1
|
Zhu Z, Zhang Q, Sui Z. Screening of ApDOT1.9 interacting proteins and the potential function of interactor ApSNARE in the rapid growth regulation of Alexandrium pacificum. MARINE POLLUTION BULLETIN 2024; 209:117080. [PMID: 39393244 DOI: 10.1016/j.marpolbul.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Alexandrium pacificum is a toxic dinoflagellate resulting in harmful algal blooms (HABs). ApDOT1.9 is a methyltransferase involved in the rapid growth regulation of A. pacificum, but its protein interaction information is still limited. In this study, 14 candidate interacting proteins of ApDOT1.9, which were involved in metabolism, genetic information processing, environmental information processing and cellular processes, were screened. The interaction between candidate interactor ApSNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors of Alexandrium pacificum) and ApDOT1.9 was further validated by molecular docking and GST (Glutathione S transferase) pull-down. The relevant biological functional information and gene expression of ApSNARE were also analyzed and detected. These results indicate that ApSNARE was an interactor of ApDOT1.9 and it may also participate in A. pacificum rapid growth regulation under high light or high nitrogen conditions, which will provide preliminary information on the interaction proteins of ApDOT1.9 and molecular regulation mechanisms of growth in A. pacificum.
Collapse
Affiliation(s)
- Zhimei Zhu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education of China, Qingdao 266003, China
| | - Qingyue Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education of China, Qingdao 266003, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Ma K, Li Y, Song W, Zhou J, Liu X, Wang M, Gong X, Wang L, Tu Q. Disentangling drivers of mudflat intertidal DOM chemodiversity using ecological models. Nat Commun 2024; 15:6620. [PMID: 39103321 DOI: 10.1038/s41467-024-50841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Microorganisms consume and transform dissolved organic matter (DOM) into various forms. However, it remains unclear whether the ecological patterns and drivers of DOM chemodiversity are analogous to those of microbial communities. Here, a large-scale investigation is conducted along the Chinese coasts to resolve the intrinsic linkages among the complex intertidal DOM pools, microbial communities and environmental heterogeneity. The abundance of DOM molecular formulae best fits log-normal distribution and follows Taylor's Law. Distance-decay relationships are observed for labile molecular formulae, while latitudinal diversity gradients are noted for recalcitrant molecular formulae. Latitudinal patterns are also observed for DOM molecular features. Negative cohesion, bacterial diversity, and molecular traits are the main drivers of DOM chemodiversity. Stochasticity analyses demonstrate that determinism dominantly shapes the DOM compositional variations. This study unveils the intrinsic mechanisms underlying the intertidal DOM chemodiversity and microbial communities from ecological perspectives, deepening our understanding of microbially driven chemical ecology.
Collapse
Affiliation(s)
- Kai Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yueyue Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Wen Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jiayin Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xia Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Mengqi Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaofan Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Linlin Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China.
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China.
| |
Collapse
|
3
|
Kozlovski I, Jaimes-Becerra A, Sharoni T, Lewandowska M, Karmi O, Moran Y. Induction of apoptosis by double-stranded RNA was present in the last common ancestor of cnidarian and bilaterian animals. PLoS Pathog 2024; 20:e1012320. [PMID: 39012849 PMCID: PMC11251625 DOI: 10.1371/journal.ppat.1012320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis, a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis. Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.
Collapse
Affiliation(s)
- Itamar Kozlovski
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adrian Jaimes-Becerra
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ton Sharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ola Karmi
- Research Infrastructure Facility, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Qi J, Jiang Y, Ni R, Wang X, Hu C, Qu J. Stress response of Microcystis aeruginosa to chlorine during transportation: The significance of surface-adsorbed organic matter. WATER RESEARCH 2024; 255:121468. [PMID: 38508040 DOI: 10.1016/j.watres.2024.121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
The desorption of surface-adsorbed organic matter (S-AOM) without damaging algal cells was reported to be the key to destabilizing Microcystis aeruginosa (M. aeruginosa) cells while avoiding intracellular organic matter (IOM) release in our previous study. However, a temporal effect was found from spontaneous and continuous damage to algal cells even after quenching. This study aims to demonstrate the mechanism of the temporal inactivation effect and the stress response exhibited by chlorine-oxidized algal cells, and finally guide the prechlorination process for algae-laden water at water sources. Chlorine was proved to cause oxidative stress to M. aeruginosa cells, and result in a rapid increase in intracellular reactive oxygen species (ROS) levels. S-AOM appeared to have a protective effect on algal cells against oxidative damage, as evidenced by the maintenance of algal cell integrity and activated antioxidant enzymes. In addition, the activity of Caspase 3, a key protease for the execution of programmed cell death (PCD), was significantly enhanced during prechlorination. Cellular chromatin condensation and DNA fragmentation occurred in the early stages of PCD in algal cells. Therefore, the pre-treatment of algae-laden water at water sources, even with low chlorine doses, can induce a risk of significant algal cell death during the water transfer process due to activation of the PCD process, resulting in a higher health risk for drinking water. These findings indicate that both the dosage of chlorine and the duration of the transportation process should be considered during the prechlorination of algae-laden water, which can provide an important basis for avoiding increasing the risk to drinking water safety.
Collapse
Affiliation(s)
- Jing Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuancheng Jiang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rong Ni
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xi Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Toda K, Obolkin V, Ohira SI, Saeki K. Abundant production of dimethylsulfoniopropionate as a cryoprotectant by freshwater phytoplanktonic dinoflagellates in ice-covered Lake Baikal. Commun Biol 2023; 6:1194. [PMID: 38001159 PMCID: PMC10674015 DOI: 10.1038/s42003-023-05573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Phytoplanktonic dinoflagellates form colonies between vertical ice crystals during the ice-melting season in Lake Baikal, but how the plankton survive the freezing conditions is not known. Here we show that the phytoplankton produces large amounts of dimethylsulfoniopropionate (DMSP), which is best-known as a marine compound. Lake-water DMSP concentrations in the spring season are comparable with those in the oceans, and colony water in ice exhibits extremely high concentrations. DMSP concentration of surface water correlates with plankton density and reaches a maximum in mid-April, with temperature-dependent fluctuations. DMSP is released from plankton cells into water in warm days. DMSP is a characteristic osmolyte of marine algae; our results demonstrate that freshwater plankton, Gymnodinium baicalense, has DMSP-producing ability, and efficiently uses the limited sulfur resource (only 1/500 of sea sulfate) to survive in freshwater ice. Plankton in Lake Baikal do not need an osmolyte, and our results clearly indicate that DMSP plays a cryoprotective role. DMSP, although a characteristic marine compound, could also be an important zwitterion for algae of other boreal lakes, alpine snow, and glaciers.
Collapse
Affiliation(s)
- Kei Toda
- Department of Chemistry, Kumamoto University, 2-39-1, Kurokami, Kumamoto, 860-8555, Japan.
- International Research Organization of Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1, Kurokami, Kumamoto, 860-8555, Japan.
| | - Vladimir Obolkin
- Laboratory of Hydrochemistry and Chemistry of the Atmosphere, Limnological Institute, Russian Academy of Sciences Siberian Branch, 3 Ulan-Batorskaya St., Irkutsk, 664033, Russia
| | - Shin-Ichi Ohira
- Department of Chemistry, Kumamoto University, 2-39-1, Kurokami, Kumamoto, 860-8555, Japan
- International Research Organization of Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1, Kurokami, Kumamoto, 860-8555, Japan
| | - Kentaro Saeki
- Department of Chemistry, Kumamoto University, 2-39-1, Kurokami, Kumamoto, 860-8555, Japan
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1, Senbaru Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
6
|
Garrett O, Whalen KE. A bacterial quorum sensing signal is a potent inhibitor of de novo pyrimidine biosynthesis in the globally abundant Emiliania huxleyi. Front Microbiol 2023; 14:1266972. [PMID: 37869665 PMCID: PMC10587436 DOI: 10.3389/fmicb.2023.1266972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Interactions between marine phytoplankton, viruses, and bacteria drive biogeochemical cycling, shape marine trophic structures, and impact global climate. Microbially produced compounds have emerged as key players in influencing eukaryotic organismal physiology, and in turn, remodel microbial community structure. This work aimed to reveal the molecular mechanism by which the bacterial quorum sensing molecule 2-heptyl-4-quinolone (HHQ), produced by the marine gammaproteobacterium Pseudoalteromonas spp., arrests cell division and confers protection from virus-induced mortality in the bloom-forming coccolithophore Emiliania huxleyi. Previous work has established alkylquinolones as inhibitors of dihydroorotate dehydrogenase (DHODH), a fundamental enzyme catalyzing the fourth step in pyrimidine biosynthesis and a potential antiviral drug target. An N-terminally truncated version of E. huxleyi DHODH was heterologously expressed in E. coli, purified, and kinetically characterized. Here, we show HHQ is a potent inhibitor (Ki of 2.3 nM) of E. huxleyi DHODH. E. huxleyi cells exposed to brequinar, the canonical human DHODH inhibitor, experienced immediate, yet reversible cellular arrest, an effect which mirrors HHQ-induced cellular stasis previously observed. However, brequinar treatment lacked other notable effects observed in HHQ-exposed E. huxleyi including significant changes in cell size, chlorophyll fluorescence, and protection from virus-induced lysis, indicating HHQ has additional as yet undiscovered physiological targets. Together, these results suggest a novel and intricate role of bacterial quorum sensing molecules in tripartite interdomain interactions in marine ecosystems, opening new avenues for exploring the role of microbial chemical signaling in algal bloom regulation and host-pathogen dynamics.
