1
|
Mohan AG, Calenic B, Ghiurau NA, Duncea-Borca RM, Constantinescu AE, Constantinescu I. The Golgi Apparatus: A Voyage through Time, Structure, Function and Implication in Neurodegenerative Disorders. Cells 2023; 12:1972. [PMID: 37566051 PMCID: PMC10417163 DOI: 10.3390/cells12151972] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
This comprehensive review article dives deep into the Golgi apparatus, an essential organelle in cellular biology. Beginning with its discovery during the 19th century until today's recognition as an important contributor to cell function. We explore its unique organization and structure as well as its roles in protein processing, sorting, and lipid biogenesis, which play key roles in maintaining homeostasis in cellular biology. This article further explores Golgi biogenesis, exploring its intricate processes and dynamics that contribute to its formation and function. One key focus is its role in neurodegenerative diseases like Parkinson's, where changes to the structure or function of the Golgi apparatus may lead to their onset or progression, emphasizing its key importance in neuronal health. At the same time, we examine the intriguing relationship between Golgi stress and endoplasmic reticulum (ER) stress, providing insights into their interplay as two major cellular stress response pathways. Such interdependence provides a greater understanding of cellular reactions to protein misfolding and accumulation, hallmark features of many neurodegenerative diseases. In summary, this review offers an exhaustive examination of the Golgi apparatus, from its historical background to its role in health and disease. Additionally, this examination emphasizes the necessity of further research in this field in order to develop targeted therapeutic approaches for Golgi dysfunction-associated conditions. Furthermore, its exploration is an example of scientific progress while simultaneously offering hope for developing innovative treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania;
- Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | - Bogdan Calenic
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Nicu Adrian Ghiurau
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410610 Oradea, Romania;
| | | | | | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
2
|
Chauvin SD, Stinson WA, Platt DJ, Poddar S, Miner JJ. Regulation of cGAS and STING signaling during inflammation and infection. J Biol Chem 2023; 299:104866. [PMID: 37247757 PMCID: PMC10316007 DOI: 10.1016/j.jbc.2023.104866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Stimulator of interferon genes (STING) is a sensor of cyclic dinucleotides including cyclic GMP-AMP, which is produced by cyclic GMP-AMP synthase (cGAS) in response to cytosolic DNA. The cGAS-STING signaling pathway regulates both innate and adaptive immune responses, as well as fundamental cellular functions such as autophagy, senescence, and apoptosis. Mutations leading to constitutive activation of STING cause devastating human diseases. Thus, the cGAS-STING pathway is of great interest because of its role in diverse cellular processes and because of the potential therapeutic implications of targeting cGAS and STING. Here, we review molecular and cellular mechanisms of STING signaling, and we propose a framework for understanding the immunological and other cellular functions of STING in the context of disease.
Collapse
Affiliation(s)
- Samuel D Chauvin
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - W Alexander Stinson
- Departments of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Derek J Platt
- Department Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Subhajit Poddar
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jonathan J Miner
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Departments of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA; Department Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
3
|
Li S, Wang Z, Chen M, Xiao Y, Min J, Hu M, Tang J, Hong L. ArfGAP3 regulates vesicle transport and glucose uptake in myoblasts. Cell Signal 2023; 103:110551. [PMID: 36476390 DOI: 10.1016/j.cellsig.2022.110551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Skeletal muscle injuries are common, and damaged myofibers are repaired through proliferation and differentiation of muscle satellite cells. GLUT4 is enriched in GLUT4 storage vesicles (GSVs) and plays a crucial role in the maintenance of muscle function. ArfGAP3 regulates the vesicle transport especially for COPI coat assembly, but its effects on GSVs and the repair process after skeletal muscle injury remains unclear. In this study, datasets related to skeletal muscle injury and myoblast differentiation GSE469, GSE5413, GSE45577 and GSE108040 were retrieved through the GEO database and the expression of heptameric coat protein complex I (COPI) and Golgi vesicle transport-related genes in various datasets, as well as the expression correlation between ArfGAP2, ArfGAP3 and COPI-related genes COPA, COPB1, COPB2, COPE, COPZ1, COPZ2 were analyzed. The results suggested that ArfGAP3 was expressed in the process of repair after skeletal muscle injury and myoblast differentiation and that ArfGAP3 was positively correlated with COPI-related genes. In vitro experimental results showed that ArfGAP3 was colocalized with COPA, COPB, COPG protein, and GLUT4 in C2C12 myoblasts. After the downregulation of ArfGAP3 expression, intracellular vesicle transport, and glucose uptake were blocked, the proliferation of myoblasts under low glucose culture conditions was impaired, the proportion of apoptosis increased, and myotube differentiation was impaired. In summary, ArfGAP3 regulates COPI-associated vesicle and GSVs transport and affects the proliferation and differentiation ability of myoblasts by influencing glucose uptake, thereby modulating the repair process after skeletal muscle injury.
Collapse
Affiliation(s)
- Suting Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhi Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Mao Chen
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ya Xiao
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jie Min
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ming Hu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jianming Tang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
4
|
Malis Y, Hirschberg K, Kaether C. Hanging the coat on a collar: Same function but different localization and mechanism for COPII. Bioessays 2022; 44:e2200064. [DOI: 10.1002/bies.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yehonathan Malis
- Department of Pathology, Sackler School of Medicine Tel‐Aviv University Tel Aviv Israel
| | - Koret Hirschberg
- Department of Pathology, Sackler School of Medicine Tel‐Aviv University Tel Aviv Israel
| | - Christoph Kaether
- Leibniz Institute for Age Research – Fritz Lipmann Institute Jena Germany
| |
Collapse
|
5
|
Nakano A. The Golgi Apparatus and its Next-Door Neighbors. Front Cell Dev Biol 2022; 10:884360. [PMID: 35573670 PMCID: PMC9096111 DOI: 10.3389/fcell.2022.884360] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
The Golgi apparatus represents a central compartment of membrane traffic. Its apparent architecture, however, differs considerably among species, from unstacked and scattered cisternae in the budding yeast Saccharomyces cerevisiae to beautiful ministacks in plants and further to gigantic ribbon structures typically seen in mammals. Considering the well-conserved functions of the Golgi, its fundamental structure must have been optimized despite seemingly different architectures. In addition to the core layers of cisternae, the Golgi is usually accompanied by next-door compartments on its cis and trans sides. The trans-Golgi network (TGN) can be now considered as a compartment independent from the Golgi stack. On the cis side, the intermediate compartment between the ER and the Golgi (ERGIC) has been known in mammalian cells, and its functional equivalent is now suggested for yeast and plant cells. High-resolution live imaging is extremely powerful for elucidating the dynamics of these compartments and has revealed amazing similarities in their behaviors, indicating common mechanisms conserved along the long course of evolution. From these new findings, I would like to propose reconsideration of compartments and suggest a new concept to describe their roles comprehensively around the Golgi and in the post-Golgi trafficking.
Collapse
|
6
|
Casler JC, Johnson N, Krahn AH, Pantazopoulou A, Day KJ, Glick BS. Clathrin adaptors mediate two sequential pathways of intra-Golgi recycling. J Cell Biol 2022; 221:212747. [PMID: 34739034 PMCID: PMC8576872 DOI: 10.1083/jcb.202103199] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The pathways of membrane traffic within the Golgi apparatus are not fully known. This question was addressed using the yeast Saccharomyces cerevisiae, in which the maturation of individual Golgi cisternae can be visualized. We recently proposed that the AP-1 clathrin adaptor mediates intra-Golgi recycling late in the process of cisternal maturation. Here, we demonstrate that AP-1 cooperates with the Ent5 clathrin adaptor to recycle a set of Golgi transmembrane proteins, including some that were previously thought to pass through endosomes. This recycling can be detected by removing AP-1 and Ent5, thereby diverting the AP-1/Ent5-dependent Golgi proteins into an alternative recycling loop that involves traffic to the plasma membrane followed by endocytosis. Unexpectedly, various AP-1/Ent5-dependent Golgi proteins show either intermediate or late kinetics of residence in maturing cisternae. We infer that the AP-1/Ent5 pair mediates two sequential intra-Golgi recycling pathways that define two classes of Golgi proteins. This insight can explain the polarized distribution of transmembrane proteins in the Golgi.
