known as a xenobiotic sensor for environmental pollution or drugs. In this study, the model environmental chemical 1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene, TCPOBOP (TC), which is a highly specific agonist of CAR, was used to investigate the effects of exogenous exposure on lactation function and offspring health in mice. The results revealed that TC exposure decreased the proliferation of mammary epithelial cells during pregnancy. This deficiency further compromised lobular-alveolar structures, resulting in alveolar cell apoptosis, as well as premature stoppage of the lactation cycle and aberrant lactation. Furthermore, TC exposure significantly altered the size and number of milk lipid droplets, suggesting that TC exposure inhibits milk lipid synthesis. Additionally, TC exposure interfered with the milk lipid metabolism network, resulting in the inability of TC-exposed mice to efficiently secrete nutrients and feed their offspring. These findings demonstrated that restricted synthesis and secretion of milk lipids would indirectly block mammary gland form and function, which explained the possible reasons for lactation failure and retarded offspring growth.
Collapse
Affiliation(s)
- Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wen Yu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Xiaoxiao Qiao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jia Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
16
|
Identification of Genetic Effects of ACADVL and IRF6 Genes with Milk Production Traits of Holstein Cattle in China. Genes (Basel) 2022; 13:genes13122393. [PMID: 36553659 PMCID: PMC9777597 DOI: 10.3390/genes13122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
With the development of high-throughput sequencing, RNA sequencing has been widely used in the identification of candidate genes for complex traits in livestock, and the functional genes and mutations with large genetic effects on milk production traits can provide molecular information for marker-assisted selection to increase the selection accuracy and accelerate genetic gain in dairy cattle. Our previous study on the liver transcriptome of Holstein cows found that acyl-CoA dehydrogenase (ACADVL) and interferon regulatory factor 6 (IRF6) are differentially expressed between dry and peak lactation periods, as well as that they are involved in lipid metabolism and the proliferation and differentiation of mammary epithelial cells. Thus, the two genes were considered candidates for milk traits. Hence, this study further collected 1186 Holstein cows from 110 sire families to investigate their genetic associations with milk yield and composition traits. By resequencing the entire exons and 2000 bp of the 5' and 3' flanking regions of the two genes, we identified eight SNPs in ACADVL and eight SNPs in IRF6. Subsequent single-locus association analyses showed that the eight SNPs in ACADVL were all significantly associated with milk fat yield, fat percentage, and protein yield (p values ≤ 0.0001-0.0414), and the eight SNPs in IRF6 were associated with milk, fat, and protein yields in the first or second lactation (p values ≤ 0.0001-0.0467). Using Haploview 4.2, one haplotype block with eight of the SNPs in ACADVL (D' = 0.99-1.00) and two haplotype blocks in IRF6 with three of the SNPs in each were observed (D' = 0.98-1.00). Similarly, the haplotype combinations of ACADVL were significantly associated with milk yield, fat percentage, fat yield, and protein yield in the two lactations (p values ≤ 0.0001-0.0125), and those of IRF6 were associated with five milk traits (p values ≤ 0.0001-0.0263). Furthermore, with the JASPAR software, it was predicted that the SNPs 19:g.26933503T>C in ACADVL and 16:g.73501985G>A in IRF6 changed the transcription factor binding sites of ZEB1, PLAGL2, and RHOXF1, implying their impacts on the expressions of the corresponding genes. Our findings demonstrated that the ACADVL and IRF6 genes have significant genetic effects on milk yield and composition traits, and the valuable SNPs might be used as genetic markers for genomic selection programs in dairy cattle.
Collapse
|
17
|
Yan XR, Shi T, Xiao JY, Liu YF, Zheng HL. In vitro transdifferentiated signatures of goat preadipocytes into mammary epithelial cells revealed by DNA methylation and transcriptome profiling. J Biol Chem 2022; 298:102604. [PMID: 36257406 PMCID: PMC9668736 DOI: 10.1016/j.jbc.2022.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
During mammary development, the transdifferentiation of mammary preadipocytes is one of the important sources for lactating mammary epithelial cells (MECs). However, there is limited knowledge about the mechanisms of dynamic regulation of transcriptome and genome-wide DNA methylation in the preadipocyte transdifferentiation process. Here, to gain more insight into these mechanisms, preadipocytes were isolated from adipose tissues from around the goat mammary gland (GM-preadipocytes). The GM-preadipocytes were cultured on Matrigel in conditioned media made from goat MECs to induce GM-preadipocyte-to-MEC transdifferentiation. The transdifferentiated GM-preadipocytes showed high abundance of keratin 18, which is a marker protein of MECs, and formed mammary acinar-like structures after 8 days of induction. Then, we performed transcriptome and DNA methylome profiling of the GM-preadipocytes and transdifferentiated GM-preadipocytes, respectively, and the differentially expressed genes and differentially methylated genes that play underlying roles in the process of transdifferentiation were obtained. Subsequently, we identified the candidate transcription factors in regulating the GM-preadipocyte-to-MEC transdifferentiation by transcription factor-binding motif enrichment analysis of differentially expressed genes and differentially methylated genes. Meanwhile, the secretory proteome of GM-preadipocytes cultured in conditioned media was also detected. By integrating the transcriptome, DNA methylome, and proteome, three candidate genes, four proteins, and several epigenetic regulatory axes were further identified, which are involved in regulation of the cell cycle, cell polarity establishment, cell adhesion, cell reprogramming, and adipocyte plasticity. These findings provide novel insights into the molecular mechanism of preadipocyte transdifferentiation and mammary development.
Collapse
|
18
|
Mammary-Enriched Transcription Factors Synergize to Activate the Wap Super-Enhancer for Mammary Gland Development. Int J Mol Sci 2022; 23:ijms231911680. [PMID: 36232979 PMCID: PMC9569684 DOI: 10.3390/ijms231911680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Super-enhancers are large clusters of enhancers critical for cell-type-specific development. In a previous study, 440 mammary-specific super-enhancers, highly enriched for an active enhancer mark H3K27ac; a mediator MED1; and the mammary-enriched transcription factors ELF5, NFIB, STAT5A, and GR, were identified in the genome of the mammary epithelium of lactating mice. However, the triggering mechanism for mammary-specific super-enhancers and the molecular interactions between key transcription factors have not been clearly elucidated. In this study, we investigated in vivo protein-protein interactions between major transcription factors that activate mammary-specific super-enhancers. In mammary epithelial cells, ELF5 strongly interacted with NFIB while weakly interacting with STAT5A, and it showed modest interactions with MED1 and GR, a pattern unlike that in non-mammary cells. We further investigated the role of key transcription factors in the initial activation of the mammary-specific Wap super-enhancer, using CRISPR-Cas9 genome editing to introduce single or combined mutations at transcription factor binding sites in the pioneer enhancer of the Wap super-enhancer in mice. ELF5 and STAT5A played key roles in igniting Wap super-enhancer activity, but an intact transcription factor complex was required for the full function of the super-enhancer. Our study demonstrates that mammary-enriched transcription factors within a protein complex interact with different intensities and synergize to activate the Wap super-enhancer. These findings provide an important framework for understanding the regulation of cell-type-specific development.
Collapse
|
19
|
Matouskova K, Szabo GK, Daum J, Fenton SE, Christiansen S, Soto AM, Kay JE, Cardona B, Vandenberg LN. Best practices to quantify the impact of reproductive toxicants on development, function, and diseases of the rodent mammary gland. Reprod Toxicol 2022; 112:51-67. [PMID: 35764275 PMCID: PMC9491517 DOI: 10.1016/j.reprotox.2022.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
Work from numerous fields of study suggests that exposures to hormonally active chemicals during sensitive windows of development can alter mammary gland development, function, and disease risk. Stronger links between many environmental pollutants and disruptions to breast health continue to be documented in human populations, and there remain concerns that the methods utilized to identify, characterize, and prioritize these chemicals for risk assessment and risk management purposes are insufficient. There are also concerns that effects on the mammary gland have been largely ignored by regulatory agencies. Here, we provide technical guidance that is intended to enhance collection and evaluation of the mammary gland in mice and rats. We review several features of studies that should be controlled to properly evaluate the mammary gland, and then describe methods to appropriately collect the mammary gland from rodents. Furthermore, we discuss methods for preparing whole mounted mammary glands and numerous approaches that are available for the analysis of these samples. Finally, we conclude with several examples where analysis of the mammary gland revealed effects of environmental toxicants at low doses. Our work argues that the rodent mammary gland should be considered in chemical safety, hazard and risk assessments. It also suggests that improved measures of mammary gland outcomes, such as those we present in this review, should be included in the standardized methods evaluated by regulatory agencies such as the test guidelines used for identifying reproductive and developmental toxicants.
