1
|
Chen Z, Li XJ. Targeting cholesterol trafficking to mitigate axonal degeneration in hereditary spastic paraplegia. Neural Regen Res 2025; 20:1397-1398. [PMID: 39075901 DOI: 10.4103/nrr.nrr-d-24-00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/07/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Garg V, André S, Heyer L, Kracht G, Ruhwedel T, Scholz P, Ischebeck T, Werner HB, Dullin C, Engelmann J, Möbius W, Göpfert MC, Dosch R, Geurten BRH. Axon demyelination and degeneration in a zebrafish spastizin model of hereditary spastic paraplegia. Open Biol 2024; 14:240100. [PMID: 39503232 PMCID: PMC11539067 DOI: 10.1098/rsob.240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a diverse set of neurological disorders characterized by progressive spasticity and weakness in the lower limbs caused by damage to the axons of the corticospinal tract. More than 88 genetic mutations have been associated with HSP, yet the mechanisms underlying these disorders are not well understood. We replicated the pathophysiology of one form of HSP known as spastic paraplegia 15 (SPG15) in zebrafish. This disorder is caused in humans by mutations in the ZFYVE26 gene, which codes for a protein called SPASTIZIN. We show that, in zebrafish, the significant reduction of Spastizin caused degeneration of large motor neurons. Motor neuron degeneration is associated with axon demyelination in the spinal cord and impaired locomotion in the spastizin mutants. Our findings reveal that the reduction in Spastizin compromises axonal integrity and affects the myelin sheath, ultimately recapitulating the pathophysiology of HSPs.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Selina André
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luisa Heyer
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Gudrun Kracht
- Department of Developmental Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Roland Dosch
- Institute for Humangenetics, University Medical Center, Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
- Department of Zoology, University of Otago Dunedin, Dunedin, New Zealand
| |
Collapse
|
3
|
Lobato AG, Ortiz-Vega N, Canic T, Tao X, Bucan N, Ruan K, Rebelo AP, Schule R, Zuchner S, Syed S, Zhai RG. Loss of Fic causes progressive neurodegeneration in a Drosophila model of hereditary spastic paraplegia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167348. [PMID: 38986817 PMCID: PMC11549967 DOI: 10.1016/j.bbadis.2024.167348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Hereditary Spastic Paraplegia (HSP) is a group of rare inherited disorders characterized by progressive weakness and spasticity of the legs. Recent newly discovered biallelic variants in the gene FICD were found in patients with a highly similar phenotype to early onset HSP. FICD encodes filamentation induced by cAMP domain protein. FICD is involved in the AMPylation and deAMPylation protein modifications of the endoplasmic reticulum (ER) chaperone BIP, a major constituent of the ER that regulates the unfolded protein response. Although several biochemical properties of FICD have been characterized, the neurological function of FICD and the pathological mechanism underlying HSP are unknown. We established a Drosophila model to gain mechanistic understanding of the function of FICD in HSP pathogenesis, and specifically the role of BIP in neuromuscular physiology. Our studies on Drosophila Fic null mutants uncovered that loss of Fic resulted in locomotor impairment and reduced levels of BIP in the motor neuron circuitry, as well as increased reactive oxygen species (ROS) in the ventral nerve cord of Fic null mutants. Finally, feeding Drosophila Fic null mutants with chemical chaperones PBA or TUDCA, or treatment of patient fibroblasts with PBA, reduced the ROS accumulation. The neuronal phenotypes of Fic null mutants recapitulate several clinical features of HSP patients and further reveal cellular patho-mechanisms. By modeling FICD in Drosophila, we provide potential targets for intervention for HSP, and advance fundamental biology that is important for understanding related rare and common neuromuscular diseases.
Collapse
Affiliation(s)
- Amanda G Lobato
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA; Graduate Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalie Ortiz-Vega
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA; Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Tijana Canic
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA; Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Xianzun Tao
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nika Bucan
- Undergraduate Program in Neuroscience, University of Miami, Coral Gables, FL, USA
| | - Kai Ruan
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rebecca Schule
- Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - R Grace Zhai
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
4
|
Sebastiano MR, Hadano S, Cesca F, Ermondi G. Preclinical alternative drug discovery programs for monogenic rare diseases. Should small molecules or gene therapy be used? The case of hereditary spastic paraplegias. Drug Discov Today 2024; 29:104138. [PMID: 39154774 DOI: 10.1016/j.drudis.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Patients diagnosed with rare diseases and their and families search desperately to organize drug discovery campaigns. Alternative models that differ from default paradigms offer real opportunities. There are, however, no clear guidelines for the development of such models, which reduces success rates and raises costs. We address the main challenges in making the discovery of new preclinical treatments more accessible, using rare hereditary paraplegia as a paradigmatic case. First, we discuss the necessary expertise, and the patients' clinical and genetic data. Then, we revisit gene therapy, de novo drug development, and drug repurposing, discussing their applicability. Moreover, we explore a pool of recommended in silico tools for pathogenic variant and protein structure prediction, virtual screening, and experimental validation methods, discussing their strengths and weaknesses. Finally, we focus on successful case applications.