Collapse
Affiliation(s)
| | - Kristen E. Whalen
- Department of Biology, Haverford College, Haverford, PA, United States
| |
Collapse
|
7
|
The inhibition mechanism and death mode of Microcystis aeruginosa induced by the continuous pressure of artemisinin sustained-release microspheres (ASMs). ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Wang Y, Xu H, Yao H, Liu B, Ding M, Lin T, Mo T, Gao L, Zhang L. Insights into the role of prechlorination in algae-laden raw water distribution process: Algal organic matter and microcystin-LR release, extracellular polymeric substances (EPS) aggregation, and pipeline biofilm communities. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130306. [PMID: 36345065 DOI: 10.1016/j.jhazmat.2022.130306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Prechlorination routinely applied for the treatment of algae-laden raw water has received extensive attention due to its influence on water quality and aquatic microbes. In this study, prechlorination experiments with different doses were conducted in sets of model raw water distribution systems. With the elevated dose of chlorine and prolonged hydraulic retention time (HRT), the ratio of intact algal cells decreased, and the stability of water enhanced. Dissolved organic carbon (DOC) and nitrogen (DON) increased when chlorine dose elevated from 0 to 0.5 mg/L but decreased with elevations from 0.5 to 2.0 mg/L, while UV254 showed a monotonically increasing tendency. DOC, DON and extracellular microcystin-LR increase initially and decrease thereafter with the prolonged HRT. Notably, the effects of prechlorination on extracellular polymeric substances aggregation behavior on pipe walls and microbial community composition was revealed, providing more profound understanding of the community dynamics in this engineered system. This study helped optimize strategies to improve the stability and efficiency of pretreatment of algae-laden water.
Collapse
Affiliation(s)
- Yueting Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Hao Yao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Bonan Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Mingmei Ding
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Tianpei Mo
- Hefei Industry Investment Group, Hefei 230071, PR China.
| | - Li Gao
- South East Water, PO Box 2268, Seaford, VIC 3198, Australia.
| | - Lei Zhang
- School of Civil Engineering & Architecture, Chuzhou University, Chuzhou 230090, PR China.
| |
Collapse
|
9
|
Ni L, Li Y, Li X, Xu C, Du C, Wu H, Li S. Response of cytotoxin production ability to gene expression and cell molecular structure of Microcystis aeruginosa FACHB-905. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47209-47220. [PMID: 36732453 DOI: 10.1007/s11356-023-25218-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
To investigate the inhibitory mechanism of artemisinin sustained-release microspheres (ASMs) on Microcystis aeruginosa (M. aeruginosa) from the molecular level, prx, psbA, fabZ, and mcyD were studied, and the cell death mode were also explored. The results showed that expression of prx was slightly up-regulated, while the expression of psbA, fabZ, and mcyD was significantly reduced. It can infer that oxidant damage and photic damage are the main mechanisms for the algicidal effect of ASMs on M. aeruginosa. It can be seen from the changes in cell morphology and structure that microspheres stress triggers apoptosis-like cell death, and the cell membrane is intact effectively preventing the leakage of microcystin-LR (MC-LR). Moreover, the down-regulation of mcyD gene also played major role in less extracellular MC-LR than intracellular MC-LR. It was concluded that the ASMs will not cause secondary ecological hazards while killing algae cells and have good application prospects.
Collapse
Affiliation(s)
- Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, MOE, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yan Li
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, MOE, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xianglan Li
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, MOE, College of Environment, Hohai University, Nanjing, 210098, China
| | - Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, MOE, College of Environment, Hohai University, Nanjing, 210098, China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, MOE, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hanqi Wu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, MOE, College of Environment, Hohai University, Nanjing, 210098, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210097, China.
| |
Collapse
|
10
|
Zeballos N, Grulois D, Leung C, Chevin LM. Acceptable loss: Fitness consequences of salinity-induced cell death in a halotolerant microalga. Am Nat 2023; 201:825-840. [DOI: 10.1086/724417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
To Die or Not to Die—Regulated Cell Death and Survival in Cyanobacteria. Microorganisms 2022; 10:microorganisms10081657. [PMID: 36014075 PMCID: PMC9415839 DOI: 10.3390/microorganisms10081657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Regulated cell death (RCD) is central to the development, integrity, and functionality of multicellular organisms. In the last decade, evidence has accumulated that RCD is a universal phenomenon in all life domains. Cyanobacteria are of specific interest due to their importance in aquatic and terrestrial habitats and their role as primary producers in global nutrient cycling. Current knowledge on cyanobacterial RCD is based mainly on biochemical and morphological observations, often by methods directly transferred from vertebrate research and with limited understanding of the molecular genetic basis. However, the metabolism of different cyanobacteria groups relies on photosynthesis and nitrogen fixation, whereas mitochondria are the central executioner of cell death in vertebrates. Moreover, cyanobacteria chosen as biological models in RCD studies are mainly colonial or filamentous multicellular organisms. On the other hand, unicellular cyanobacteria have regulated programs of cellular survival (RCS) such as chlorosis and post-chlorosis resuscitation. The co-existence of different genetically regulated programs in cyanobacterial populations may have been a top engine in life diversification. Development of cyanobacteria-specific methods for identification and characterization of RCD and wider use of single-cell analysis combined with intelligent image-based cell sorting and metagenomics would shed more light on the underlying molecular mechanisms and help us to address the complex colonial interactions during these events. In this review, we focus on the functional implications of RCD in cyanobacterial communities.
Collapse
|
12
|
In silico insight of cell-death-related proteins in photosynthetic cyanobacteria. Arch Microbiol 2022; 204:511. [PMID: 35864385 DOI: 10.1007/s00203-022-03130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
Cyanobacteria are a large group of ubiquitously found photosynthetic prokaryotes that are constantly exposed to different kinds of stressors of varying intensities and seem to overcome these in a precise and regulated manner. However, a high dose and duration of given stress induce cell death in a few select cyanobacteria, mainly to protect other cells (altruism). Despite the recent findings for the presence of biochemical and molecular hallmarks of cell death in cyanobacteria, it is yet a sketchily understood phenomenon. Regulation of metacaspase-like genes during Programmed Cell Death suggests it to be a genetically controlled mechanism like other eukaryotes. In addition to providing a comprehensive understanding of the current status of cell death in cyanobacteria, this review has used in silico analyses to directly compare the existence of some important molecular players operating in the intrinsic and extrinsic apoptotic pathways. Phylogenetic trees for all sequences indicate a cluster with a common ancestry and also a divergence from sequences of eukaryotic origin. To the best of our knowledge, such a comparison (except for orthocaspases) has not been attempted earlier and hopes to encourage workers in the field to investigate this altruistic phenomenon in detail.
Collapse
|
13
|
Potential of Black Phosphorus in Immune-Based Therapeutic Strategies. Bioinorg Chem Appl 2022; 2022:3790097. [PMID: 35859703 PMCID: PMC9293569 DOI: 10.1155/2022/3790097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/07/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Black phosphorus (BP) consists of phosphorus atoms, an essential element of bone and nucleic acid, which covalently bonds to three adjacent phosphorus atoms to form a puckered bilayer structure. With its anisotropy, band gap, biodegradability, and biocompatibility properties, BP is considered promising for cancer therapy. For example, BP under irradiation can convert near-infrared (NIR) light into heat and reactive oxygen species (ROS) to damage cancer cells, called photothermal therapy (PTT) and photodynamic therapy (PDT). Compared with PTT and PDT, the novel techniques of sonodynamic therapy (SDT) and photoacoustic therapy (PAT) exhibit amplified ROS generation and precise photoacoustic-shockwaves to enhance anticancer effect when BP receives ultrasound or NIR irradiation. Based on the prospective phototherapy, BP with irradiation can cause a “double-kill” to tumor cells, involving tumor-structure damage induced by heat, ROS, and shockwaves and a subsequent anticancer immune response induced by in situ vaccines construction in tumor site, which is referred to as photoimmunotherapy (PIT). In conclusion, BP shows promise in natural antitumor biological activity, biological imaging, drug delivery, PTT/PDT/SDT/PAT/PIT, nanovaccines, nanoadjuvants, and combination immunotherapy regimens.
Collapse
|
14
|
Forghani B, Mayers JJ, Albers E, Undeland I. Cultivation of microalgae - Chlorella sorokiniana and Auxenochlorella protothecoides - in shrimp boiling water residues. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Coyne KJ, Wang Y, Johnson G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front Microbiol 2022; 13:871177. [PMID: 35464927 PMCID: PMC9022068 DOI: 10.3389/fmicb.2022.871177] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Interactions between bacteria and phytoplankton in aqueous ecosystems are both complex and dynamic, with associations that range from mutualism to parasitism. This review focuses on algicidal interactions, in which bacteria are capable of controlling algal growth through physical association or the production of algicidal compounds. While there is some evidence for bacterial control of algal growth in the field, our understanding of these interactions is largely based on laboratory culture experiments. Here, the range of these algicidal interactions is discussed, including specificity of bacterial control, mechanisms for activity, and insights into the chemical and biochemical analysis of these interactions. The development of algicidal bacteria or compounds derived from bacteria for control of harmful algal blooms is reviewed with a focus on environmentally friendly or sustainable methods of application. Potential avenues for future research and further development and application of bacterial algicides for the control of algal blooms are presented.
Collapse
Affiliation(s)
- Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, United States
| | | | | |
Collapse
|
16
|
Lewis WM, Roberson J. Phytoplankton growth regulation by dissolved P and mortality regulation by endogenous cell death over 35 years of P control in a Mountain Lake. JOURNAL OF PLANKTON RESEARCH 2022; 44:3-21. [PMID: 35095343 PMCID: PMC8790835 DOI: 10.1093/plankt/fbab084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Dynamics of phytoplankton and phosphorus were quantified in Lake Dillon, Colorado, over 35 years of P control. The lake provides an example of early intervention for P enrichment rather than remediation of advanced eutrophication. Phosphorus control began with tertiary treatment of effluent, which caused a phytoplankton decline (8.1-4.5 μg L-1 chla); a second decline (4.6-2.5 μg L-1 chla) occurred later following replacement of failing septic systems. Results showed that bioavailable phosphorus (BAP) loading was the only significant correlate of phytoplankton biomass; total P loading was not significantly related to biomass measured as chlorophyll. Phytoplankton composition changed greatly over the study interval, even though there was no long-term trend in potential causes of phytoplankton abundance other than reduction in BAP. Gradual decline of BAP loading also appears to have been the cause of large, gradual changes in phytoplankton community composition. Factors typically assumed to control phytoplankton mortality accounted for only ~50% of phytoplankton biomass turnover; the balance of mortality appears to be accounted for by endogenous cell mortality.
