1
|
Breton J, Watson CWM, Kamalyan L, Franklin D, Fazeli P, Umlauf A, Moore RC, Ellis R, Grant I, Heaton RK, Cherner M, Moore DJ, Marquine MJ. Neurocognition and its predictors in a linguistically and culturally diverse cohort of people with HIV. Clin Neuropsychol 2024; 38:1890-1909. [PMID: 38588669 PMCID: PMC11468223 DOI: 10.1080/13854046.2024.2319900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/09/2024] [Indexed: 04/10/2024]
Abstract
Objective: HIV/AIDS disproportionately affects Black and Latino people in the United States, yet there is a lack of research on predictors of neurocognitive outcomes in these groups. We examined neurocognitive performance and its key predictors across White, Black, and Latino people with HIV (PWH). Method: Participants included 586 PWH of White, Black, and Latino (English- and Spanish-speaking) background. Neurocognition was assessed via demographically-adjusted Fluid Cognition Composite T-scores from the NIH-Toolbox cognition battery, and individual tests comprising this composite. Predictors examined included sociodemographic and HIV disease characteristics, and medical, psychiatric and substance comorbidities. Results: Compared to White PWH, English-speaking Latino PWH had lower T-scores on the Fluid Cognition Composite, as well as Flanker Inhibition and Picture Sequence Memory tests. While there were no other significant group differences on Fluid Cognition, both Latino PWH language groups performed worse than Black PWH on Flanker Inhibition, and Black PWH performed worse than White PWH on List Sorting. Separate multivariable linear regression models by ethnic/racial/language group showed that significant correlates of worse Fluid Cognition included depressive symptoms among White PWH; hepatitis C co-infection among Black PWH; hypertension among English-speaking Latino PWH; and higher estimated duration of HIV disease and depressive symptoms in Spanish-speaking Latino PWH. Conclusions: Findings suggest worse neurocognition among English-speaking Latino PWH compared to Whites. Predictors of neurocognitive function among PWH differ across ethnic/racial and language groups. Consideration of these HIV disease characteristics and comorbidities may be valuable in developing targeted culturally-relevant interventions aimed at ameliorating neurocognitive dysfunction among diverse PWH.
Collapse
Affiliation(s)
- Jordana Breton
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA, USA
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Caitlin Wei-Ming Watson
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | - Lily Kamalyan
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | - Donald Franklin
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Pariya Fazeli
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anya Umlauf
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Raeanne C Moore
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Ronald Ellis
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Igor Grant
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Robert K Heaton
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Mariana Cherner
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - David J Moore
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - María J Marquine
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Shabalala SN, Luvuno M, Mabandla MV. Modulation of tenofovir by probenecid: Impact on drug, interleukin-1β, and dopamine concentration in the prefrontal cortex and cerebellum. Neuroscience 2024; 562:209-216. [PMID: 39461661 DOI: 10.1016/j.neuroscience.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The blood-brain barrier's limited permeability to tenofovir restricts its ability to clear HIV from the brain. Probenecid acting as an adjuvant increases tenofovir concentrations in plasma and the kidneys thereby enhancing its therapeutic effect. However, the probenecid effect on brain tenofovir concentration and possible adverse effects remains poorly understood. We investigated the effect of probenecid co-administered tenofovir on tenofovir brain concentration, interleukin-1β (IL-1β) and dopamine concentration in the prefrontal cortex (PFC) and the cerebellum. Ninety-six male BALB/c mice were divided into four groups viz: a control group, Tenofovir disoproxil fumarate (TDF) treated, probenecid treated, and TDF + probenecid treated. We orally administered a single dose of TDF (5 mg/kg), and probenecid (8.3 mg/kg), and sacrificed six mice per group after 1 h, 4 h, and 6 h post-treatment to collect plasma, PFC, and cerebellar tissue. Co-administered tenofovir increased tenofovir concentration, peaking at 6 h with the cerebellum having the highest concentration. This suggests that probenecid enhanced the entry of tenofovir into the brain. Tenofovir alone increased IL-1β concentration at all intervals post-administration, while probenecid alone had no impact on IL-1β concentration. Co-administered tenofovir also increased IL-1β concentration. Probenecid's limited impact on IL-1β concentration following co-administration suggests that its anti-inflammatory properties may require more than 6 h to have an effect. Furthermore, neither tenofovir nor probenecid affected dopamine concentration. In conclusion, probenecid enhances the concentration and retention of tenofovir in the brain, making it a possible pharmacokinetic enhancer. However, its anti-inflammatory effects may require a longer duration to fully manifest.
Collapse
Affiliation(s)
- Simangele Ne Shabalala
- Discipline of Human Physiology, School of Laboratory Medicine and MedicalSciences, College of Health Sciences, South Africa.
| | - M Luvuno
- Discipline of Human Physiology, School of Laboratory Medicine and MedicalSciences, College of Health Sciences, South Africa
| | - M V Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and MedicalSciences, College of Health Sciences, South Africa
| |
Collapse
|
3
|
Jones AM, Rademeyer KM, Rosen EP, Contaifer S, Wijesinghe D, Hauser KF, McRae M. Examining the effects of the HIV-1 protein Tat and morphine on antiretroviral accumulation and distribution within the brain. Clin Transl Sci 2024; 17:e70035. [PMID: 39382215 PMCID: PMC11462598 DOI: 10.1111/cts.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Despite combination antiretroviral therapy effectively suppressing HIV within the periphery, neuro-acquired HIV (neuroHIV) remains a significant problem and approximately half of people living with HIV will experience HIV-associated neurocognitive disorders (HAND). Concurrent opioid use exacerbates neuroHIV by promoting neuroinflammation, neuronal injury and synaptodendritic culling, viral replication, and potentially altering antiretroviral concentrations within the brain. The present study examined the effects of HIV and morphine co-exposure on the accumulation and spatial distribution of antiretroviral drugs across multiple regions within the brain in an HIV-1 Tat transgenic mouse model by using infrared-matrix-assisted laser desorption electrospray ionization mass spectrometry imaging (IR-MALDESI MSI). Morphine exposure uniquely decreased antiretroviral concentrations in anterior cerebral (primary motor and somatosensory) cortices, corpus collosum (anterior forceps), caudoputamen, nucleus accumbens, and posterior regions including the hippocampus, corpus callosum (main body), cerebral cortex (somatosensory and auditory cortices), thalamus, and hypothalamus. Interestingly, male mice experienced greater morphine-associated decreases in antiretroviral concentrations than females. The study also assessed whether changes in antiretroviral concentrations were linked with inflammation in astroglia, assessed through the measurement of astroglial activation using glial fibrillary acidic protein (GFAP) as a marker. Alterations in antiretroviral concentrations co-registering with areas of astroglial activation exhibited sex-specific treatment differences. This study highlights the intricate interplay between HIV, opioids, and antiretroviral drugs within the CNS, elucidating distinct regional and sex variations in responsiveness. Our findings emphasize the identification of vulnerabilities within the neural landscape and underscore the necessity of carefully monitoring opioid use to maintain the efficacy of antiretroviral therapies.
Collapse
Affiliation(s)
- Austin M. Jones
- Department of Pharmacotherapy and Outcomes Science, School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Kara M. Rademeyer
- Department of Pharmacotherapy and Outcomes Science, School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Elias P. Rosen
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Silas Contaifer
- Department of Pharmacotherapy and Outcomes Science, School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Dayanjan Wijesinghe
- Department of Pharmacotherapy and Outcomes Science, School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Anatomy and Neurobiology, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Institute for Drug and Alcohol StudiesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
4
|
Schlachetzki JC, Gianella S, Ouyang Z, Lana AJ, Yang X, O'Brien S, Challacombe JF, Gaskill PJ, Jordan-Sciutto KL, Chaillon A, Moore D, Achim CL, Ellis RJ, Smith DM, Glass CK. Gene expression and chromatin conformation of microglia in virally suppressed people with HIV. Life Sci Alliance 2024; 7:e202402736. [PMID: 39060113 PMCID: PMC11282357 DOI: 10.26508/lsa.202402736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The presence of HIV in sequestered reservoirs is a central impediment to a functional cure, allowing HIV to persist despite life-long antiretroviral therapy (ART), and driving a variety of comorbid conditions. Our understanding of the latent HIV reservoir in the central nervous system is incomplete, because of difficulties in accessing human central nervous system tissues. Microglia contribute to HIV reservoirs, but the molecular phenotype of HIV-infected microglia is poorly understood. We leveraged the unique "Last Gift" rapid autopsy program, in which people with HIV are closely followed until days or even hours before death. Microglial populations were heterogeneous regarding their gene expression profiles but showed similar chromatin accessibility landscapes. Despite ART, we detected occasional microglia containing cell-associated HIV RNA and HIV DNA integrated into open regions of the host's genome (∼0.005%). Microglia with detectable HIV RNA showed an inflammatory phenotype. These results demonstrate a distinct myeloid cell reservoir in the brains of people with HIV despite suppressive ART. Strategies for curing HIV and neurocognitive impairment will need to consider the myeloid compartment to be successful.
Collapse
Affiliation(s)
- Johannes Cm Schlachetzki
- https://ror.org/01vf2g217 Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
- https://ror.org/01vf2g217 Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Sara Gianella
- https://ror.org/01vf2g217 Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA
| | - Zhengyu Ouyang
- https://ror.org/01vf2g217 Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Addison J Lana
- https://ror.org/01vf2g217 Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Xiaoxu Yang
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Sydney O'Brien
- https://ror.org/01vf2g217 Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Jean F Challacombe
- https://ror.org/01vf2g217 Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoine Chaillon
- https://ror.org/01vf2g217 Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA
| | - David Moore
- https://ror.org/01vf2g217 Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Cristian L Achim
- https://ror.org/01vf2g217 Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - Ronald J Ellis
- https://ror.org/01vf2g217 Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Davey M Smith
- https://ror.org/01vf2g217 Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA
| | - Christopher K Glass
- https://ror.org/01vf2g217 Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
5
|
Ewens AN, Pilski A, Hastings SD, Krook-Magnuson C, Graves SM, Krook-Magnuson E, Thayer SA. Levetiracetam Prevents Neurophysiological Changes and Preserves Cognitive Function in the Human Immunodeficiency Virus (HIV)-1 Transactivator of Transcription Transgenic Mouse Model of HIV-Associated Neurocognitive Disorder. J Pharmacol Exp Ther 2024; 391:104-118. [PMID: 39060163 PMCID: PMC11413936 DOI: 10.1124/jpet.124.002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects nearly half of the 39 million people living with HIV. HAND symptoms range from subclinical cognitive impairment to dementia; the mechanisms that underlie HAND remain unclear and there is no treatment. The HIV protein transactivator of transcription (TAT) is thought to contribute to HAND because it persists in the central nervous system and elicits neurotoxicity in animal models. Network hyperexcitability is associated with accelerated cognitive decline in neurodegenerative disorders. Here we show that the antiepileptic drug levetiracetam (LEV) attenuated aberrant excitatory synaptic transmission, protected synaptic plasticity, reduced seizure susceptibility, and preserved cognition in inducible TAT (iTAT) transgenic male mice. iTAT mice had an increased frequency of spontaneous excitatory postsynaptic currents in hippocampal slice recordings and impaired long-term potentiation, a form of synaptic plasticity that underlies learning and memory. Two-week administration of LEV by osmotic minipump prevented both impairments. Kainic acid administered to iTAT mice induced a higher maximum behavioral seizure score, longer seizure duration, and shorter latency to first seizure, consistent with a lower seizure threshold. LEV treatment prevented these in vivo signs of hyperexcitability. Lastly, in the Barnes maze, iTAT mice required more time to reach the goal, committed more errors, and received lower cognitive scores relative to iTAT mice treated with LEV. Thus, TAT expression drives functional deficits, suggesting a causative role in HAND. As LEV not only prevented aberrant synaptic activity in iTAT mice but also prevented cognitive dysfunction, it may provide a promising pharmacological approach to the treatment of HAND. SIGNIFICANCE STATEMENT: Approximately half of people living with human immunodeficiency virus (HIV) also suffer from HIV-associated neurocognitive disorder (HAND), for which there is no treatment. The HIV protein transactivator of transcription (TAT) causes toxicity that is thought to contribute to HAND. Here, the antiepileptic drug levetiracetam (LEV) prevented synaptic and cognitive impairments in a TAT-expressing mouse. LEV is widely used to treat seizures and is well-tolerated in humans, including those with HIV. This study supports further investigation of LEV-mediated neuroprotection in HAND.