Collapse
Affiliation(s)
- Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Gillian K Szabo
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jessica Daum
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK 2800, Denmark
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
20
|
Wakasa H, Tsugami Y, Koyama T, Han L, Nishimura T, Isobe N, Kobayashi K. Adverse Effects of High Temperature On Mammary Alveolar Development In Vitro. J Mammary Gland Biol Neoplasia 2022; 27:155-170. [PMID: 35581442 DOI: 10.1007/s10911-022-09518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022] Open
Abstract
In the mammary glands during pregnancy, the alveolar buds are first branched from the mammary ducts after which they form the alveolar luminal structure for milk production postparturition. Body temperature could increase for several reasons, such as infectious disease and heat stress. We have previously reported that high temperature adversely effects on the lactation capacity of mouse mammary epithelial cells (MECs). However, it remains unclear how high temperature influences mammary morophogenesis during pregnancy. In this study, we investigated the effects of high temperature on this mammary alveolar development process using two types of culture models including embedded organoids of MECs in Matrigel; these models reproduced mammary alveolar bud induction and alveolar luminal formation. Results showed that a culture temperature of 41 °C repressed alveolar bud induction and inhibited alveolar luminal formation. In addition, the treatment at 41 °C decreased the number of proliferating mammary epithelial cells but did not affect cell migration. Levels of phosphorylated Akt, -ERK1/2, -HSP90, and -HSP27 were increased in organoids cultured at 41 °C. The specific inhibitors of HSP90 and HSP27 exacerbated the disruption of organoids at 41 °C but not at 37 °C. Furthermore, the organoids precultured at 37 and 41 °C in the alveolar luminal formation model showed differences in the expression levels of caseins and tight junction proteins, which express in MECs in lactating mammary glands, after induction of MEC differentiation by prolactin and dexamethasone treatment in vitro. These results suggest that elevated temperature directly hinders mammary alveolar development; however, heat shock proteins may mitigate the adverse effects of high temperatures.
Collapse
Affiliation(s)
- Haruka Wakasa
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Yusaku Tsugami
- Laboratory of Animal Histophysiology, Graduate School of Integrated Science for Life Faculty of Applied Biological Science, Hiroshima University, 1-4-4, Kagamiyama, 739-8528, Higashi-Hiroshima, Japan
| | - Taku Koyama
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Liang Han
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Naoki Isobe
- Laboratory of Animal Histophysiology, Graduate School of Integrated Science for Life Faculty of Applied Biological Science, Hiroshima University, 1-4-4, Kagamiyama, 739-8528, Higashi-Hiroshima, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| |
Collapse
|
21
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
22
|
Miano C, Morselli A, Pontis F, Bongiovanni C, Sacchi F, Da Pra S, Romaniello D, Tassinari R, Sgarzi M, Pantano E, Ventura C, Lauriola M, D’Uva G. NRG1/ERBB3/ERBB2 Axis Triggers Anchorage-Independent Growth of Basal-like/Triple-Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:1603. [PMID: 35406375 PMCID: PMC8997077 DOI: 10.3390/cancers14071603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
ERBB3, also known as HER3, is a tyrosine kinase transmembrane receptor of the ERBB family. Upon binding to neuregulin 1 (NRG1), ERBB3 preferentially dimerizes with HER2 (ERBB2), in turn inducing aggressive features in several cancer types. The analysis of a dataset of breast cancer patients unveiled that higher ERBB3 mRNA expression correlates with shorter relapse-free survival in basal-like breast cancers, despite low ERBB3 expression in this breast cancer subtype. Administration of neuregulin 1 beta (NRG1β) significantly affected neither cellular proliferation nor the basal migratory ability of basal-like/triple-negative quasi-normal MCF10A breast cells, cultured in mono-layer conditions. Furthermore, no significant regulation in cell morphology or in the expression of basal/myoepithelial and luminal markers was observed upon stimulation with NRG1β. In non-adherent conditions, NRG1β administration to MCF10A cells did not significantly influence cell survival; however, it robustly induced cell growth as spheroids (3D growth). Intriguingly, a remarkable upregulation of ERBB3 and ERBB2 protein abundance was observed in 3D compared to 2D cell cultures, and NRG1β-induced 3D cell growth was efficiently prevented by the anti-HER2 monoclonal antibody pertuzumab. Similar results were obtained by the analysis of basal-like/triple-negative breast cancer cellular models, MDA-MB-468 and MDA-MB-231 cells, in which NRG1β induced anchorage-independent cell growth that in turn was prevented or reduced by the simultaneous administration of anti-HER2 neutralizing antibodies. Finally, the ability of pertuzumab in suppressing NRG1β-induced 3D growth was also evaluated and confirmed in MCF10A engineered with HER2-overexpression. We suggest that the NRG1/ERBB3/ERBB2 pathway promotes the anchorage-independent growth of basal-like breast cancer cells. Importantly, we provide evidence that ERBB2 neutralization, in particular by pertuzumab, robustly inhibits this process. Our results pave the way towards the development of novel anticancer strategies for basal-like breast cancer patients based on the interception of the NRG1/ERBB3/ERBB2 signaling axis.
Collapse
Affiliation(s)
- Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Alessandra Morselli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Francesca Pontis
- Scientific and Technological Pole, IRCCS MultiMedica, 20138 Milan, Italy; (F.P.); (E.P.)
| | - Chiara Bongiovanni
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Francesca Sacchi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Silvia Da Pra
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Donatella Romaniello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
| | - Michela Sgarzi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Elvira Pantano
- Scientific and Technological Pole, IRCCS MultiMedica, 20138 Milan, Italy; (F.P.); (E.P.)
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| | - Gabriele D’Uva
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), 40129 Bologna, Italy; (C.M.); (C.B.); (F.S.); (S.D.P.); (R.T.); (C.V.)
- Centre for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (A.M.); (D.R.); (M.S.); (M.L.)
| |
Collapse
|
23
|
Casey TM, Plaut K, Boerman J. Circadian clocks and their role in lactation competence. Domest Anim Endocrinol 2022; 78:106680. [PMID: 34607219 DOI: 10.1016/j.domaniend.2021.106680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Circadian rhythms are 24 h cycles of behavior, physiology and gene expression that function to synchronize processes across the body and coordinate physiology with the external environment. Circadian clocks are central to maintaining homeostasis and regulating coordinated changes in physiology in response to internal and external cues. Orchestrated changes occur in maternal physiology during the periparturient period to support the growth of the fetus and the energetic and nutritional demands of lactation. Discoveries in our lab made over a decade ago led us to hypothesize that the circadian timing system functions to regulate metabolic and mammary specific changes that occur to support a successful lactation. Findings of studies that ensued are summarized, and point to the importance of circadian clocks in the regulation of lactation competence. Disruption of the circadian timing system can negatively affect mammary gland development and differentiation, alter maternal metabolism and impair milk production.
Collapse
Affiliation(s)
- T M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - K Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
24
|
Porras L, Ismail H, Mader S. Positive Regulation of Estrogen Receptor Alpha in Breast Tumorigenesis. Cells 2021; 10:cells10112966. [PMID: 34831189 PMCID: PMC8616513 DOI: 10.3390/cells10112966] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor alpha (ERα, NR3A1) contributes through its expression in different tissues to a spectrum of physiological processes, including reproductive system development and physiology, bone mass maintenance, as well as cardiovascular and central nervous system functions. It is also one of the main drivers of tumorigenesis in breast and uterine cancer and can be targeted by several types of hormonal therapies. ERα is expressed in a subset of luminal cells corresponding to less than 10% of normal mammary epithelial cells and in over 70% of breast tumors (ER+ tumors), but the basis for its selective expression in normal or cancer tissues remains incompletely understood. The mapping of alternative promoters and regulatory elements has delineated the complex genomic structure of the ESR1 gene and shed light on the mechanistic basis for the tissue-specific regulation of ESR1 expression. However, much remains to be uncovered to better understand how ESR1 expression is regulated in breast cancer. This review recapitulates the current body of knowledge on the structure of the ESR1 gene and the complex mechanisms controlling its expression in breast tumors. In particular, we discuss the impact of genetic alterations, chromatin modifications, and enhanced expression of other luminal transcription regulators on ESR1 expression in tumor cells.