Collapse
|
17
|
Šoln K, Klemenčič M. Determination of Caspase-Like Activities in Roots by the Use of Fluorogenic Substrates. Methods Mol Biol 2022; 2447:119-126. [PMID: 35583777 DOI: 10.1007/978-1-0716-2079-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Activity of proteases in tissues can be influenced by various intrinsic and extrinsic factors. One of the activities that is regularly monitored in organisms ranging from prokaryotes to metazoans is the -aspase-like activity: activity of proteases, which cleave their substrates after the negatively charged amino acid residues, especially the aspartic acid. This activity is also known as the caspase-like activity, since the caspases, metazoan cysteine proteases, are one of the best characterized proteases with Asp-directed activities. Plants do not contain caspases; however, various plant proteases have been shown to exhibit caspase-like activity including saspases, phytaspases, and legumains (VPEs). The activity of these proteases can change in plants in response to stress. Here we present a simple method for monitoring of the caspase-like protease activity in roots, which have been treated with allelopathic extracts, using a set of commercially available caspase substrates. We show that activity towards some, but not all, caspase substrates is upregulated in treated but not control samples. The protocol can be used also for other plant tissues as well as for other stressors.
Collapse
Affiliation(s)
- Katarina Šoln
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Naskar M, Das Sarkar S, Sahu SK, Gogoi P, Das BK. Impact of barge movement on phytoplankton diversity in a river: A Bayesian risk estimation framework. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113227. [PMID: 34261034 DOI: 10.1016/j.jenvman.2021.113227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/07/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
The adverse effect of barge movement on the river's aquatic ecosystem is of global concern. The phytoplankton community, a bioindicator, is possibly the foremost victim of the barge movement. This study hypothesized phytoplankton diversity loss induced by barge movement in a large river. This article presents a novel risk assessment framework to evaluate the hypothesis-with a goal to uncoupling phytoplankton diversity loss due to barge movement over a spatiotemporal scale. For this purpose, a study was conducted in the Bhagirathi-Hooghly stretch of Inland National Waterway 1 of India. This study has proposed a new index of diversity loss and its inferential framework based on full Bayesian Generalized Linear Mixed Model. The results have diagnosed significant barge-induced impact on the phytoplankton diversity and identified ten most impacted species. The proposed framework has successfully disentangled barge-induced phytoplankton diversity loss from the biological process and predicted a substantive overall risk of phytoplankton loss of 31.44%. Besides, it has uncoupled spatiotemporal differential estimates, suggesting a risk of diversity loss in order of 'During vs After' (38.0%) > 'Before vs After' (30.7%) > 'Before vs During' (24%) barge movement in temporal scale and increasing diversity loss along downstream. Finally, the instant study has highlighted the utility of these results to facilitate better water framework directive for inland waterways.
Collapse
Affiliation(s)
- Malay Naskar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, India.
| | - Soma Das Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, India
| | - S K Sahu
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, India
| | - Pranab Gogoi
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, India
| | - B K Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, India
| |
Collapse
|
19
|
Ni L, Wu H, Du C, Li X, Li Y, Xu C, Wang P, Li S, Zhang J, Chen X. Effects of allelochemical artemisinin in Artemisia annua on Microcystis aeruginosa: growth, death mode, and microcystin-LR changes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45253-45265. [PMID: 33861424 DOI: 10.1007/s11356-021-13793-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
To investigate the effects of an allelochemical artemisinin extracted from Artemisia annua (A. annua) on cell growth, death mode, and microcystin-LR (MC-LR) changes of Microcystis aeruginosa (M. aeruginosa), a series of morphological and biochemical characteristics were studied. The results showed that artemisinin could inhibit the growth of M. aeruginosa and reduce the content of phycobiliprotein. Under the allelopathy of artemisinin, algae cells deformed due to swelling, which caused cell membranes to rupture and cell contents to leak. FDA/PI double-staining results showed that 15.10-94.90% of algae cells experienced the death mode of necrosis-like. Moreover, there were 8.35-14.50% of algae cells undergoing programmed cell death, but their caspase-3-like protease activity remained unchanged, which may mean that algae cells were not experiencing caspase-dependent apoptosis under artemisinin stress. Attacked by artemisinin directly, both intracellular and extracellular MC-LR increased sharply with the upregulation of mcyB, mcyD, and mcyH. The upregulation multiple of mcyH suggested that M. aeruginosa could accelerate transportation of algal toxin under adverse conditions of artemisinin. Artemisinin not only can inhibit the growth of M. aeruginosa but it also causes the accelerated release and increase of microcystin-LR. These imply that the application of artemisinin should be reconsidered in practical water bodies.
Collapse
Affiliation(s)
- Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, 210098, China
| | - Hanqi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, 210098, China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, 210098, China
| | - Xianglan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, 210098, China
| | - Yan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, 210098, China
| | - Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, 210098, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210097, China.
| | - Jianhua Zhang
- Jiangsu Provincial Water Conservancy Department, Nanjing, 210029, China
| | - Xuqing Chen
- Cyanobacteria Management Office, Wuxi, 214071, China
| |
Collapse
|
20
|
Cell Death and Metabolic Stress in Gymnodinium catenatum Induced by Allelopathy. Toxins (Basel) 2021; 13:toxins13070506. [PMID: 34357978 PMCID: PMC8310274 DOI: 10.3390/toxins13070506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/21/2022] Open
Abstract
Allelopathy between phytoplankton species can promote cellular stress and programmed cell death (PCD). The raphidophyte Chattonella marina var. marina, and the dinoflagellates Margalefidinium polykrikoides and Gymnodinium impudicum have allelopathic effects on Gymnodinium catenatum; however, the physiological mechanisms are unknown. We evaluated whether the allelopathic effect promotes cellular stress and activates PCD in G. catenatum. Cultures of G. catenatum were exposed to cell-free media of C. marina var. marina, M. polykrikoides and G. impudicum. The mortality, superoxide radical (O2●-) production, thiobarbituric acid reactive substances (TBARS) levels, superoxide dismutase (SOD) activity, protein content, and caspase-3 activity were quantified. Mortality (between 57 and 79%) was registered in G. catenatum after exposure to cell-free media of the three species. The maximal O2●- production occurred with C. marina var. marina cell-free media. The highest TBARS levels and SOD activity in G. catenatum were recorded with cell-free media from G. impudicum. The highest protein content was recorded with cell-free media from M. polykrikoides. All cell-free media caused an increase in the activity of caspase-3. These results indicate that the allelopathic effect in G. catenatum promotes cell stress and caspase-3 activation, as a signal for the induction of programmed cell death.
Collapse
|
21
|
Decline and recovery in cell population densities of Heterosigma akashiwo (Raphidophyceae) as a novel bloom driver for the species. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe frequency and intensity of harmful algal bloom (HAB) events have been increasing in many places around the world. Heterosigma akashiwo is a marine raphidophyte species known to cause HABs in many places across tropical and temperate climates. Studies of temperate strains have identified that H. akashiwo blooms are driven by mass activation of cysts which, for this species, can only form at <15°C temperatures. Although these temperatures do not occur in the tropics, there have been no comparative studies for tropical H. akashiwo. This study aimed to investigate whether tropical H. akashiwo can form cysts under warm temperatures, therefore having different responses from temperate strains. Results showed that tropical H. akashiwo were similar with temperate strains and could only form round cyst-like structures at 5°C but not 25°C. We also observed novel response of a decline and recovery in cell densities at 25°C. The decline was interrupted when the cultures were diluted, implying a tendency for H. akashiwo to rapidly spread and accumulate within surrounding waters, thereby facilitating blooms. This behaviour presents unique bloom concerns. Close monitoring of H. akashiwo distribution patterns is needed for better assessment of the bloom threat posed within tropical waters.
Collapse
|
22
|
Bhattacharjee S, Kharwar S, Mishra AK. Insights Into the Phylogenetic Distribution, Diversity, Structural Attributes, and Substrate Specificity of Putative Cyanobacterial Orthocaspases. Front Microbiol 2021; 12:682306. [PMID: 34276616 PMCID: PMC8283722 DOI: 10.3389/fmicb.2021.682306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
The functionality of caspase homologs in prokaryotic cell execution has been perceived, yet the dimensions of their metabolic pertinence are still cryptic. Here, a detailed in silico study on putative cyanobacterial caspase homologs, termed orthocaspases, in a sequenced genome of 132 strains was performed. We observed that 473 putative orthocaspases were distributed among 62% cyanobacterial strains subsumed within all the taxonomical orders. However, high diversity among these orthocaspases was also evident as the conventional histidine–cysteine (HC) dyad was present only in 72.03% of orthocaspases (wild-type), whereas the rest 28.18% were pseudo-variants having substituted the catalytic dyad. Besides, the presence of various accessory functional domains with Peptidase C14 probably suggested the multifunctionality of the orthocaspases. Moreover, the early origin and emergence of wild-type orthocaspases were conferred by their presence in Gloeobacter; however, the complex phylogeny displayed by these caspase-homologs perhaps suggested horizontal a gene transfer for their acquisition. However, morpho-physiological advancements and larger genome size favored the acquisition of orthocaspases. Moreover, the conserved caspase hemoglobinase fold not only in the wild-type but also in the pseudo-orthocaspases in Nostoc sp. PCC 7120 ascertained the least effect of catalytic motifs in the protein tertiary structure. Further, the 100-ns molecular dynamic simulation and molecular mechanics/generalized born surface area exhibited stable binding of arginylarginine dipeptide with wild-type orthocaspase of Nostoc sp. PCC 7120, displaying arginine-P1 specificity of wild-type orthocaspases. This study deciphered the distribution, diversity, domain architecture, structure, and basic substrate specificity of putative cyanobacterial orthocaspases, which may aid in functional investigations in the future.