Collapse
Affiliation(s)
- Ashley N Ewens
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Alexander Pilski
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Shayne D Hastings
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Chris Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Esther Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| |
Collapse
|
6
|
Hu A, Zaongo SD, Harypursat V, Wang X, Ouyang J, Chen Y. HIV-associated neurocognitive disorder: key implications of the microbiota-gut-brain axis. Front Microbiol 2024; 15:1428239. [PMID: 39155987 PMCID: PMC11327151 DOI: 10.3389/fmicb.2024.1428239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is now recognized to be relatively common in people living with HIV (PLWH), and remains a common cause of cognitive impairment. Unfortunately, the fundamental pathogenic processes underlying this specific outcome of HIV infection have not as yet been fully elucidated. With increased interest in research related to the microbiota-gut-brain axis, the gut-brain axis has been shown to play critical roles in regulating central nervous system disorders such as Alzheimer's disease and Parkinson's disease. PLWH are characterized by a particular affliction, referred to as gut-associated dysbiosis syndrome, which provokes an alteration in microbial composition and diversity, and of their associated metabolite composition within the gut. Interestingly, the gut microbiota has also been recognized as a key element, which both positively and negatively influences human brain health, including the functioning and development of the central nervous system (CNS). In this review, based on published evidence, we critically discuss the relevant interactions between the microbiota-gut-brain axis and the pathogenesis of HAND in the context of HIV infection. It is likely that HAND manifestation in PLWH mainly results from (i) gut-associated dysbiosis syndrome and a leaky gut on the one hand and (ii) inflammation on the other hand. In other words, the preceding features of HIV infection negatively alter the composition of the gut microbiota (microbes and their associated metabolites) and promote proinflammatory immune responses which singularly or in tandem damage neurons and/or induce inadequate neuronal signaling. Thus, HAND is fairly prevalent in PLWH. This work aims to demonstrate that in the quest to prevent and possibly treat HAND, the gut microbiota may ultimately represent a therapeutically targetable "host factor."
Collapse
Affiliation(s)
- Aizhen Hu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Wang
- Phase I Clinical Trial Center, Chonggang General Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
7
|
Mirzahosseini G, Sinha N, Zhou L, Godse S, Kodidela S, Singh UP, Ishrat T, Kumar S. LM11A-31, a modulator of p75 neurotrophin receptor, suppresses HIV-1 replication and inflammatory response in macrophages. Exp Biol Med (Maywood) 2024; 249:10123. [PMID: 39119118 PMCID: PMC11306025 DOI: 10.3389/ebm.2024.10123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Antiretroviral drugs have made significant progress in treating HIV-1 and improving the quality of HIV-1-infected individuals. However, due to their limited permeability into the brain HIV-1 replication persists in brain reservoirs such as perivascular macrophages and microglia, which cause HIV-1-associated neurocognitive disorders. Therefore, it is highly desirable to find a novel therapy that can cross the blood-brain barrier (BBB) and target HIV-1 pathogenesis in brain reservoirs. A recently developed 2-amino-3-methylpentanoic acid [2-morpholin-4-yl-ethyl]-amide (LM11A-31), which is a p75 neutrotrophin receptor (p75NTR) modulator, can cross the BBB. In this study, we examined whether LM11A-31 treatment can suppress HIV-1 replication, oxidative stress, cytotoxicity, and inflammatory response in macrophages. Our results showed that LM11A-31 (100 nM) alone and/or in combination with positive control darunavir (5.5 µM) significantly suppresses viral replication and reduces cytotoxicity. Moreover, the HIV-1 suppression by LM11A-31 was comparable to the HIV-1 suppression by darunavir. Although p75NTR was upregulated in HIV-1-infected macrophages compared to uninfected macrophages, LM11A-31 did not significantly reduce the p75NTR expression in macrophages. Furthermore, our study illustrated that LM11A-31 alone and/or in combination with darunavir significantly suppress pro-inflammatory cytokines including IL-1β, IL-8, IL-18, and TNF-α and chemokines MCP-1 in HIV-induced macrophages. The suppression of these cytokines and chemokines by LM11A-31 was comparable to darunavir. In contrast, LM11A-31 did not significantly alter oxidative stress, expression of antioxidant enzymes, or autophagy marker proteins in U1 macrophages. The results suggest that LM11A-31, which can cross the BBB, has therapeutic potential in suppressing HIV-1 and inflammatory response in brain reservoirs, especially in macrophages.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lina Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sandip Godse
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tauheed Ishrat
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
8
|
Yadav-Samudrala BJ, Dodson H, Ramineni S, Kim E, Poklis JL, Lu D, Ignatowska-Jankowska BM, Lichtman AH, Fitting S. Cannabinoid receptor 1 positive allosteric modulator ZCZ011 shows differential effects on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. PLoS One 2024; 19:e0305868. [PMID: 38913661 PMCID: PMC11195999 DOI: 10.1371/journal.pone.0305868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
The cannabinoid receptor type 1 (CB1R) is a promising therapeutic target for various neurodegenerative diseases, including HIV-1-associated neurocognitive disorder (HAND). However, the therapeutic potential of CB1R by direct activation is limited due to its psychoactive side effects. Therefore, research has focused on indirectly activating the CB1R by utilizing positive allosteric modulators (PAMs). Studies have shown that CB1R PAMs (ZCZ011 and GAT211) are effective in mouse models of Huntington's disease and neuropathic pain, and hence, we assess the therapeutic potential of ZCZ011 in a well-established mouse model of neuroHIV. The current study investigates the effect of chronic ZCZ011 treatment (14 days) on various behavioral paradigms and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Chronic ZCZ011 treatment (10 mg/kg) did not alter body mass, locomotor activity, or anxiety-like behavior regardless of sex or genotype. However, differential effects were noted in hot plate latency, motor coordination, and recognition memory in female mice only, with ZCZ011 treatment increasing hot plate latency and improving motor coordination and recognition memory. Only minor effects or no alterations were seen in the endocannabinoid system and related lipids except in the cerebellum, where the effect of ZCZ011 was more pronounced in female mice. Moreover, AEA and PEA levels in the cerebellum were positively correlated with improved motor coordination in female mice. In summary, these findings indicate that chronic ZCZ011 treatment has differential effects on antinociception, motor coordination, and memory, based on sex and HIV-1 Tat expression, making CB1R PAMs potential treatment options for HAND without the psychoactive side effects.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hailey Dodson
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shreya Ramineni
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth Kim
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Dai Lu
- Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas, United States of America
| | | | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
9
|
Ament SA, Campbell RR, Lobo MK, Receveur JP, Agrawal K, Borjabad A, Byrareddy SN, Chang L, Clarke D, Emani P, Gabuzda D, Gaulton KJ, Giglio M, Giorgi FM, Gok B, Guda C, Hadas E, Herb BR, Hu W, Huttner A, Ishmam MR, Jacobs MM, Kelschenbach J, Kim DW, Lee C, Liu S, Liu X, Madras BK, Mahurkar AA, Mash DC, Mukamel EA, Niu M, O'Connor RM, Pagan CM, Pang APS, Pillai P, Repunte-Canonigo V, Ruzicka WB, Stanley J, Tickle T, Tsai SYA, Wang A, Wills L, Wilson AM, Wright SN, Xu S, Yang J, Zand M, Zhang L, Zhang J, Akbarian S, Buch S, Cheng CS, Corley MJ, Fox HS, Gerstein M, Gummuluru S, Heiman M, Ho YC, Kellis M, Kenny PJ, Kluger Y, Milner TA, Moore DJ, Morgello S, Ndhlovu LC, Rana TM, Sanna PP, Satterlee JS, Sestan N, Spector SA, Spudich S, Tilgner HU, Volsky DJ, White OR, Williams DW, Zeng H. The single-cell opioid responses in the context of HIV (SCORCH) consortium. Mol Psychiatry 2024:10.1038/s41380-024-02620-7. [PMID: 38879719 DOI: 10.1038/s41380-024-02620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/19/2024]
Abstract
Substance use disorders (SUD) and drug addiction are major threats to public health, impacting not only the millions of individuals struggling with SUD, but also surrounding families and communities. One of the seminal challenges in treating and studying addiction in human populations is the high prevalence of co-morbid conditions, including an increased risk of contracting a human immunodeficiency virus (HIV) infection. Of the ~15 million people who inject drugs globally, 17% are persons with HIV. Conversely, HIV is a risk factor for SUD because chronic pain syndromes, often encountered in persons with HIV, can lead to an increased use of opioid pain medications that in turn can increase the risk for opioid addiction. We hypothesize that SUD and HIV exert shared effects on brain cell types, including adaptations related to neuroplasticity, neurodegeneration, and neuroinflammation. Basic research is needed to refine our understanding of these affected cell types and adaptations. Studying the effects of SUD in the context of HIV at the single-cell level represents a compelling strategy to understand the reciprocal interactions among both conditions, made feasible by the availability of large, extensively-phenotyped human brain tissue collections that have been amassed by the Neuro-HIV research community. In addition, sophisticated animal models that have been developed for both conditions provide a means to precisely evaluate specific exposures and stages of disease. We propose that single-cell genomics is a uniquely powerful technology to characterize the effects of SUD and HIV in the brain, integrating data from human cohorts and animal models. We have formed the Single-Cell Opioid Responses in the Context of HIV (SCORCH) consortium to carry out this strategy.
Collapse
Affiliation(s)
- Seth A Ament
- University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | - Mary Kay Lobo
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Linda Chang
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Dana Gabuzda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Michelle Giglio
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | - Eran Hadas
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian R Herb
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wen Hu
- Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | | | - Cheyu Lee
- University of California Irvine, Irvine, CA, USA
| | - Shuhui Liu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaokun Liu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Anup A Mahurkar
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Meng Niu
- University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | - Piya Pillai
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - W Brad Ruzicka
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | | | | | | - Allen Wang
- University of California San Diego, La Jolla, CA, USA
| | - Lauren Wills
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Siwei Xu
- University of California Irvine, Irvine, CA, USA
| | | | - Maryam Zand
- University of California San Diego, La Jolla, CA, USA
| | - Le Zhang
- Yale School of Medicine, New Haven, CT, USA
| | - Jing Zhang
- University of California Irvine, Irvine, CA, USA
| | | | - Shilpa Buch
- University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | - Howard S Fox
- University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | - Myriam Heiman
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ya-Chi Ho
- Yale School of Medicine, New Haven, CT, USA
| | - Manolis Kellis
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul J Kenny
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - David J Moore
- University of California San Diego, La Jolla, CA, USA
| | - Susan Morgello
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Tariq M Rana
- University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | - David J Volsky
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Owen R White
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
10
|
League AF, Yadav-Samudrala BJ, Kolagani R, Cline CA, Jacobs IR, Manke J, Niphakis MJ, Cravatt BF, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. A helping HAND: therapeutic potential of MAGL inhibition against HIV-1-associated neuroinflammation. Front Immunol 2024; 15:1374301. [PMID: 38835765 PMCID: PMC11148243 DOI: 10.3389/fimmu.2024.1374301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Human immunodeficiency virus (HIV) affects nearly 40 million people globally, with roughly 80% of all people living with HIV receiving antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral tissues but does not effectively penetrate the blood-brain barrier. Thus, viral reservoirs persist in the central nervous system and continue to produce low levels of inflammatory factors and early viral proteins, including the transactivator of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation and synaptodendritic damage, which is associated with the development of cognitive, motor, and/or mood problems, collectively known as HIV-associated neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well documented, but therapeutic utility of cannabis remains limited due to its psychotropic effects, including alterations within brain regions encoding reward processing and motivation, such as the nucleus accumbens. Alternatively, inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic potential through interactions with the endocannabinoid system. Methods The present study utilized a reward-related operant behavioral task to quantify motivated behavior in female Tat transgenic mice treated with vehicle or MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic injury and neuroinflammatory profiles, including dendritic microtubule-associated protein (MAP2ab) intensity, microglia density, microglia morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization, and various lipid mediators. Results No significant behavioral differences were observed; however, MJN110 protected against Tat-induced dendritic injury by significantly upregulating MAP2ab intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No or only minor effects were noted for Iba-1+ microglia density and/or microglia morphology. Further, Tat increased GFAP+ astrocyte density in the infralimbic cortex and GFAP+ astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110 significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-related inflammatory lipid mediators in the striatum were downregulated by chronic MJN110 treatment. Conclusions These findings demonstrate anti-inflammatory and neuroprotective properties of MJN110 without cannabimimetic behavioral effects and suggest a promising alternative to cannabis for managing neuroinflammation.