Collapse
Affiliation(s)
- Matteo Rossi Sebastiano
- University of Torino, Molecular Biotechnology and Health Sciences Department, CASSMedChem, Piazza Nizza, 10138 Torino, Italy
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Japan
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Ermondi
- University of Torino, Molecular Biotechnology and Health Sciences Department, CASSMedChem, Piazza Nizza, 10138 Torino, Italy.
| |
Collapse
|
5
|
Raby A, Missiroli S, Sanatine P, Langui D, Pansiot J, Beaude N, Vezzana L, Saleh R, Marinello M, Laforge M, Pinton P, Buj-Bello A, Burgo A. Spastin regulates ER-mitochondrial contact sites and mitochondrial homeostasis. iScience 2024; 27:110683. [PMID: 39252960 PMCID: PMC11382127 DOI: 10.1016/j.isci.2024.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) emerged to play critical roles in numerous cellular processes, and their dysregulation has been associated to neurodegenerative disorders. Mutations in the SPG4 gene coding for spastin are among the main causes of hereditary spastic paraplegia (HSP). Spastin binds and severs microtubules, and the long isoform of this protein, namely M1, spans the outer leaflet of ER membrane where it interacts with other ER-HSP proteins. Here, we showed that overexpressed M1 spastin localizes in ER-mitochondria intersections and that endogenous spastin accumulates in MERCs. We demonstrated in different cellular models that downregulation of spastin enhances the number of MERCs, alters mitochondrial morphology, and impairs ER and mitochondrial calcium homeostasis. These effects are associated with reduced mitochondrial membrane potential, oxygen species levels, and oxidative metabolism. These findings extend our knowledge on the role of spastin in the ER and suggest MERCs deregulation as potential causes of SPG4-HSP disease.
Collapse
Affiliation(s)
- Amelie Raby
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | | | - Dominique Langui
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Julien Pansiot
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Nissai Beaude
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Lucie Vezzana
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Rachelle Saleh
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Martina Marinello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Mireille Laforge
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Ana Buj-Bello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Andrea Burgo
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| |
Collapse
|
6
|
Tran QTH, Kondo N, Ueda H, Matsuo Y, Tsukaguchi H. Altered Endoplasmic Reticulum Integrity and Organelle Interactions in Living Cells Expressing INF2 Variants. Int J Mol Sci 2024; 25:9783. [PMID: 39337270 PMCID: PMC11431639 DOI: 10.3390/ijms25189783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The cytoskeleton mediates fundamental cellular processes by organizing inter-organelle interactions. Pathogenic variants of inverted formin 2 (INF2) CAAX isoform, an actin assembly factor that is predominantly expressed in the endoplasmic reticulum (ER), are linked to focal segmental glomerulosclerosis (FSGS) and Charcot-Marie-Tooth (CMT) neuropathy. To investigate how pathogenic INF2 variants alter ER integrity, we used high-resolution live imaging of HeLa cells. Cells expressing wild-type (WT) INF2 showed a predominant tubular ER with perinuclear clustering. Cells expressing INF2 FSGS variants that cause mild and intermediate disease induced more sheet-like ER, a pattern similar to that seen for cells expressing WT-INF2 that were treated with actin and microtubule (MT) inhibitors. Dual CMT-FSGS INF2 variants led to more severe ER dysmorphism, with a diffuse, fragmented ER and coarse INF2 aggregates. Proper organization of both F-actin and MT was needed to modulate the tubule vs. sheet conformation balance, while MT arrays regulated spatial expansion of tubular ER in the cell periphery. Pathogenic INF2 variants also induced mitochondria fragmentation and dysregulated mitochondria distribution. Such mitochondrial abnormalities were more prominent for cells expressing CMT-FSGS compared to those with FSGS variants, indicating that the severity of the dysfunction is linked to the degree of cytoskeletal disorganization. Our observations suggest that pathogenic INF2 variants disrupt ER continuity by altering interactions between the ER and the cytoskeleton that in turn impairs inter-organelle communication, especially at ER-mitochondria contact sites. ER continuity defects may be a common disease mechanism involved in both peripheral neuropathy and glomerulopathy.