Collapse
Affiliation(s)
- Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surbhi Kharwar
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
23
|
Kaur G, Iyer LM, Burroughs AM, Aravind L. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. eLife 2021; 10:70394. [PMID: 34061031 PMCID: PMC8195603 DOI: 10.7554/elife.70394] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Several homologous domains are shared by eukaryotic immunity and programmed cell-death systems and poorly understood bacterial proteins. Recent studies show these to be components of a network of highly regulated systems connecting apoptotic processes to counter-invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor domains, namely those of the Death-like and TRADD-N superfamilies, a quintessential feature of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and comparative genomics methods to identify unambiguous bacterial homologs of the Death-like and TRADD-N superfamilies. We show the former to have arisen as part of a radiation of effector-associated α-helical adaptor domains that likely mediate homotypic interactions bringing together diverse effector and signaling domains in predicted bacterial apoptosis- and counter-invader systems. Similarly, we show that the TRADD-N domain defines a key, widespread signaling bridge that links effector deployment to invader-sensing in multicellular bacterial and metazoan counter-invader systems. TRADD-N domains are expanded in aggregating marine invertebrates and point to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and cellular pathogens that might infect such communities. These TRADD-N and Death-like domains helped identify several new bacterial and metazoan counter-invader systems featuring underappreciated, common functional principles: the use of intracellular invader-sensing lectin-like (NPCBM and FGS), transcription elongation GreA/B-C, glycosyltransferase-4 family, inactive NTPase (serving as nucleic acid receptors), and invader-sensing GTPase switch domains. Finally, these findings point to the possibility of multicellular bacteria-stem metazoan symbiosis in the emergence of the immune/apoptotic systems of the latter.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| |
Collapse
|
24
|
Malerba ME, Marshall DJ, Palacios MM, Raven JA, Beardall J. Cell size influences inorganic carbon acquisition in artificially selected phytoplankton. THE NEW PHYTOLOGIST 2021; 229:2647-2659. [PMID: 33156533 DOI: 10.1111/nph.17068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Cell size influences the rate at which phytoplankton assimilate dissolved inorganic carbon (DIC), but it is unclear whether volume-specific carbon uptake should be greater in smaller or larger cells. On the one hand, Fick's Law predicts smaller cells to have a superior diffusive CO2 supply. On the other, larger cells may have greater scope to invest metabolic energy to upregulate active transport per unit area through CO2 -concentrating mechanisms (CCMs). Previous studies have focused on among-species comparisons, which complicates disentangling the role of cell size from other covarying traits. In this study, we investigated the DIC assimilation of the green alga Dunaliella tertiolecta after using artificial selection to evolve a 9.3-fold difference in cell volume. We compared CO2 affinity, external carbonic anhydrase (CAext ), isotopic signatures (δ13 C) and growth among size-selected lineages. Evolving cells to larger sizes led to an upregulation of CCMs that improved the DIC uptake of this species, with higher CO2 affinity, higher CAext and higher δ13 C. Larger cells also achieved faster growth and higher maximum biovolume densities. We showed that evolutionary shifts in cell size can alter the efficiency of DIC uptake systems to influence the fitness of a phytoplankton species.
Collapse
Affiliation(s)
- Martino E Malerba
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
- Centre of Geometric Biology, Monash University, Clayton, Vic., 3800, Australia
| | - Dustin J Marshall
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
- Centre of Geometric Biology, Monash University, Clayton, Vic., 3800, Australia
| | - Maria M Palacios
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
- Centre of Geometric Biology, Monash University, Clayton, Vic., 3800, Australia
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Climate Change Cluster, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 2009, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| |
Collapse
|
25
|
Ndhlovu A, Durand PM, Ramsey G. Programmed cell death as a black queen in microbial communities. Mol Ecol 2020; 30:1110-1119. [PMID: 33253458 DOI: 10.1111/mec.15757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/25/2020] [Indexed: 01/20/2023]
Abstract
Programmed cell death (PCD) in unicellular organisms is in some instances an altruistic trait. When the beneficiaries are clones or close kin, kin selection theory may be used to explain the evolution of the trait, and when the trait evolves in groups of distantly related individuals, group or multilevel selection theory is invoked. In mixed microbial communities, the benefits are also available to unrelated taxa. But the evolutionary ecology of PCD in communities is poorly understood. Few hypotheses have been offered concerning the community role of PCD despite its far-reaching effects. The hypothesis we consider here is that PCD is a black queen. The Black Queen Hypothesis (BQH) outlines how public goods arising from a leaky function are exploited by other taxa in the community. Black Queen (BQ) traits are essential for community survival, but only some members bear the cost of possessing them, while others lose the trait In addition, BQ traits have been defined in terms of adaptive gene loss, and it is unknown whether this has occurred for PCD. Our conclusion is that PCD fulfils the two most important criteria of a BQ (leakiness and costliness), but that more empirical data are needed for assessing the remaining two criteria. In addition, we hold that for viewing PCD as a BQ, the original BQH needs to include social traits. Thus, despite some empirical and conceptual shortcomings, the BQH provides a helpful avenue for investigating PCD in microbial communities.
Collapse
Affiliation(s)
- Andrew Ndhlovu
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Pierre M Durand
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Grant Ramsey
- Institute of Philosophy, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Zhang E, Wu S, Cai W, Zeng J, Li J, Li G, Liu J. Validation of superior reference genes for qRT-PCR and Western blot analyses in marine Emiliania huxleyi-virus model system. J Appl Microbiol 2020; 131:257-271. [PMID: 33275816 DOI: 10.1111/jam.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
AIMS To search for a set of reference genes for reliable gene expression analysis in the globally important marine coccolithophore Emiliania huxleyi-virus model system. METHODS AND RESULTS Fifteen housekeeping genes (CDKA, CYP15, EFG3, POLAI, RPL30, RPL13, SAMS, COX1, GPB1-2, HSP90, TUA, TUB, UBA1, CAM3 and GAPDH) were evaluated for their stability as potential reference genes for qRT-PCR using ΔCt, geNorm, NormFinder, Bestkeeper and RefFinder software. CDKA, TUA and TUB genes were tested as loading controls for Western blot in the same sample panel. Additionally, target genes associated with cell apoptosis, that is metacaspase genes, were applied to validate the selection of reference genes. The analysis results demonstrated that putative housekeeping genes exhibited significant variations in both mRNA and protein content during virus infection. After a comprehensive analysis with all the algorithms, CDKA and GAPDH were recommended as the most stable reference genes for E huxleyi virus (EhV) infection treatments. For Western blot, significant variation was seen for TUA and TUB, whereas CDKA was stably expressed, consistent with the results of qRT-PCR. CONCLUSIONS CDKA and GAPDH are the best choice for gene and protein expression analysis than the other candidate reference genes under EhV infection conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The stable internal control genes identified in this work will help to improve the accuracy and reliability of gene expression analysis and gain insight into complex E. huxleyi-EhV interaction regulatory networks.
Collapse
Affiliation(s)
- E Zhang
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - S Wu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - W Cai
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Zeng
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - G Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Liu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| |
Collapse
|
27
|
Bhattacharjee S, Mishra AK. The tale of caspase homologues and their evolutionary outlook: deciphering programmed cell death in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4639-4657. [PMID: 32369588 PMCID: PMC7475262 DOI: 10.1093/jxb/eraa213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD), a genetically orchestrated mechanism of cellular demise, is paradoxically required to support life. As in lower eukaryotes and bacteria, PCD in cyanobacteria is poorly appreciated, despite recent biochemical and molecular evidence that supports its existence. Cyanobacterial PCD is an altruistic reaction to stressful conditions that significantly enhances genetic diversity and inclusive fitness of the population. Recent bioinformatic analysis has revealed an abundance of death-related proteases, i.e. orthocaspases (OCAs) and their mutated variants, in cyanobacteria, with the larger genomes of morphologically complex strains harbouring most of them. Sequence analysis has depicted crucial accessory domains along with the proteolytic p20-like sub-domain in OCAs, predicting their functional versatility. However, the cascades involved in sensing death signals, their transduction, and the downstream expression and activation of OCAs remain to be elucidated. Here, we provide a comprehensive description of the attempts to identify mechanisms of PCD and the existence and importance of OCAs based on in silico approaches. We also review the evolutionary and ecological significance of PCD in cyanobacteria. In the future, the analysis of cyanobacterial PCD will identify novel proteins that have varied functional roles in signalling cascades and also help in understanding the incipient mechanism of PCD morphotype(s) from where eukaryotic PCD might have originated.
Collapse
Affiliation(s)
- Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
28
|
Zhou T, Cao H, Zheng J, Teng F, Wang X, Lou K, Zhang X, Tao Y. Suppression of water-bloom cyanobacterium Microcystis aeruginosa by algaecide hydrogen peroxide maximized through programmed cell death. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122394. [PMID: 32114135 DOI: 10.1016/j.jhazmat.2020.122394] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
The global expansion and intensification of toxic cyanobacterial blooms require effective algaecides. Algaecides should be selective, effective, fast-acting, and ideally suppress cyanotoxin production. In this study, whether both maximum growth suppression and minimal toxin production can be simultaneously achieved was tested with a selective algaecide H2O2, through its ability to induce apoptosis-like programmed cell death (AL PCD) in a common bloom species Microcystis aeruginosa. Under doses of 1-15 mg L-1, non-monotonic dose-response suppression of H2O2 on M. aeruginosa were observed, where maximal cell death and minimal microcystin production both occurred at a moderate dose of 10 mg L-1 H2O2. Maximal cell death was indeed achieved through AL PCD, as revealed by integrated biochemical, structural, physiological and transcriptional evidence; transcriptional profile suggested AL PCD was mediated by mazEF and lexA systems. Higher H2O2 doses directly led to necrosis in M. aeruginosa, while lower doses only caused recoverable stress. The integrated data showed the choice between the two modes of cell death is determined by the intracellular energy state under stress. A model was proposed for suppressing M. aeruginosa with AL PCD or necrosis. H2O2 was demonstrated to simultaneously maximize the suppression of both growth and microcystin production through triggering AL PCD.