Collapse
Affiliation(s)
- Jason C Casler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Natalie Johnson
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Adam H Krahn
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| |
Collapse
|
7
|
Ford C, Parchure A, von Blume J, Burd CG. Cargo sorting at the trans-Golgi network at a glance. J Cell Sci 2021; 134:jcs259110. [PMID: 34870705 PMCID: PMC8714066 DOI: 10.1242/jcs.259110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Golgi functions principally in the biogenesis and trafficking of glycoproteins and lipids. It is compartmentalized into multiple flattened adherent membrane sacs termed cisternae, which each contain a distinct repertoire of resident proteins, principally enzymes that modify newly synthesized proteins and lipids sequentially as they traffic through the stack of Golgi cisternae. Upon reaching the final compartments of the Golgi, the trans cisterna and trans-Golgi network (TGN), processed glycoproteins and lipids are packaged into coated and non-coated transport carriers derived from the trans Golgi and TGN. The cargoes of clathrin-coated vesicles are chiefly residents of endo-lysosomal organelles, while uncoated carriers ferry cargo to the cell surface. There are outstanding questions regarding the mechanisms of protein and lipid sorting within the Golgi for export to different organelles. Nonetheless, conceptual advances have begun to define the key molecular features of cargo clients and the mechanisms underlying their sorting into distinct export pathways, which we have collated in this Cell Science at a Glance article and the accompanying poster.
Collapse
Affiliation(s)
| | | | - Julia von Blume
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Christopher G. Burd
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
8
|
Pothukuchi P, Agliarulo I, Pirozzi M, Rizzo R, Russo D, Turacchio G, Nüchel J, Yang JS, Gehin C, Capolupo L, Hernandez-Corbacho MJ, Biswas A, Vanacore G, Dathan N, Nitta T, Henklein P, Thattai M, Inokuchi JI, Hsu VW, Plomann M, Obeid LM, Hannun YA, Luini A, D'Angelo G, Parashuraman S. GRASP55 regulates intra-Golgi localization of glycosylation enzymes to control glycosphingolipid biosynthesis. EMBO J 2021; 40:e107766. [PMID: 34516001 PMCID: PMC8521277 DOI: 10.15252/embj.2021107766] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis‐trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI‐based retrograde transport vesicles, thus concentrating them in the trans‐Golgi. In genome‐edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis‐Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Marinella Pirozzi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Gabriele Turacchio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Julian Nüchel
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlotte Gehin
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura Capolupo
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Ansuman Biswas
- National Center of Biological Sciences, Bengaluru, India
| | - Giovanna Vanacore
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Nina Dathan
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Petra Henklein
- Universitätsmedizin Berlin Institut für Biochemie Charité CrossOver Charitéplatz 1 / Sitz, Berlin, Germany
| | - Mukund Thattai
- National Center of Biological Sciences, Bengaluru, India
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Markus Plomann
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Lina M Obeid
- Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Giovanni D'Angelo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy.,École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
9
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
10
|
Yang Y, Cheng Y, Yang L, Shi G, Chen P, Li L, Fang H, Chen C, Jin T. The Influence of NDRG1 Single Nucleotide Polymorphisms on Glioma Risk and Prognosis in Chinese Han Population. Cell Mol Neurobiol 2021; 42:1949-1964. [PMID: 33709284 DOI: 10.1007/s10571-021-01075-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Glioma is a highly fatal malignant tumor with a high recurrence rate, poor clinical treatment effect, and prognosis. We aimed to determine the association between single nucleotide polymorphisms (SNPs) of NDRG1 and glioma risk and prognosis in the Chinese Han population. 5 candidate SNPs were genotyped by Agena MassARRAY in 558 cases and 503 controls; logistic regression was used to analyze the relationship between SNPs and glioma risk. We used multi-factor dimensionality reduction to analyze the interaction of 'SNP-SNP'; the prognosis analysis was performed by log-rank test, Kaplan-Meier analysis, and Cox regression model. Our results showed that the polymorphisms of rs3808599 was associated with the reduction of glioma risk in all participants (OR 0.41, p = 0.024) and the participants ≤ 40 years old (OR 0.30, p = 0.020). rs3802251 may reduce glioma risk in all participants (OR 0.79, p = 0.008), the male participants (OR 0.68, p = 0.033), and astrocytoma patients (OR 0.81, p = 0.023). rs3779941 was associated with poor glioma prognosis in all participants (HR = 2.59, p = 0.039) or astrocytoma patients (HR = 2.63, p = 0.038). We also found that the key factors for glioma prognosis may include surgical operation, radiotherapy, and chemotherapy. This study is the first to find that NDRG1 gene polymorphisms may have a certain association with glioma risk or prognosis in the Chinese Han population.
Collapse
Affiliation(s)
- Yonghui Yang
- Clinical Laboratory, Xi'an 630 Hospital, Yanliang, Xi'an, 710000, Shaanxi, China
| | - Yimin Cheng
- Engineering Research Centre for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, People's Republic of China.,The Hospital of Xi'an Shiyou University, Xi'an, People's Republic of China
| | - Liting Yang
- Engineering Research Centre for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Guangyao Shi
- Engineering Research Centre for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Peng Chen
- Engineering Research Centre for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Liang Li
- Shaanxi Provincial Tumor Hospital, Xi'an, People's Republic of China
| | - Hangrong Fang
- Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, People's Republic of China
| | - Chao Chen
- Engineering Research Centre for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
11
|
Golgi localization of glycosyltransferases requires Gpp74p in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2020; 104:8897-8909. [DOI: 10.1007/s00253-020-10881-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
|
12
|
Ren S, Ding C, Sun Y. Morphology Remodeling and Selective Autophagy of Intracellular Organelles during Viral Infections. Int J Mol Sci 2020; 21:ijms21103689. [PMID: 32456258 PMCID: PMC7279407 DOI: 10.3390/ijms21103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Viruses have evolved different strategies to hijack subcellular organelles during their life cycle to produce robust infectious progeny. Successful viral reproduction requires the precise assembly of progeny virions from viral genomes, structural proteins, and membrane components. Such spatial and temporal separation of assembly reactions depends on accurate coordination among intracellular compartmentalization in multiple organelles. Here, we overview the rearrangement and morphology remodeling of virus-triggered intracellular organelles. Focus is given to the quality control of intracellular organelles, the hijacking of the modified organelle membranes by viruses, morphology remodeling for viral replication, and degradation of intracellular organelles by virus-triggered selective autophagy. Understanding the functional reprogram and morphological remodeling in the virus-organelle interplay can provide new insights into the development of broad-spectrum antiviral strategies.
Collapse
Affiliation(s)
- Shanhui Ren
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.D.); (Y.S.); Tel.: +86-21-34293441 (C.D. & Y.S.); Fax: +86-21-54081818 (C.D. & Y.S.)
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
- Correspondence: (C.D.); (Y.S.); Tel.: +86-21-34293441 (C.D. & Y.S.); Fax: +86-21-54081818 (C.D. & Y.S.)
| |
Collapse
|
13
|
Pantazopoulou A, Glick BS. A Kinetic View of Membrane Traffic Pathways Can Transcend the Classical View of Golgi Compartments. Front Cell Dev Biol 2019; 7:153. [PMID: 31448274 PMCID: PMC6691344 DOI: 10.3389/fcell.2019.00153] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
A long-standing assumption is that the cisternae of the Golgi apparatus can be grouped into functionally distinct compartments, yet the molecular identities of those compartments have not been clearly described. The concept of a compartmentalized Golgi is challenged by the cisternal maturation model, which postulates that cisternae form de novo and then undergo progressive biochemical changes. Cisternal maturation can potentially be reconciled with Golgi compartmentation by defining compartments as discrete kinetic stages in the maturation process. These kinetic stages are distinguished by the traffic pathways that are operating. For example, a major transition occurs when a cisterna stops producing COPI vesicles and begins producing clathrin-coated vesicles. This transition separates one kinetic stage, the "early Golgi," from a subsequent kinetic stage, the "late Golgi" or "trans-Golgi network (TGN)." But multiple traffic pathways drive Golgi maturation, and the periods of operation for different traffic pathways can partially overlap, so there is no simple way to define a full set of Golgi compartments in terms of kinetic stages. Instead, we propose that the focus should be on the series of transitions experienced by a Golgi cisterna as various traffic pathways are switched on and off. These traffic pathways drive changes in resident transmembrane protein composition. Transitions in traffic pathways seem to be the fundamental, conserved determinants of Golgi organization. According to this view, the initial goal is to identify the relevant traffic pathways and place them on the kinetic map of Golgi maturation, and the ultimate goal is to elucidate the logic circuit that switches individual traffic pathways on and off as a cisterna matures.