Collapse
|
25
|
Dual recombinase action in the normal and neoplastic mammary gland epithelium. Sci Rep 2021; 11:20775. [PMID: 34675248 PMCID: PMC8531329 DOI: 10.1038/s41598-021-00231-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/08/2021] [Indexed: 12/03/2022] Open
Abstract
We developed a transgenic mouse line that expresses the codon-optimized Flp recombinase under the control of the MMTV promoter in luminal epithelial cells of the mammary gland. In this report, we demonstrate the versatile applicability of the new MMTV-Flp strain to manipulate genes in a temporally and spatially controlled manner in the normal mammary gland, in luminal-type mammary tumors that overexpress ERBB2, and in a new KRAS-associated mammary cancer model. Although the MMTV-Flp is expressed in a mosaic pattern in the luminal epithelium, the Flp-mediated activation of a mutant KrasG12D allele resulted in basal-like mammary tumors that progressively acquired mesenchymal features. Besides its applicability as a tool for gene activation and cell lineage tracing to validate the cellular origin of primary and metastatic tumor cells, we employed the MMTV-Flp transgene together with the tamoxifen-inducible Cre recombinase to demonstrate that the combinatorial action of both recombinases can be used to delete or to activate genes in established tumors. In a proof-of-principle experiment, we conditionally deleted the JAK1 tyrosine kinase in KRAS-transformed mammary cancer cells using the dual recombinase approach and found that lack of JAK1 was sufficient to block the constitutive activation of STAT3. The collective results from the various lines of investigation showed that it is, in principle, feasible to manipulate genes in a ligand-controlled manner in neoplastic mammary epithelial cells, even when cancer cells acquire a state of cellular plasticity that may no longer support the expression of the MMTV-Flp transgene.
Collapse
|
26
|
Bias of Calf Sex on Milk Yield and Fat Yield in Holstein Crossbreed Cows. Animals (Basel) 2021; 11:ani11092536. [PMID: 34573502 PMCID: PMC8470183 DOI: 10.3390/ani11092536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cattle comprise a species of a domestic animal that is primarily bred for milk production. The birth of a calf is the initiator for the lactation period and the sex of the calf can affect milk yield. Additionally, a calf from a new pregnancy can affect the lactation from the previous calving, since the mother gets pregnant and remains pregnant during most of the lactation, usually at lactation peak. Therefore, the aim of this paper was to further investigate the possibilities of sexually biased milk production of Holstein and Holstein crossbreed cows using data from the Republic of Serbia. We also wanted to test the Trivers–Willard (TW) hypothesis that natural selection favors unequal parental investment between daughters and sons under certain maternal conditions. At the same time, this hypothesis assumes that mothers in good health and condition invest more in sons, while mothers in a poor condition invest more in daughters. The obtained results deviate from the view of the TW hypothesis because it was found that milk and fat yields in the first two lactations were the highest in cows that had a female calf and were then pregnant with a second female calf while the lactation from the previous calving was still in progress. We were the first in the world to investigate the effect of the sex of calves at first and second calving on milk yield and fat yield in the first and second standard lactation, depending on milk production levels on farms. Abstract In order to examine the biased milk production depending on the sex of calves, data on calving and milk yield characteristics of 15,181 Holstein type cows in PK Belgrade, Serbia were analyzed. A total of 30,362 lactations that were realized in the period from 1985 to 2017 were analyzed. Data were prepared and analyzed using the SAS software package (SAS Institute Inc. Software License 9.3, 2012). The expression and variability of investigated traits were determined using the PROC MEANS procedure, while the effect of individual factors on milk yield traits was analyzed using the PROC GLM procedure. Obtained results deviate from the views of the Trivers–Willard (TW) hypothesis. The results indicate that mothers invest more in female offspring by producing a higher milk and fat yield in the first and second lactation compared to male offspring. This is especially emphasized under better environmental conditions. The highest milk yield (7788 kg) and fat yield (271 kg) in the second lactation were achieved in the combination with two consecutive female calves in the group of higher-than-average milk production farms, and lowest in the combination of two consecutive male calves (6783 kg for the MY and 243 kg for the FY), respectively.
Collapse
|
27
|
Lüschow A. Application of graph theory in the library domain—Building a faceted framework based on a literature review. JOURNAL OF LIBRARIANSHIP AND INFORMATION SCIENCE 2021. [DOI: 10.1177/09610006211036734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on a literature review, we present a framework for structuring the application of graph theory in the library domain. Our goal is to provide both researchers and libraries with a standard tool to classify scientific work, at the same time allowing for the identification of previously underrepresented areas where future research might be productive. To achieve this, we compile graph theoretical approaches from the literature to consolidate the components of our framework on a solid basis. The extendable framework consists of multiple facets grouped into five categories whose elements can be arbitrarily combined. Libraries can benefit from these facets by using them as a point of reference for the (meta)data they offer. Further work on formally defining the framework’s categories as well as on integration of other graph-related research areas not discussed in this article (e.g. knowledge graphs) would be desirable and helpful in the future.
Collapse
|
28
|
Shao C, Lou P, Liu R, Bi X, Li G, Yang X, Sheng X, Xu J, Lv C, Yu Z. Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Front Cell Dev Biol 2021; 9:691050. [PMID: 34336839 PMCID: PMC8320003 DOI: 10.3389/fcell.2021.691050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Myoepithelial and luminal cells synergistically expand in the mammary gland during pregnancy, and this process is precisely governed by hormone-related signaling pathways. The bone morphogenetic protein (BMP) signaling pathway is now known to play crucial roles in all organ systems. However, the functions of BMP signaling in the mammary gland remain unclear. Here, we found that BMPR1a is upregulated by hormone-induced Sp1 at pregnancy. Using a doxycycline (Dox)-inducible BMPR1a conditional knockout mouse model, we demonstrated that loss of BMPR1a in myoepithelium results in compromised myoepithelial integrity, reduced mammary stem cells and precocious alveolar differentiation during pregnancy. Mechanistically, BMPR1a regulates the expression of p63 and Slug, two key regulators of myoepithelial maintenance, through pSmad1/5-Smad4 complexes, and consequently activate P-cadherin during pregnancy. Furthermore, we observed that loss of BMPR1a in myoepithelium results in the upregulation of a secreted protein Spp1 that could account for the precocious alveolar differentiation in luminal layer, suggesting a defective basal-to-luminal paracrine signaling mechanism. Collectively, these findings identify a novel role of BMP signaling in maintaining the identity of myoepithelial cells and suppressing precocious alveolar formation.