Collapse
Affiliation(s)
- Tingru Zhou
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Huansheng Cao
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA.
| | - Jie Zheng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, PR China
| | - Fei Teng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Xuejian Wang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Kai Lou
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, PR China
| | - Xihui Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yi Tao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
29
|
Zhang Y, Whalen JK. Production of the neurotoxin beta-N-methylamino-l-alanine may be triggered by agricultural nutrients: An emerging public health issue. WATER RESEARCH 2020; 170:115335. [PMID: 31812811 DOI: 10.1016/j.watres.2019.115335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Diverse taxa of cyanobacteria, dinoflagellates and diatoms produce β-N-methylamino-l-alanine (BMAA), a non-lipophilic, non-protein amino acid. BMAA is a neurotoxin in mammals. Its ingestion may be linked to human neurodegenerative diseases, namely the Amyotrophic lateral sclerosis/Parkinsonism dementia complex, based on epidemiological evidence from regions where cyanobacterial harmful algal blooms occur frequently. In controlled environments, cyanobacteria produce BMAA in response to ecophysiological cues such as nutrient availability, which may explain the elevated BMAA concentrations in freshwater environments that receive nutrient-rich agricultural runoff. This critical review paper summarizes what is known about how BMAA supports ecophysiological functions like nitrogen metabolism, photosyntheis and provides a competitive advantage to cyanobacteria in controlled and natural environments. We explain how BMAA production affected competitive interactions among the N2-fixing and non-N2-fixing populations in a freshwater cyanobacterial bloom that was stimulated by nutrient loading from the surrounding agricultural landscape. Better control of nutrients in agricultural fields is an excellent strategy to avoid the negative environmental consequences and public health concerns related to BMAA production.
Collapse
Affiliation(s)
- Yanyan Zhang
- McGill University, Department of Natural Resource Sciences, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de, Bellevue, Quebec, H9X 3V9, Canada
| | - Joann K Whalen
- McGill University, Department of Natural Resource Sciences, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de, Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
30
|
Wang H, Chen F, Mi T, Liu Q, Yu Z, Zhen Y. Responses of Marine Diatom Skeletonema marinoi to Nutrient Deficiency: Programmed Cell Death. Appl Environ Microbiol 2020; 86:e02460-19. [PMID: 31757826 PMCID: PMC6974647 DOI: 10.1128/aem.02460-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/15/2019] [Indexed: 11/20/2022] Open
Abstract
Diatoms are important phytoplankton and contribute greatly to the primary productivity of marine ecosystems. Despite the ecological significance of diatoms and the importance of programmed cell death (PCD) in the fluctuation of diatom populations, little is known about the molecular mechanisms of PCD triggered by different nutrient stresses. Here we describe the physiological, morphological, biochemical, and molecular changes in response to low levels of nutrients in the ubiquitous diatom Skeletonema marinoi The levels of gene expression involved in oxidation resistance and PCD strongly increased upon nitrogen (N) or phosphorus (P) starvation. The enzymatic activity of caspase 3-like protein also increased. Differences in mRNA levels and protein activities were observed between the low-N and low-P treatments, suggesting that PCD could have a differential response to different nutrient stresses. When cultures were replete with N or P, the growth inhibition stopped. Meanwhile, the enzymatic activity of caspase 3-like protein and the number of cells with damaged membranes decreased. These results suggest that PCD is an important cell fate decision mechanism in the marine diatom S. marinoi Our results provide important insight into how diatoms adjust phenotypic and genotypic features of their cell-regulated death programs when stressed by nutrient limitations. Overall, this study could allow us to better understand the molecular mechanism behind the formation and termination of diatom blooms in the marine environment.IMPORTANCE Our study showed how the ubiquitous diatom S. marinoi responded to different nutrient limitations with PCD in terms of physiological, morphological, biochemical, and molecular characteristics. Some PCD-related genes (PDCD4, GOX, and HSP90) induced by N deficiency were relatively upregulated compared to those induced by P deficiency. In contrast, the expression of the TSG101 gene in S. marinoi showed a clear and constant increase during P limitation compared to N limitation. These findings suggest that PCD is a complex mechanism involving several different proteins. The systematic mRNA level investigations provide new insight into understanding the oxidative stress- and cell death-related functional genes of diatoms involved in the response to nutrient fluctuations (N or P stress) in the marine environment.
Collapse
Affiliation(s)
- Hualong Wang
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Tiezhu Mi
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Qian Liu
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Chemical Theory and Technology, Ministry of Education, Qingdao, China
| | - Yu Zhen
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
31
|
Programmed Cell Death-Like and Accompanying Release of Microcystin in Freshwater Bloom-Forming Cyanobacterium Microcystis: From Identification to Ecological Relevance. Toxins (Basel) 2019; 11:toxins11120706. [PMID: 31817272 PMCID: PMC6950475 DOI: 10.3390/toxins11120706] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 11/16/2022] Open
Abstract
Microcystis is the most common freshwater bloom-forming cyanobacteria. Its massive blooms not only adversely affect the functionality of aquatic ecosystems, but are also associated with the production of microcystins (MCs), a group of potent toxins that become a threat to public health when cell-bound MCs are significantly released from the dying Microcystis into the water column. Managing Microcystis blooms thus requires sufficient knowledge regarding both the cell death modes and the release of toxins. Recently, more and more studies have demonstrated the occurrence of programmed cell death-like (or apoptosis-like) events in laboratory and field samples of Microcystis. Apoptosis is a genetically controlled process that is essential for the development and survival of metazoa; however, it has been gradually realized to be an existing phenomenon playing important ecological roles in unicellular microorganisms. Here, we review the current progress and the existing knowledge gap regarding apoptosis-like death in Microcystis. Specifically, we focus first on the tools utilized to characterize the apoptosis-related biochemical and morphological features in Microcystis. We further outline various stressful stimuli that trigger the occurrence of apoptosis and discuss the potential mechanisms of apoptosis in Microcystis. We then propose a conceptual model to describe the functional coupling of apoptosis and MC in Microcystis. This model could be useful for understanding both roles of MC and apoptosis in this species. Lastly, we conclude the review by highlighting the current knowledge gap and considering the direction of future research. Overall, this review provides a recent update with respect to the knowledge of apoptosis in Microcystis and also offers a guide for future investigations of its ecology and survival strategies.
Collapse
|
32
|
Vivier B, David F, Marchand C, Thanh-Nho N, Meziane T. Fatty acids, C and N dynamics and stable isotope ratios during experimental degradation of shrimp pond effluents in mangrove water. MARINE ENVIRONMENTAL RESEARCH 2019; 150:104751. [PMID: 31271964 DOI: 10.1016/j.marenvres.2019.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Intensive shrimp farming generates high loads of wastewaters that are released along tropical coastlines with potential impacts on the ecosystems. In this study, we used an experimental approach to analyze the behavior of shrimp pond effluents released in the Can Gio mangrove waterways (Southern Vietnam). We incubated shrimp pond effluents (EF), river water (RV), and a mixture of both (MI; 90% RV + 10% EF) in a dark room and measured fatty acid (FA) compositions, C and N concentrations and stable isotopes ratios (δ13C and δ15N) of suspended particulate matter during 16 days. Fatty acid concentrations rapidly decreased in EF with a 50% loss of FA during the first 24 h of the experiment and a 75% loss after 4 days of incubation. Proportions of the FA 18:1ω7 increased in MI during incubation, suggesting that this FA may be used as a tracer of anthropogenic substances release in marine environments.
Collapse
Affiliation(s)
- Baptiste Vivier
- BOREA Biologie des Organismes et Ecosystèmes Aquatiques, UMR 7208 MNHN CNRS SU UA UCN IRD 207, Muséum National d'Histoire Naturelle, 75005, Paris, France
| | - Frank David
- BOREA Biologie des Organismes et Ecosystèmes Aquatiques, UMR 7208 MNHN CNRS SU UA UCN IRD 207, Muséum National d'Histoire Naturelle, 75005, Paris, France.
| | - Cyril Marchand
- Université de la Nouvelle-Calédonie, ISEA, EA 7484, BPR4, 98851, Noumea, New Caledonia, France
| | - Nguyen Thanh-Nho
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Tarik Meziane
- BOREA Biologie des Organismes et Ecosystèmes Aquatiques, UMR 7208 MNHN CNRS SU UA UCN IRD 207, Muséum National d'Histoire Naturelle, 75005, Paris, France
| |
Collapse
|
33
|
Spungin D, Berman-Frank I. Assessment of Metacaspase Activity in Phytoplankton. Bio Protoc 2019; 9:e3341. [PMID: 33654845 DOI: 10.21769/bioprotoc.3341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 11/02/2022] Open
Abstract
Programmed cell death (PCD) is an irreversible, genetically-controlled form of cell suicide in which an endogenous biochemical pathway leads to morphological changes and ultimately, cellular demise. PCD is accompanied by de-novo protein synthesis of a family of proteases-"caspases" that are often used as a diagnostic marker of PCD. Although phytoplankton do not contain true caspases, caspase-like activity (hypothetical proteins with analogous activity) has been traditionally used as a diagnostic marker of PCD in marine phytoplankton. Increased caspase-like proteolytic activity was demonstrated when synthetic fluorogenic activity substrates specific for caspases (with an Asp at the P1 position) were applied upon PCD induction. Metacaspases, cysteine proteases, share structural properties with those of caspases, yet they are highly specific for Arg and Lys cleavage site at the P1 position implying that caspase specific substrates are not indicative of metacaspase catalytic activity. This method specifically tests direct metacaspase activity in phytoplankton by the cleavage of the fluorogenic metacaspase substrate Ac-VRPR-AMC. Metacaspase activity was tested by the addition of a metacaspase specific peptide that is conjugated to the fluorescent reporter molecule. The cleavage of the peptide by the metacaspase releases the fluorochrome that, when excited by light, emits fluorescence. The level of metacaspase enzymatic activity in the cell lysate is directly proportional to the fluorescence signal detected. The use of specific standards in this test enables the quantification of the fluorescence results. This assay directly allows monitoring the metacaspase cleavage products and thereby tracing evidence for programmed cell death.