Collapse
Affiliation(s)
- Alexis F. League
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ramya Kolagani
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Calista A. Cline
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ian R. Jacobs
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Micah J. Niphakis
- Department of Chemistry, Scripps Research, La Jolla, CA, United States
| | | | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Yuan NY, Medders KE, Sanchez AB, Shah R, de Rozieres CM, Ojeda-Juárez D, Maung R, Williams R, Gelman BB, Baaten BJ, Roberts AJ, Kaul M. A critical role for Macrophage-derived Cysteinyl-Leukotrienes in HIV-1 induced neuronal injury. Brain Behav Immun 2024; 118:149-166. [PMID: 38423397 PMCID: PMC11173376 DOI: 10.1016/j.bbi.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Macrophages (MΦ) infected with human immunodeficiency virus (HIV)-1 or activated by its envelope protein gp120 exert neurotoxicity. We found previously that signaling via p38 mitogen-activated protein kinase (p38 MAPK) is essential to the neurotoxicity of HIVgp120-stimulated MΦ. However, the associated downstream pathways remained elusive. Here we show that cysteinyl-leukotrienes (CysLT) released by HIV-infected or HIVgp120 stimulated MΦ downstream of p38 MAPK critically contribute to neurotoxicity. SiRNA-mediated or pharmacological inhibition of p38 MAPK deprives MΦ of CysLT synthase (LTC4S) and, pharmacological inhibition of the cysteinyl-leukotriene receptor 1 (CYSLTR1) protects cerebrocortical neurons against toxicity of both gp120-stimulated and HIV-infected MΦ. Components of the CysLT pathway are differentially regulated in brains of HIV-infected individuals and a transgenic mouse model of NeuroHIV (HIVgp120tg). Moreover, genetic ablation of LTC4S or CysLTR1 prevents neuronal damage and impairment of spatial memory in HIVgp120tg mice. Altogether, our findings suggest a novel critical role for cysteinyl-leukotrienes in HIV-associated brain injury.
Collapse
Affiliation(s)
- Nina Y Yuan
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, 900 University Ave, Riverside, CA 92521, USA.
| | - Kathryn E Medders
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Ana B Sanchez
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Rohan Shah
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, 900 University Ave, Riverside, CA 92521, USA.
| | - Cyrus M de Rozieres
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Daniel Ojeda-Juárez
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, 900 University Ave, Riverside, CA 92521, USA; Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Ricky Maung
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, 900 University Ave, Riverside, CA 92521, USA; Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Roy Williams
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0419 USA; Department of Neurobiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0419 USA.
| | - Bas J Baaten
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Amanda J Roberts
- Animal Models Core, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Marcus Kaul
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, 900 University Ave, Riverside, CA 92521, USA; Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Dos Reis RS, Wagner MCE, McKenna S, Ayyavoo V. Neuroinflammation driven by human immunodeficiency virus-1 (HIV-1) directs the expression of long noncoding RNA RP11-677M14.2 resulting in dysregulation of neurogranin in vivo and in vitro. J Neuroinflammation 2024; 21:107. [PMID: 38659061 PMCID: PMC11043047 DOI: 10.1186/s12974-024-03102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Neuroinflammation and synaptodendritic damage represent the pathological hallmarks of HIV-1 associated cognitive disorders (HAND). The post-synaptic protein neurogranin (Nrgn) is significantly reduced in the frontal cortex of postmortem brains from people with HIV (PWH) and it is associated with inflammatory factors released by infected microglia/macrophages. However, the mechanism involved in synaptic loss have yet to be elucidated. In this study, we characterized a newly identified long non-coding RNA (lncRNA) transcript (RP11-677M14.2), which is antisense to the NRGN locus and is highly expressed in the frontal cortex of HIV-1 individuals. Further analysis indicates an inverse correlation between the expression of RP11-677M14.2 RNA and Nrgn mRNA. Additionally, the Nrgn-lncRNA axis is dysregulated in neurons exposed to HIV-1 infected microglia conditioned medium enriched with IL-1β. Moreover, in vitro overexpression of this lncRNA impacts Nrgn expression at both mRNA and protein levels. Finally, we modeled the Nrgn-lncRNA dysregulation within an HIV-1-induced inflammatory environment using brain organoids, thereby corroborating our in vivo and in vitro findings. Together, our study implicates a plausible role for lncRNA RP11-677M14.2 in modulating Nrgn expression that might serve as the mechanistic link between Nrgn loss and cognitive dysfunction in HAND, thus shedding new light on the mechanisms underlying synaptodendritic damage.
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, 2117 Pitt Public Health, 130 DeSoto Street, Pittsburgh, PA, 15260, USA
| | - Marc C E Wagner
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, 2117 Pitt Public Health, 130 DeSoto Street, Pittsburgh, PA, 15260, USA
| | - Savannah McKenna
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, 2117 Pitt Public Health, 130 DeSoto Street, Pittsburgh, PA, 15260, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, 2117 Pitt Public Health, 130 DeSoto Street, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
13
|
Dhume SH, Balogun K, Sarkar A, Acosta S, Mount HTJ, Cahill LS, Sled JG, Serghides L. Perinatal exposure to atazanavir-based antiretroviral regimens in a mouse model leads to differential long-term motor and cognitive deficits dependent on the NRTI backbone. Front Mol Neurosci 2024; 17:1376681. [PMID: 38646101 PMCID: PMC11027900 DOI: 10.3389/fnmol.2024.1376681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Background Combination antiretroviral therapy (ART) use in pregnancy has been pivotal in improving maternal health and reducing perinatal HIV transmission. However, children born HIV-exposed uninfected fall behind their unexposed peers in several areas including neurodevelopment. The contribution of in utero ART exposure to these deficits is not clear. Here we present our findings of neurocognitive outcomes in adult mice exposed in utero to ART. Methods Dams were treated with a combination of ritonavir-boosted atazanavir with either abacavir plus lamivudine (ABC/3TC + ATV/r) or tenofovir disoproxil fumarate plus emtricitabine (TDF/FTC + ATV/r), or water as a control, administered daily from day of plug detection to birth. Offspring underwent a battery of behavioral tests that investigated motor performance and cognition starting at 6-weeks of age and ending at 8 months. Changes in brain structure were assessed using magnetic resonance imaging and immunohistochemistry. Expression of genes involved in neural circuitry and synaptic transmission were assessed in the hippocampus, a region strongly associated with memory formation, using qPCR. Findings Pups exposed to TDF/FTC + ATV/r showed increased motor activity and exploratory drive, and deficits in hippocampal-dependent working memory and social interaction, while pups exposed to ABC/3TC + ATV/r showed increased grooming, and deficits in working memory and social interaction. Significant volumetric reductions in the brain were seen only in the ABC/3TC + ATV/r group and were associated with reduced neuronal counts in the hippocampus. Altered neurotransmitter receptor mRNA expression as well as changes in expression of the neurotrophic factor BDNF and its receptors were observed in both ART-exposed groups in a sex-dependent manner. Interpretation In our model, in utero ART exposure had long-term effects on brain development and cognitive and motor outcomes in adulthood. Our data show that neurological outcomes can be influenced by the type of nucleoside reverse transcriptase inhibitor backbone of the regimen and not just the base drug, and display sex differences.
Collapse
Affiliation(s)
- Shreya H. Dhume
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kayode Balogun
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ambalika Sarkar
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sebastian Acosta
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Howard T. J. Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Psychiatry and Physiology, University of Toronto, Toronto, ON, Canada
| | - Lindsay S. Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, ON, Canada
| | - John G. Sled
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Women’s College Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Thompson JL, Woods SP, Medina LD, Garcia JM, Teixeira AL. Apathy in persons living with HIV disease: A systematic narrative review. J Affect Disord 2024; 350:133-147. [PMID: 38224740 DOI: 10.1016/j.jad.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND Apathy was identified as a feature of HIV early in the epidemic; however, there are no systematic reviews of the diverse literature on the sociodemographic and clinical correlates of apathy in HIV disease. METHODS The current study adopted a hybrid systematic-narrative review methodology in which we used PRISMA guidelines to identify, summarize, and critique peer-reviewed, empirical studies of apathy in HIV disease in the era of combination antiretroviral therapy. RESULTS A total of 34 studies of apathy in persons living with HIV (PLWH) were identified. Findings across these studies showed that apathy was reliably related to the structure of grey and white matter pathways commonly implicated in apathy, poorer everyday functioning, education, and other neuropsychiatric symptoms (e.g., depression). Apathy was not reliably associated with age, sex, race/ethnicity, cognition, and clinical markers of HIV disease. LIMITATIONS The current review does not provide rigorous quantitative estimates of clinical correlates of apathy, and the exclusion criteria of non-English and non-peer reviewed publications introduces risk of bias and Type I error. CONCLUSIONS Apathy occurs at higher rates in PLWH and is linked to neuroanatomical differences, as well as negative outcomes for everyday functions, aspects of neurocognition, and neuropsychiatric symptoms. As such, apathy is an important component to consider in the clinical assessment, diagnosis, and management of neurocognitive disorders in PLWH. Future work is needed to replicate existing findings with larger sample sizes and longitudinal designs, examine apathy as a multi-dimensional construct, and develop evidence-based treatments for apathy in PLWH.
Collapse
Affiliation(s)
| | - Steven Paul Woods
- Department of Psychology, University of Houston, Houston, TX 77004, USA.
| | - Luis D Medina
- Department of Psychology, University of Houston, Houston, TX 77004, USA
| | - Joshua M Garcia
- Department of Psychology, University of Houston, Houston, TX 77004, USA
| | - Antonio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry & Behavioral Sciences, University of Texas Health Sciences Center at Houston, Houston, TX 77054, USA
| |
Collapse
|
15
|
Chemparathy DT, Ray S, Ochs C, Ferguson N, Gawande DY, Dravid SM, Callen S, Sil S, Buch S. Neuropathogenic role of astrocyte-derived extracellular vesicles in HIV-associated neurocognitive disorders. J Extracell Vesicles 2024; 13:e12439. [PMID: 38647111 PMCID: PMC11034007 DOI: 10.1002/jev2.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Our previous findings demonstrated that astrocytic HIF-1α plays a major role in HIV-1 Tat-mediated amyloidosis which can lead to Alzheimer's-like pathology-a comorbidity of HIV-Associated Neurocognitive Disorders (HAND). These amyloids can be shuttled in extracellular vesicles, and we sought to assess whether HIV-1 Tat stimulated astrocyte-derived EVs (ADEVs) containing the toxic amyloids could result in neuronal injury in vitro and in vivo. We thus hypothesized that blocking HIF-1α could likely mitigate HIV-1 Tat-ADEV-mediated neuronal injury. Rat hippocampal neurons when exposed to HIV-1 Tat-ADEVs carrying the toxic amyloids exhibited amyloid accumulation and synaptodendritic injury, leading to functional loss as evidenced by alterations in miniature excitatory post synaptic currents. The silencing of astrocytic HIF-1α not only reduced the biogenesis of ADEVs, as well as amyloid cargos, but also ameliorated neuronal synaptodegeneration. Next, we determined the effect of HIV-1 Tat-ADEVs carrying amyloids in the hippocampus of naive mice brains. Naive mice receiving the HIV-1 Tat-ADEVs, exhibited behavioural changes, and Alzheimer's 's-like pathology accompanied by synaptodegeneration. This impairment(s) was not observed in mice injected with HIF-1α silenced ADEVs. This is the first report demonstrating the role of amyloid-carrying ADEVs in mediating synaptodegeneration leading to behavioural changes associated with HAND and highlights the protective role of HIF-1α.
Collapse
Affiliation(s)
- Divya T. Chemparathy
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sudipta Ray
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Chase Ochs
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Natasha Ferguson
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Dinesh Y. Gawande
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Shashank M. Dravid
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Shannon Callen
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Susmita Sil
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shilpa Buch
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
16
|
McMullan HM, Gansemer BM, Thayer SA. Antiretroviral drugs from multiple classes induce loss of excitatory synapses between hippocampal neurons in culture. Front Pharmacol 2024; 15:1369757. [PMID: 38533258 PMCID: PMC10963620 DOI: 10.3389/fphar.2024.1369757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Antiretroviral (ARV) drugs have improved prognoses for people living with HIV. However, HIV-associated neurocognitive disorders (HAND) persist despite undetectable viral loads. Some ARVs have been linked to neuropsychiatric effects that may contribute to HAND. Synapse loss correlates with cognitive decline in HAND and synaptic deficits may contribute to the neuropsychiatric effects of ARV drugs. Methods: Using an automated high content assay, rat hippocampal neurons in culture expressing PSD95-eGFP to label glutamatergic synapses and mCherry to fill neuronal structures were imaged before and after treatment with 25 clinically used ARVs. Results and Discussion: At a concentration of 10 μM the protease inhibitors nelfinavir and saquinavir, the non-nucleoside reverse transcriptase inhibitors etravirine and the 8-OH metabolite of efavirenz, the integrase inhibitor bictegravir, and the capsid inhibitor lenacapavir produced synaptic toxicity. Only lenacapavir produced synapse loss at the nanomolar concentrations estimated free in the plasma, although all 4 ARV drugs induced synapse loss at Cmax. Evaluation of combination therapies did not reveal synergistic synaptic toxicity. Synapse loss developed fully by 24 h and persisted for at least 3 days. Bictegravir-induced synapse loss required activation of voltage-gated Ca2+ channels and bictegravir, etravirine, and lenacapavir produced synapse loss by an excitotoxic mechanism. These results indicate that select ARV drugs might contribute to neuropsychiatric effects in combination with drugs that bind serum proteins or in disease states in which synaptic function is altered. The high content imaging assay used here provides an efficient means to evaluate new drugs and drug combinations for potential CNS toxicity.