Collapse
Affiliation(s)
- Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
14
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
15
|
Kamiya T, Seow SV, Wong D, Robinson M, Campana D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J Clin Invest 2019; 129:2094-2106. [PMID: 30860984 PMCID: PMC6486333 DOI: 10.1172/jci123955] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
A key mechanism of tumor resistance to immune cells is mediated by expression of peptide-loaded HLA-E in tumor cells, which suppresses natural killer (NK) cell activity via ligation of the NK inhibitory receptor CD94/NKG2A. Gene expression data from approximately 10,000 tumor samples showed widespread HLAE expression, with levels correlating with those of KLRC1 (NKG2A) and KLRD1 (CD94). To bypass HLA-E inhibition, we developed a way to generate highly functional NK cells lacking NKG2A. Constructs containing a single-chain variable fragment derived from an anti-NKG2A antibody were linked to endoplasmic reticulum-retention domains. After retroviral transduction in human peripheral blood NK cells, these NKG2A Protein Expression Blockers (PEBLs) abrogated NKG2A expression. The resulting NKG2Anull NK cells had higher cytotoxicity against HLA-E-expressing tumor cells. Transduction of anti-NKG2A PEBL produced more potent cytotoxicity than interference with an anti-NKG2A antibody and prevented de novo NKG2A expression, without affecting NK cell proliferation. In immunodeficient mice, NKG2Anull NK cells were significantly more powerful than NKG2A+ NK cells against HLA-E-expressing tumors. Thus, NKG2A downregulation evades the HLA-E cancer immune-checkpoint, and increases the anti-tumor activity of NK cell infusions. Because this strategy is easily adaptable to current protocols for clinical-grade immune cell processing, its clinical testing is feasible and warranted.
Collapse
Affiliation(s)
- Takahiro Kamiya
- Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore
| | - See Voon Seow
- Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore
| | - Desmond Wong
- Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore
| | | | - Dario Campana
- Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore
| |
Collapse
|
16
|
Hernández-González M, Bravo-Plaza I, de Los Ríos V, Pinar M, Pantazopoulou A, Peñalva MA. COPI localizes to the early Golgi in Aspergillus nidulans. Fungal Genet Biol 2018; 123:78-86. [PMID: 30550852 DOI: 10.1016/j.fgb.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 01/21/2023]
Abstract
Coatomer-I (COPI) is a heteromeric protein coat that facilitates the budding of membranous carriers mediating Golgi-to-ER and intra-Golgi transport. While the structural features of COPI have been thoroughly investigated, its physiological role is insufficiently understood. Here we exploit the amenability of A. nidulans for studying intracellular traffic, taking up previous studies by Breakspear et al. (2007) with the α-COP/CopA subunit of COPI. Endogenously tagged α-COP/CopA largely localizes to SedVSed5 syntaxin-containing early Golgi cisterna, and acute inactivation of ER-to-Golgi traffic delocalizes COPI to a haze, consistent with the cisternal maturation model. In contrast, the Golgi localization of COPI is independent of the TGN regulators HypBSec7 and HypATrs120, implying that COPI budding predominates at the SedVSed5 early Golgi, with lesser contribution of the TGN. This finding agrees with the proposed role of COPI-mediated intra-Golgi retrograde traffic in driving cisternal maturation, which predicts that the capacity of the TGN to generate COPI carriers is low. The COPI early Golgi compartments intimately associates with Sec13-containing ER exit sites. Characterization of the heat-sensitive copA1ts (sodVIC1) mutation showed that it results in a single residue substitution in the ε-COP-binding Carboxyl-Terminal-Domain of α-COP that likely destabilizes its folding. However, we show that Golgi disorganization by copA1ts necessitates >150 min-long incubation at 42 °C. This weak subcellular phenotype makes it unsuitable for inactivating COPI traffic acutely for microscopy studies, and explains the aneuploidy-stabilizing role of the mutation at subrestrictive temperatures.
Collapse
Affiliation(s)
- Miguel Hernández-González
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain; Centre for Mechanochemical Cell Biology, Gibbet Hill Road, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK(1)
| | - Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Vivian de Los Ríos
- Proteomics and Genomics Facility, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Areti Pantazopoulou
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain; Department of Molecular Genetics and Cell Biology, Biological Sciences Division, The University of Chicago, United States(1).
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
17
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
18
|
Wang X, Chung KP, Lin W, Jiang L. Protein secretion in plants: conventional and unconventional pathways and new techniques. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:21-37. [PMID: 28992209 DOI: 10.1093/jxb/erx262] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein secretion is an essential process in all eukaryotic cells and its mechanisms have been extensively studied. Proteins with an N-terminal leading sequence or transmembrane domain are delivered through the conventional protein secretion (CPS) pathway from the endoplasmic reticulum (ER) to the Golgi apparatus. This feature is conserved in yeast, animals, and plants. In contrast, the transport of leaderless secretory proteins (LSPs) from the cytosol to the cell exterior is accomplished via the unconventional protein secretion (UPS) pathway. So far, the CPS pathway has been well characterized in plants, with several recent studies providing new information about the regulatory mechanisms involved. On the other hand, studies on UPS pathways in plants remain descriptive, although a connection between UPS and the plant defense response is becoming more and more apparent. In this review, we present an update on CPS and UPS. With the emergence of new techniques, a more comprehensive understanding of protein secretion in plants can be expected in the future.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Weili Lin
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, China
| |
Collapse
|
19
|
Schoberer J, Strasser R. Plant glyco-biotechnology. Semin Cell Dev Biol 2017; 80:133-141. [PMID: 28688929 DOI: 10.1016/j.semcdb.2017.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/17/2022]
Abstract
Glycosylation is an important protein modification in all eukaryotes. Whereas the early asparagine-linked glycosylation (N-glycosylation) and N-glycan processing steps in the endoplasmic reticulum are conserved between mammals and plants, the maturation of complex N-glycans in the Golgi apparatus differs considerably. Due to a restricted number of Golgi-resident N-glycan processing enzymes and the absence of nucleotide sugars such as CMP-N-acetylneuraminic acid, plants produce only a limited repertoire of different N-glycan structures. Moreover, mammalian mucin-type O-glycosylation of serine or threonine residues has not been described in plants and the required machinery is not encoded in their genome which enables de novo build-up of the pathway. As a consequence, plants are very well-suited for the production of homogenous N- and O-glycans and are increasingly used for the production of recombinant glycoproteins with custom-made glycans that may result in the generation of biopharmaceuticals with improved therapeutic potential.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
20
|
Rizzo R, Parashuraman S, D’Angelo G, Luini A. GOLPH3 and oncogenesis: What is the molecular link? Tissue Cell 2017; 49:170-174. [DOI: 10.1016/j.tice.2016.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022]
|
21
|
Bhide GP, Colley KJ. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 2017; 147:149-174. [PMID: 27975143 PMCID: PMC7088086 DOI: 10.1007/s00418-016-1520-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
Abstract
Sialylated N-glycans play essential roles in the immune system, pathogen recognition and cancer. This review approaches the sialylation of N-glycans from three perspectives. The first section focuses on the sialyltransferases that add sialic acid to N-glycans. Included in the discussion is a description of these enzymes' glycan acceptors, conserved domain organization and sequences, molecular structure and catalytic mechanism. In addition, we discuss the protein interactions underlying the polysialylation of a select group of adhesion and signaling molecules. In the second section, the biosynthesis of sialic acid, CMP-sialic acid and sialylated N-glycans is discussed, with a special emphasis on the compartmentalization of these processes in the mammalian cell. The sequences and mechanisms maintaining the sialyltransferases and other glycosylation enzymes in the Golgi are also reviewed. In the final section, we have chosen to discuss processes in which sialylated glycans, both N- and O-linked, play a role. The first part of this section focuses on sialic acid-binding proteins including viral hemagglutinins, Siglecs and selectins. In the second half of this section, we comment on the role of sialylated N-glycans in cancer, including the roles of β1-integrin and Fas receptor N-glycan sialylation in cancer cell survival and drug resistance, and the role of these sialylated proteins and polysialic acid in cancer metastasis.