Collapse
Affiliation(s)
- Quynh Thuy Huong Tran
- Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Hirakata 573-1010, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biochemical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hiroko Ueda
- Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Hirakata 573-1010, Japan
| | - Yoshiyuki Matsuo
- Central Research Center, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hiroyasu Tsukaguchi
- Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Hirakata 573-1010, Japan
- Clinical Genetics Center, Kansai Medical University Hospital, Hirakata 573-1191, Japan
| |
Collapse
|
7
|
Zlamalova E, Rodger C, Greco F, Cheers SR, Kleniuk J, Nadadhur AG, Kadlecova Z, Reid E. Atlastin-1 regulates endosomal tubulation and lysosomal proteolysis in human cortical neurons. Neurobiol Dis 2024; 199:106556. [PMID: 38851544 PMCID: PMC11300884 DOI: 10.1016/j.nbd.2024.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Mutation of the ATL1 gene is one of the most common causes of hereditary spastic paraplegia (HSP), a group of genetic neurodegenerative conditions characterised by distal axonal degeneration of the corticospinal tract axons. Atlastin-1, the protein encoded by ATL1, is one of three mammalian atlastins, which are homologous dynamin-like GTPases that control endoplasmic reticulum (ER) morphology by fusing tubules to form the three-way junctions that characterise ER networks. However, it is not clear whether atlastin-1 is required for correct ER morphology in human neurons and if so what the functional consequences of lack of atlastin-1 are. Using CRISPR-inhibition we generated human cortical neurons lacking atlastin-1. We demonstrate that ER morphology was altered in these neurons, with a reduced number of three-way junctions. Neurons lacking atlastin-1 had longer endosomal tubules, suggestive of defective tubule fission. This was accompanied by reduced lysosomal proteolytic capacity. As well as demonstrating that atlastin-1 is required for correct ER morphology in human neurons, our results indicate that lack of a classical ER-shaping protein such as atlastin-1 may cause altered endosomal tubulation and lysosomal proteolytic dysfunction. Furthermore, they strengthen the idea that defective lysosome function contributes to the pathogenesis of a broad group of HSPs, including those where the primary localisation of the protein involved is not at the endolysosomal system.
Collapse
Affiliation(s)
- Eliska Zlamalova
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Catherine Rodger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Francesca Greco
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Samuel R Cheers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Julia Kleniuk
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Aishwarya G Nadadhur
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Zuzana Kadlecova
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Evan Reid
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medical Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Konno T, Parutto P, Crapart CC, Davì V, Bailey DMD, Awadelkareem MA, Hockings C, Brown AI, Xiang KM, Agrawal A, Chambers JE, Vander Werp MJ, Koning KM, Elfari LM, Steen S, Metzakopian E, Westrate LM, Koslover EF, Avezov E. Endoplasmic reticulum morphology regulation by RTN4 modulates neuronal regeneration by curbing luminal transport. Cell Rep 2024; 43:114357. [PMID: 38955182 DOI: 10.1016/j.celrep.2024.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Cell functions rely on intracellular transport systems distributing bioactive molecules with high spatiotemporal accuracy. The endoplasmic reticulum (ER) tubular network constitutes a system for delivering luminal solutes, including Ca2+, across the cell periphery. How the ER structure enables this nanofluidic transport system is unclear. Here, we show that ER membrane-localized reticulon 4 (RTN4/Nogo) is sufficient to impose neurite outgrowth inhibition in human cortical neurons while acting as an ER morphoregulator. Improving ER transport visualization methodologies combined with optogenetic Ca2+ dynamics imaging and in silico modeling, we observed that ER luminal transport is modulated by ER tubule narrowing and dilation, proportional to the amount of RTN4. Excess RTN4 limited ER luminal transport and Ca2+ release, while RTN4 elimination reversed the effects. The described morphoregulatory effect of RTN4 defines the capacity of the ER for peripheral Ca2+ delivery for physiological releases and thus may constitute a mechanism for controlling the (re)generation of neurites.
Collapse
Affiliation(s)
- Tasuku Konno
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
| | - Pierre Parutto
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
| | - Cécile C Crapart
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
| | - Valentina Davì
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
| | | | - Mosab Ali Awadelkareem
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK; Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Colin Hockings
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
| | - Aidan I Brown
- Department of Physics, University of California, San Diego, 9500 Gilman Dr. #0374, La Jolla, CA 92093-0374, USA; Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | | | - Anamika Agrawal
- Department of Physics, University of California, San Diego, 9500 Gilman Dr. #0374, La Jolla, CA 92093-0374, USA
| | - Joseph E Chambers
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Molly J Vander Werp
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI 49546, USA
| | - Katherine M Koning
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI 49546, USA
| | - Louis Mounir Elfari
- Wellcome-MRC Cambridge Stem Cell Institute Advanced Imaging Facility, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Sam Steen
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI 49546, USA
| | - Emmanouil Metzakopian
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
| | - Laura M Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI 49546, USA
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, 9500 Gilman Dr. #0374, La Jolla, CA 92093-0374, USA.
| | - Edward Avezov
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK.
| |
Collapse
|
9
|
Xie C, Chen G, Li M, Huang P, Chen Z, Lei K, Li D, Wang Y, Cleetus A, Mohamed MA, Sonar P, Feng W, Ökten Z, Ou G. Neurons dispose of hyperactive kinesin into glial cells for clearance. EMBO J 2024; 43:2606-2635. [PMID: 38806659 PMCID: PMC11217292 DOI: 10.1038/s44318-024-00118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans. Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.