Collapse
Affiliation(s)
| | | | - Stanley A. Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
17
|
Yadav-Samudrala BJ, Gorman BL, Barmada KM, Ravula HP, Huguely CJ, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute cannabidiol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Front Neurosci 2024; 18:1358555. [PMID: 38505774 PMCID: PMC10949733 DOI: 10.3389/fnins.2024.1358555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Background Some evidence suggests that cannabidiol (CBD) has potential to help alleviate HIV symptoms due to its antioxidant and anti-inflammatory properties. Here we examined acute CBD effects on various behaviors and the endocannabinoid system in HIV Tat transgenic mice. Methods Tat transgenic mice (female/male) were injected with CBD (3, 10, 30 mg/kg) and assessed for antinociception, activity, coordination, anxiety-like behavior, and recognition memory. Brains were taken to quantify endocannabinoids, cannabinoid receptors, and cannabinoid catabolic enzymes. Additionally, CBD and metabolite 7-hydroxy-CBD were quantified in the plasma and cortex. Results Tat decreased supraspinal-related nociception and locomotion. CBD and sex had little to no effects on any of the behavioral measures. For the endocannabinoid system male sex was associated with elevated concentration of the proinflammatory metabolite arachidonic acid in various CNS regions, including the cerebellum that also showed higher FAAH expression levels for Tat(+) males. GPR55 expression levels in the striatum and cerebellum were higher for females compared to males. CBD metabolism was altered by sex and Tat expression. Conclusion Findings indicate that acute CBD effects are not altered by HIV Tat, and acute CBD has no to minimal effects on behavior and the endocannabinoid system.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin L. Gorman
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Karenna M. Barmada
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Havilah P. Ravula
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Caitlin J. Huguely
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle R. Peace
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Ealer C, Niemczak CE, Nicol T, Magohe A, Bonacina S, Zhang Z, Rieke AuD C, Leigh S, Kobrina A, Lichtenstein J, Massawe ER, Kraus N, Buckey JC. Auditory neural processing in children living with HIV uncovers underlying central nervous system dysfunction. AIDS 2024; 38:289-298. [PMID: 37905994 PMCID: PMC10841987 DOI: 10.1097/qad.0000000000003771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
OBJECTIVE Central nervous system (CNS) damage from HIV infection or treatment can lead to developmental delays and poor educational outcomes in children living with HIV (CLWH). Early markers of central nervous system dysfunction are needed to target interventions and prevent life-long disability. The frequency following response (FFR) is an auditory electrophysiology test that can reflect the health of the central nervous system. In this study, we explore whether the FFR reveals auditory central nervous system dysfunction in CLWH. STUDY DESIGN Cross-sectional analysis of an ongoing cohort study. Data were from the child's first visit in the study. SETTING The infectious disease center in Dar es Salaam, Tanzania. METHODS We collected the FFR from 151 CLWH and 151 HIV-negative children. To evoke the FFR, three speech syllabi (/da/, /ba/, /ga/) were played monaurally to the child's right ear. Response measures included neural timing (peak latencies), strength of frequency encoding (fundamental frequency and first formant amplitude), encoding consistency (inter-response consistency), and encoding precision (stimulus-to-response correlation). RESULTS CLWH showed smaller first formant amplitudes ( P < 0.0001), weaker inter-response consistencies ( P < 0.0001) and smaller stimulus to response correlations ( P < 0.0001) than FFRs from HIV-negative children. These findings generalized across the three speech stimuli with moderately strong effect sizes (partial η2 ranged from 0.061 to 0.094). CONCLUSION The FFR shows auditory central nervous system dysfunction in CLWH. Neural encoding of auditory stimuli was less robust, more variable, and less accurate. As the FFR is a passive and objective test, it may offer an effective way to assess and detect central nervous system function in CLWH.
Collapse
Affiliation(s)
- Christin Ealer
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Christopher E. Niemczak
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Trent Nicol
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, Evanston, Illinois
| | - Albert Magohe
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Silvia Bonacina
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, Evanston, Illinois
| | - Ziyin Zhang
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Catherine Rieke AuD
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Samantha Leigh
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Anastasiya Kobrina
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Jonathan Lichtenstein
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Enica R. Massawe
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, Evanston, Illinois
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Neurobiology and Otolaryngology, Northwestern University, Evanston, Illinois
| | - Jay C. Buckey
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
19
|
Wang Y, Wu G, Wen Z, Lei H, Lin F. Highly active antiretroviral therapy-related effects on morphological connectivity in HIV. AIDS 2024; 38:207-215. [PMID: 37861678 DOI: 10.1097/qad.0000000000003759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
OBJECTIVE Suboptimal concentration of the antiretroviral drug is insufficient to inhibit HIV destruction on brain structure and function due to the resistance of blood brain barrier. We aimed to investigate highly active antiretroviral therapy (HAART)-related effects on the morphological connectivity in people with HIV (PWH). DESIGN Case-control study. METHODS Fifty-five HAART-treated for more than 3 months and 54 untreated PWH, as well as 66 demographically matched healthy controls underwent a high-resolution 3D T1-weighted MRI. Individual-level morphological brain network based on gray matter volume of 90 brain regions was constructed and network topological properties were analyzed. Network-based statistics (NBS) was performed to identify sub-networks showing significant differences in morphological connectivity. Correlation and mediation analyses were employed to evaluate associations between the morphological properties and clinical variables of PWH. RESULTS Although PWH exhibited small-world architecture in their morphological brain networks, untreated PWH demonstrated altered network properties while HAART-treated PWH showed relatively similar network properties compared to healthy controls. Furthermore, HAART-related effects were mainly involved the bilateral putamen and left thalamus. The findings of NBS further indicated the cortico-striatum-thalamic-cortical loop was involved in the therapeutic-associated morphological network. The positive correlations between the HAART treatment and nodal degree and efficiency of the putamen were mediated by the number of CD4 + T lymphocytes. CONCLUSIONS The topological properties are recovered to normal in PWH after HAART and the effects induced by HAART are mostly within the cortical-subcortical circuit.
Collapse
Affiliation(s)
- Yiwen Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangyao Wu
- Department of Radiology, Zhongnan Hospital, Wuhan University, Wuhan
- Department of Medical Imaging, Shenzhen University General Hospital, Medical College of Shenzhen University, Shenzhen
| | - Zhi Wen
- Department of Radiology, Zhongnan Hospital, Wuhan University, Wuhan
- Department of Radiology, Renmin Hospital, Wuhan University, Wuhan
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences
- University of Chinese Academy of Sciences, Beijing, China
| | - Fuchun Lin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Reis RSD, Wagner MCE, McKenna S, Ayyavoo V. Neuroinflammation driven by Human Immunodeficiency Virus-1 (HIV-1) directs the expression of long noncoding RNA RP11-677M14.2 resulting in dysregulation of Neurogranin in vivo and in vitro. RESEARCH SQUARE 2024:rs.3.rs-3810214. [PMID: 38260270 PMCID: PMC10802713 DOI: 10.21203/rs.3.rs-3810214/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neuroinflammation and synaptodendritic damage represent the pathological hallmarks of HIV-1 associated cognitive disorders (HAND). The post-synaptic protein neurogranin (Nrgn) is significantly reduced in the frontal cortex of postmortem brains from people with HIV (PWH) and it is associated with inflammatory factors released by infected microglia/macrophages. However, the mechanism involved in synaptic loss have yet to be elucidated. In this study, we characterized a newly identified long non-coding RNA (lncRNA) transcript (RP11-677M14.2), which is antisense to the NRGN locus and is highly expressed in the frontal cortex of HIV-1 individuals. Further analysis indicates an inverse correlation between the expression of RP11-677M14.2 RNA and Nrgn mRNA. Additionally, the Nrgn-lncRNA axis is dysregulated in neurons exposed to HIV-1 infected microglia conditioned medium enriched with IL-1b. Moreover, in vitro overexpression of this lncRNA impact Nrgn expression at both mRNA and protein levels. Finally, we modeled the Nrgn-lncRNA dysregulation within an HIV-1-induced neuroinflammatory environment using brain organoids, thereby corroborating our in vivo and in vitro findings. Together, our study implicates a plausible role for lncRNA RP11-677M14.2 in modulating Nrgn expression that might serve as the mechanistic link between Nrgn loss and cognitive dysfunction in HAND, thus shedding new light on the mechanisms underlying synaptodendritic damage.
Collapse
|
21
|
Yadav-Samudrala BJ, Gorman BL, Dodson H, Ramineni S, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute Δ 9-tetrahydrocannabinol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Brain Res 2024; 1822:148638. [PMID: 37858856 PMCID: PMC10873064 DOI: 10.1016/j.brainres.2023.148638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Cannabis use is highly prevalent especially among people living with HIV (PLWH). Activation of the anti-inflammatory and neuroprotective endocannabinoid system by phytocannabinoids, i.e. Δ9-tetrahydrocannabinol (THC), has been proposed to reduce HIV symptoms. However, THC's effects on HIV-related memory deficits are unclear. Using HIV-1 Tat transgenic mice, the current study investigates acute THC effects on various behavioral outcomes and the endocannabinoid system. For the rodent tetrad model, THC doses (1, 3, 10 mg/kg) induced known antinociceptive effects, with Tat induction increasing antinociceptive THC effects at 3 and 10 mg/kg doses. Only minor or no effects were noted for acute THC on body temperature, locomotor activity, and coordination. Increased anxiety-like behavior was found for females compared to males, but acute THC had no effect on anxiety. Object recognition memory was diminished by acute THC in Tat(-) females but not Tat(+) females, without affecting males. The endocannabinoid system and related lipids were not affected by acute THC, except for THC-induced decreases in CB1R protein expression levels in the spinal cord of Tat(-) mice. Female sex and Tat induction was associated with elevated 2-AG, AEA, AA, CB1R, CB2R, FAAH and/or MAGL expression in various brain regions. Further, AEA levels in the prefrontal cortex of Tat(+) females were negatively associated with object recognition memory. Overall, findings indicate that acute THC exerts differential effects on antinociception and memory, dependent on sex and HIV Tat expression, potentially in relation to an altered endocannabinoid system, which may be of relevance in view of potential cannabis-based treatment options for PLWH.
Collapse
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin L Gorman
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey Dodson
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shreya Ramineni
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle R Peace
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Fuentes A, Coulehan K, Byrd D, Arentoft A, Miranda C, Arce Rentería M, Monzones J, Rosario A, Rivera Mindt M. Neurocognitive, Sociocultural, and Psychological Factors Impacting Medication Beliefs Among HIV-Seropositive Latinx Adults. AIDS Patient Care STDS 2023; 37:616-625. [PMID: 38096115 PMCID: PMC10732168 DOI: 10.1089/apc.2023.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Among Latinx people living with HIV (PLWH), neurocognitive (NC) function, culture, and mental health impact medication adherence. Similarly, health beliefs and attitudes play a role in health care barriers and health behaviors. Research has not examined the effect that compromised neurocognition, sociocultural factors, and mental health have on health beliefs and attitudes. This is especially relevant for Latinx PLWH who are disproportionately impacted by HIV, given that sociocultural factors may uniquely impact HIV-related NC and psychological sequelae. This study investigated the associations between neurocognition, sociocultural factors, mental health, health beliefs, and health attitudes among Latinx HIV-seropositive adults. Within a sample of 100 Latinx PLWH, better verbal learning and executive functioning abilities were associated with more positive attitudes about the benefits of medications and memory for medications. In terms of sociocultural factors, higher English language competence was related to better self-reported memory for medications, and overall, higher US acculturation was associated with more positive attitudes toward health professionals. Depressive symptomatology was negatively associated with attitudes toward medications and health professionals, as well as with self-reported memory for medications. These findings highlight the important interplay between NC, sociocultural, psychological factors, and health beliefs among Latinx PLWH. Adherence intervention strategies and suggestions for dispensing medical information are presented for clinicians and health care practitioners.