Collapse
Affiliation(s)
- Gaurang P Bhide
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA
| | - Karen J Colley
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA.
| |
Collapse
|
22
|
Abstract
The delivery of proteins to the apoplast or protein secretion is an essential process in plant cells. Proteins are secreted to perform various biological functions such as cell wall modification and defense response. Conserved from yeast to mammals, both conventional and unconventional protein secretion pathways have been demonstrated in plants. In the conventional protein secretion pathway, secretory proteins with an N-terminal signal peptide are transported to the extracellular region via the endoplasmic reticulum-Golgi apparatus and the subsequent endomembrane system. By contrast, multiple unconventional protein secretion pathways are proposed to mediate the secretion of the leaderless secretory proteins. In this review, we summarize the recent findings and provide a comprehensive overview of protein secretion pathways in plant cells.
Collapse
Affiliation(s)
- Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Yonglun Zeng
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
23
|
Hayashi Y, Nemoto-Sasaki Y, Matsumoto N, Tanikawa T, Oka S, Tanaka Y, Arai S, Wada I, Sugiura T, Yamashita A. Carboxyl-terminal Tail-mediated Homodimerizations of Sphingomyelin Synthases Are Responsible for Efficient Export from the Endoplasmic Reticulum. J Biol Chem 2016; 292:1122-1141. [PMID: 27927984 DOI: 10.1074/jbc.m116.746602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/16/2016] [Indexed: 11/06/2022] Open
Abstract
Sphingomyelin synthase (SMS) is the key enzyme for cross-talk between bioactive sphingolipids and glycerolipids. In mammals, SMS consists of two isoforms: SMS1 is localized in the Golgi apparatus, whereas SMS2 is localized in both the Golgi and plasma membranes. SMS2 seems to exert cellular functions through protein-protein interactions; however, the existence and functions of quaternary structures of SMS1 and SMS2 remain unclear. Here we demonstrate that both SMS1 and SMS2 form homodimers. The SMSs have six membrane-spanning domains, and the N and C termini of both proteins face the cytosolic side of the Golgi apparatus. Chemical cross-linking and bimolecular fluorescence complementation revealed that the N- and/or C-terminal tails of the SMSs were in close proximity to those of the other SMS in the homodimer. Homodimer formation was significantly decreased by C-terminal truncations, SMS1-ΔC22 and SMS2-ΔC30, indicating that the C-terminal tails of the SMSs are primarily responsible for homodimer formation. Moreover, immunoprecipitation using deletion mutants revealed that the C-terminal tail of SMS2 mainly interacted with the C-terminal tail of its homodimer partner, whereas the C-terminal tail of SMS1 mainly interacted with a site other than the C-terminal tail of its homodimer partner. Interestingly, homodimer formation occurred in the endoplasmic reticulum (ER) membrane before trafficking to the Golgi apparatus. Reduced homodimerization caused by C-terminal truncations of SMSs significantly reduced ER-to-Golgi transport. Our findings suggest that the C-terminal tails of SMSs are involved in homodimer formation, which is required for efficient transport from the ER.
Collapse
Affiliation(s)
- Yasuhiro Hayashi
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Yoko Nemoto-Sasaki
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Naoki Matsumoto
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Takashi Tanikawa
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Saori Oka
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Yusuke Tanaka
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Seisuke Arai
- the Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Hikarigaoka-1, Fukushima City, Fukushima 960-1295, Japan
| | - Ikuo Wada
- the Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Hikarigaoka-1, Fukushima City, Fukushima 960-1295, Japan
| | - Takayuki Sugiura
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| | - Atsushi Yamashita
- From the Faculty of Pharma Sciences, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan and
| |
Collapse
|
24
|
Casey CA, Bhat G, Holzapfel MS, Petrosyan A. Study of Ethanol-Induced Golgi Disorganization Reveals the Potential Mechanism of Alcohol-Impaired N-Glycosylation. Alcohol Clin Exp Res 2016; 40:2573-2590. [PMID: 27748959 PMCID: PMC5133184 DOI: 10.1111/acer.13247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/20/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND It is known that ethanol (EtOH) and its metabolites have a negative effect on protein glycosylation. The fragmentation of the Golgi apparatus induced by alteration of the structure of largest Golgi matrix protein, giantin, is the major consequence of damaging effects of EtOH-metabolism on the Golgi; however, the link between this and abnormal glycosylation remains unknown. Because previously we have shown that Golgi morphology dictates glycosylation, we examined the effect EtOH administration has on function of Golgi residential enzymes involved in N-glycosylation. METHODS HepG2 cells transfected with mouse ADH1 (VA-13 cells) were treated with 35 mM EtOH for 72 hours. Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Characterization of Golgi-associated mannosyl (α-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (MGAT1), α-1,2-mannosidase (Man-I), and α-mannosidase II (Man-II) were performed in VA-13 cells and rat hepatocytes followed by three-dimensional structured illumination microscopy (3D SIM). RESULTS First, we detected that EtOH administration results in the loss of sialylated N-glycans on asialoglycoprotein receptor; however, the high-mannose-type N-glycans are increased. Further analysis by 3D SIM revealed that EtOH treatment despite Golgi disorganization does not change cis-Golgi localization for Man-I, but does induce medial-to-cis relocation of MGAT1 and Man-II. Using different approaches, including electron microscopy, we revealed that EtOH treatment results in dysfunction of ADP-ribosylation factor 1 (Arf1) GTPase followed by a deficiency in COPI vesicles at the Golgi. Silencing beta-COP or expression of GDP-bound mutant Arf1(T31N) mimics the EtOH effect on retaining MGAT1 and Man-II at the cis-Golgi, suggesting that (i) EtOH specifically blocks activation of Arf1, and (ii) EtOH alters the proper localization of Golgi enzymes through impairment of COPI. Importantly, the level of MGAT1 was reduced, because likely MGAT1, contrary to Man-I and Man-II, is giantin sensitive. CONCLUSIONS Thus, we provide the mechanism by which EtOH-induced Golgi remodeling may significantly modify formation of N-glycans.
Collapse
Affiliation(s)
- Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Ganapati Bhat
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Melissa S. Holzapfel
- Department of Pathology and Microbiology, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| |
Collapse
|
25
|
Tan X, Banerjee P, Guo HF, Ireland S, Pankova D, Ahn YH, Nikolaidis IM, Liu X, Zhao Y, Xue Y, Burns AR, Roybal J, Gibbons DL, Zal T, Creighton CJ, Ungar D, Wang Y, Kurie JM. Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11. J Clin Invest 2016; 127:117-131. [PMID: 27869652 DOI: 10.1172/jci88736] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/06/2016] [Indexed: 12/16/2022] Open
Abstract
Tumor cells gain metastatic capacity through a Golgi phosphoprotein 3-dependent (GOLPH3-dependent) Golgi membrane dispersal process that drives the budding and transport of secretory vesicles. Whether Golgi dispersal underlies the pro-metastatic vesicular trafficking that is associated with epithelial-to-mesenchymal transition (EMT) remains unclear. Here, we have shown that, rather than causing Golgi dispersal, EMT led to the formation of compact Golgi organelles with improved ribbon linking and cisternal stacking. Ectopic expression of the EMT-activating transcription factor ZEB1 stimulated Golgi compaction and relieved microRNA-mediated repression of the Golgi scaffolding protein PAQR11. Depletion of PAQR11 dispersed Golgi organelles and impaired anterograde vesicle transport to the plasma membrane as well as retrograde vesicle tethering to the Golgi. The N-terminal scaffolding domain of PAQR11 was associated with key regulators of Golgi compaction and vesicle transport in pull-down assays and was required to reconstitute Golgi compaction in PAQR11-deficient tumor cells. Finally, high PAQR11 levels were correlated with EMT and shorter survival in human cancers, and PAQR11 was found to be essential for tumor cell migration and metastasis in EMT-driven lung adenocarcinoma models. We conclude that EMT initiates a PAQR11-mediated Golgi compaction process that drives metastasis.