Collapse
Affiliation(s)
- Chunlei Shao
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pengbo Lou
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyun Bi
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guilin Li
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xu Yang
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaole Sheng
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiuzhi Xu
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Lv
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Vandenberg LN. Endocrine disrupting chemicals and the mammary gland. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:237-277. [PMID: 34452688 DOI: 10.1016/bs.apha.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of the mammary gland requires coordination of hormone signaling pathways including those mediated by estrogen, progesterone, androgen and prolactin receptors. These hormones play important roles at several distinct stages of life including embryonic/fetal development, puberty, pregnancy, lactation, and old age. This also makes the gland sensitive to perturbations from environmental agents including endocrine disrupting chemicals (EDCs). Although there is evidence from human populations of associations between EDCs and disruptions to breast development and lactation, these studies are often complicated by the timing of exposure assessments and the latency to develop breast diseases (e.g., years to decades). Rodents have been instrumental in providing insights-not only to the basic biology and endocrinology of the mammary gland, but to the effects of EDCs on this tissue at different stages of development. Studies, mostly but not exclusively, of estrogenic EDCs have shown that the mammary gland is a sensitive tissue, that exposures during perinatal development can produce abnormal mammary structures (e.g., alveolar buds, typically seen in pregnant females) in adulthood; that exposures during pregnancy can alter milk production; and that EDC exposures can enhance the response of the mammary tissue to hormones and chemical carcinogens. Other studies of persistent organic pollutants have shown that EDC exposures during critical windows of development can delay development of the gland, with lifelong consequences for the individual. Collectively, this work continues to support the conclusion that EDCs can harm the mammary gland, with effects that depend on the period of exposure and the period of evaluation.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
30
|
Bach K, Pensa S, Zarocsinceva M, Kania K, Stockis J, Pinaud S, Lazarus KA, Shehata M, Simões BM, Greenhalgh AR, Howell SJ, Clarke RB, Caldas C, Halim TYF, Marioni JC, Khaled WT. Time-resolved single-cell analysis of Brca1 associated mammary tumourigenesis reveals aberrant differentiation of luminal progenitors. Nat Commun 2021; 12:1502. [PMID: 33686070 PMCID: PMC7940427 DOI: 10.1038/s41467-021-21783-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
It is unclear how genetic aberrations impact the state of nascent tumour cells and their microenvironment. BRCA1 driven triple negative breast cancer (TNBC) has been shown to arise from luminal progenitors yet little is known about how BRCA1 loss-of-function (LOF) and concomitant mutations affect the luminal progenitor cell state. Here we demonstrate how time-resolved single-cell profiling of genetically engineered mouse models before tumour formation can address this challenge. We found that perturbing Brca1/p53 in luminal progenitors induces aberrant alveolar differentiation pre-malignancy accompanied by pro-tumourigenic changes in the immune compartment. Unlike alveolar differentiation during gestation, this process is cell autonomous and characterised by the dysregulation of transcription factors driving alveologenesis. Based on our data we propose a model where Brca1/p53 LOF inadvertently promotes a differentiation program hardwired in luminal progenitors, highlighting the deterministic role of the cell-of-origin and offering a potential explanation for the tissue specificity of BRCA1 tumours.
Collapse
Affiliation(s)
- Karsten Bach
- University of Cambridge, Department of Pharmacology, Cambridge, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Cancer Research UK, Cambridge Cancer Centre, Cambridge, UK
| | - Sara Pensa
- University of Cambridge, Department of Pharmacology, Cambridge, UK
- Cancer Research UK, Cambridge Cancer Centre, Cambridge, UK
| | - Marija Zarocsinceva
- Cancer Research UK, Cambridge Cancer Centre, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Katarzyna Kania
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Julie Stockis
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Silvain Pinaud
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Kyren A Lazarus
- University of Cambridge, Department of Pharmacology, Cambridge, UK
- Cancer Research UK, Cambridge Cancer Centre, Cambridge, UK
| | - Mona Shehata
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
| | - Bruno M Simões
- Manchester Breast Centre, Oglesby Cancer Research Building, University of Manchester, Manchester, UK
| | - Alice R Greenhalgh
- Manchester Breast Centre, Oglesby Cancer Research Building, University of Manchester, Manchester, UK
| | - Sacha J Howell
- Manchester Breast Centre, Oglesby Cancer Research Building, University of Manchester, Manchester, UK
- Department of Medical Oncology, Christie NHS Foundation Trust, Manchester, UK
| | - Robert B Clarke
- Manchester Breast Centre, Oglesby Cancer Research Building, University of Manchester, Manchester, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Cancer Research UK, Cambridge Cancer Centre, Cambridge, UK
| | - Timotheus Y F Halim
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, UK.
| | - Walid T Khaled
- University of Cambridge, Department of Pharmacology, Cambridge, UK.
- Cancer Research UK, Cambridge Cancer Centre, Cambridge, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
31
|
Ivanova E, Le Guillou S, Hue-Beauvais C, Le Provost F. Epigenetics: New Insights into Mammary Gland Biology. Genes (Basel) 2021; 12:genes12020231. [PMID: 33562534 PMCID: PMC7914701 DOI: 10.3390/genes12020231] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The mammary gland undergoes important anatomical and physiological changes from embryogenesis through puberty, pregnancy, lactation and involution. These steps are under the control of a complex network of molecular factors, in which epigenetic mechanisms play a role that is increasingly well described. Recently, studies investigating epigenetic modifications and their impacts on gene expression in the mammary gland have been performed at different physiological stages and in different mammary cell types. This has led to the establishment of a role for epigenetic marks in milk component biosynthesis. This review aims to summarize the available knowledge regarding the involvement of the four main molecular mechanisms in epigenetics: DNA methylation, histone modifications, polycomb protein activity and non-coding RNA functions.
Collapse
|
32
|
Shams A, Binothman N, Boudreault J, Wang N, Shams F, Hamam D, Tian J, Moamer A, Dai M, Lebrun JJ, Ali S. Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis. Oncogenesis 2021; 10:10. [PMID: 33446633 PMCID: PMC7809050 DOI: 10.1038/s41389-020-00297-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Dedifferentiation increased cellular plasticity and stemness are established derivers of tumor heterogeneity, metastasis and therapeutic failure resulting in incurable cancers. Therefore, it is essential to decipher pro/forward-differentiation mechanisms in cancer that may serve as therapeutic targets. We found that interfering with expression of the receptor for the lactogenic hormone prolactin (PRLR) in breast cancer cells representative of the luminal and epithelial breast cancer subtypes (hormone receptor positive (HR+) and HER2-enriched (HER2-E) resulted in loss of their differentiation state, enriched for stem-like cell subpopulations, and increased their tumorigenic capacity in a subtype-specific manner. Loss of PRLR expression in HR+ breast cancer cells caused their dedifferentiation generating a mesenchymal-basal-like phenotype enriched in CD44+ breast cancer stem-like cells (BCSCs) showing high tumorigenic and metastatic capacities and resistance to anti-hormonal therapy. Whereas loss of PRLR expression in HER2-E breast cancer cells resulted in loss of their luminal differentiation yet enriched for epithelial ALDH+ BCSC population showing elevated HER2-driven tumorigenic, multi-organ metastatic spread, and resistance to anti-HER2 therapy. Collectively, this study defines PRLR as a driver of precise luminal and epithelial differentiation limiting cellular plasticity, stemness, and tumorigenesis and emphasizing the function of pro/forward-differentiation pathways as a foundation for the discovery of anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Anwar Shams
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada ,grid.412895.30000 0004 0419 5255Present Address: Department of Pharmacology, Faculty of Medicine, Taif University, Taif, Saudi Arabia
| | - Najat Binothman
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada ,grid.412125.10000 0001 0619 1117Present Address: Department of Chemistry, College of Science and Arts, King Abdulaziz University, P.O. Box 344, Rabigh, 21911 Saudi Arabia
| | - Julien Boudreault
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Ni Wang
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Fuad Shams
- grid.415252.5Department of Pathology and Laboratory Medicine, King Abdulaziz Hospital, Mecca, Saudi Arabia
| | - Dana Hamam
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Jun Tian
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Alaa Moamer
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Meiou Dai
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Jean-Jacques Lebrun
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Suhad Ali
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| |
Collapse
|
33
|
Dewi FN, Cline JM. Nonhuman primate model in mammary gland biology and neoplasia research. Lab Anim Res 2021; 37:3. [PMID: 33397518 PMCID: PMC7784333 DOI: 10.1186/s42826-020-00053-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Research on breast cancer pathogenesis, prevention and drug development remains an important field as this disease is still one of the leading causes of cancer death worldwide. Nonhuman primates, particularly macaque species, may serve as a highly translational animal model in breast cancer studies due to their similarity with humans in genetics, anatomy, reproductive and endocrine physiology including mammary gland development profile. The use of nonhuman primates in biomedical research, however, requires high ethical standards and an increasing expectation to improve strategies to replace, reduce and refine their use. Here, we discuss some key features of nonhuman primate mammary gland biology relevant to their strengths and limitations as models in studies of breast development and cancer risk.