Collapse
Affiliation(s)
- Armando Fuentes
- Department of Psychology, Fordham University, New York, New York, USA
| | - Kelly Coulehan
- Department of Neurology, Stony Brook University Hospital, Stony Brook, New York, USA
| | - Desiree Byrd
- Department of Psychology, Queens College, Flushing, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alyssa Arentoft
- Department of Psychology, California State University, Northridge, California, USA
| | - Caitlin Miranda
- Department of Neurology, Stony Brook University Hospital, Stony Brook, New York, USA
| | - Miguel Arce Rentería
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Jennifer Monzones
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Hospital, Albuquerque, New Mexico, USA
| | - Ana Rosario
- Department of Psychology, Fordham University, New York, New York, USA
| | - Monica Rivera Mindt
- Department of Psychology, Fordham University, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Latin American and Latino Studies Institute, and Department of African and African American Studies, Fordham University, Bronx, New York, USA
| |
Collapse
|
23
|
Zaongo SD, Harypursat V, Rashid F, Dahourou DL, Ouedraogo AS, Chen Y. Influence of HIV infection on cognition and overall intelligence in HIV-infected individuals: advances and perspectives. Front Behav Neurosci 2023; 17:1261784. [PMID: 37953826 PMCID: PMC10637382 DOI: 10.3389/fnbeh.2023.1261784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
It is now well understood that HIV-positive individuals, even those under effective ART, tend to develop a spectrum of cognitive, motor, and/or mood conditions which are contemporarily referred to as HIV-associated neurocognitive disorder (HAND), and which is directly related to HIV-1 infection and HIV-1 replication in the central nervous system (CNS). As HAND is known to induce difficulties associated with attention, concentration, and memory, it is thus legitimate and pertinent to speculate upon the possibility that HIV infection may well influence human cognition and intelligence. We therefore propose herein to review the concept of intelligence, the concept of cells of intelligence, the influence of HIV on these particular cells, and the evidence pointing to differences in observed intelligence quotient (IQ) scores between HIV-positive and HIV-negative individuals. Additionally, cumulative research evidence continues to draw attention to the influence of the gut on human intelligence. Up to now, although it is known that HIV infection profoundly alters both the composition and diversity of the gut microbiota and the structural integrity of the gut, the influence of the gut on intelligence in the context of HIV infection remains poorly described. As such, we also provide herein a review of the different ways in which HIV may influence human intelligence via the gut-brain axis. Finally, we provide a discourse on perspectives related to HIV and human intelligence which may assist in generating more robust evidence with respect to this issue in future studies. Our aim is to provide insightful knowledge for the identification of novel areas of investigation, in order to reveal and explain some of the enigmas related to HIV infection.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Désiré Lucien Dahourou
- Département Biomédical/Santé Publique, Institut de Recherche en Sciences de la Santé/CNRST, Ouagadougou, Burkina Faso
| | - Abdoul-Salam Ouedraogo
- Centre Muraz, Bobo-Dioulasso, Burkina Faso
- Department of Bacteriology and Virology, Souro Sanou University Hospital, Bobo-Dioulasso, Burkina Faso
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
24
|
Xu L, Gill MJ, Power C, Fujiwara E. Verbal Memory Performance and Depressive Symptoms in Persons with Treated HIV. AIDS Behav 2023; 27:2823-2833. [PMID: 36786939 DOI: 10.1007/s10461-023-04006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
The link between memory and comorbid depression in persons with HIV (PWH) is unclear based on evidence from published cohorts. We compared verbal memory in the HVLT-R in a well-characterized HIV cohort (n = 354) with (n = 102) or without (n = 252) comorbid depressive symptoms, and examined memory correlates in both scenarios. Memory fell within unimpaired ranges, but was lower in depressed than non-depressed PWH. Memory was related to quality of life, sociodemographic, and mental health factors, but not to assessed HIV-related or antiretroviral factors. However, longitudinally (n = 52) memory declined with presence and severity of depressive symptoms. In this treated cohort, verbal memory was unrelated to HIV-related variables but to quality of life and depressive symptoms. Greater performance decline over time also related to acute or ongoing depressive symptoms. These findings highlight the importance of addressing comorbid depressive symptoms to improve quality of life in persons with treated HIV.
Collapse
Affiliation(s)
- Lujie Xu
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - M John Gill
- Department of Medicine, University of Calgary, Calgary, AB, Canada
- Southern Alberta HIV Clinic, Alberta Health Services, Calgary, AB, Canada
| | - Christopher Power
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Esther Fujiwara
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
25
|
Sundermann EE, Campbell LM, Villers O, Bondi MW, Gouaux B, Salmon DP, Galasko D, Soontornniyomkij V, Ellis RJ, Moore DJ. Alzheimer's Disease Pathology in Middle Aged and Older People with HIV: Comparisons with Non-HIV Controls on a Healthy Aging and Alzheimer's Disease Trajectory and Relationships with Cognitive Function. Viruses 2023; 15:1319. [PMID: 37376619 PMCID: PMC10305373 DOI: 10.3390/v15061319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
We determined the prevalence of Alzheimer's disease (AD) pathological hallmarks, amyloid-β and phosphorylated-Tau, in autopsied brains of 49 people with HIV (PWH) (ages: 50-68; mean age = 57.0) from the National NeuroAIDS Tissue Consortium and in a comparative cohort of 55 people without HIV (PWoH) from the UC San Diego Alzheimer's Disease Research Center (17 controls, 14 mild cognitive impairment, 24 AD; ages: 70-102, mean age = 88.7). We examined how AD pathology relates to domain-specific cognitive functions in PWH overall and in sex-stratified samples. Amyloid-β and phosphorylated-Tau positivity (presence of pathology of any type/density) was determined via immunohistochemistry in AD-sensitive brain regions. Among PWH, amyloid-β positivity ranged from 19% (hippocampus) to 41% (frontal neocortex), and phosphorylated-Tau positivity ranged from 47% (entorhinal cortex) to 73% (transentorhinal cortex). Generally, AD pathology was significantly less prevalent, and less severe when present, in PWH versus PWoH regardless of cognitive status. Among PWH, positivity for AD pathology related most consistently to memory-related domains. Positivity for p-Tau pathology related to memory-related domains in women with HIV only, although the sample size of women with HIV was small (n = 10). Results indicate that AD pathology is present in a sizable portion of middle aged and older PWH, although not to the extent in older PWoH. Studies with better age-matched PWoH are needed to examine the effect of HIV status on AD pathology.
Collapse
Affiliation(s)
- Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| | - Laura M. Campbell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA 92120, USA
| | - Olivia Villers
- School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Mark W. Bondi
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
- VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, USA
| | - Ben Gouaux
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| | - David P. Salmon
- Department of Neurosciences, University of California San Diego, 9375 Gilman Dr., La Jolla, CA 92161, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, 9375 Gilman Dr., La Jolla, CA 92161, USA
| | - Virawudh Soontornniyomkij
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
- Department of Neurosciences, University of California San Diego, 9375 Gilman Dr., La Jolla, CA 92161, USA
| | - David J. Moore
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA (D.J.M.)
| |
Collapse
|
26
|
Canonico D, Casale S, Look T, Cao L. Effects of Morphine on Gp120-induced Neuroinflammation Under Immunocompetent Vs. Immunodeficient Conditions. J Neuroimmune Pharmacol 2023; 18:24-40. [PMID: 35059975 DOI: 10.1007/s11481-021-10040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is a common complication of HIV infection, whose development is known to be facilitated by inflammation and exacerbated by morphine. Previously, using the gp120 transgenic (tg) mouse model in combination with LP-BM5 (a murine retrovirus that can cause systemic immunodeficiency in susceptible mouse strains) we demonstrated differential gp120-associated central nervous system (CNS) neuroinflammatory responses under immunocompetent (-LP-BM5) vs. immunocompromised (+LP-BM5) conditions. Here, we further investigated the effects of morphine on gp120-associated neuroinflammatory response within the hippocampus under differential immune status. First, we confirmed that morphine treatment (2 × 25 mg pellets) did not significantly affect the development of immunodeficiency induced by LP-BM5 and all brain regions examined (hippocampus, striatum, and frontal lobe) had detectable LP-BM5 viral gag genes. Morphine notably reduced the performance of gp120tg+ mice in the alteration T-maze assay when 2-minute retention was used, regardless of LP-BM5 treatment. Morphine further enhanced GFAP expression in gp120tg+ mice regardless of host immune status, while promoted CD11b expression only in immunocompetent mice, regardless of gp120tg expression. In immunocompetent gp120tg+ mice, morphine increased the RNA expression of CCL2, CCL5, CXCL10, IL-12p40, and IFNβ; while under the immunodeficient condition, morphine downregulated the expression of CCL2, CCL5, CXCL10, IL-12p40, and IL-1β. Further, expression of TNFα and IFNγ were enhanced by morphine regardless of host immune status. Altogether, our results suggest that the effects of morphine are complex and dependent on the immune status of the host, and host immune status-specific, targeted anti-neuroinflammatory strategies are required for effective treatment of HAND.
Collapse
Affiliation(s)
- Dalton Canonico
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Sadie Casale
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Tristan Look
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Ling Cao
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, United States, ME.
- , 11 Hills Beach Road, 04005, Biddeford, United States, ME.
| |
Collapse
|
27
|
Wei Z, Bodnar B, Zhao RT, Xiao Q, Saribas S, Wang X, Ho WZ, Hu W. Human iPSC-derived brain organoids: A 3D mini-brain model for studying HIV infection. Exp Neurol 2023; 364:114386. [PMID: 36934866 PMCID: PMC10149614 DOI: 10.1016/j.expneurol.2023.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
The brain is one of the important reservoir sites for HIV persistent/latent infection that often leads to HIV-associated neurocognitive disorders (HAND). However, HIV dynamics in the brain is an understudied area and little is known about mechanisms underlying the development and progression of HAND. This issue is mainly due to the lack of suitable in vitro models that can recapitulate the cellular and molecular complexity of the human brain. Hence, there is an urgent need for such models to study HIV neuropathogenesis and to develop therapeutics for HAND. The emergence of three-dimensional (3D) brain organoids generated from induced pluripotent stem cells (iPSCs) has now provided a clinically relevant in vitro model to study HIV brain infection and neuropathogenesis. Recently, there have been a noticeable number of publications that demonstrate the feasibility and advantages of this model for studies of neurobiology and brain disorders as well as HIV infection. Here, we describe the development of iPSC-derived human microglia-containing brain organoids, including advantages/challenges, and focus on their applicability for modeling HIV brain infection.
Collapse
Affiliation(s)
- Zhengyu Wei
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Brittany Bodnar
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ruo-Tong Zhao
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Qianhao Xiao
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sami Saribas
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| | - Wenhui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
28
|
McGuire JL, Grinspan JB, Jordan-Sciutto KL. Update on Central Nervous System Effects of HIV in Adolescents and Young Adults. Curr HIV/AIDS Rep 2023; 20:19-28. [PMID: 36809477 PMCID: PMC10695667 DOI: 10.1007/s11904-023-00651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE OF REVIEW : Behaviorally acquired (non-perinatal) HIV infection during adolescence and young adulthood occurs in the midst of key brain developmental processes such as frontal lobe neuronal pruning and myelination of white matter, but we know little about the effects of new infection and therapy on the developing brain. RECENT FINDINGS Adolescents and young adults account for a disproportionately high fraction of new HIV infections each year. Limited data exist regarding neurocognitive performance in this age group, but suggest impairment is at least as prevalent as in older adults, despite lower viremia, higher CD4 + T cell counts, and shorter durations of infection in adolescents/young adults. Neuroimaging and neuropathologic studies specific to this population are underway. The full impact of HIV on brain growth and development in youth with behaviorally acquired HIV has yet to be determined; it must be investigated further to develop future targeted treatment and mitigation strategies.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Division of Neurology, Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Judith B Grinspan
- Division of Neurology, Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Lark ARS, Silva LK, Nass SR, Marone MG, Ohene-Nyako M, Ihrig TM, Marks WD, Yarotskyy V, Rory McQuiston A, Knapp PE, Hauser KF. Progressive Degeneration and Adaptive Excitability in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons Exposed to HIV-1 Tat and Morphine. Cell Mol Neurobiol 2023; 43:1105-1127. [PMID: 35695980 PMCID: PMC9976699 DOI: 10.1007/s10571-022-01232-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
The striatum is especially vulnerable to HIV-1 infection, with medium spiny neurons (MSNs) exhibiting marked synaptodendritic damage that can be exacerbated by opioid use disorder. Despite known structural defects in MSNs co-exposed to HIV-1 Tat and opioids, the pathophysiological sequelae of sustained HIV-1 exposure and acute comorbid effects of opioids on dopamine D1 and D2 receptor-expressing (D1 and D2) MSNs are unknown. To address this question, Drd1-tdTomato- or Drd2-eGFP-expressing reporter and conditional HIV-1 Tat transgenic mice were interbred. MSNs in ex vivo slices from male mice were assessed by whole-cell patch-clamp electrophysiology and filled with biocytin to explore the functional and structural effects of progressive Tat and acute morphine exposure. Although the excitability of both D1 and D2 MSNs increased following 48 h of Tat exposure, D1 MSN firing rates decreased below control (Tat-) levels following 2 weeks and 1 month of Tat exposure but returned to control levels after 2 months. D2 neurons continued to display Tat-dependent increases in excitability at 2 weeks, but also returned to control levels following 1 and 2 months of Tat induction. Acute morphine exposure increased D1 MSN excitability irrespective of the duration of Tat exposure, while D2 MSNs were variably affected. That D1 and D2 MSN excitability would return to control levels was unexpected since both subpopulations displayed significant synaptodendritic degeneration and pathologic phospho-tau-Thr205 accumulation following 2 months of Tat induction. Thus, despite frank morphologic damage, D1 and D2 MSNs uniquely adapt to sustained Tat and acute morphine insults.