Collapse
|
26
|
Ishii M, Suda Y, Kurokawa K, Nakano A. COPI is essential for Golgi cisternal maturation and dynamics. J Cell Sci 2016; 129:3251-61. [PMID: 27445311 PMCID: PMC5047698 DOI: 10.1242/jcs.193367] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/15/2016] [Indexed: 02/02/2023] Open
Abstract
Proteins synthesized in the endoplasmic reticulum (ER) are transported to the Golgi and then sorted to their destinations. For their passage through the Golgi, one widely accepted mechanism is cisternal maturation. Cisternal maturation is fulfilled by the retrograde transport of Golgi-resident proteins from later to earlier cisternae, and candidate carriers for this retrograde transport are coat protein complex I (COPI)-coated vesicles. We examined the COPI function in cisternal maturation directly by 4D observation of the transmembrane Golgi-resident proteins in living yeast cells. COPI temperature-sensitive mutants and induced degradation of COPI proteins were used to knockdown COPI function. For both methods, inactivation of COPI subunits Ret1 and Sec21 markedly impaired the transition from cis to medial and to trans cisternae. Furthermore, the movement of cisternae within the cytoplasm was severely restricted when COPI subunits were depleted. Our results demonstrate the essential roles of COPI proteins in retrograde trafficking of the Golgi-resident proteins and dynamics of the Golgi cisternae. Highlighted Article: Knockdown of COPI function restricts retrograde recycling of Golgi-resident proteins and markedly impairs the transition from cis to medial and to trans cisternae, as demonstrated in living yeast cells.
Collapse
Affiliation(s)
- Midori Ishii
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Laboratory of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Abstract
The components involved in cellular trafficking and protein recycling machinery that have been associated with increased Alzheimer's disease (AD) risk belong to the late secretory compartments for the most part. Here, we hypothesize that these late unavoidable events might be the consequence of earlier complications occurring while amyloid precursor protein (APP) is trafficking through the early secretory pathway. We investigated the relevance to AD of coat protein complex I (COPI)-dependent trafficking, an early step in Golgi-to-endoplasmic reticulum (ER) retrograde transport and one of the very first trafficking steps. Using a complex set of imaging technologies, including inverse fluorescence recovery after photobleaching (iFRAP) and photoactivatable probes, coupled to biochemical experiments, we show that COPI subunit δ (δ-COP) affects the biology of APP, including its subcellular localization and cell surface expression, its trafficking, and its metabolism. These findings demonstrate the crucial role of δ-COP in APP metabolism and, consequently, the generation of amyloid-β (Aβ) peptide, providing previously nondescribed mechanistic explanations of the underlying events.
Collapse
|
28
|
Saraste J, Marie M. Intermediate Compartment: A Sorting Station between the Endoplasmic Reticulum and the Golgi Apparatus. ENCYCLOPEDIA OF CELL BIOLOGY 2016. [PMCID: PMC7150006 DOI: 10.1016/b978-0-12-394447-4.20013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Papanikou E, Day KJ, Austin J, Glick BS. COPI selectively drives maturation of the early Golgi. eLife 2015; 4. [PMID: 26709839 PMCID: PMC4758959 DOI: 10.7554/elife.13232] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/27/2015] [Indexed: 12/12/2022] Open
Abstract
COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generate partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins. DOI:http://dx.doi.org/10.7554/eLife.13232.001 Proteins play many important roles for cells, and these roles often require the proteins to be in particular locations in or around the cells. A set of cell compartments called the Golgi packages certain proteins into bubble-like structures called vesicles to enable the proteins to be used elsewhere in the cell or released to the outside of the cell, in a process called the secretory pathway. The operation of the secretory pathway requires the Golgi compartments to be continually remodeled. Proteins and other materials can be ferried between the compartments of the Golgi by another type of vesicle. These vesicles are coated with a group, or complex, of proteins called COPI, which forms a curved lattice around the vesicles and helps them to capture the materials they will transport. However, it is not clear whether COPI is also involved in remodeling of the Golgi compartments. Papanikou, Day et al. addressed this question using a technique called the “anchor-away method” combined with microscopy to study COPI in yeast cells. The yeast were genetically engineered so that COPI activity was effectively shut down in the presence of a drug called rapamycin. The experiments show that COPI is involved in the early stages of remodeling the Golgi compartments, but not the later stages. This finding supports the emerging view of the Golgi as a self-organizing cellular machine, and it provides a framework for uncovering the engineering principles that underlie the secretory pathway. DOI:http://dx.doi.org/10.7554/eLife.13232.002
Collapse
Affiliation(s)
- Effrosyni Papanikou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jotham Austin
- Electron Microscopy Core Facility, The University of Chicago, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
30
|
Isayenkov SV, Sekan AS, Sorochinsky BV, Blume YB. Molecular aspects of endosomal cellular transport. CYTOL GENET+ 2015. [DOI: 10.3103/s009545271503007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Sechi S, Frappaolo A, Belloni G, Colotti G, Giansanti MG. The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3. Oncotarget 2015; 6:3493-506. [PMID: 25691054 PMCID: PMC4414131 DOI: 10.18632/oncotarget.3051] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
Abstract
The highly conserved Golgi phosphoprotein 3 (GOLPH3) protein, a component of Trans-Golgi Network (TGN), has been defined as a "first-in-class Golgi oncoprotein" and characterized as a Phosphatidylinositol 4-phosphate [PI(4)P] effector at the Golgi. GOLPH3 is commonly amplified in several solid tumors. Furthermore this protein has been associated with poor prognosis in many cancers. Highly conserved from yeast to humans, GOLPH3 provides an essential function in vesicle trafficking and Golgi structure. Recent data have also implicated this oncoprotein in regulation of cytokinesis, modulation of mitochondrial mass and cellular response to DNA damage. A minute dissection of the molecular pathways that require GOLPH3 protein will be helpful to develop new therapeutic cancer strategies.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Giorgio Belloni
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
32
|
Schoberer J, Liebminger E, Vavra U, Veit C, Castilho A, Dicker M, Maresch D, Altmann F, Hawes C, Botchway SW, Strasser R. The transmembrane domain of N -acetylglucosaminyltransferase I is the key determinant for its Golgi subcompartmentation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:809-22. [PMID: 25230686 PMCID: PMC4282539 DOI: 10.1111/tpj.12671] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/28/2014] [Accepted: 09/11/2014] [Indexed: 05/18/2023]
Abstract
Golgi-resident type-II membrane proteins are asymmetrically distributed across the Golgi stack. The intrinsic features of the protein that determine its subcompartment-specific concentration are still largely unknown. Here, we used a series of chimeric proteins to investigate the contribution of the cytoplasmic, transmembrane and stem region of Nicotiana benthamiana N-acetylglucosaminyltransferase I (GnTI) for its cis/medial-Golgi localization and for protein-protein interaction in the Golgi. The individual GnTI protein domains were replaced with those from the well-known trans-Golgi enzyme α2,6-sialyltransferase (ST) and transiently expressed in Nicotiana benthamiana. Using co-localization analysis and N-glycan profiling, we show that the transmembrane domain of GnTI is the major determinant for its cis/medial-Golgi localization. By contrast, the stem region of GnTI contributes predominately to homomeric and heteromeric protein complex formation. Importantly, in transgenic Arabidopsis thaliana, a chimeric GnTI variant with altered sub-Golgi localization was not able to complement the GnTI-dependent glycosylation defect. Our results suggest that sequence-specific features in the transmembrane domain of GnTI account for its steady-state distribution in the cis/medial-Golgi in plants, which is a prerequisite for efficient N-glycan processing in vivo.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Eva Liebminger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Martina Dicker
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes UniversityHeadington, Oxford, OX3 0BP, UK
| | - Stanley W Botchway
- Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton LaboratoryHarwell-Oxford, Didcot, OX11 0QX, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| |
Collapse
|
33
|
|
34
|
Hassinen A, Kellokumpu S. Organizational interplay of Golgi N-glycosyltransferases involves organelle microenvironment-dependent transitions between enzyme homo- and heteromers. J Biol Chem 2014; 289:26937-26948. [PMID: 25135644 DOI: 10.1074/jbc.m114.595058] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glycosylation of proteins and lipids takes place in the Golgi apparatus by the consecutive actions of functionally distinct glycosidases and glycosyltransferases. Current evidence indicates that they function as enzyme homomers and/or heteromers in the living cell. Here we investigate their organizational interplay and show that glycosyltransferase homomers are assembled in the endoplasmic reticulum. Upon transport to the Golgi, the majority of homomers are disassembled to allow the formation of enzyme heteromers between sequentially acting medial-Golgi enzymes GnT-I and GnT-II or trans-Golgi enzymes GalT-I and ST6Gal-I. This transition is driven by the acidic Golgi environment, as it was markedly inhibited by raising Golgi luminal pH with chloroquine. Our FRAP (fluorescence recovery after photobleaching) measurements showed that the complexes remain mobile Golgi membrane constituents that can relocate to the endoplasmic reticulum or to the scattered Golgi mini-stacks upon brefeldin A or nocodazole treatment, respectively. During this relocation, heteromers undergo a reverse transition back to enzyme homomers. These data unveil an unprecedented organizational interplay between Golgi N-glycosyltransferases that involves dynamic and organelle microenvironment-driven transitions between enzyme homomers and heteromers during their trafficking within the early secretory compartments.