Collapse
Affiliation(s)
- Dina Spungin
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ilana Berman-Frank
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
34
|
Zhu J, Yu Z, He L, Cao X, Ji H, Song X. Physiological response dynamics of the brown tide organism Aureococcus anophagefferens treated with modified clay. HARMFUL ALGAE 2019; 86:1-9. [PMID: 31358268 DOI: 10.1016/j.hal.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/21/2019] [Accepted: 04/15/2019] [Indexed: 06/10/2023]
Abstract
On the basis of experiences in mitigating harmful algal blooms (HABs) with modified clay (MC), a bloom does not continue after the dispersal of the MC, even though the density of the residual cells in the water remains as high as 20-30% of the initial cell density. This interesting phenomenon indicates that in addition to flocculation, MC has additional mechanisms of HAB control. Here, Aureococcus anophagefferens was selected as a model organism to study the physiological response dynamics of residual cells treated with MC, and RT-qPCR was used to measure the differential expression of 40 genes involved in anti-oxidation, photosynthesis, phospholipid synthesis, programmed cell death and cell proliferation at five time points. The results showed that every functional gene category exhibited a "V" shaped pattern with a turning point. It was reflected that there were two processes for MC inhibiting the growth of residual cells. One is the oxidative stress process (OSP) caused by ineffective collision with MC, whose effect weakened gradually; another is the programmed cell death process (PCDP) caused by the lysis of damaged residual cells, whose effect enhanced two days after MC treatment. In addition, the scanning electron micrographs verified that some of the residual cells were deformed or even lysed. Combined with the effects of OSP and PCDP in dynamics, the growth of residual cells was inhibited and was followed by gradual bloom disappearance. This study further elucidates the mechanism of MC controlling HABs at the molecular level and enable a more comprehensive understanding of HAB mitigation using MC.
Collapse
Affiliation(s)
- Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hena Ji
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
35
|
Krause JW, Schulz IK, Rowe KA, Dobbins W, Winding MHS, Sejr MK, Duarte CM, Agustí S. Silicic acid limitation drives bloom termination and potential carbon sequestration in an Arctic bloom. Sci Rep 2019; 9:8149. [PMID: 31148569 PMCID: PMC6544819 DOI: 10.1038/s41598-019-44587-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/17/2019] [Indexed: 11/09/2022] Open
Abstract
The spring diatom bloom in the Arctic Ocean accounts for significant annual primary production leading to the most rapid annual drawdown of water-column pCO2. Late-winter waters in the Atlantic Arctic & Subarctic Provinces (AASP) have lower silicic acid concentrations than nitrate, which suggests diatom blooms may deplete Si before N. Here we test a facet of the hypothesis that silicic acid limitation terminates the spring diatom bloom in the AASP and the sinking of the senescent and dead diatoms helps drive carbon sequestration. During a 6-week study, diatoms bloomed and progressively consumed silicic acid to where it limited their growth. The onset of growth limitation was concurrent with the minimum pCO2 in the surface waters and increases in both the proportion of dead diatoms and the diatom assemblage sedimentation rate. Data reanalysis within the AASP shows a highly significant and positive correlation between silicic acid and pCO2 in the surface waters, but no significant relationship with nitrate and pCO2 was observed unless data were smoothed. Therefore, understanding the future of the AASP spring diatom bloom requires models that explicitly consider changes in silicic acid supply as a driver of this process.
Collapse
Affiliation(s)
- Jeffrey W Krause
- Dauphin Island Sea Lab, Dauphin Island, AL, USA. .,Department of Marine Sciences, University of South Alabama, Mobile, AL, USA.
| | - Isabelle K Schulz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Katherine A Rowe
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Mie H S Winding
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Mikael K Sejr
- Arctic Research Center (ARC), Aarhus University, Aarhus, Denmark
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Arctic Research Center (ARC), Aarhus University, Aarhus, Denmark
| | - Susana Agustí
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
36
|
Bigalke A, Pohnert G. Algicidal bacteria trigger contrasting responses in model diatom communities of different composition. Microbiologyopen 2019; 8:e00818. [PMID: 30809963 PMCID: PMC6692526 DOI: 10.1002/mbo3.818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 11/17/2022] Open
Abstract
Algicidal bacteria are important players regulating the dynamic changes of plankton assemblages. Most studies on these bacteria have focused on the effect on single algal species in simple incubation experiments. Considering the complexity of species assemblages in the natural plankton, such incubations represent an oversimplification and do not allow making further reaching conclusions on ecological interactions. Here, we describe a series of co‐incubation experiments with different level of complexity to elucidate the effect of the algicidal bacterium Kordia algicida on mixed cultures of a resistant and a susceptible diatom. The growth of the resistant diatom Chaetoceros didymus is nearly unaffected by K. algicida in monoculture, while cells of the susceptible diatom Skeletonema costatum are lysed within few hours. Growth of C. didymus is inhibited if mixed cultures of the two diatoms are infected with the bacterium. Incubations with filtrates of the infected cultures show that the effects are chemically mediated. In non‐contact co‐culturing we show that low concentrations of the lysed algae support the growth of C. didymus, while higher concentrations trigger population decline. Complex cascading effects of algicidal bacteria have thus to be taken into account if their ecological role is concerned.
Collapse
Affiliation(s)
- Arite Bigalke
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Jena, Germany.,Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
37
|
Spungin D, Bidle KD, Berman-Frank I. Metacaspase involvement in programmed cell death of the marine cyanobacteriumTrichodesmium. Environ Microbiol 2019; 21:667-681. [DOI: 10.1111/1462-2920.14512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Dina Spungin
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan, 5290002 Israel
| | - Kay D. Bidle
- Department of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ USA
| | - Ilana Berman-Frank
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan, 5290002 Israel
- Department of Marine Biology; Leon H. Charney School of Marine Sciences, University of Haifa; Haifa Israel
| |
Collapse
|
38
|
Sandaa RA, E Storesund J, Olesin E, Lund Paulsen M, Larsen A, Bratbak G, Ray JL. Seasonality Drives Microbial Community Structure, Shaping both Eukaryotic and Prokaryotic Host⁻Viral Relationships in an Arctic Marine Ecosystem. Viruses 2018; 10:v10120715. [PMID: 30558156 PMCID: PMC6315344 DOI: 10.3390/v10120715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/30/2018] [Accepted: 12/08/2018] [Indexed: 12/21/2022] Open
Abstract
The Arctic marine environment experiences dramatic seasonal changes in light and nutrient availability. To investigate the influence of seasonality on Arctic marine virus communities, five research cruises to the west and north of Svalbard were conducted across one calendar year, collecting water from the surface to 1000 m in depth. We employed metabarcoding analysis of major capsid protein g23 and mcp genes in order to investigate T4-like myoviruses and large dsDNA viruses infecting prokaryotic and eukaryotic picophytoplankton, respectively. Microbial abundances were assessed using flow cytometry. Metabarcoding results demonstrated that seasonality was the key mediator shaping virus communities, whereas depth exerted a diversifying effect within seasonal virus assemblages. Viral diversity and virus-to-prokaryote ratios (VPRs) dropped sharply at the commencement of the spring bloom but increased across the season, ultimately achieving the highest levels during the winter season. These findings suggest that viral lysis may be an important process during the polar winter, when productivity is low. Furthermore, winter viral communities consisted of Operational Taxonomic Units (OTUs) distinct from those present during the spring-summer season. Our data provided a first insight into the diversity of viruses in a hitherto undescribed marine habitat characterized by extremes in light and productivity.
Collapse
Affiliation(s)
- Ruth-Anne Sandaa
- Department of Biosciences, University of Bergen, N-5020 Bergen, Norway.
| | - Julia E Storesund
- Department of Biosciences, University of Bergen, N-5020 Bergen, Norway.
| | - Emily Olesin
- Department of Biosciences, University of Bergen, N-5020 Bergen, Norway.
| | | | - Aud Larsen
- Department of Biosciences, University of Bergen, N-5020 Bergen, Norway.
- NORCE Norwegian Research Centre AS, Uni Research Environment, N-5020 Bergen, Norway.
| | - Gunnar Bratbak
- Department of Biosciences, University of Bergen, N-5020 Bergen, Norway.
| | - Jessica Louise Ray
- Department of Biosciences, University of Bergen, N-5020 Bergen, Norway.
- NORCE Norwegian Research Centre AS, Uni Research Environment, N-5020 Bergen, Norway.
| |
Collapse
|
39
|
Zhou T, Zheng J, Cao H, Wang X, Lou K, Zhang X, Tao Y. Growth suppression and apoptosis-like cell death in Microcystis aeruginosa by H 2O 2: A new insight into extracellular and intracellular damage pathways. CHEMOSPHERE 2018; 211:1098-1108. [PMID: 30223325 DOI: 10.1016/j.chemosphere.2018.08.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
H2O2 has been suggested and applied as effective algaecide for harmful cyanobacterial bloom control, however, the transport of exogenous H2O2 into microalgal cells, the subsequent intracellular damage pathway and dose-response variations were little studied. We addressed these questions in a bloom-forming cyanobacterium Microcystis aeruginosa with H2O2 at 0.1-1.5 mM. The results showed that H2O2 at 0.4 mM and above significantly suppressed M. aeruginosa growth for over two weeks, and induced apoptosis-like death in terms of membrane potential dissipation, caspase-3 activation, chromatin condensation, and lysis induction. However, the dose-response effects were not monotonic. H2O2 at 0.7 mM resulted in the severest growth suppression among 0.1-1.5 mM treatments, including the lowest biomass for 74% loss, the highest cell lysis ratio for 79%, and the highest utilization rate of H2O2 for 0.101 mM d-1. Moreover, several evidence point to severer apoptosis-like cell death in 0.7 mM treatments, involving fastest and severest cell lysis, smallest cell size and wrinkled surface and lowest membrane potential. Therefore, the apoptosis-like cell death induced by H2O2 at moderate dosages should be a crucial cause for the non-monotonic dose-response effects on growth suppression. Additionally, intracellular H2O2 level increased rapidly within 20 min after exposure at 0.4 mM and above, directly confirming the transport of exogenous H2O2 into M. aeruginosa cells and the intracellular damages due to subsequent elevation in intracellular oxidative stress. The study demonstrates that H2O2 at moderate dosages could be a promising method for the biomass control, in a fast and efficient way, on M. aeruginosa blooms.