Collapse
Affiliation(s)
- Arianna R S Lark
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Lindsay K Silva
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- PPD®, Part of Thermo Fisher Scientific, Richmond, VA, 23230-3323, USA
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael G Marone
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Therese M Ihrig
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - William D Marks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, TX, 75235, USA
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
30
|
Datta G, Miller NM, Chen X. 17⍺-Estradiol Protects against HIV-1 Tat-Induced Endolysosome Dysfunction and Dendritic Impairments in Neurons. Cells 2023; 12:813. [PMID: 36899948 PMCID: PMC10000619 DOI: 10.3390/cells12050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
HIV-1 Tat continues to play an important role in the development of HIV-associated neurocognitive disorders (HAND), which persist in 15-55% of people living with HIV even with virological control. In the brain, Tat is present on neurons, where Tat exerts direct neuronal damaging effects by, at least in part, disrupting endolysosome functions, a pathological feature present in HAND. In this study, we determined the protective effects of 17α-estradiol (17αE2), the predominant form of estrogen in the brain, against Tat-induced endolysosome dysfunction and dendritic impairment in primary cultured hippocampal neurons. We demonstrated that pre-treatment with 17αE2 protected against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Estrogen receptor alpha (ERα) knockdown impairs the ability of 17αE2 to protect against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Furthermore, over-expressing an ERα mutant that fails to localize on endolysosomes impairs 17αE2's protective effects against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Our findings demonstrate that 17αE2 protects against Tat-induced neuronal injury via a novel ERα-mediated and endolysosome-dependent pathway, and such a finding might lead to the development of novel adjunct therapeutics against HAND.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
31
|
Liu J, Nguchu BA, Liu D, Qi Y, Aili X, Han S, Gao Y, Wang X, Qiao H, Cai C, Huang X, Li H. Longitudinal white matter alterations in SIVmac239-infected rhesus monkeys with and without regular cART treatment. Front Immunol 2023; 13:1067795. [PMID: 36713432 PMCID: PMC9879061 DOI: 10.3389/fimmu.2022.1067795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Objective To use SIV-mac239-infected Chinese rhesus monkeys to study white matter changes with and without regular combined antiretroviral therapy (cART) and the relationships between the changes and clinical results. Methods Diffusion tensor imaging (DTI) data were collected at baseline and 10 days, 4 weeks, 12 weeks, 24 weeks, and 36 weeks after viral inoculation. Plasma CD4 T cell counts, CD4/CD8 ratio, plasma viral load, and cerebrospinal fluid (CSF) viral load were collected at baseline and 1 week, 5 weeks, 12 weeks, 24 weeks, and 36 weeks after viral inoculation. Microstructural characteristics were examined within 76 white matter areas defined by the DTI-white matter (WM) atlas for rhesus macaques. Corrections for multiple comparisons were performed using a false discovery rate (p < 0.05, FDR). Correlation analyzes between imaging markers and clinical markers (plasma CD4 T cell counts, CD4/CD8 ratio, plasma viral load, and cerebral spinal fluid viral load) were performed using Pearson correlations. Results White matter changes in SIV-infected macaques were detected in different brain regions as early as 4 weeks after inoculation. As time progressed, cART reversed, ameliorated, or even enhanced the effects. The CD4 T cell count was mainly associated with DTI metrics before cART, while the CD4/CD8 ratio was associated with white matter changes with and without cART. Viral load was positively associated with mean diffusivity in HIV patients without cART, and the opposite results were seen in HIV patients with cART. Conclusion SIV-mac239 infection may be an ideal tool for studying HIV-induced changes in the brain. The first white matter changes appeared in a structure adjacent to the periventricular area as early as 4 weeks after inoculation. As time progressed, cART had different effects on different regions, reversing, attenuating, or even progressing the pathology. Moreover, these changes were closely related to the CD4/CD8 ratio and viral load, even after cART.
Collapse
Affiliation(s)
- Jiaojiao Liu
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | | | - Dan Liu
- Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Qi
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xire Aili
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Shuai Han
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yuxun Gao
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiaoxiao Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China
| | - Hongwei Qiao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Cai
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Clinical and Research Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China,*Correspondence: Xiaojie Huang, ; Hongjun Li,
| | - Hongjun Li
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China,*Correspondence: Xiaojie Huang, ; Hongjun Li,
| |
Collapse
|
32
|
Abstract
Studying neurological diseases have long been hampered by the lack of physiologically relevant models to resemble the complex human brain and the associated pathologies. Three-dimensional brain organoids have emerged as cutting-edge technology providing an alternative in vitro model to study healthy neural development and function as well as pathogenesis of neurological disorders and neuropathologies induced by pathogens. Nonetheless, the absence of immune cells in current models poses a barrier to fully recapitulate brain microenvironment during the onset of HIV-1-associated neuropathogenesis. To address this and to further the brain organoid technology, we have incorporated HIV-target microglia into brain organoids, generating a complex multicellular interaction, which mimics the HIV-1-infected brain environment. Here we describe the method to generate a brain organoid consisting on neurons, astrocytes, and microglia (with and without HIV infection) that recapitulate the HIV-associated neuropathology. This model has tremendous potential to expand our knowledge on neuronal dysfunction associated with HIV-1 infection of glia.
Collapse
|
33
|
Lapierre J, Karuppan MKM, Perry M, Rodriguez M, El-Hage N. Different Roles of Beclin1 in the Interaction Between Glia and Neurons after Exposure to Morphine and the HIV- Trans-Activator of Transcription (Tat) Protein. J Neuroimmune Pharmacol 2022; 17:470-486. [PMID: 34741242 PMCID: PMC9068829 DOI: 10.1007/s11481-021-10017-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/22/2021] [Indexed: 01/18/2023]
Abstract
Previously we showed that Beclin1 has a regulatory role in the secretion of inflammatory molecules in glia after exposure to morphine and Tat (an HIV protein). Here we show increased secretion of neuronal growth factors and increased neuronal survival in Beclin1-deficient glia. However, without glia co-culture, neurons deficient in Beclin1 showed greater death and enhanced dendritic beading when compared to wild-type neurons, suggesting that glial-secreted growth factors compensate for the damage reduced autophagy causes neurons. To assess if our ex vivo results correlated with in vivo studies, we used a wild-type (Becn1+/+) and Beclin1-deficient (Becn1+/+) mouse model and intracranially infused the mice with Tat and subcutaneously administered morphine pellets. After morphine implantation, significantly impaired locomotor activities were detected in both Becn1+/+ and Becn1+/- mice, irrespective of Tat infusion. After induction of pain, morphine-induced antinociception was detected. Interestingly, co-exposure to morphine and Tat increased sensitivity to pain in Becn1+/+ mice, but not in similarly treated Becn1+/- mice. Brain homogenates from Becn1+/+ mice exposed to Tat, alone and in combination with morphine, showed increased secretion of pro-inflammatory cytokines and reduced expression of growth factors when compared to similarly treated Becn1+/- mice. Likewise, increased neuronal loss was detected when both Tat and morphine were administered to Becn1+/+ mice, but not in similarly treated Becn1+/- mice. Overall, our findings show that there is a Beclin1-driven interaction between Tat and morphine in glia and neurons. Moreover, reduced glial-Beclin1 may provide a layer of protection to neurons under stressful conditions, such as when exposed to morphine and Tat.
Collapse
Affiliation(s)
- Jessica Lapierre
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Mohan K M Karuppan
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Marissa Perry
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA.
| |
Collapse
|
34
|
Schlachetzki JCM, Zhou Y, Glass CK. Human microglia phenotypes in the brain associated with HIV infection. Curr Opin Neurobiol 2022; 77:102637. [PMID: 36194988 DOI: 10.1016/j.conb.2022.102637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023]
Abstract
Cognitive impairment in individuals infected with HIV is highly prevalent despite life-long antiretroviral therapy. A growing line of evidence suggests that the human brain serves as a sanctuary for HIV persistence. Microglia, the innate immune cells of the brain parenchyma, may serve as a reservoir for HIV and drive the pathogenesis of HIV-associated neurocognitive disorders. Here, we highlight recent advances in understanding microglia diversity in HIV regarding their epigenome, transcriptome, and function.
Collapse
Affiliation(s)
- Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA.
| | - Yi Zhou
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA. https://twitter.com/jojoyizhou_JOY
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA. https://twitter.com/UCSDGlassLab
| |
Collapse
|
35
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
36
|
Petralia MC, Nicoletti F, Tancheva L, Kalfin R, Fagone P, Mangano K. Gene Co-Expression Network Modular Analysis Reveals Altered Immune Mechanisms in HIV-HAND. Brain Sci 2022; 12:brainsci12101378. [PMID: 36291312 PMCID: PMC9599201 DOI: 10.3390/brainsci12101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Although the introduction of HAART has completely changed the natural course of HIV infection, the number of chronic forms of HIV-associated neurocognitive disorder (HAND) has risen. It is estimated that up to half of subjects undergoing HAART therapy exhibit mild cognitive impairments. In the current study, we apply the gene co-expression network modular analysis, a well-established system biology approach, to the gene expression profiles of cases from the National NeuroAIDS Tissue Consortium (NNTC). We observed a negative enrichment for genes associated with the control of immune responses and putatively regulated by the transcription factors IRF8 and SPI1 and by both type I and II interferons. Our study provides evidence of altered immune responses, which are likely associated with the occurrence of HAND in the absence of HIV encephalitis (HIVE).
Collapse
Affiliation(s)
- Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-478-1274
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| |
Collapse
|
37
|
Kolson DL. Developments in Neuroprotection for HIV-Associated Neurocognitive Disorders (HAND). Curr HIV/AIDS Rep 2022; 19:344-357. [PMID: 35867211 PMCID: PMC9305687 DOI: 10.1007/s11904-022-00612-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Reducing the risk of HIV-associated neurocognitive disorders (HAND) is an elusive treatment goal for people living with HIV. Combination antiretroviral therapy (cART) has reduced the prevalence of HIV-associated dementia, but milder, disabling HAND is an unmet challenge. As newer cART regimens that more consistently suppress central nervous system (CNS) HIV replication are developed, the testing of adjunctive neuroprotective therapies must accelerate. RECENT FINDINGS Successes in modifying cART regimens for CNS efficacy (penetrance, chemokine receptor targeting) and delivery (nanoformulations) in pilot studies suggest that improving cART neuroprotection and reducing HAND risk is achievable. Additionally, drugs currently used in neuroinflammatory, neuropsychiatric, and metabolic disorders show promise as adjuncts to cART, likely by broadly targeting neuroinflammation, oxidative stress, aerobic metabolism, and/or neurotransmitter metabolism. Adjunctive cognitive brain therapy and aerobic exercise may provide additional efficacy. Adjunctive neuroprotective therapies, including available FDA-approved drugs, cognitive therapy, and aerobic exercise combined with improved cART offer plausible strategies for optimizing the prevention and treatment of HAND.
Collapse
Affiliation(s)
- Dennis L Kolson
- Department of Neurology, University of Pennsylvania, Room 280C Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
Strauss MJ, Porter KD, Quizon PM, Davis SE, Lin S, Yuan Y, Martinez-Muniz GA, Sun WL, Zhan CG, Zhu J. Mutations of tyrosine 467 in the human norepinephrine transporter attenuate HIV-1 Tat-induced inhibition of dopamine transport while retaining physiological function. PLoS One 2022; 17:e0275182. [PMID: 36170295 PMCID: PMC9518868 DOI: 10.1371/journal.pone.0275182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of dopaminergic transmission induced by the HIV-1 transactivator of transcription (Tat) has been implicated as a central factor in the development of HIV-1 associated neurocognitive disorders (HAND). We have demonstrated that the tyrosine470 residue of the human dopamine transporter (hDAT) plays a critical role in Tat-hDAT interaction. Based on the computational modeling predictions, the present study sought to examine the mutational effects of the tyrosine467 residue of the human norepinephrine transporter (hNET), a corresponding residue of the hDAT tyrosine470, on Tat-induced inhibition of reuptake of dopamine through the hNET. Mutations of the hNET tyrosine467 to a histidine (Y467H) or a phenylalanine (Y467F) displayed similar kinetic properties of reuptake of [3H]dopamine and [3H]norepinephrine in PC12 cells expressing wild-type hNET and its mutants. Compared to wild-type hNET, neither of Y467H or Y467F altered Bmax and Kd values of [3H]WIN35,428 binding, whereas Y467H but not Y467F decreased the Bmax of [3H]nisoxetine binding without changes in Kd. Y467H also increased the affinity of nisoxetine for inhibiting [3H]dopamine uptake relative to wild-type hNET. Recombinant Tat1-86 (140 nM) induced a significant reduction of [3H]dopamine uptake in wild-type hNET, which was attenuated in both Y467H and Y467F. Compared to wild-type hNET, neither Y467H or Y467F altered [3H]dopamine efflux in CHO cells expressing WT hNET and mutants, whereas Y467F but not Y467H decreased [3H]MPP+ efflux. These results demonstrate tyrosine467 as a functional recognition residue in the hNET for Tat-induced inhibition of dopamine transport and provide a novel insight into the molecular basis for developing selective compounds that target Tat-NET interactions in the context of HAND.