Collapse
Affiliation(s)
- Fitriya N Dewi
- Primate Research Center at IPB University, Jl. Lodaya II No.5, Bogor, West Java, 16151, Indonesia.
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| |
Collapse
|
34
|
Cui X, Zhang S, Zhang Q, Guo X, Wu C, Yao M, Sun D. Comprehensive MicroRNA Expression Profile of the Mammary Gland in Lactating Dairy Cows With Extremely Different Milk Protein and Fat Percentages. Front Genet 2020; 11:548268. [PMID: 33343617 PMCID: PMC7744623 DOI: 10.3389/fgene.2020.548268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
A total of 31 differentially expressed genes in the mammary glands were identified in our previous study using RNA sequencing (RNA-Seq), for lactating cows with extremely high and low milk protein and fat percentages. To determine the regulation of milk composition traits, we herein investigated the expression profiles of microRNA (miRNA) using small RNA sequencing based on the same samples as in the previous RNA-Seq experiment. A total of 497 known miRNAs (miRBase, release 22.1) and 49 novel miRNAs among the reads were identified. Among these miRNAs, 71 were found differentially expressed between the high and low groups (p < 0.05, q < 0.05). Furthermore, 21 of the differentially expressed genes reported in our previous RNA-Seq study were predicted as target genes for some of the 71 miRNAs. Gene ontology and KEGG pathway analyses showed that these targets were enriched for functions such as metabolism of protein and fat, and development of mammary gland, which indicating the critical role of these miRNAs in regulating the formation of milk protein and fat. With dual luciferase report assay, we further validated the regulatory role of 7 differentially expressed miRNAs through interaction with the specific sequences in 3'UTR of the targets. In conclusion, the current study investigated the complexity of the mammary gland transcriptome in dairy cattle using small RNA-seq. Comprehensive analysis of differential miRNAs expression and the data from previous study RNA-seq provided the opportunity to identify the key candidate genes for milk composition traits.
Collapse
Affiliation(s)
- Xiaogang Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangyu Guo
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Mingze Yao
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Wu X, Zhou X, Xiong L, Pei J, Yao X, Liang C, Bao P, Chu M, Guo X, Yan P. Transcriptome Analysis Reveals the Potential Role of Long Non-coding RNAs in Mammary Gland of Yak During Lactation and Dry Period. Front Cell Dev Biol 2020; 8:579708. [PMID: 33324637 PMCID: PMC7723986 DOI: 10.3389/fcell.2020.579708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
The mammary gland is a remarkably dynamic organ of milk synthesis and secretion, and it experiences drastic structural and metabolic changes during the transition from dry periods to lactation, which involves the expression and regulation of numerous genes and regulatory factors. Long non-coding RNA (lncRNA) has considered as a novel type of regulatory factors involved in a variety of biological processes. However, their role in the lactation cycle of yak is still poorly understood. To reveal the involved mechanism, Ribo-zero RNA sequencing was employed to profile the lncRNA transcriptome in mammary tissue samples from yak at two physiological stages, namely lactation (LP) and dry period (DP). Notably, 1,599 lncRNA transcripts were identified through four rigorous steps and filtered through protein-coding ability. A total of 59 lncRNAs showed significantly different expression between two stages. Accordingly, the results of qRT-PCR were consistent with that of the transcriptome data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that target genes of differentially expressed lncRNAs (DELs) were involved in pathways related to lactation, such as ECM-receptor interaction, PI3K-Akt signaling pathway, biosynthesis of amino acids and focal adhesion etc. Finally, we constructed a lncRNA-gene regulatory network containing some well known candidate genes for milk yield and quality traits. This is the first study to demonstrate a global profile of lncRNA expression in the mammary gland of yak. These results contribute to a valuable resource for future genetic and molecular studies on improving milk yield and quality, and help us to gain a better understanding of the molecular mechanisms underlying lactogenesis and mammary gland development of yak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xian Guo
- Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
36
|
Breves JP, Popp EE, Rothenberg EF, Rosenstein CW, Maffett KM, Guertin RR. Osmoregulatory actions of prolactin in the gastrointestinal tract of fishes. Gen Comp Endocrinol 2020; 298:113589. [PMID: 32827513 DOI: 10.1016/j.ygcen.2020.113589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
In fishes, prolactin (Prl) signaling underlies the homeostatic regulation of hydromineral balance by controlling essential solute and water transporting functions performed by the gill, gastrointestinal tract, kidney, urinary bladder, and integument. Comparative studies spanning over 60 years have firmly established that Prl promotes physiological activities that enable euryhaline and stenohaline teleosts to reside in freshwater environments; nonetheless, the specific molecular and cellular targets of Prl in ion- and water-transporting tissues are still being resolved. In this short review, we discuss how particular targets of Prl (e.g., ion cotransporters, tight-junction proteins, and ion pumps) confer adaptive functions to the esophagus and intestine. Additionally, in some instances, Prl promotes histological and functional transformations within esophageal and intestinal epithelia by regulating cell proliferation. Collectively, the demonstrated actions of Prl in the gastrointestinal tract of teleosts indicate that Prl operates to promote phenotypes supportive of freshwater acclimation and to inhibit phenotypes associated with seawater acclimation. We conclude our review by underscoring that future investigations are warranted to determine how growth hormone/Prl-family signaling evolved in basal fishes to support the gastrointestinal processes underlying hydromineral balance.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Emily E Popp
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Eva F Rothenberg
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Clarence W Rosenstein
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Kaitlyn M Maffett
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Rebecca R Guertin
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
37
|
Kim G, Lee JG, Cheong SA, Yon JM, Lee MS, Hong EJ, Baek IJ. Progesterone receptor membrane component 1 is required for mammary gland development†. Biol Reprod 2020; 103:1249-1259. [PMID: 32915211 DOI: 10.1093/biolre/ioaa164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
The physiological functions of progesterone (P4) in female reproductive organs including the mammary glands are mediated via the progesterone receptor (PR), but not all P4 functions can be explained by PR-mediated signaling. Progesterone receptor membrane component 1 (PGRMC1), a potential mediator of P4 actions, plays an important role in the ovary and uterus in maintaining female fertility and pregnancy, but its function in mammary glands has not been elucidated. This study investigated the role of PGRMC1 in mouse mammary gland development. Unlike in the uterus, exogenous estrogen (E2) and/or P4 did not alter PGRMC1 expression in the mammary gland, and Pgrmc1-knockout (KO) mice displayed reduced ductal elongation and side branching in response to hormone treatment. During pregnancy, PGRMC1 was expressed within both the luminal and basal epithelium and gradually increased with gestation and decreased rapidly after parturition. Moreover, although lactogenic capacity was normal after parturition, Pgrmc1 KO resulted in defective mammary gland development from puberty until midpregnancy, while the expression of PR and its target genes was not significantly different between wild-type and Pgrmc1-KO mammary gland. These data suggest that PGRMC1 is essential for mammary gland development during puberty and pregnancy in a PR-independent manner.
Collapse
Affiliation(s)
- Globinna Kim
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Seung-A Cheong
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Jung-Min Yon
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Myeong Sup Lee
- Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
38
|
Zhang Y, Tang C, Span PN, Rowan AE, Aalders TW, Schalken JA, Adema GJ, Kouwer PHJ, Zegers MMP, Ansems M. Polyisocyanide Hydrogels as a Tunable Platform for Mammary Gland Organoid Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001797. [PMID: 32999851 PMCID: PMC7509700 DOI: 10.1002/advs.202001797] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 05/20/2023]
Abstract
In the last decade, organoid technology has developed as a primary research tool in basic biological and clinical research. The reliance on poorly defined animal-derived extracellular matrix, however, severely limits its application in regenerative and translational medicine. Here, a well-defined, synthetic biomimetic matrix based on polyisocyanide (PIC) hydrogels that support efficient and reproducible formation of mammary gland organoids (MGOs) in vitro is presented. Only decorated with the adhesive peptide RGD for cell binding, PIC hydrogels allow MGO formation from mammary fragments or from purified single mammary epithelial cells. The cystic organoids maintain their capacity to branch for over two months, which is a fundamental and complex feature during mammary gland development. It is found that small variations in the 3D matrix give rise to large changes in the MGO: the ratio of the main cell types in the MGO is controlled by the cell-gel interactions via the cell binding peptide density, whereas gel stiffness controls colony formation efficiency, which is indicative of the progenitor density. Simple hydrogel modifications will allow for future introduction and customization of new biophysical and biochemical parameters, making the PIC platform an ideal matrix for in depth studies into organ development and for application in disease models.