Collapse
Affiliation(s)
- Chao Xie
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guanghan Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ming Li
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Peng Huang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhe Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Kexin Lei
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuhe Wang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Augustine Cleetus
- Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, Garching, 85748, Germany
| | - Mohamed Aa Mohamed
- Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, Garching, 85748, Germany
| | - Punam Sonar
- Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, Garching, 85748, Germany
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zeynep Ökten
- Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, Garching, 85748, Germany
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- State Key Laboratory for Membrane Biology, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Li R, Liu X, Ke C, Zeng F, Zeng Q, Xu X, Fan X, Zhang Y, Hou Q. ITPR1 variant-induced autosomal dominant hereditary spastic paraplegia in a Chinese family. Front Neurol 2024; 15:1365787. [PMID: 39011359 PMCID: PMC11247953 DOI: 10.3389/fneur.2024.1365787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/23/2024] [Indexed: 07/17/2024] Open
Abstract
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disease prominently characterized by slowly progressive lower limb weakness and spasticity. The significant genotypic and phenotypic heterogeneity of this disease makes its accurate diagnosis challenging. In this study, we identified the NM_001168272: c.2714A > G (chr3.hg19: g.4716912A > G, N905S) variant in the ITPR1 gene in a three-generation Chinese family with multiple individuals affected by HSP, which we believed to be associated with HSP pathogenesis. To confirm, we performed whole exome sequencing, copy number variant assays, dynamic mutation analysis of the entire family, and protein structure prediction. The variant identified in this study was in the coupling domain, and this is the first corroborated report assigning ITPR1 variants to HSP. These findings expand the clinical and genetic spectrum of HSP and provide important data for its genetic analysis and diagnosis.
Collapse
Affiliation(s)
- Rui Li
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xuan Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chenming Ke
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fanli Zeng
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qingyi Zeng
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xiaowei Xu
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaoqin Fan
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Ying Zhang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qinghua Hou
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Inci OK, Basırlı H, Can M, Yanbul S, Seyrantepe V. Gangliosides as Therapeutic Targets for Neurodegenerative Diseases. J Lipids 2024; 2024:4530255. [PMID: 38623278 PMCID: PMC11018381 DOI: 10.1155/2024/4530255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Gangliosides, sialic acid-containing glycosphingolipids, are abundant in cell membranes and primarily involved in controlling cell signaling and cell communication. The altered ganglioside pattern has been demonstrated in several neurodegenerative diseases, characterized during early-onset or infancy, emphasizing the significance of gangliosides in the brain. Enzymes required for the biosynthesis of gangliosides are linked to several devastating neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP). In this review, we summarized not only the critical roles of biosynthetic enzymes and their inhibitors in ganglioside metabolism but also the efficacy of treatment strategies of ganglioside to address their significance in those diseases.
Collapse
Affiliation(s)
- Orhan Kerim Inci
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce Campus, Urla, 35430 Izmir, Türkiye
| | - Hande Basırlı
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce Campus, Urla, 35430 Izmir, Türkiye
| | - Melike Can
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce Campus, Urla, 35430 Izmir, Türkiye
| | - Selman Yanbul
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce Campus, Urla, 35430 Izmir, Türkiye
| | - Volkan Seyrantepe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce Campus, Urla, 35430 Izmir, Türkiye
- Izmir Institute of Technology, IYTEDEHAM, Gulbahce Campus, Urla, 35430 Izmir, Türkiye
| |
Collapse
|
12
|
Viana Pinto L, Romeiro I, Gouveia F, Ramalho J, Ribeiro Silva S, Táboas Simões MI, Rodrigues Leal J. Intrathecal baclofen for the management of hereditary spastic paraparesis: a systematic review. Int J Rehabil Res 2024; 47:3-9. [PMID: 38251093 DOI: 10.1097/mrr.0000000000000607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This systematic review aims to evaluate the use of intrathecal baclofen (ITB) for hereditary spastic paraparesis (HSP) treatment. An extensive search in two electronical databases was performed. We identified articles published between 1990 and 2022 (PubMed, Scopus), and applied the following inclusion criteria: diagnosis of HSP at the time of the intervention, either familial or sporadic; report on the effect of ITB in patients with HSP; test trial via either bolus injections or continuous infusion tests; and ITB pump implantation. A data extraction sheet based on the Cochrane Consumers and Communication Review Group's data extraction template was created and adapted to collect relevant data. A qualitative analysis was performed to present the results in narrative summary fashion. A total of 6 studies met our inclusion criteria. 51 patients with HSP had a pre-implantation ITB trial. The time since the diagnosis until the pump implantation ranged from 5 to 30 years. The initial bolus ranged from 20 to 50 μg and the mean doses used at steady state ranged from 65 to 705 μg. An improvement in spasticity was observed on the modified Ashworth Scale in patients treated with ITB. Although all studies reported a subjective gait improvement, not all found an objective improvement in gait. The most common side effect reported was catheter-related problems. The findings of this review support the use of ITB as an effective and a viable option for the treatment of spasticity in HSP refractory to conservative therapies.