Collapse
Affiliation(s)
- Matthew J. Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Katherine D. Porter
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Pamela M. Quizon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Sarah E. Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Steven Lin
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Gustavo A. Martinez-Muniz
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Wei-Lun Sun
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, United States of America
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
39
|
Riviere-Cazaux C, Cornell J, Shen Y, Zhou M. The role of CCR5 in HIV-associated neurocognitive disorders. Heliyon 2022; 8:e09950. [PMID: 35865985 PMCID: PMC9294194 DOI: 10.1016/j.heliyon.2022.e09950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
While combination antiretroviral therapy (cART) has successfully increased the lifespan of individuals infected with HIV, a significant portion of this population remains affected by HIV-associated neurocognitive disorder (HAND). C-C chemokine receptor 5 (CCR5) has been well studied in immune response and as a co-receptor for HIV infection. HIV-infected (HIV+) patients experienced mild to significant amelioration of cognitive function when treated with different CCR5 antagonists, including maraviroc and cenicriviroc. Consistent with clinical results, Ccr5 knockout or knockdown rescued cognitive deficits in HIV animal models, with mechanisms of reduced microgliosis and neuroinflammation. Pharmacologic inhibition of CCR5 directly improved cerebral and hippocampal neuronal plasticity and cognitive function. By summarizing the animal and human studies of CCR5 in HIV-associated cognitive deficits, this review aims to provide an overview of the mechanistic role of CCR5 in HAND pathophysiology. This review also discusses the addition of CCR5 antagonists, such as maraviroc, to cART for targeted prevention and treatment of cognitive impairments in patients infected with HIV.
Collapse
Affiliation(s)
- Cecile Riviere-Cazaux
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Jessica Cornell
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Yang Shen
- Neurobiology, Psychiatry and Psychology Departments & Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
- Corresponding author.
| |
Collapse
|
40
|
McLane VD, Lark ARS, Nass SR, Knapp PE, Hauser KF. HIV-1 Tat reduces apical dendritic spine density throughout the trisynaptic pathway in the hippocampus of male transgenic mice. Neurosci Lett 2022; 782:136688. [PMID: 35595189 DOI: 10.1016/j.neulet.2022.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Abstract
Nearly one-third of persons infected with HIV-1 (PWH) develop HIV-associated neurocognitive disorders (HAND), which can be exacerbated by exposure to opioids. The impact of opioids on HIV-induced alterations in neuronal plasticity is less well understood. Both morphine exposure and HIV have been shown to disrupt synaptic growth and stability in the hippocampus suggesting a potential site of convergence for their deleterious effects. In the present study, we examined the density of dendritic spines in CA1 and CA3 pyramidal neurons, and granule neurons within the dentate gyrus representing the hippocampal trisynaptic pathway after short-term exposure to the HIV transactivator of transcription (Tat) protein and morphine. We exposed inducible male, HIV-1 Tat transgenic mice to escalating doses of morphine (10-40 mg/kg, b.i.d.) and examined synaptodendritic structure in Golgi-impregnated hippocampal neurons. HIV-1 Tat, but not morphine, systematically reduced the density of apical, but not basilar, dendrites of CA1 and CA3 pyramidal neurons, and granule neuronal apical dendrites, suggesting the coordinated loss of specific synaptic interconnections throughout the hippocampal trisynaptic pathway.
Collapse
Affiliation(s)
- Virginia D McLane
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Arianna R S Lark
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Sara R Nass
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| | - Kurt F Hauser
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
41
|
Intraneuronal β-Amyloid Accumulation: Aging HIV-1 Human and HIV-1 Transgenic Rat Brain. Viruses 2022; 14:v14061268. [PMID: 35746739 PMCID: PMC9230035 DOI: 10.3390/v14061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
The prevalence of HIV-1 associated neurocognitive disorders (HAND) is significantly greater in older, relative to younger, HIV-1 seropositive individuals; the neural pathogenesis of HAND in older HIV-1 seropositive individuals, however, remains elusive. To address this knowledge gap, abnormal protein aggregates (i.e., β-amyloid) were investigated in the brains of aging (>12 months of age) HIV-1 transgenic (Tg) rats. In aging HIV-1 Tg rats, double immunohistochemistry staining revealed abnormal intraneuronal β-amyloid accumulation in the prefrontal cortex (PFC) and hippocampus, relative to F344/N control rats. Notably, in HIV-1 Tg animals, increased β-amyloid accumulation occurred in the absence of any genotypic changes in amyloid precursor protein (APP). Furthermore, no clear amyloid plaque deposition was observed in HIV-1 Tg animals. Critically, β-amyloid was co-localized with neurons in the cortex and hippocampus, supporting a potential mechanism underlying synaptic dysfunction in the HIV-1 Tg rat. Consistent with these neuropathological findings, HIV-1 Tg rats exhibited prominent alterations in the progression of temporal processing relative to control animals; temporal processing relies, at least in part, on the integrity of the PFC and hippocampus. In addition, in post-mortem HIV-1 seropositive individuals with HAND, intraneuronal β-amyloid accumulation was observed in the dorsolateral PFC and hippocampal dentate gyrus. Consistent with observations in the HIV-1 Tg rat, no amyloid plaques were found in these post-mortem HIV-1 seropositive individuals with HAND. Collectively, intraneuronal β-amyloid aggregation observed in the PFC and hippocampus of HIV-1 Tg rats supports a potential factor underlying HIV-1 associated synaptodendritic damage. Further, the HIV-1 Tg rat provides a biological system to model HAND in older HIV-1 seropositive individuals.
Collapse
|
42
|
Jiang X, Dahmani S, Bronshteyn M, Yang FN, Ryan JP, Gallagher RC, Damera SR, Kumar PN, Moore DJ, Ellis RJ, Turkeltaub PE. Cingulate transcranial direct current stimulation in adults with HIV. PLoS One 2022; 17:e0269491. [PMID: 35658059 PMCID: PMC9165807 DOI: 10.1371/journal.pone.0269491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Neuronal dysfunction plays an important role in the high prevalence of HIV-associated neurocognitive disorders (HAND) in people with HIV (PWH). Transcranial direct current stimulation (tDCS)-with its capability to improve neuronal function-may have the potential to serve as an alternative therapeutic approach for HAND. Brain imaging and neurobehavioral studies provide converging evidence that injury to the anterior cingulate cortex (ACC) is highly prevalent and contributes to HAND in PWH, suggesting that ACC may serve as a potential neuromodulation target for HAND. Here we conducted a randomized, double-blind, placebo-controlled, partial crossover pilot study to test the safety, tolerability, and potential efficacy of anodal tDCS over cingulate cortex in adults with HIV, with a focus on the dorsal ACC (dACC). METHODS Eleven PWH (47-69 years old, 2 females, 100% African Americans, disease duration 16-36 years) participated in the study, which had two phases, Phase 1 and Phase 2. During Phase 1, participants were randomized to receive ten sessions of sham (n = 4) or cingulate tDCS (n = 7) over the course of 2-3 weeks. Treatment assignments were unknown to the participants and the technicians. Neuropsychology and MRI data were collected from four additional study visits to assess treatment effects, including one baseline visit (BL, prior to treatment) and three follow-up visits (FU1, FU2, and FU3, approximately 1 week, 3 weeks, and 3 months after treatment, respectively). Treatment assignment was unblinded after FU3. Participants in the sham group repeated the study with open-label cingulate tDCS during Phase 2. Statistical analysis was limited to data from Phase 1. RESULTS Compared to sham tDCS, cingulate tDCS led to a decrease in Perseverative Errors in Wisconsin Card Sorting Test (WCST), but not Non-Perseverative Errors, as well as a decrease in the ratio score of Trail Making Test-Part B (TMT-B) to TMT-Part A (TMT-A). Seed-to-voxel analysis with resting state functional MRI data revealed an increase in functional connectivity between the bilateral dACC and a cluster in the right dorsal striatum after cingulate tDCS. There were no differences in self-reported discomfort ratings between sham and cingulate tDCS. CONCLUSIONS Cingulate tDCS is safe and well-tolerated in PWH, and may have the potential to improve cognitive performance and brain function. A future study with a larger sample is warranted.
Collapse
Affiliation(s)
- Xiong Jiang
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Sophia Dahmani
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Margarita Bronshteyn
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Fan Nils Yang
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - John Paul Ryan
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - R. Craig Gallagher
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Srikanth R. Damera
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Princy N. Kumar
- Department of Medicine, Georgetown University Medical Center, Washington, DC, United States of America
| | - David J. Moore
- Department of Psychiatry, University of California, San Diego, CA, United States of America
| | - Ronald J. Ellis
- Department of Psychiatry, University of California, San Diego, CA, United States of America
- Department of Neurosciences, University of California, San Diego, CA, United States of America
| | - Peter E. Turkeltaub
- Department of Neurology and Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
43
|
Cantres-Rosario YM, Wojna V, Ruiz R, Diaz B, Matos M, Rodriguez-Benitez RJ, Rodriguez E, Skolasky RL, Gerena Y. Soluble Insulin Receptor Levels in Plasma, Exosomes, and Urine and Its Association With HIV-Associated Neurocognitive Disorders. Front Neurol 2022; 13:809956. [PMID: 35720083 PMCID: PMC9202317 DOI: 10.3389/fneur.2022.809956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background HIV-associated neurocognitive disorders (HAND) are one of the HIV-associated comorbidities affecting 20-50% of the people with HIV (PWH) infection. We found that the soluble insulin receptor (sIR) levels in plasma and cerebrospinal fluid (CSF) were significantly higher in HIV-infected women. The mechanism of sIR release into the plasma remains unknown, but the detection of the sIR in exosomes may uncover novel mechanisms of sIR secretion from HIV-infected cells and its contribution to HIV disease progression and HAND development. Quantification of sIR in urine may represent a less invasive and more accessible diagnostic tool. Our objective was to quantify sIR levels in plasma, plasma-derived exosomes, and urine, and evaluate their association with HAND and renal function. Methods We measured full-length sIR in the plasma and urine of 38 controls and 76 HIV-infected women by ELISA, and sIR, HIV-1 Tat, and reactive oxygen species (ROS) in exosomes by flow cytometry. Results Plasma and exosomes with sIR were significantly higher in HIV-infected women when compared with controls and HAND. Exosomal sIR positively correlated with exosomal ROS and exosomal HIV-1 Tat in HIV-infected women. Exosomal ROS was significantly higher in HIV-infected women with more symptomatic cognitive impairment. Plasma-derived exosomes exhibited significantly higher levels of astrocyte (GFAP) and neuronal (L1CAM) markers in HIV-infected women, confirming the presence of circulating CNS-derived exosomes in the blood of HIV-infected women. Urine sIR positively correlated with eGFR in controls, but not in HIV-infected women, regardless there was no significant difference in renal function as determined by the estimated glomerular filtration rate (eGFR, p = 0.762). In HIV-infected women, higher plasma sIR correlated with lower urine sIR that could suggest sIR retention in blood or decreased renal filtration. Discussion Higher plasma sIR levels and their correlation with ROS in plasma-derived exosomes with HAND suggest a combined role of metabolic disturbances, oxidative stress, exosome release, and cognitive decline. Communication between CNS and periphery is compromised in PWH, thus plasma-derived exosomes may shed light on disrupted cellular mechanisms in the brain of PWH. High plasma and low urine sIR levels could suggest sIR retention in blood or decreased renal filtration.
Collapse
Affiliation(s)
- Yisel M. Cantres-Rosario
- NeuroHIV Research Program, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Valerie Wojna
- Division of Neurology, Internal Medicine Department and NeuroHIV Research Program, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Rafael Ruiz
- NeuroHIV Research Program, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Bexaida Diaz
- NeuroHIV Research Program, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Miriam Matos
- NeuroHIV Research Program, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | | | - Elaine Rodriguez
- NeuroHIV Research Program, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Richard L. Skolasky
- Orthopaedic Surgery and Physical Medicine & Rehabilitation, Johns Hopkins University, Baltimore, MD, United States
| | - Yamil Gerena
- Department of Pharmacology and Toxicology, School of Medicine, NeuroHIV Research Program, Pharmacology Department, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
44
|
Shen Y, Zhou M, Cai D, Filho DA, Fernandes G, Cai Y, de Sousa AF, Tian M, Kim N, Lee J, Necula D, Zhou C, Li S, Salinas S, Liu A, Kang X, Kamata M, Lavi A, Huang S, Silva T, Heo WD, Silva AJ. CCR5 closes the temporal window for memory linking. Nature 2022; 606:146-152. [PMID: 35614219 PMCID: PMC9197199 DOI: 10.1038/s41586-022-04783-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Real-world memories are formed in a particular context and are often not acquired or recalled in isolation1-5. Time is a key variable in the organization of memories, as events that are experienced close in time are more likely to be meaningfully associated, whereas those that are experienced with a longer interval are not1-4. How the brain segregates events that are temporally distinct is unclear. Here we show that a delayed (12-24 h) increase in the expression of C-C chemokine receptor type 5 (CCR5)-an immune receptor that is well known as a co-receptor for HIV infection6,7-after the formation of a contextual memory determines the duration of the temporal window for associating or linking that memory with subsequent memories. This delayed expression of CCR5 in mouse dorsal CA1 neurons results in a decrease in neuronal excitability, which in turn negatively regulates neuronal memory allocation, thus reducing the overlap between dorsal CA1 memory ensembles. Lowering this overlap affects the ability of one memory to trigger the recall of the other, and therefore closes the temporal window for memory linking. Our findings also show that an age-related increase in the neuronal expression of CCR5 and its ligand CCL5 leads to impairments in memory linking in aged mice, which could be reversed with a Ccr5 knockout and a drug approved by the US Food and Drug Administration (FDA) that inhibits this receptor, a result with clinical implications. Altogether, the findings reported here provide insights into the molecular and cellular mechanisms that shape the temporal window for memory linking.