Collapse
Affiliation(s)
- Ying Zhang
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135NijmegenAJ 6525The Netherlands
- Radiotherapy & OncoImmunology LaboratoryRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| | - Chunling Tang
- Radiotherapy & OncoImmunology LaboratoryRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| | - Paul N. Span
- Radiotherapy & OncoImmunology LaboratoryRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| | - Alan E. Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Tilly W. Aalders
- Experimental UrologyRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| | - Jack A. Schalken
- Experimental UrologyRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology LaboratoryRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| | - Paul H. J. Kouwer
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 135NijmegenAJ 6525The Netherlands
| | - Mirjam M. P. Zegers
- Department of Cell BiologyRadboud Institute for Molecular SciencesRadboud University Medical CenterGeert Grooteplein 28NijmegenGA6525The Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology LaboratoryRadboud University Medical CenterGeert Grooteplein 32NijmegenGA6525The Netherlands
| |
Collapse
|
39
|
Jiang X, Lin S, Lin Y, Fang Z, Xu S, Feng B, Zhuo Y, Li J, Che L, Jiang X, Wu D. Effects of silymarin supplementation during transition and lactation on reproductive performance, milk composition and haematological parameters in sows. J Anim Physiol Anim Nutr (Berl) 2020; 104:1896-1903. [PMID: 32748473 DOI: 10.1111/jpn.13425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Silymarin has been shown to be a multiple-functional plant extract having antioxidant, hepatoprotective, hypolipidemic, antihypertensive, antidiabetic and anti-obesity effects. In recent years, the galactagogue effects of silymarin in animals and humans have also been revealed. This research was conducted to test whether dietary inclusion of silymarin during transition and lactation could impact reproductive performance of sows and to explore the underlying mechanisms. From day 108 of gestation to weaning, sows were randomly assigned to receive dietary treatment of silymarin (40 g/day) or not and were designated as control group (CGP, n = 55) or treatment group (TGP, n = 55). The results showed that piglets' average daily gain and average weaning weight were higher in TGP than CGP sows. In comparison with the CGP sows, the TGP sows had higher serum concentrations of catalase (CAT) on day 18 of lactation and glutathione peroxidase (GSH-Px) on day 7 of lactation. The TGP sows had lower concentration of TNF-α on day 7 of lactation and significantly lower concentration of IL-1β on day 18 of lactation than CGP sows. There was significantly higher serum concentration of PRL on day 7 of lactation in sows consuming silymarin than sows from the CGP group. On day 18 of lactation, the protein and urea contents in milk were significantly increased while the serum urea concentration was significantly decreased in TGP sows. In summary, our results indicate that silymarin supplementation during transition and lactation can increase circulating concentrations of PRL transiently, reduce oxidative stress, increase feed intake and enhance protein metabolism, thereby significantly increasing milk yield of sows and subsequently improving growth performance of their offsprings.
Collapse
Affiliation(s)
- XiaoJun Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Sen Lin
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - ZhengFeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - ShengYu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - LianQiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - XueMei Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
40
|
Zandi E, Ayatollahi Mehrgardi A, Esmailizadeh A. Mammary tissue transcriptomic analysis for construction of integrated regulatory networks involved in lactogenesis of Ovis aries. Genomics 2020; 112:4277-4287. [PMID: 32693106 DOI: 10.1016/j.ygeno.2020.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
The mammary gland experiences vast changes between the onset of lactation and pregnancy. This remodeling involves different functions such as lactation that is controlled by innumerable regulators and various gene networks which are still not completely understood. MicroRNAs (miRNAs) are one of the important non-coding gene regulators which control an extensive range of biological processes. Thus, exploring miRNAs functions is important for solving gene regulation complexity. The main purpose in the present study is to identify the various gene regulative integrated networks involved in lactation progress in mammary gland. We analyzed ovine mammary tissue data sets which included expression profiles of mRNA (genes) and miRNAs related to six ewes in different days of lactation and nutritional treatments. We combined two different types of information: the network that is module inference by mRNAs (RNA-seq data), miRNAs and transcription factors (TFs) expression matrix and prediction of targets via computational methods. To discover the miRNAs regulatory function, 134 modules were predicted by using gene expression data and 14 TFs and 20 miRNAs were allocated to these predicted modules. By applying this integrated computation-based method, 38 miRNA-modules and 35 TF-module interactions were identified from ovine mammary tissue data during lactogenesis. A lot of these modules were involved in lipid and protein metabolism, as well as steroids and vitamin biosynthesis, which would play key roles in mammary tissue and lactation development. These results present new information about the regulatory procedures at the miRNAs and TF levels throughout lactation.
Collapse
Affiliation(s)
- Elmira Zandi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran; Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran.
| |
Collapse
|
41
|
Wu Z, Tian M, Heng J, Chen J, Chen F, Guan W, Zhang S. Current Evidences and Future Perspectives for AMPK in the Regulation of Milk Production and Mammary Gland Biology. Front Cell Dev Biol 2020; 8:530. [PMID: 32671074 PMCID: PMC7332552 DOI: 10.3389/fcell.2020.00530] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Activated protein kinase (AMP)-activated protein kinase (AMPK) senses the cellular energy status and coordinates catabolic and anabolic processes. Extensive studies have proposed that AMPK regulates energy homeostasis, cell growth, autophagy, mitochondrial biology and inflammation. The biological functions of AMPK vary in different tissues or organs. As a unique organ that produces milk, the mammary gland has recently attracted substantial research attention. This review discusses how AMPK in the mammary gland is activated by energy deprivation and heat stress via the activation of canonical and non-canonical pathways. In addition, the important downstream targets of AMPK and their functions in the mammary gland, especially during milk synthesis, are summarized in the review.
Collapse
Affiliation(s)
- Zhihui Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinghui Heng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaming Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
42
|
Sun H, Zhang X, Chan UI, Su SM, Guo S, Xu X, Deng C. In vivo Mouse Mammary Gland Formation. Bio Protoc 2020; 10:e3667. [PMID: 33659337 PMCID: PMC7842528 DOI: 10.21769/bioprotoc.3667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/23/2020] [Accepted: 04/28/2020] [Indexed: 11/02/2022] Open
Abstract
For years, the mammary gland serves as a perfect example to study the self-renew and differentiation of adult stem cells, and the regulatory mechanisms of these processes as well. To assess the function of given genes and/or other factors on stemness of mammary cells, several in vitro assays were developed, such as mammospheres formation assay, detection of stem cell markers by mRNA expression or flow cytometry and so on. However, the capacity of reconstruction of whole mount in the cleared fat pad of recipient female mice is a golden standard to estimate the stemness of the cells. Here we described a step-by-step protocol for in vivo mammary gland formation assay, including preparation of "cleared" recipients and mammary cells for implantation, the surgery process and how to assess the experimental results. Combined with manipulation of mammary cells via gene editing and /or drug treatment, this protocol could be very useful in the researches of mammary stem cells and mammary development.