Collapse
Affiliation(s)
- Luisa Viana Pinto
- Department of Physical and Rehabilitation Medicine, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | | | | | | | | | | | | |
Collapse
|
13
|
Clippinger AK, Naismith TV, Yoo W, Jansen S, Kast DJ, Hanson PI. IST1 regulates select recycling pathways. Traffic 2024; 25:e12921. [PMID: 37926552 PMCID: PMC11027954 DOI: 10.1111/tra.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/21/2023] [Accepted: 09/23/2023] [Indexed: 11/07/2023]
Abstract
ESCRTs (Endosomal Sorting Complex Required for Transports) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intraluminal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT-III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Functionally, depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP-1. IST1 is also important for export of mannose 6-phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain-containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin-containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live-cell microscopy, we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.
Collapse
Affiliation(s)
- Amy K Clippinger
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wonjin Yoo
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David J Kast
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Rios JJ, Li Y, Paria N, Bohlender RJ, Huff C, Rosenfeld JA, Liu P, Bi W, Haga K, Fukuda M, Vashisth S, Kaur K, Chahrour MH, Bober MB, Duker AL, Ladha FA, Hanchard NA, Atala K, Khanshour AM, Smith L, Wise CA, Delgado MR. RAB1A haploinsufficiency phenocopies the 2p14-p15 microdeletion and is associated with impaired neuronal differentiation. Am J Hum Genet 2023; 110:2103-2111. [PMID: 37924809 PMCID: PMC10722380 DOI: 10.1016/j.ajhg.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023] Open
Abstract
Hereditary spastic parapareses (HSPs) are clinically heterogeneous motor neuron diseases with variable age of onset and severity. Although variants in dozens of genes are implicated in HSPs, much of the genetic basis for pediatric-onset HSP remains unexplained. Here, we re-analyzed clinical exome-sequencing data from siblings with HSP of unknown genetic etiology and identified an inherited nonsense mutation (c.523C>T [p.Arg175Ter]) in the highly conserved RAB1A. The mutation is predicted to produce a truncated protein with an intact RAB GTPase domain but without two C-terminal cysteine residues required for proper subcellular protein localization. Additional RAB1A mutations, including two frameshift mutations and a mosaic missense mutation (c.83T>C [p.Leu28Pro]), were identified in three individuals with similar neurodevelopmental presentations. In rescue experiments, production of the full-length, but not the truncated, RAB1a rescued Golgi structure and cell proliferation in Rab1-depleted cells. In contrast, the missense-variant RAB1a disrupted Golgi structure despite intact Rab1 expression, suggesting a dominant-negative function of the mosaic missense mutation. Knock-down of RAB1A in cultured human embryonic stem cell-derived neurons resulted in impaired neuronal arborization. Finally, RAB1A is located within the 2p14-p15 microdeletion syndrome locus. The similar clinical presentations of individuals with RAB1A loss-of-function mutations and the 2p14-p15 microdeletion syndrome implicate loss of RAB1A in the pathogenesis of neurodevelopmental manifestations of this microdeletion syndrome. Our study identifies a RAB1A-related neurocognitive disorder with speech and motor delay, demonstrates an essential role for RAB1a in neuronal differentiation, and implicates RAB1A in the etiology of the neurodevelopmental sequelae associated with the 2p14-p15 microdeletion syndrome.