Collapse
Affiliation(s)
- Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90220, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90220, Oulu, Finland.
| |
Collapse
|
35
|
Gao C, Cai Y, Wang Y, Kang BH, Aniento F, Robinson DG, Jiang L. Retention mechanisms for ER and Golgi membrane proteins. TRENDS IN PLANT SCIENCE 2014; 19:508-15. [PMID: 24794130 DOI: 10.1016/j.tplants.2014.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 05/18/2023]
Abstract
Unless there are mechanisms to selectively retain membrane proteins in the endoplasmic reticulum (ER) or in the Golgi apparatus, they automatically proceed downstream to the plasma or vacuole membranes. Two types of coat protein complex I (COPI)-interacting motifs in the cytosolic tails of membrane proteins seem to facilitate membrane retention in the early secretory pathway of plants: a dilysine (KKXX) motif (which is typical of p24 proteins) for the ER and a KXE/D motif (which occurs in the Arabidopsis endomembrane protein EMP12) for the Golgi apparatus. The KXE/D motif is highly conserved in all eukaryotic EMPs and is additionally present in hundreds of other proteins of unknown subcellular localization and function. This novel signal may represent a new general mechanism for Golgi targeting and the retention of polytopic integral membrane proteins.
Collapse
Affiliation(s)
- Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yejun Wang
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N5E3, Canada
| | - Byung-Ho Kang
- Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Spain
| | - David G Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
36
|
Papanikou E, Glick BS. Golgi compartmentation and identity. Curr Opin Cell Biol 2014; 29:74-81. [PMID: 24840895 DOI: 10.1016/j.ceb.2014.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
Recent work supports the idea that cisternae of the Golgi apparatus can be assigned to three classes, which correspond to discrete stages of cisternal maturation. Each stage has a unique pattern of membrane traffic. At the first stage, cisternae form in association with the ER at multifunctional membrane assembly stations. At the second stage, cisternae synthesize carbohydrates while exchanging material via COPI vesicles. At the third stage, cisternae of the trans-Golgi network segregate into domains and produce transport carriers with the aid of specific lipids and the actin cytoskeleton. These processes are coordinated by cascades of Rab and Arf/Arl GTPases.
Collapse
Affiliation(s)
- Effrosyni Papanikou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States.
| |
Collapse
|
37
|
Recruitment of PI4KIIIβ to coxsackievirus B3 replication organelles is independent of ACBD3, GBF1, and Arf1. J Virol 2013; 88:2725-36. [PMID: 24352456 DOI: 10.1128/jvi.03650-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Members of the Enterovirus (poliovirus [PV], coxsackieviruses, and human rhinoviruses) and Kobuvirus (Aichi virus) genera in the Picornaviridae family rely on PI4KIIIβ (phosphatidylinositol-4-kinase IIIβ) for efficient replication. The small membrane-anchored enteroviral protein 3A recruits PI4KIIIβ to replication organelles, yet the underlying mechanism has remained elusive. Recently, it was shown that kobuviruses recruit PI4KIIIβ through interaction with ACBD3 (acyl coenzyme A [acyl-CoA]-binding protein domain 3), a novel interaction partner of PI4KIIIβ. Therefore, we investigated a possible role for ACBD3 in recruiting PI4KIIIβ to enterovirus replication organelles. Although ACBD3 interacted directly with coxsackievirus B3 (CVB3) 3A, its depletion from cells by RNA interference did not affect PI4KIIIβ recruitment to replication organelles and did not impair CVB3 RNA replication. Enterovirus 3A was previously also proposed to recruit PI4KIIIβ via GBF1/Arf1, based on the known interaction of 3A with GBF1, an important regulator of secretory pathway transport and a guanine nucleotide exchange factor (GEF) of Arf1. However, our results demonstrate that inhibition of GBF1 or Arf1 either by pharmacological inhibition or depletion with small interfering RNA (siRNA) treatment did not affect the ability of 3A to recruit PI4KIIIβ. Furthermore, we show that a 3A mutant that no longer binds GBF1 was capable of recruiting PI4KIIIβ, even in ACBD3-depleted cells. Together, our findings indicate that unlike originally envisaged, coxsackievirus recruits PI4KIIIβ to replication organelles independently of ACBD3 and GBF1/Arf1. IMPORTANCE A hallmark of enteroviral infection is the generation of new membranous structures to support viral RNA replication. The functionality of these "replication organelles" depends on the concerted actions of both viral nonstructural proteins and co-opted host factors. It is thus essential to understand how these structures are formed and which cellular components are key players in this process. GBF1/Arf1 and ACBD3 have been proposed to contribute to the recruitment of the essential lipid-modifying enzyme PI4KIIIβ to enterovirus replication organelles. Here we show that the enterovirus CVB3 recruits PI4KIIIβ by a mechanism independent of both GBF1/Arf1 and ACBD3. This study shows that the strategy employed by coxsackievirus to recruit PI4KIIIβ to replication organelles is far more complex than initially anticipated.
Collapse
|
38
|
Han HM, Bouchet-Marquis C, Huebinger J, Grabenbauer M. Golgi apparatus analyzed by cryo-electron microscopy. Histochem Cell Biol 2013; 140:369-81. [PMID: 23954988 PMCID: PMC3787787 DOI: 10.1007/s00418-013-1136-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2013] [Indexed: 11/28/2022]
Abstract
In 1898, the Golgi apparatus was discovered by light microscopy, and since the 1950s, the ultrastructure composition is known by electron microscopic investigation. The complex three-dimensional morphology fascinated researchers and was sometimes even the driving force to develop novel visualization techniques. However, the highly dynamic membrane systems of Golgi apparatus are delicate and prone to fixation artifacts. Therefore, the understanding of Golgi morphology and its function has been improved significantly with the development of better preparation methods. Nowadays, cryo-fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in amorphous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy and tomography. Even though the overall morphology of vitrified Golgi stacks is comparable to well-prepared and resin-embedded samples, previously unknown structural details can be observed solely based on their native density. At this point, any further improvement of sample preparation would gain novel insights, perhaps not in terms of general morphology, but on fine structural details of this dynamic organelle.