Collapse
Affiliation(s)
- Yang Shen
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Miou Zhou
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA.
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| | - Denise Cai
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Department, Icahn School of Medicine, New York, NY, USA
| | - Daniel Almeida Filho
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Giselle Fernandes
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Ying Cai
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - André F de Sousa
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Min Tian
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nury Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jinsu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Deanna Necula
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Chengbin Zhou
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Shuoyi Li
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Shelbi Salinas
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Andy Liu
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Xiaoman Kang
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Masakazu Kamata
- Department of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ayal Lavi
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Shan Huang
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Tawnie Silva
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Alcino J Silva
- Neurobiology, Psychiatry and Psychology Departments and Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Nass SR, Ohene-Nyako M, Hahn YK, Knapp PE, Hauser KF. Neurodegeneration Within the Amygdala Is Differentially Induced by Opioid and HIV-1 Tat Exposure. Front Neurosci 2022; 16:804774. [PMID: 35600626 PMCID: PMC9115100 DOI: 10.3389/fnins.2022.804774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Opioid use disorder (OUD) is a critical problem that contributes to the spread of HIV and may intrinsically worsen neuroHIV. Despite the advent of combined antiretroviral therapies (cART), about half of persons infected with HIV (PWH) experience cognitive and emotional deficits that can be exacerbated by opioid abuse. HIV-1 Tat is expressed in the central nervous system (CNS) of PWH on cART and is thought to contribute to neuroHIV. The amygdala regulates emotion and memories associated with fear and stress and is important in addiction behavior. Notwithstanding its importance in emotional saliency, the effects of HIV and opioids in the amygdala are underexplored. To assess Tat- and morphine-induced neuropathology within the amygdala, male Tat transgenic mice were exposed to Tat for 8 weeks and administered saline and/or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of Tat exposure. Eight weeks of Tat exposure decreased the acoustic startle response and the dendritic spine density in the basolateral amygdala, but not the central nucleus of the amygdala. In contrast, repeated exposure to morphine alone, but not Tat, increased the acoustic startle response and whole amygdalar levels of amyloid-β (Aβ) monomers and oligomers and tau phosphorylation at Ser396, but not neurofilament light chain levels. Co-exposure to Tat and morphine decreased habituation and prepulse inhibition to the acoustic startle response and potentiated the morphine-induced increase in Aβ monomers. Together, our findings indicate that sustained Tat and morphine exposure differentially promote synaptodendritic degeneration within the amygdala and alter sensorimotor processing.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Kurt F. Hauser,
| |
Collapse
|
46
|
Nguchu BA, Zhao J, Wang Y, de Dieu Uwisengeyimana J, Wang X, Qiu B, Li H. Altered Glymphatic System in Middle-Aged cART-Treated Patients With HIV: A Diffusion Tensor Imaging Study. Front Neurol 2022; 13:819594. [PMID: 35359662 PMCID: PMC8963418 DOI: 10.3389/fneur.2022.819594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: The brain relies on the glymphatic system to clear metabolic wastes and maintain brain homeostasis to fulfill its functions better. Yet, the complexity of the glymphatic flow and clearance and its changes in HIV infection and its role in neurocognitive dysfunction remain poorly understood. This study aims to explore the impact of HIV and combination antiretroviral therapy (cART) on the glymphatic system and establish a potential biomarker of HIV-associated neurocognitive disorders (HAND). Methods Here, we examined the glymphatic profiles of middle-aged virosuppressed patients with HIV (n = 27) receiving cART over 1–6 years and healthy controls (n = 28) along the perivascular space (PVS) using diffusion tensor image analysis along the perivascular space (ALPS) with guided and unguided approaches. We later combined data from these analyses to investigate MRI glymphatic correlates of cognitive impairment and other clinical tests of HIV (CD4+ T-cell counts and CD4+/CD8+ ratio). Results We found that glymphatic function as measured by the ALPS index increased significantly in the right and left PVSs of patients with HIV having cART. On antiretroviral therapy, a changing pattern in glymphatic clearance function in patients with HIV having cART correlated with attention and working memory. Duration on cART was also associated with cognitive performances of abstract and executive function and learning and memory. Conclusion These findings provide MRI evidence of the presence of HIV-induced changes in the glymphatic flow and clearance, which might underlie cognitive impairment among patients with HIV having cART. An increase in the glymphatic activity might reflect a compensatory mechanism to regulate microenvironment homeostasis compromised by HIV. This compensation might be necessary to maintain the proper functioning of the brain while coping with HIV pathology. These findings also shed light on the clinical importance of evaluating glymphatic function based on the ALPS index and suggest that improving the glymphatic system may serve as an alternative therapeutic strategy for HAND.
Collapse
Affiliation(s)
| | - Jing Zhao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yanming Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China
| | | | - Xiaoxiao Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China
- *Correspondence: Bensheng Qiu
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Hongjun Li
| |
Collapse
|
47
|
Xu C, Yadav-Samudrala BJ, Xu C, Nath B, Mistry T, Jiang W, Niphakis MJ, Cravatt BF, Mukhopadhyay S, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Inhibitory Neurotransmission Is Sex-Dependently Affected by Tat Expression in Transgenic Mice and Suppressed by the Fatty Acid Amide Hydrolase Enzyme Inhibitor PF3845 via Cannabinoid Type-1 Receptor Mechanisms. Cells 2022; 11:857. [PMID: 35269478 PMCID: PMC8909692 DOI: 10.3390/cells11050857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background. The endocannabinoid (eCB) system, which regulates physiological and cognitive processes, presents a promising therapeutic target for treating HIV-associated neurocognitive disorders (HAND). Here we examine whether upregulating eCB tone has potential protective effects against HIV-1 Tat (a key HIV transactivator of transcription) protein-induced alterations in synaptic activity. (2) Methods. Whole-cell patch-clamp recordings were performed to assess inhibitory GABAergic neurotransmission in prefrontal cortex slices of Tat transgenic male and female mice, in the presence and absence of the fatty acid amide hydrolase (FAAH) enzyme inhibitor PF3845. Western blot and mass spectrometry analyses assessed alterations of cannabinoid receptor and enzyme protein expression as well as endogenous ligands, respectively, to determine the impact of Tat exposure on the eCB system. (3) Results. GABAergic activity was significantly altered upon Tat exposure based on sex, whereas the effectiveness of PF3845 to suppress GABAergic activity in Tat transgenic mice was not altered by Tat or sex and involved CB1R-related mechanisms that depended on calcium signaling. Additionally, our data indicated sex-dependent changes for AEA and related non-eCB lipids based on Tat induction. (4) Conclusion. Results highlight sex- and/or Tat-dependent alterations of GABAergic activity and eCB signaling in the prefrontal cortex of Tat transgenic mice and further increase our understanding about the role of FAAH inhibition in neuroHIV.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Barkha J. Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Callie Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Bhupendra Nath
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Twisha Mistry
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Micah J. Niphakis
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA; (M.J.N.); (B.F.C.)
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA; (M.J.N.); (B.F.C.)
| | - Somnath Mukhopadhyay
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Aron H. Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| |
Collapse
|
48
|
Pabian-Jewuła S, Bragiel-Pieczonka A, Rylski M. Ying Yang 1 engagement in brain pathology. J Neurochem 2022; 161:236-253. [PMID: 35199341 DOI: 10.1111/jnc.15594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Herein, we discuss data concerning the involvement of transcription factor Yin Yang 1 (YY1) in the development of brain diseases, highlighting mechanisms of its pathological actions. YY1 plays an important role in the developmental and adult pathology of the nervous system. YY1 is essential for neurulation as well as maintenance and differentiation of neuronal progenitor cells and oligodendrocytes regulating both neural and glial tissues of the brain. Lack of a YY1 gene causes many developmental abnormalities and anatomical malformations of the central nervous system (CNS). Once dysregulated, YY1 exerts multiple neuropathological actions being involved in the induction of many brain disorders like stroke, epilepsy, Alzheimer's and Parkinson's diseases, autism spectrum disorder, dystonia, and brain tumors. Better understanding of YY1's dysfunction in the nervous system may lead to the development of novel therapeutic strategies related to YY1's actions.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Aneta Bragiel-Pieczonka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, 9 Sobieski Street, Warsaw, Poland
| |
Collapse
|
49
|
Salahuddin MF, Qrareya AN, Mahdi F, Moss E, Akins NS, Li J, Le HV, Paris JJ. Allopregnanolone and neuroHIV: Potential benefits of neuroendocrine modulation in the era of antiretroviral therapy. J Neuroendocrinol 2022; 34:e13047. [PMID: 34651359 PMCID: PMC8866218 DOI: 10.1111/jne.13047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Forty years into the HIV pandemic, approximately 50% of infected individuals still suffer from a constellation of neurological disorders collectively known as 'neuroHIV.' Although combination antiretroviral therapy (cART) has been a tremendous success, in its present form, it cannot eradicate HIV. Reservoirs of virus reside within the central nervous system, serving as sources of HIV virotoxins that damage mitochondria and promote neurotoxicity. Although understudied, there is evidence that HIV or the HIV regulatory protein, trans-activator of transcription (Tat), can dysregulate neurosteroid formation potentially contributing to endocrine dysfunction. People living with HIV commonly suffer from endocrine disorders, including hypercortisolemia accompanied by paradoxical adrenal insufficiency upon stress. Age-related comorbidities often onset sooner and with greater magnitude among people living with HIV and are commonly accompanied by hypogonadism. In the post-cART era, these derangements of the hypothalamic-pituitary-adrenal and -gonadal axes are secondary (i.e., relegated to the brain) and indicative of neuroendocrine dysfunction. We review the clinical and preclinical evidence for neuroendocrine dysfunction in HIV, the capacity for hormone therapeutics to play an ameliorative role and the future steroid-based therapeutics that may have efficacy as novel adjunctives to cART.
Collapse
Affiliation(s)
- Mohammed F. Salahuddin
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Alaa N. Qrareya
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Fakhri Mahdi
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Emaya Moss
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Nicholas S. Akins
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Jing Li
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
- Research Institute of Pharmaceutical SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Hoang V. Le
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
- Research Institute of Pharmaceutical SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| | - Jason J. Paris
- Department of BioMolecular SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
- Research Institute of Pharmaceutical SciencesSchool of PharmacyUniversity of MississippiUniversityMSUSA
| |
Collapse
|
50
|
Relationship of the balloon analog risk task to neurocognitive impairment differs by HIV serostatus and history of major depressive disorder. J Neurovirol 2022; 28:248-264. [PMID: 34981438 PMCID: PMC9187559 DOI: 10.1007/s13365-021-01046-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 12/27/2022]
Abstract
HIV and major depressive disorder (MDD) commonly co-occur and are both linked to greater risk-taking behavior, possibly due to neurocognitive impairment (NCI). The present study examined the concordance of the Balloon Analog Risk Task (BART), a gold standard measure of risk-taking propensity, with NCI and real-world sexual risk behaviors in PWH with comorbid MDD. Participants included 259 adults, stratified by HIV serostatus (HIV + /HIV −) and lifetime MDD (MDD + /MDD −), who completed neuropsychological testing, the BART, and sexual risk behavior questionnaires. Logistic regression, stratified by HIV serostatus, examined joint effects of MDD and BART (linear and quadratic) on NCI. Follow-up linear regressions examined sexual risk behavior and neurocognitive domain T-scores as correlates of the BART. NCI prevalence was lowest in HIV − /MDD − , but BART scores did not differ by HIV/MDD status. In the HIV + group, BART performance predicted NCI such that high and low BART scores related to greater odds of NCI, but only in dual-risk HIV + /MDD + individuals. HIV + /MDD + individuals with both low and high BART scores exhibited poorer learning and recall, whereas processing speed and executive function were only poor in low BART risk-taking HIV + /MDD + . Higher BART scores linearly related to higher sexual risk behaviors only in MDD + individuals, independent of HIV serostatus. Low and high risk-taking on the BART may reflect discrete neurocognitive profiles in HIV + /MDD + individuals, with differential implications for real-world sexual risk behavior. HIV and comorbid MDD may disturb corticostriatal circuits responsible for integrating affective and neurocognitive components of decision-making, thereby contributing to risk-averse and risk-taking phenotypes.
Collapse
|