Collapse
Affiliation(s)
- Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA; Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Departments of Pediatrics University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yang Li
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Nandina Paria
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Ryan J Bohlender
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chad Huff
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Pengfei Liu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Weimin Bi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Kentaro Haga
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shayal Vashisth
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kiran Kaur
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria H Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael B Bober
- Nemours Children's Hospital, Wilmington, DE 19803, USA; Thomas Jefferson University, Philadelphia, PA 19144, USA
| | | | - Farah A Ladha
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neil A Hanchard
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristhen Atala
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Linsley Smith
- Department of Neurology, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA; Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Departments of Pediatrics University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mauricio R Delgado
- Department of Neurology, Scottish Rite for Children, Dallas, TX 75219, USA; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Deretic J, Odabasi E, Firat-Karalar EN. The multifaceted roles of microtubule-associated proteins in the primary cilium and ciliopathies. J Cell Sci 2023; 136:jcs261148. [PMID: 38095645 DOI: 10.1242/jcs.261148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The primary cilium is a conserved microtubule-based organelle that is critical for transducing developmental, sensory and homeostatic signaling pathways. It comprises an axoneme with nine parallel doublet microtubules extending from the basal body, surrounded by the ciliary membrane. The axoneme exhibits remarkable stability, serving as the skeleton of the cilium in order to maintain its shape and provide tracks to ciliary trafficking complexes. Although ciliary trafficking and signaling have been exhaustively characterized over the years, less is known about the unique structural and functional complexities of the axoneme. Recent work has yielded new insights into the mechanisms by which the axoneme is built with its proper length and architecture, particularly regarding the activity of microtubule-associated proteins (MAPs). In this Review, we first summarize current knowledge about the architecture, composition and specialized compartments of the primary cilium. Next, we discuss the mechanistic underpinnings of how a functional cilium is assembled, maintained and disassembled through the regulation of its axonemal microtubules. We conclude by examining the diverse localizations and functions of ciliary MAPs for the pathobiology of ciliary diseases.
Collapse
Affiliation(s)
- Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
- School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
16
|
Chai E, Chen Z, Mou Y, Thakur G, Zhan W, Li XJ. Liver-X-receptor agonists rescue axonal degeneration in SPG11-deficient neurons via regulating cholesterol trafficking. Neurobiol Dis 2023; 187:106293. [PMID: 37709208 PMCID: PMC10655618 DOI: 10.1016/j.nbd.2023.106293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/22/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Spastic paraplegia type 11 (SPG11) is a common autosomal recessive form of hereditary spastic paraplegia (HSP) characterized by the degeneration of cortical motor neuron axons, leading to muscle spasticity and weakness. Impaired lipid trafficking is an emerging pathology in neurodegenerative diseases including SPG11, though its role in axonal degeneration of human SPG11 neurons remains unknown. Here, we established a pluripotent stem cell-based SPG11 model by knocking down the SPG11 gene in human embryonic stem cells (hESCs). These stem cells were then differentiated into cortical projection neurons (PNs), the cell types affected in HSP patients, to examine axonal defects and cholesterol distributions. Our data revealed that SPG11 deficiency led to reduced axonal outgrowth, impaired axonal transport, and accumulated swellings, recapitulating disease-specific phenotypes. In SPG11-knockdown neurons, cholesterol was accumulated in lysosome and reduced in plasma membrane, revealing impairments in cholesterol trafficking. Strikingly, the liver-X-receptor (LXR) agonists restored cholesterol homeostasis, leading to the rescue of subsequent axonal defects in SPG11-deficient cortical PNs. To further determine the implication of impaired cholesterol homeostasis in SPG11, we examined the cholesterol distribution in cortical PNs generated from SPG11 disease-mutation knock-in hESCs, and observed a similar cholesterol trafficking impairment. Moreover, LXR agonists rescued the aberrant cholesterol distribution and mitigated the degeneration of SPG11 disease-mutated neurons. Taken together, our data demonstrate impaired cholesterol trafficking underlying axonal degeneration of SPG11 human neurons, and highlight the therapeutic potential of LXR agonists for SPG11 through restoring cholesterol homeostasis.
Collapse
Affiliation(s)
- Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gitika Thakur
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Weihai Zhan
- Office of Research, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA..