Collapse
Affiliation(s)
- Hong-Mei Han
- Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Cedric Bouchet-Marquis
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO USA
- FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124 USA
| | - Jan Huebinger
- Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Markus Grabenbauer
- Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Day KJ, Staehelin LA, Glick BS. A three-stage model of Golgi structure and function. Histochem Cell Biol 2013; 140:239-49. [PMID: 23881164 DOI: 10.1007/s00418-013-1128-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 12/12/2022]
Abstract
The Golgi apparatus contains multiple classes of cisternae that differ in structure, composition, and function, but there is no consensus about the number and definition of these classes. A useful way to classify Golgi cisternae is according to the trafficking pathways by which the cisternae import and export components. By this criterion, we propose that Golgi cisternae can be divided into three classes that correspond to functional stages of maturation. First, cisternae at the cisternal assembly stage receive COPII vesicles from the ER and recycle components to the ER in COPI vesicles. At this stage, new cisternae are generated. Second, cisternae at the carbohydrate synthesis stage exchange material with one another via COPI vesicles. At this stage, most of the glycosylation and polysaccharide synthesis reactions occur. Third, cisternae at the carrier formation stage produce clathrin-coated vesicles and exchange material with endosomes. At this stage, biosynthetic cargo proteins are packaged into various transport carriers, and the cisternae ultimately disassemble. Discrete transitions occur as a cisterna matures from one stage to the next. Within each stage, the structure and composition of a cisterna can evolve, but the trafficking pathways remain unchanged. This model offers a unified framework for understanding the properties of the Golgi in diverse organisms.
Collapse
Affiliation(s)
- Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60615, USA
| | | | | |
Collapse
|
40
|
Martínez-Alonso E, Tomás M, Martínez-Menárguez JA. Morpho-functional architecture of the Golgi complex of neuroendocrine cells. Front Endocrinol (Lausanne) 2013; 4:41. [PMID: 23543640 PMCID: PMC3610015 DOI: 10.3389/fendo.2013.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/14/2013] [Indexed: 12/22/2022] Open
Abstract
In neuroendocrine cells, prohormones move from the endoplasmic reticulum to the Golgi complex (GC), where they are sorted and packed into secretory granules. The GC is considered the central station of the secretory pathway of proteins and lipids en route to their final destination. In most mammalian cells, it is formed by several stacks of cisternae connected by tubules, forming a continuous ribbon. This organelle shows an extraordinary structural and functional complexity, which is exacerbated by the fact that its architecture is cell type specific and also tuned by the functional status of the cell. It is, indeed, one the most beautiful cellular organelles and, for that reason, perhaps the most extensively photographed by electron microscopists. In recent decades, an exhaustive dissection of the molecular machinery involved in membrane traffic and other Golgi functions has been carried out. Concomitantly, detailed morphological studies have been performed, including 3D analysis by electron tomography, and the precise location of key proteins has been identified by immunoelectron microscopy. Despite all this effort, some basic aspects of Golgi functioning remain unsolved. For instance, the mode of intra-Golgi transport is not known, and two opposing theories (vesicular transport and cisternal maturation models) have polarized the field for many years. Neither of these theories explains all the experimental data so that new theories and combinations thereof have recently been proposed. Moreover, the specific role of the small vesicles and tubules which surround the stacks needs to be clarified. In this review, we summarize our current knowledge of the Golgi architecture in relation with its function and the mechanisms of intra-Golgi transport. Within the same framework, the characteristics of the GC of neuroendocrine cells are analyzed.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of MurciaMurcia, Spain
| | - Mónica Tomás
- Department of Human Anatomy and Embryology, Medical School, Valencia UniversityValencia, Spain
| | - José A. Martínez-Menárguez
- Department of Cell Biology and Histology, Medical School, University of MurciaMurcia, Spain
- *Correspondence: José A. Martínez-Menárguez, Department of Cell Biology and Histology, Medical School, University of Murcia, 30100 Murcia, Spain. e-mail:
| |
Collapse
|
41
|
Masaki T. Polarization and myelination in myelinating glia. ISRN NEUROLOGY 2012; 2012:769412. [PMID: 23326681 PMCID: PMC3544266 DOI: 10.5402/2012/769412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/13/2012] [Indexed: 01/13/2023]
Abstract
Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed.
Collapse
Affiliation(s)
- Toshihiro Masaki
- Department of Medical Science, Teikyo University of Science, 2-2-1 Senju-Sakuragi, Adachi-ku, Tokyo 120-0045, Japan
| |
Collapse
|
42
|
Shiba Y, Randazzo PA. ArfGAP1 function in COPI mediated membrane traffic: currently debated models and comparison to other coat-binding ArfGAPs. Histol Histopathol 2012; 27:1143-53. [PMID: 22806901 DOI: 10.14670/hh-27.1143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ArfGAPs are a family of proteins containing an ArfGAP catalytic domain that induces the hydrolysis of GTP bound to the small guanine nucleotide binding-protein ADP-ribosylation factor (Arf). Functional models for Arfs, which are regulators of membrane traffic, are based on the idea that guanine nucleotide-binding proteins function as switches: Arf with GTP bound is active and binds to effector proteins; the conversion of GTP to GDP inactivates Arf. The cellular activities of ArfGAPs have been examined primarily as regulatory proteins that inactivate Arf; however, Arf function in membrane traffic does not strictly adhere to the concept of a simple switch, adding complexity to models explaining the role of ArfGAPs. Here, we review the literature addressing the function Arf and ArfGAP1 in COPI mediated transport, focusing on two critical and integrated functions of membrane traffic, cargo sorting and vesicle coat polymerization. We briefly discuss other ArfGAPs that may have similar function in Arf-dependent membrane traffic outside the ER-Golgi.
Collapse
Affiliation(s)
- Yoko Shiba
- National Cancer Institute, Laboratory of Cellular and Molecular Biology, Bethesda, MD 20892, USA
| | | |
Collapse
|
43
|
Cottam NP, Ungar D. Retrograde vesicle transport in the Golgi. PROTOPLASMA 2012; 249:943-55. [PMID: 22160157 DOI: 10.1007/s00709-011-0361-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/29/2011] [Indexed: 05/23/2023]
Abstract
The Golgi apparatus is the central sorting and biosynthesis hub of the secretory pathway, and uses vesicle transport for the recycling of its resident enzymes. This system must operate with high fidelity and efficiency for the correct modification of secretory glycoconjugates. In this review, we discuss recent advances on how coats, tethers, Rabs and SNAREs cooperate at the Golgi to achieve vesicle transport. We cover the well understood vesicle formation process orchestrated by the COPI coat, and the comprehensively documented fusion process governed by a set of Golgi localised SNAREs. Much less clear are the steps in-between formation and fusion of vesicles, and we therefore provide a much needed update of the latest findings about vesicle tethering. The interplay between Rab GTPases, golgin family coiled-coil tethers and the conserved oligomeric Golgi (COG) complex at the Golgi are thoroughly evaluated.
Collapse
Affiliation(s)
- Nathanael P Cottam
- Department of Biology (Area 9), University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
44
|
Coxsackievirus mutants that can bypass host factor PI4KIIIβ and the need for high levels of PI4P lipids for replication. Cell Res 2012; 22:1576-92. [PMID: 22945356 DOI: 10.1038/cr.2012.129] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA viruses can rapidly mutate and acquire resistance to drugs that directly target viral enzymes, which poses serious problems in a clinical context. Therefore, there is a growing interest in the development of antiviral drugs that target host factors critical for viral replication, since they are unlikely to mutate in response to therapy. We recently demonstrated that phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) and its product phosphatidylinositol-4-phosphate (PI4P) are essential for replication of enteroviruses, a group of medically important RNA viruses including poliovirus (PV), coxsackievirus, rhinovirus, and enterovirus 71. Here, we show that enviroxime and GW5074 decreased PI4P levels at the Golgi complex by directly inhibiting PI4KIIIβ. Coxsackievirus mutants resistant to these inhibitors harbor single point mutations in the non-structural protein 3A. These 3A mutations did not confer compound-resistance by restoring the activity of PI4KIIIβ in the presence of the compounds. Instead, replication of the mutant viruses no longer depended on PI4KIIIβ, since their replication was insensitive to siRNA-mediated depletion of PI4KIIIβ. The mutant viruses also did not rely on other isoforms of PI4K. Consistently, no high level of PI4P could be detected at the replication sites induced by the mutant viruses in the presence of the compounds. Collectively, these findings indicate that through specific single point mutations in 3A, CVB3 can bypass an essential host factor and lipid for its propagation, which is a new example of RNA viruses acquiring resistance against antiviral compounds, even when they directly target host factors.