Collapse
Affiliation(s)
- Tingru Zhou
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Jie Zheng
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, PR China
| | - Huansheng Cao
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
| | - Xuejian Wang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Kai Lou
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, PR China
| | - Xihui Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Yi Tao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
40
|
Zhang Q, Ge Y, Li H, Bai G, Jiao Z, Kong X, Meng W, Wang H. Effect of hydrogen-rich saline on apoptosis induced by hepatic ischemia reperfusion upon laparoscopic hepatectomy in miniature pigs. Res Vet Sci 2018; 119:285-291. [PMID: 30077949 DOI: 10.1016/j.rvsc.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/15/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023]
Abstract
Hepatic ischemia reperfusion injury (HIRI) occurs commonly in liver surgery and liver transplantation. Hydrogen, a safe and effective antioxidant, exerts a protective effect against liver injury. In this study, we investigated the role of hydrogen-rich saline (HRS) in apoptosis in a miniature pig model of laparoscopic HIRI upon hepatectomy. Bama miniature pigs were randomly assigned to sham, I/R and HRS groups. The pigs received 10 mL/kg HRS by portal venous injection 10 min before reperfusion and at 1 d, 2 d, and 3 d after surgery. The results showed that HRS treatment significantly decreased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) activity and TUNEL-positive cells. Upon HRS treatment, the expression of P53 and Bax mRNA and protein by RT-qPCR and Western blot was markedly decreased, whereas the expression of bcl-2 mRNA and protein was significantly increased. Moreover, Caspase-3 and Caspase-9 activities were significantly decreased upon treatment with HRS. In conclusion, the results indicate that HRS could alleviate liver injury and improve liver function via inhibiting apoptosis after laparoscopic HIRI and hepatectomy injury in miniature pigs.
Collapse
Affiliation(s)
- Qianzhen Zhang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yansong Ge
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hui Li
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ge Bai
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Jiao
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiangdong Kong
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Weijing Meng
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongbin Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
41
|
Gallo C, Nuzzo G, d'Ippolito G, Manzo E, Sardo A, Fontana A. Sterol Sulfates and Sulfotransferases in Marine Diatoms. Methods Enzymol 2018; 605:101-138. [PMID: 29909823 DOI: 10.1016/bs.mie.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sterol sulfates are widely occurring molecules in marine organisms. Their importance has been so far underestimated although many of these compounds are crucial mediators of physiological and ecological functions in other organisms. Biosynthesis of sterol sulfates is controlled by cytosolic sulfotransferases (SULTs), a varied family of enzymes that catalyze the transfer of a sulfo residue (-SO3H) from the universal donor 3'-phosphoadenosine-5'-phosphosulfate to the hydroxyl function at C-3 of the steroid skeleton. The absence of molecular tools has been the main impediment to the development of a biosynthetic study of this class of compounds in marine organisms. In fact, there is very limited information about these enzymes in marine environments. SULT activity has, however, been reported in several marine species, and, recently, the production of sterol sulfates has been linked to the control of growth in marine diatoms. In this chapter, we describe methods for the study of sterol sulfates in this lineage of marine microalgae. The main aim is to provide the tools useful to deal with the biosynthesis and regulation of these compounds and to circumvent the bottleneck of the lack of molecular information. The protocols have been designed for marine diatoms, but most of the procedures can be used for other marine organisms.
Collapse
Affiliation(s)
- Carmela Gallo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Genoveffa Nuzzo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Giuliana d'Ippolito
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy.
| | - Emiliano Manzo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Angela Sardo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Angelo Fontana
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy.
| |
Collapse
|
42
|
Meyer N, Bigalke A, Kaulfuß A, Pohnert G. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol Rev 2018; 41:880-899. [PMID: 28961821 DOI: 10.1093/femsre/fux029] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
In both freshwater and marine ecosystems, phytoplankton are the most dominant primary producers, contributing substantially to aquatic food webs. Algicidal bacteria that can associate to microalgae from the phytoplankton have the capability to control the proliferation and even to lyse them. These bacteria thus play an important role in shaping species composition in pelagic environments. In this review, we discuss and categorise strategies used by algicidal bacteria for the attack on microalgae. We highlight the complex regulation of algicidal activity and defence responses that govern alga-bacteria interactions. We also discuss how algicidal bacteria impact algal physiology and metabolism and survey the existing algicidal metabolites and enzymes. The review illustrates that the ecological role of algicidal bacteria is not yet fully understood and critically discusses the challenges in obtaining ecologically relevant data.
Collapse
Affiliation(s)
- Nils Meyer
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743 Jena, Germany
| | - Arite Bigalke
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743 Jena, Germany
| | - Anett Kaulfuß
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743 Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743 Jena, Germany.,Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, D-07745 Jena, Germany
| |
Collapse
|
43
|
Saraf SR, Frenkel A, Harke MJ, Jankowiak JG, Gobler CJ, McElroy AE. Effects of Microcystis on development of early life stage Japanese medaka (Oryzias latipes): Comparative toxicity of natural blooms, cultured Microcystis and microcystin-LR. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:18-26. [PMID: 29132031 DOI: 10.1016/j.aquatox.2017.10.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Freshwater cyanobacterial harmful algal blooms (CyanoHABs) caused by algae in the genus Microcystis have been increasing in frequency and severity in recent decades. Microcystis blooms threaten aquatic organisms through effects associated with the rapid increase of biomass and the production of the hepatotoxin microcystin (MC) by toxic strains. Among fish, effects of blooms are likely to be more severe for early life stages, and physiological impacts on this life stage could significantly impact recruitment and fish populations. This study explores the effects of Microcystis blooms on the development of fish using the model organism, the Japanese medaka (Oryzias latipes), under realistic exposure conditions. Medaka embryos were exposed to natural blooms collected from New York City (USA) lakes, lab cultures of Microcystis, and MC-LR solutions. Field collected samples were more toxic than lab cultures (even when compared at the same algal density or MC concentration), causing decreased survival, premature time to hatch, reduced body length, yolk sac edema, and decreased heart rate, while lab culture exposures only resulted in bradycardia. Heart rate was the most sensitive endpoint measured, being depressed in embryos exposed to both lab cultures and field collected blooms. Generalized linear model analysis indicated bradycardia was statistically associated with both cell densities of blooms and MC concentrations, while single factor analysis indicated that MC concentrations had a stronger correlation compared to cell densities. However, MC exposure could not fully explain the effects observed, as exposures to MC-LR solutions alone were not able to reduce heart rate as severely as algal exposures. Collectively, these experiments indicate that factors beyond exposure to MC or even isolated Microcystis strains influence heart rate of fish exposed to Microcystis blooms. Enhanced mortality, depressed heart rate, and abnormal development observed in response to environmentally realistic exposures of Microcystis blooms could affect success of fish at both individual or population levels.
Collapse
Affiliation(s)
- Spencer R Saraf
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 United States
| | - Amy Frenkel
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 United States; Dartmouth College, Hanover, NH 03755, United States
| | - Matthew J Harke
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 United States; Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY 10964, United States
| | - Jennifer G Jankowiak
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 United States
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 United States
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 United States.
| |
Collapse
|
44
|
Klemenčič M, Funk C. Structural and functional diversity of caspase homologues in non-metazoan organisms. PROTOPLASMA 2018; 255:387-397. [PMID: 28744694 PMCID: PMC5756287 DOI: 10.1007/s00709-017-1145-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/05/2017] [Indexed: 05/03/2023]
Abstract
Caspases, the proteases involved in initiation and execution of metazoan programmed cell death, are only present in animals, while their structural homologues can be found in all domains of life, spanning from simple prokaryotes (orthocaspases) to yeast and plants (metacaspases). All members of this wide protease family contain the p20 domain, which harbours the catalytic dyad formed by the two amino acid residues, histidine and cysteine. Despite the high structural similarity of the p20 domain, metacaspases and orthocaspases were found to exhibit different substrate specificities than caspases. While the former cleave their substrates after basic amino acid residues, the latter accommodate substrates with negative charge. This observation is crucial for the re-evaluation of non-metazoan caspase homologues being involved in processes of programmed cell death. In this review, we analyse the structural diversity of enzymes containing the p20 domain, with focus on the orthocaspases, and summarise recent advances in research of orthocaspases and metacaspases of cyanobacteria, algae and higher plants. Although caspase homologues were initially proposed to be involved in execution of cell death, accumulating evidence supports the role of metacaspases and orthocaspases as important contributors to cell homeostasis during normal physiological conditions or cell differentiation and ageing.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden.