| |
Collapse
|
17
|
Iborra-Lázaro G, Djebari S, Sánchez-Rodríguez I, Gratacòs-Batlle E, Sánchez-Fernández N, Radošević M, Casals N, Navarro-López JDD, Soto Del Cerro D, Jiménez-Díaz L. CPT1C is required for synaptic plasticity and oscillatory activity that supports motor, associative and non-associative learning. J Physiol 2023; 601:3533-3556. [PMID: 37309891 DOI: 10.1113/jp284248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Carnitine palmitoyltransferase 1c (CPT1C) is a neuron-specific protein widely distributed throughout the CNS and highly expressed in discrete brain areas including the hypothalamus, hippocampus, amygdala and different motor regions. Its deficiency has recently been shown to disrupt dendritic spine maturation and AMPA receptor synthesis and trafficking in the hippocampus, but its contribution to synaptic plasticity and cognitive learning and memory processes remains mostly unknown. Here, we aimed to explore the molecular, synaptic, neural network and behavioural role of CPT1C in cognition-related functions by using CPT1C knockout (KO) mice. CPT1C-deficient mice showed extensive learning and memory deficits. The CPT1C KO animals exhibited impaired motor and instrumental learning that seemed to be related, in part, to locomotor deficits and muscle weakness but not to mood alterations. In addition, CPT1C KO mice showed detrimental hippocampus-dependent spatial and habituation memory, most probably attributable to inefficient dendritic spine maturation, impairments in long-term plasticity at the CA3-CA1 synapse and aberrant cortical oscillatory activity. In conclusion, our results reveal that CPT1C is not only crucial for motor function, coordination and energy homeostasis, but also has a crucial role in the maintenance of learning and memory cognitive functions. KEY POINTS: CPT1C, a neuron-specific interactor protein involved in AMPA receptor synthesis and trafficking, was found to be highly expressed in the hippocampus, amygdala and various motor regions. CPT1C-deficient animals exhibited energy deficits and impaired locomotion, but no mood changes were found. CPT1C deficiency disrupts hippocampal dendritic spine maturation and long-term synaptic plasticity and reduces cortical γ oscillations. CPT1C was found to be crucial for motor, associative and non-associative learning and memory.
Collapse
Affiliation(s)
- Guillermo Iborra-Lázaro
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Souhail Djebari
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Irene Sánchez-Rodríguez
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Esther Gratacòs-Batlle
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Nuria Sánchez-Fernández
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Marija Radošević
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Juan de Dios Navarro-López
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - David Soto Del Cerro
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Lydia Jiménez-Díaz
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
18
|
Martinello C, Panza E, Orlacchio A. Hereditary spastic paraplegias proteome: common pathways and pathogenetic mechanisms. Expert Rev Proteomics 2023; 20:171-188. [PMID: 37788157 DOI: 10.1080/14789450.2023.2260952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs. These conditions are caused by lesions in the neuronal pyramidal tract and exhibit clinical and genetic variability. Ongoing research focuses on understanding the underlying mechanisms of HSP onset, which ultimately lead to neuronal degeneration. Key molecular mechanisms involved include axonal transport, cytoskeleton dynamics, myelination abnormalities, membrane trafficking, organelle morphogenesis, ER homeostasis, mitochondrial dysfunction, and autophagy deregulation. AREAS COVERED This review aims to provide an overview of the shared pathogenetic mechanisms in various forms of HSPs. By examining disease-causing gene products and their associated functional pathways, this understanding could lead to the discovery of new therapeutic targets and the development of treatments to modify the progression of the disease. EXPERT OPINION Investigating gene functionality is crucial for identifying shared pathogenetic pathways underlying different HSP subtypes. Categorizing protein function and identifying pathways aids in finding biomarkers, predicting early onset, and guiding treatment for a better quality of life. Targeting shared mechanisms enables efficient and cost-effective therapies. Prospects involve identifying new disease-causing genes, refining molecular processes, and implementing findings in diagnosis, key for advancing HSP understanding and developing effective treatments.
Collapse
Affiliation(s)
- Chiara Martinello
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- Unità di Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
19
|
Mou Y, Nandi G, Mukte S, Chai E, Chen Z, Nielsen JE, Nielsen TT, Criscuolo C, Blackstone C, Fraidakis MJ, Li XJ. Chenodeoxycholic acid rescues axonal degeneration in induced pluripotent stem cell-derived neurons from spastic paraplegia type 5 and cerebrotendinous xanthomatosis patients. Orphanet J Rare Dis 2023; 18:72. [PMID: 37024986 PMCID: PMC10080795 DOI: 10.1186/s13023-023-02666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/11/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Biallelic mutations in CYP27A1 and CYP7B1, two critical genes regulating cholesterol and bile acid metabolism, cause cerebrotendinous xanthomatosis (CTX) and hereditary spastic paraplegia type 5 (SPG5), respectively. These rare diseases are characterized by progressive degeneration of corticospinal motor neuron axons, yet the underlying pathogenic mechanisms and strategies to mitigate axonal degeneration remain elusive. METHODS To generate induced pluripotent stem cell (iPSC)-based models for CTX and SPG5, we reprogrammed patient skin fibroblasts into iPSCs by transducing fibroblast cells with episomal vectors containing pluripotency factors. These patient-specific iPSCs, as well as control iPSCs, were differentiated into cortical projection neurons (PNs) and examined for biochemical alterations and disease-related phenotypes. RESULTS CTX and SPG5 patient iPSC-derived cortical PNs recapitulated several disease-specific biochemical changes and axonal defects of both diseases. Notably, the bile acid chenodeoxycholic acid (CDCA) effectively mitigated the biochemical alterations and rescued axonal degeneration in patient iPSC-derived neurons. To further examine underlying disease mechanisms, we developed CYP7B1 knockout human embryonic stem cell (hESC) lines using CRISPR-cas9-mediated gene editing and, following differentiation, examined hESC-derived cortical PNs. Knockout of CYP7B1 resulted in similar axonal vesiculation and degeneration in human cortical PN axons, confirming a cause-effect relationship between gene deficiency and axonal degeneration. Interestingly, CYP7B1 deficiency led to impaired neurofilament expression and organization as well as axonal degeneration, which could be rescued with CDCA, establishing a new disease mechanism and therapeutic target to mitigate axonal degeneration. CONCLUSIONS Our data demonstrate disease-specific lipid disturbances and axonopathy mechanisms in human pluripotent stem cell-based neuronal models of CTX and SPG5 and identify CDCA, an established treatment of CTX, as a potential pharmacotherapy for SPG5. We propose this novel treatment strategy to rescue axonal degeneration in SPG5, a currently incurable condition.