Collapse
|
45
|
Marie M, Dale HA, Kouprina N, Saraste J. Division of the intermediate compartment at the onset of mitosis provides a mechanism for Golgi inheritance. J Cell Sci 2012; 125:5403-16. [PMID: 22946056 DOI: 10.1242/jcs.108100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As mammalian cells prepare for mitosis, the Golgi ribbon is first unlinked into its constituent stacks and then transformed into spindle-associated, pleiomorphic membrane clusters in a process that remains enigmatic. Also, it remains unclear whether Golgi inheritance involves the incorporation of Golgi enzymes into a pool of coat protein I (COPI) vesicles, or their COPI-independent transfer to the endoplasmic reticulum (ER). Based on the observation that the intermediate compartment (IC) at the ER-Golgi boundary is connected to the centrosome, we examined its mitotic fate and possible role in Golgi breakdown. The use of multiple imaging techniques and markers revealed that the IC elements persist during the M phase, maintain their compositional and structural properties and remain associated with the mitotic spindle, forming circular arrays at the spindle poles. At G2/M transition, the movement of the pericentrosomal domain of the IC (pcIC) to the cell centre and its expansion coincide with the unlinking of the Golgi ribbon. At prophase, coupled to centrosome separation, the pcIC divides together with recycling endosomes, providing novel landmarks for mitotic entry. We provide evidence that the permanent IC elements function as way stations during the COPI-dependent dispersal of Golgi components at prometa- and metaphase, indicating that they correspond to the previously described Golgi clusters. In addition, they continue to communicate with the vesicular 'Golgi haze' and thus are likely to provide templates for Golgi reassembly. These results implicate the IC in mitotic Golgi inheritance, resulting in a model that integrates key features of the two previously proposed pathways.
Collapse
Affiliation(s)
- Michaël Marie
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Jonas Lies Vei 91, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
46
|
Rohde J, Emschermann F, Knittler MR, Rziha HJ. Orf virus interferes with MHC class I surface expression by targeting vesicular transport and Golgi. BMC Vet Res 2012; 8:114. [PMID: 22809544 PMCID: PMC3439706 DOI: 10.1186/1746-6148-8-114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/29/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Orf virus (ORFV), a zoonotic Parapoxvirus, causes pustular skin lesions in small ruminants (goat and sheep). Intriguingly, ORFV can repeatedly infect its host, despite the induction of a specific immunity. These immune modulating and immune evading properties are still unexplained. RESULTS Here, we describe that ORFV infection of permissive cells impairs the intracellular transport of MHC class I molecules (MHC I) as a result of structural disruption and fragmentation of the Golgi apparatus. Depending on the duration of infection, we observed a pronounced co-localization of MHC I and COP-I vesicular structures as well as a reduction of MHC I surface expression of up to 50%. These subversion processes are associated with early ORFV gene expression and are accompanied by disturbed carbohydrate trimming of post-ER MHC I. The MHC I population remaining on the cell surface shows an extended half-life, an effect that might be partially controlled also by late ORFV genes. CONCLUSIONS The presented data demonstrate that ORFV down-regulates MHC I surface expression in infected cells by targeting the late vesicular export machinery and the structure and function of the Golgi apparatus, which might aid to escape cellular immune recognition.
Collapse
Affiliation(s)
- Jörg Rohde
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
47
|
Rosnoblet C, Peanne R, Legrand D, Foulquier F. Glycosylation disorders of membrane trafficking. Glycoconj J 2012; 30:23-31. [DOI: 10.1007/s10719-012-9389-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/24/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
|
48
|
Gloor Y, Müller-Reichert T, Walch-Solimena C. Co-regulation of the arf-activation cycle and phospholipid-signaling during golgi maturation. Commun Integr Biol 2012; 5:12-5. [PMID: 22482002 DOI: 10.4161/cib.17970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus is the central protein sorting station inside eukaryotic cells. Although many regulators of Golgi trafficking have been identified, little is known about their crosstalk. Both the Arf activation cycle and phosphatidylinositol 4-phosphate metabolism have been recognized as key processes in the regulation of vesicular transport from this organelle. However, the mechanism ensuring the proper co-regulation of these processes has eluded our understanding thus far. We recently identified a physical interaction between the late yeast Golgi Arf activator Sec7p and the PI4-kinase Pik1p, and showed that the two proteins cooperate in the formation of clathrin-coated vesicles. This finding gives the first insight on the coordinated generation of a dual key signal by a small GTPase and a signaling phospholipid at the Golgi. In addition, it opens new perspectives for a better understanding of Golgi maturation through coordinated regulation of highly dynamic lipid and protein composition of this organelle.
Collapse
|
49
|
Abstract
A variety of secretory cargoes move through the Golgi, but the pathways and mechanisms of this traffic are still being debated. Here, we evaluate the strengths and weaknesses of five current models for Golgi traffic: (1) anterograde vesicular transport between stable compartments, (2) cisternal progression/maturation, (3) cisternal progression/maturation with heterotypic tubular transport, (4) rapid partitioning in a mixed Golgi, and (5) stable compartments as cisternal progenitors. Each model is assessed for its ability to explain a set of key observations encompassing multiple cell types. No single model can easily explain all of the observations from diverse organisms. However, we propose that cisternal progression/maturation is the best candidate for a conserved core mechanism of Golgi traffic, and that some cells elaborate this core mechanism by means of heterotypic tubular transport between cisternae.
Collapse
Affiliation(s)
- Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
50
|
Shiba Y, Luo R, Hinshaw JE, Szul T, Hayashi R, Sztul E, Nagashima K, Baxa U, Randazzo PA. ArfGAP1 promotes COPI vesicle formation by facilitating coatomer polymerization. CELLULAR LOGISTICS 2011; 1:139-154. [PMID: 22279613 PMCID: PMC3265926 DOI: 10.4161/cl.1.4.18896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 12/31/2022]
Abstract
The role of ArfGAP1 in COPI vesicle biogenesis has been controversial. In work using isolated Golgi membranes, ArfGAP1 was found to promote COPI vesicle formation. In contrast, in studies using large unilamellar vesicles (LUVs) as model membranes, ArfGAP1 functioned as an uncoating factor inhibiting COPI vesicle formation. We set out to discriminate between these models. First, we reexamined the effect of ArfGAP1 on LUVs. We found that ArfGAP1 increased the efficiency of coatomer-induced deformation of LUVs. Second, ArfGAP1 and peptides from cargo facilitated self-assembly of coatomer into spherical structures in the absence of membranes, reminiscent of clathrin self-assembly. Third, in vivo, ArfGAP1 overexpression induced the accumulation of vesicles and allowed normal trafficking of a COPI cargo. Taken together, these data support the model in which ArfGAP1 promotes COPI vesicle formation and membrane traffic and identify a function for ArfGAP1 in the assembly of coatomer into COPI.
Collapse
Affiliation(s)
- Yoko Shiba
- Laboratory of Cellular and Molecular Biology; National Cancer Institute, Bethesda, MD USA
| | - Ruibai Luo
- Laboratory of Cellular and Molecular Biology; National Cancer Institute, Bethesda, MD USA
| | - Jenny E Hinshaw
- National Institute of Diabetes and Digestive and Kidney Disease; National Institutes of Health; Bethesda, MD USA
| | - Tomasz Szul
- Department of Cell Biology; The University of Alabama at Birmingham; Birmingham, AL USA
| | - Ryo Hayashi
- Laboratory of Cell Biology; National Cancer Institute; Bethesda, MD USA
| | - Elizabeth Sztul
- Department of Cell Biology; The University of Alabama at Birmingham; Birmingham, AL USA
| | - Kunio Nagashima
- Electron Microscopy Laboratory, ATP, SAIC-Frederick, Center for Cancer Research, National Cancer Institute; Frederick, MD USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, ATP, SAIC-Frederick, Center for Cancer Research, National Cancer Institute; Frederick, MD USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology; National Cancer Institute, Bethesda, MD USA
| |
Collapse
|