Collapse
Affiliation(s)
- Heng Sun
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xin Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Un In Chan
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sek Man Su
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sen Guo
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
43
|
Atashgaran V, Dasari P, Hodson LJ, Evdokiou A, Barry SC, Ingman WV. Foxp3 heterozygosity does not overtly affect mammary gland development during puberty or the oestrous cycle in mice. Reprod Fertil Dev 2020; 32:774-782. [PMID: 32389178 DOI: 10.1071/rd19378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/20/2020] [Indexed: 11/23/2022] Open
Abstract
Female mice heterozygous for a genetic mutation in transcription factor forkhead box p3 (Foxp3) spontaneously develop mammary cancers; however, the underlying mechanism is not well understood. We hypothesised that increased cancer susceptibility is associated with an underlying perturbation in mammary gland development. The role of Foxp3 in mammary ductal morphogenesis was investigated in heterozygous Foxp3Sf/+ and wildtype Foxp3+/+ mice during puberty and at specific stages of the oestrous cycle. No differences in mammary ductal branching morphogenesis, terminal end bud formation or ductal elongation were observed in pubertal Foxp3Sf/+ mice compared with Foxp3+/+ mice. During adulthood, all mice underwent normal regular oestrous cycles. No differences in epithelial branching morphology were detected in mammary glands from mice at the oestrus, metoestrus, dioestrus and pro-oestrus stages of the cycle. Furthermore, abundance of Foxp3 mRNA and protein in the mammary gland and lymph nodes was not altered in Foxp3Sf/+ mice compared with Foxp3+/+ mice. These studies suggest that Foxp3 heterozygosity does not overtly affect mammary gland development during puberty or the oestrous cycle. Further studies are required to dissect the underlying mechanisms of increased mammary cancer susceptibility in Foxp3Sf/+ heterozygous mice and the function of this transcription factor in normal mammary gland development.
Collapse
Affiliation(s)
- Vahid Atashgaran
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA 5011, Australia; and Robinson Research Institute, University of Adelaide, SA 5005, Australia
| | - Pallave Dasari
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA 5011, Australia; and Robinson Research Institute, University of Adelaide, SA 5005, Australia
| | - Leigh J Hodson
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA 5011, Australia; and Robinson Research Institute, University of Adelaide, SA 5005, Australia
| | - Andreas Evdokiou
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA 5011, Australia
| | - Simon C Barry
- Robinson Research Institute, University of Adelaide, SA 5005, Australia; and Molecular Immunology Laboratory, Discipline of Paediatrics, Adelaide Medical School, University of Adelaide, North Adelaide, SA 5006, Australia
| | - Wendy V Ingman
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA 5011, Australia; and Robinson Research Institute, University of Adelaide, SA 5005, Australia; and Corresponding author.
| |
Collapse
|
44
|
Pascual R, Martín J, Salvador F, Reina O, Chanes V, Millanes-Romero A, Suñer C, Fernández-Miranda G, Bartomeu A, Huang YS, Gomis RR, Méndez R. The RNA binding protein CPEB2 regulates hormone sensing in mammary gland development and luminal breast cancer. SCIENCE ADVANCES 2020; 6:eaax3868. [PMID: 32440535 PMCID: PMC7228762 DOI: 10.1126/sciadv.aax3868] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
Organogenesis is directed by coordinated cell proliferation and differentiation programs. The hierarchical networks of transcription factors driving mammary gland development and function have been widely studied. However, the contribution of posttranscriptional gene expression reprogramming remains largely unexplored. The 3' untranslated regions of messenger RNAs (mRNAs) contain combinatorial ensembles of cis-regulatory elements that define transcript-specific regulation of protein synthesis through their cognate RNA binding proteins. We analyze the contribution of the RNA binding cytoplasmic polyadenylation element-binding (CPEB) protein family, which collectively regulate mRNA translation for about 30% of the genome. We find that CPEB2 is required for the integration of hormonal signaling by controlling the protein expression from a subset of ER/PR- regulated transcripts. Furthermore, CPEB2 is critical for the development of ER-positive breast tumors. This work uncovers a previously unknown gene expression regulation level in breast morphogenesis and tumorigenesis, coordinating sequential transcriptional and posttranscriptional layers of gene expression regulation.
Collapse
Affiliation(s)
- Rosa Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Judit Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Fernando Salvador
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Veronica Chanes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Alba Millanes-Romero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Clara Suñer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Gonzalo Fernández-Miranda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Anna Bartomeu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Roger R. Gomis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Corresponding author.
| |
Collapse
|
45
|
Li T, Zhou X, Wang J, Liu Z, Han S, Wan L, Sun X, Chen H. Adipose-derived mesenchymal stem cells and extracellular vesicles confer antitumor activity in preclinical treatment of breast cancer. Pharmacol Res 2020; 157:104843. [PMID: 32360582 DOI: 10.1016/j.phrs.2020.104843] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Both antitumor and protumor property of mesenchymal stem cells (MSCs) have been demonstrated. We hypothesize that this contradiction is due to the heterogeneity of MSC subsets and that extracellular vesicles (EVs) from distinct MSC subsets can transfer the corresponding antitumor activities. Here we evaluated the antitumor activities of two subsets of adipose-derived mesenchymal stem cells (ADSCs) and ADSC-derived EVs (ADSC-EVs) in immunocompetent syngeneic mouse models of breast cancer. We identified CD90high and CD90low ADSC subsets and demonstrated that CD90high ADSCs could be converted into CD90low ADSCs by stimulation with LPS. CD90low ADSCs and its derived EVs significantly inhibited tumor growth in tumor-bearing mice. Benefit of tumor control were associated with decreased tumor cell proliferation and migration, and enhanced tumor cell apoptosis mediated by ADSC-EVs. Antioncogenic miRNA-16-5p loaded CD90low ADSC-EVs further significantly enhanced antitumor activities. Taken together, this study represents the first attempt to apply our newly identified antitumor ADSCs and its derived EVs in preclinical treatment of breast cancer. This study also provides the evidence that EVs can serve as a novel and effective therapeutics or drug delivery vesicle. This new therapeutic approach could be potentially applicable to breast cancer and many other types of cancer.
Collapse
Affiliation(s)
- Tao Li
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xiaohe Zhou
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jingzhe Wang
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziyao Liu
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Sen Han
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lu Wan
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xiaochun Sun
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Aikawa S, Yuan J, Dewar A, Sun X, Dey SK. Scribble promotes alveologenesis in the pregnant mammary gland for milk production. Reproduction 2020; 159:719-731. [PMID: 32213656 DOI: 10.1530/rep-20-0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
Mammary glands are comprised of ducts and terminal lobules that form tree-like structures. Luminal epithelial cells in these lobules undergo differentiation into alveolar cells in pregnancy to support milk production. This study reveals that Scribble (SCRIB), a scaffold protein expressed in progesterone receptor (PGR)-positive cells, plays a critical role in mammary gland alveologenesis in mice. We conditionally deleted Scrib using a Pgr-Cre driver. PGR is heterogeneously expressed throughout the luminal epithelium. Scrib loss in mammary glands by Pgr-Cre (Scribf/fPgrCre/+) shows inefficient alveologenesis and terminal end bud (TEB)-like morphology during pregnancy, resulting in poor milk production and subsequent death of pups after delivery. The differentiation of PGR-positive epithelial cells into Elf5-expressing alveolar cells is defective in Scribf/fPgrCre/+ mice. These changes are reflected in reduced activation of JAK2 and PAK1, resulting in downregulation of pSTAT5, a critical transcriptional factor for alveologenesis. These results provide evidence that SCRIB impacts PGR-positive cell lineage during alveologenesis, which impacts milk production and the health of offspring.
Collapse
Affiliation(s)
- Shizu Aikawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jia Yuan
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Amanda Dewar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
47
|
Wunderle M, Ruebner M, Häberle L, Schwenke E, Hack CC, Bayer CM, Koch MC, Schwitulla J, Schulz-Wendtland R, Kozieradzki I, Lux MP, Beckmann MW, Jud SM, Penninger JM, Schneider MO, Fasching PA. RANKL and OPG and their influence on breast volume changes during pregnancy in healthy women. Sci Rep 2020; 10:5171. [PMID: 32198488 PMCID: PMC7083828 DOI: 10.1038/s41598-020-62070-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 03/03/2020] [Indexed: 01/12/2023] Open
Abstract
Breast cancer risk is reduced by number of pregnancies and breastfeeding duration, however studies of breast changes during or after pregnancy are rare. Breast volume changes - although not linked to breast cancer risk - might be an interesting phenotype in this context for correlative studies, as changes of breast volume vary between pregnant women. Serum receptor activator of nuclear factor kappa B ligand (RANKL) and its antagonist osteoprotegerin (OPG) were measured prospectively before gestational week 12, and three-dimensional breast volume assessments were performed. A linear regression model including breast volume at the start of pregnancy, RANKL, OPG, and other factors was used to predict breast volume at term. The mean breast volume was 413 mL at gestational week 12, increasing by a mean of 99 mL up to gestational week 40. In addition to body mass index and breast volume at the beginning of pregnancy, RANKL and OPG appeared to influence breast volume with a mean increase by 32 mL (P = 0.04) and a mean reduction by 27 mL (P = 0.04), respectively. Linking the RANKL/RANK/OPG pathway with breast volume changes supports further studies aiming at analysing breast changes during pregnancy with regard to breast cancer risk.