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| | - Christiane Funk
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
45
|
Venkatnarayanan S, Sriyutha Murthy P, Nancharaiah YV, Kirubagaran R, Venugopalan VP. Chlorination induced damage and recovery in marine diatoms: Assay by SYTOX® Green staining. MARINE POLLUTION BULLETIN 2017; 124:819-826. [PMID: 28117130 DOI: 10.1016/j.marpolbul.2016.12.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Phytoplankton entrained into cooling water systems of coastal power stations are subjected to acute chemical stress due to biocides (chlorine) used for biofouling control. They are subsequently released into the environment, where they may survive/recover or succumb. Experiments were conducted to evaluate the susceptibility of a centric (Chaetoceros lorenzianus) and pennate (Navicula sp.) diatom to in-plant administered concentrations of chlorine (0.2-0.5mg/L, TRO). Viability of cells exposed to chlorine was assessed by SYTOX® Green fluorimetry and was compared with other conventional end points like total cell counts, chlorophyll a content and cellular autofluorescence. Results showed a concentration-dependant reduction in viability, chlorophyll a and autofluorescence. C. lorenzianus cells were more susceptible to chlorine compared to Navicula sp. SYTOX® Green staining appears to be a sensitive method to assess chlorine-induced damages. The data show that in-use levels of chlorination can potentially impact entrained organisms; however, they can recover when returned to coastal waters.
Collapse
Affiliation(s)
- Srinivas Venkatnarayanan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603 102, Tamil Nadu, India
| | - P Sriyutha Murthy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603 102, Tamil Nadu, India
| | - Yarlagadda V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603 102, Tamil Nadu, India; Homi Bhabha National Institute, Mumbai 400 094, India
| | - Ramalingam Kirubagaran
- Marine Biotechnology, ESSO-National Institute of Ocean Technology, Pallikaranai, Chennai 600 100, India
| | - Vayalam P Venugopalan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603 102, Tamil Nadu, India; Homi Bhabha National Institute, Mumbai 400 094, India.
| |
Collapse
|
46
|
Autoinhibitory sterol sulfates mediate programmed cell death in a bloom-forming marine diatom. Nat Commun 2017; 8:1292. [PMID: 29101388 PMCID: PMC5670183 DOI: 10.1038/s41467-017-01300-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/07/2017] [Indexed: 01/07/2023] Open
Abstract
Cell mortality is a key mechanism that shapes phytoplankton blooms and species dynamics in aquatic environments. Here we show that sterol sulfates (StS) are regulatory molecules of a cell death program in Skeletonema marinoi, a marine diatom-blooming species in temperate coastal waters. The molecules trigger an oxidative burst and production of nitric oxide in a dose-dependent manner. The intracellular level of StS increases with cell ageing and ultimately leads to a mechanism of apoptosis-like death. Disrupting StS biosynthesis by inhibition of the sulfonation step significantly delays the onset of this fatal process and maintains steady growth in algal cells for several days. The autoinhibitory activity of StS demonstrates the functional significance of small metabolites in diatoms. The StS pathway provides another view on cell regulation during bloom dynamics in marine habitats and opens new opportunities for the biochemical control of mass-cultivation of microalgae. Phytoplankton blooms are shaped by a period of rapid growth followed by massive cell death. Here the authors show that sterol sulfates accumulate in aging cells of a bloom-forming marine diatom and trigger an oxidative burst that leads to a mechanism of apoptosis-like death.
Collapse
|
47
|
Lin Q, Liang JR, Huang QQ, Luo CS, Anderson DM, Bowler C, Chen CP, Li XS, Gao YH. Differential cellular responses associated with oxidative stress and cell fate decision under nitrate and phosphate limitations in Thalassiosira pseudonana: Comparative proteomics. PLoS One 2017; 12:e0184849. [PMID: 28910417 PMCID: PMC5599023 DOI: 10.1371/journal.pone.0184849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/31/2017] [Indexed: 01/09/2023] Open
Abstract
Diatoms are important components of marine ecosystems and contribute greatly to the world's primary production. Despite their important roles in ecosystems, the molecular basis of how diatoms cope with oxidative stress caused by nutrient fluctuations remains largely unknown. Here, an isobaric tags for relative and absolute quantitation (iTRAQ) proteomic method was coupled with a series of physiological and biochemical techniques to explore oxidative stress- and cell fate decision-related cellular and metabolic responses of the diatom Thalassiosira pseudonana to nitrate (N) and inorganic phosphate (P) stresses. A total of 1151 proteins were detected; 122 and 56 were significantly differentially expressed from control under N- and P-limited conditions, respectively. In N-limited cells, responsive proteins were related to reactive oxygen species (ROS) accumulation, oxidative stress responses and cell death, corresponding to a significant decrease in photosynthetic efficiency, marked intracellular ROS accumulation, and caspase-mediated programmed cell death activation. None of these responses were identified in P-limited cells; however, a significant up-regulation of alkaline phosphatase proteins was observed, which could be the major contributor for P-limited cells to cope with ambient P deficiency. These findings demonstrate that fundamentally different metabolic responses and cellular regulations are employed by the diatom in response to different nutrient stresses and to keep the cells viable.
Collapse
Affiliation(s)
- Qun Lin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jun-Rong Liang
- School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen, China
- * E-mail:
| | | | - Chun-Shan Luo
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Donald M. Anderson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Chris Bowler
- Ecology and Evolutionary Biology Section, CNRS UMR8197 INSERM U1024, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, 46 rue d’Ulm, Paris, France
| | - Chang-Ping Chen
- School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen, China
| | - Xue-Song Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Ya-Hui Gao
- School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen, China
| |
Collapse
|
48
|
Yang K, Chen Q, Zhang D, Zhang H, Lei X, Chen Z, Li Y, Hong Y, Ma X, Zheng W, Tian Y, Zheng T, Xu H. The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa. Sci Rep 2017; 7:7750. [PMID: 28798298 PMCID: PMC5552873 DOI: 10.1038/s41598-017-08132-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 07/05/2017] [Indexed: 12/31/2022] Open
Abstract
In recent years, Microcystis aeruginosa blooms have occurred throughout the world, causing huge economic losses and destroying aquatic ecosystems. It is necessary to develop effective and ecofriendly methods to control M. aeruginosa blooms. Here, we report a high algicidal activity of prodigiosin (PG) against M. aeruginosa as well as the algicidal mechanism. PG showed high algicidal activity against M. aeruginosa, with a 50% lethal dose (LD50) of 5.87 μg/mL in 72 h. A combination of methods, including propidium iodide and Annexin V-fluorescein staining assays and light and electron microscopy indicated the existence of two modes of cell death with features similar to those in eukaryotic programmed cell death: necrotic-like and apoptotic-like. Biochemical and physiological analyses showed that PG generates reactive oxygen species (ROS), which induce lipid peroxidation, damage the membrane system and destroy the function of the photosystem. A proteomics analysis revealed that many proteins were differentially expressed in response to PG stress and that most of these proteins were involved in important metabolic processes, which may trigger necrotic-like or apoptotic-like cell death. The present study sheds light on the multiple toxicity mechanisms of PG on M. aeruginosa and its potential for controlling the occurrence of M. aeruginosa blooms in lakes.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Qiuliang Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Danyang Zhang
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Huajun Zhang
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Xueqian Lei
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Zhangran Chen
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yi Li
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yaling Hong
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Xiaohong Ma
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yun Tian
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Tianling Zheng
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China. .,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China.
| | - Hong Xu
- State Key Laboratory of Cellular Stress Biology, and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, P. R. China. .,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P. R. China.
| |
Collapse
|
49
|
Abstract
In 1882, Elie Metchnikoff identified myeloid-like cells from starfish larvae responding to the invasion by a foreign body (rose thorn). This marked the origins for the study of innate immunity, and an appreciation that cellular immunity was well established even in these "primitive" organisms. This chapter focuses on these myeloid cells as well as the newest members of this family, the dendritic cells, and explores their evolutionary origins. Our goal is to provide evolutionary context for the development of the multilayered immune system of mammals, where myeloid cells now serve as central effectors of innate immunity and regulators of adaptive immunity. Overall, we find that core contributions of myeloid cells to the regulation of inflammation are based on mechanisms that have been honed over hundreds of millions of years of evolution. Using phagocytosis as a platform, we show how fairly simple beginnings have offered a robust foundation onto which additional control features have been integrated, resulting in central regulatory nodes that now manage multifactorial aspects of homeostasis and immunity.
Collapse
|
50
|
Pandey LK, Bergey EA, Lyu J, Park J, Choi S, Lee H, Depuydt S, Oh YT, Lee SM, Han T. The use of diatoms in ecotoxicology and bioassessment: Insights, advances and challenges. WATER RESEARCH 2017; 118:39-58. [PMID: 28419896 DOI: 10.1016/j.watres.2017.01.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 06/07/2023]
Abstract
Diatoms are regularly used for bioassessment and ecotoxicological studies in relation to environmental and anthropogenic disturbances. Traditional taxonomical diatom parameters (cell counts, biovolume estimates, species richness, diversity indices and metrics using sensitive and tolerant diatom species) are regularly used for these studies. In the same context, very less focus was given on new endpoints of diatoms (life-forms, nuclear anomalies, alteration in photosynthetic apparatus shape, motility, lipid bodies, size reduction and deformities), in spite of their numerous merits, such as, their easiness, quickness, cheapness, global acceptation and no especial training in diatom taxonomy. In this review we analyzed 202 articles (from lab and field studies), with the aim to investigate the bioassessment and ecotoxicological advancement taken place in diatom research especially in terms of exploring new endpoints along with the traditional taxonomical parameters in a perspective which can greatly enhance the evaluation of fluvial ecosystem quality for biomonitoring practices.
Collapse
Affiliation(s)
- Lalit K Pandey
- Institute of Green Environmental Research Center, 169, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea; Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Elizabeth A Bergey
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Jie Lyu
- Division of Life Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Jihae Park
- Division of Life Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University Global Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, South Korea
| | - Soyeon Choi
- Division of Life Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Hojun Lee
- Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Stephen Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University Global Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, South Korea
| | - Young-Tae Oh
- Institute of Public Health and Environment, 471, Seohae-daero, Jung-gu, Incheon 22320, Republic of Korea
| | - Sung-Mo Lee
- Institute of Public Health and Environment, 471, Seohae-daero, Jung-gu, Incheon 22320, Republic of Korea
| | - Taejun Han
- Department of Marine Sciences, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, South Korea; Ghent University Global Campus, 119, Songdomunwha-ro, Yeonsu-gu, Incheon 21985, South Korea.
| |
Collapse
|