Collapse
Affiliation(s)
- Marius Wunderle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany.,Biostatistics Unit, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Eva Schwenke
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carolin C Hack
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian M Bayer
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Martin C Koch
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Judith Schwitulla
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ruediger Schulz-Wendtland
- Institute of Diagnostic Radiology, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ivona Kozieradzki
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Michael P Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian M Jud
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Josef M Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Michael O Schneider
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
48
|
Sumbal J, Chiche A, Charifou E, Koledova Z, Li H. Primary Mammary Organoid Model of Lactation and Involution. Front Cell Dev Biol 2020; 8:68. [PMID: 32266252 PMCID: PMC7098375 DOI: 10.3389/fcell.2020.00068] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Mammary gland development occurs mainly after birth and is composed of three successive stages: puberty, pregnancy and lactation, and involution. These developmental stages are associated with major tissue remodeling, including extensive changes in mammary epithelium, as well as surrounding stroma. Three-dimensional (3D) mammary organoid culture has become an important tool in mammary gland biology and enabled invaluable discoveries on pubertal mammary branching morphogenesis and breast cancer. However, a suitable 3D organoid model recapitulating key aspects of lactation and involution has been missing. Here, we describe a robust and straightforward mouse mammary organoid system modeling lactation and involution-like process, which can be applied to study mechanisms of physiological mammary gland lactation and involution as well as pregnancy-associated breast cancer.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Aurelie Chiche
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Elsa Charifou
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Han Li
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
| |
Collapse
|
49
|
Gagniac L, Rusidzé M, Boudou F, Cagnet S, Adlanmerini M, Jeannot P, Gaide N, Giton F, Besson A, Weyl A, Gourdy P, Raymond-Letron I, Arnal JF, Brisken C, Lenfant F. Membrane expression of the estrogen receptor ERα is required for intercellular communications in the mammary epithelium. Development 2020; 147:dev.182303. [PMID: 32098763 PMCID: PMC7075076 DOI: 10.1242/dev.182303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/06/2020] [Indexed: 01/23/2023]
Abstract
17β-Estradiol induces the postnatal development of mammary gland and influences breast carcinogenesis by binding to the estrogen receptor ERα. ERα acts as a transcription factor but also elicits rapid signaling through a fraction of ERα expressed at the membrane. Here, we have used the C451A-ERα mouse model mutated for the palmitoylation site to understand how ERα membrane signaling affects mammary gland development. Although the overall structure of physiological mammary gland development is slightly affected, both epithelial fragments and basal cells isolated from C451A-ERα mammary glands failed to grow when engrafted into cleared wild-type fat pads, even in pregnant hosts. Similarly, basal cells purified from hormone-stimulated ovariectomized C451A-ERα mice did not produce normal outgrowths. Ex vivo, C451A-ERα basal cells displayed reduced matrix degradation capacities, suggesting altered migration properties. More importantly, C451A-ERα basal cells recovered in vivo repopulating ability when co-transplanted with wild-type luminal cells and specifically with ERα-positive luminal cells. Transcriptional profiling identified crucial paracrine luminal-to-basal signals. Altogether, our findings uncover an important role for membrane ERα expression in promoting intercellular communications that are essential for mammary gland development.
Collapse
Affiliation(s)
- Laurine Gagniac
- INSERM U1048, I2MC, Université de Toulouse, Toulouse 31432, France
| | - Mariam Rusidzé
- INSERM U1048, I2MC, Université de Toulouse, Toulouse 31432, France
| | - Frederic Boudou
- INSERM U1048, I2MC, Université de Toulouse, Toulouse 31432, France
| | - Stephanie Cagnet
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Pauline Jeannot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse 31062, France
| | - Nicolas Gaide
- LabHPEC Laboratoire d'HistoPathologie Expérimentale et Comparée STROMALab, Université de Toulouse, CNRS ERL5311, EFS, ENVT, Inserm U1031, UPS, Toulouse 31300, France
| | - Frank Giton
- APHP H.Mondor- IMRB - INSERM U955, Créteil 94010, France
| | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse 31062, France
| | - Ariane Weyl
- INSERM U1048, I2MC, Université de Toulouse, Toulouse 31432, France
| | - Pierre Gourdy
- INSERM U1048, I2MC, Université de Toulouse, Toulouse 31432, France
| | - Isabelle Raymond-Letron
- LabHPEC Laboratoire d'HistoPathologie Expérimentale et Comparée STROMALab, Université de Toulouse, CNRS ERL5311, EFS, ENVT, Inserm U1031, UPS, Toulouse 31300, France
| | | | - Cathrin Brisken
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
50
|
Kassouf T, Larive RM, Morel A, Urbach S, Bettache N, Marcial Medina MC, Mèrezègue F, Freiss G, Peter M, Boissière-Michot F, Solassol J, Montcourrier P, Coopman P. The Syk Kinase Promotes Mammary Epithelial Integrity and Inhibits Breast Cancer Invasion by Stabilizing the E-Cadherin/Catenin Complex. Cancers (Basel) 2019; 11:cancers11121974. [PMID: 31817924 PMCID: PMC6966528 DOI: 10.3390/cancers11121974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
While first discovered in immunoreceptor signaling, the Syk protein kinase behaves as a tumor and metastasis suppressor in epithelial cells. Its reduced expression in breast and other carcinomas is correlated with decreased survival and increased metastasis risk, but its action mechanism remains largely unknown. Using phosphoproteomics we found that Syk phosphorylated E-cadherin and α-, β-, and p120-catenins on multiple tyrosine residues that concentrate at intercellular junctions. Increased Syk expression and activation enhanced E-cadherin/catenin phosphorylation, promoting their association and complex stability. In human breast cancer cells, Syk stimulated intercellular aggregation, E-cadherin recruitment and retention at adherens junctions, and promoted epithelial integrity, whereas it inhibited cell migration and invasion. Opposite effects were obtained with Syk knockdown or non-phosphorylatable mutant E-cadherin expression. Mechanistically, Syk stimulated the interaction of the E-cadherin/catenin complex with zonula occludens proteins and the actin cytoskeleton. Conditional Syk knockout in the lactating mouse mammary gland perturbed alveologenesis and disrupted E-cadherin localization at adherens junctions, corroborating the observations in cells. Hence, Syk is involved in the maintenance of the epithelial integrity of the mammary gland via the phosphorylation and stabilization of the E-cadherin/catenin adherens junction complex, thereby inhibiting cell migration and malignant tumor invasion.
Collapse
Affiliation(s)
- Toufic Kassouf
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
- CRBM, CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France;
| | - Romain Maxime Larive
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
- IBMM, Université de Montpellier, CNRS, ENSCM, 15 avenue Charles Flahault - BP 14491, 34093 Montpellier, France;
| | - Anne Morel
- CRBM, CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France;
| | - Serge Urbach
- Functional Proteomics Platform, IGF, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094 Montpellier, France;
| | - Nadir Bettache
- IBMM, Université de Montpellier, CNRS, ENSCM, 15 avenue Charles Flahault - BP 14491, 34093 Montpellier, France;
| | | | - Fabrice Mèrezègue
- BioMV Department, Université de Montpellier CC25000, Place Eugène Bataillon, 34095 Montpellier, France;
| | - Gilles Freiss
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
| | - Marion Peter
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
| | | | - Jérôme Solassol
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
| | - Philippe Montcourrier
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
| | - Peter Coopman
- IRCM, Inserm, CNRS, Universit@#xE9; de Montpellier, ICM, 208 Rue des Apothicaires, 34298 Montpellier, France; (T.K.); (R.M.L.); (G.F.); (M.P.); (J.S.)
- Correspondence: ; Tel.: +33-467-61-3191
| |
Collapse
|