Collapse
Affiliation(s)
- Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ghata Nandi
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA
| | - Sukhada Mukte
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA
| | - Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA
| | - Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jorgen E Nielsen
- Neurogenetics Clinic & Research Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Troels T Nielsen
- Neurogenetics Clinic & Research Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Criscuolo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Craig Blackstone
- Movement Disorders Division, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Boston, MA, 02129, USA
| | - Matthew J Fraidakis
- Rare Neurological Diseases Unit, Department of Neurology, Attikon University Hospital, Medical School of the University of Athens, Athens, Greece
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, 61107, USA.
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
20
|
Hosahalli Vasanna S, Dalal J. Traffic jam within lymphocytes: A clinician's perspective. Front Immunol 2023; 13:1034317. [PMID: 36726976 PMCID: PMC9885010 DOI: 10.3389/fimmu.2022.1034317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
With the discovery of novel diseases and pathways, as well as a new outlook on certain existing diseases, cellular trafficking disorders attract a great deal of interest and focus. Understanding the function of genes and their products in protein and lipid synthesis, cargo sorting, packaging, and delivery has allowed us to appreciate the intricate pathophysiology of these biological processes at the molecular level and the multi-system disease manifestations of these disorders. This article focuses primarily on lymphocyte intracellular trafficking diseases from a clinician's perspective. Familial hemophagocytic lymphohistiocytosis is the prototypical disease of abnormal vesicular transport in the lymphocytes. In this review, we highlight other mechanisms involved in cellular trafficking, including membrane contact sites, autophagy, and abnormalities of cytoskeletal structures affecting the immune cell function, based on a newer classification system, along with management aspects of these conditions.
Collapse
Affiliation(s)
- Smitha Hosahalli Vasanna
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, United States,School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jignesh Dalal
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, United States,School of Medicine, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Jignesh Dalal,
| |
Collapse
|
21
|
Turski GN, Turski CA, Grobe-Einsler M, Kobeleva X, Turski JS, Holz FG, Finger RP, Klockgether T. Retinal ganglion cell and microvascular density loss in hereditary spastic paraplegia. Restor Neurol Neurosci 2023; 41:229-239. [PMID: 38217556 PMCID: PMC10894562 DOI: 10.3233/rnn-231380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Background Hereditary spastic paraplegia (HSP) is characterized by progressive degeneration of distal axons in the long corticospinal tracts. Loss of retinal cells and microvascular networks has neither been suspected nor investigated. We concurrently examined the retinal microvasculature and retinal layer morphology in patients with HSP to assess whether retinal features may portray disease and its progression. Methods Fifteen patients with HSP and 30 healthy controls were included in this cross-sectional case-control study. Disease severity was assessed with the Spastic Paraplegia Rating Scale (SPRS). Severity of ataxia was determined by the Scale for the Assessment and Rating of Ataxia (SARA). Retinal microvasculature was measured by means of optical coherence tomography angiography (OCT-A) and morphology of retinal layers using structural OCT. Mixed-effects models were applied for data analysis. Results HSP patients showed significantly reduced vessel density of the superficial vascular plexus (SVP), reduced ganglion cell layer (GCL) volume, reduced inner plexiform layer (IPL) volume and reduced temporal-inferior peripapillary retinal nerve fiber layer (pRNFL) thickness versus healthy controls. GCL volume reduction correlated significantly with the worsening of visual acuity and higher SARA scores. Conclusions These findings demonstrate that, in HSP both cells and vascular networks of the retina are compromised. Assessment of the retinal GCL, IPL and SVP may aid in diagnosis and monitoring of disease progression as well as provide novel structural outcome measures for clinical trials.
Collapse
Affiliation(s)
- Gabrielle N. Turski
- Department of Ophthalmology, University of Virginia, Charlottesville, USA
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christopher A. Turski
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Ophthalmology, Duke University, Durham, USA
| | - Marcus Grobe-Einsler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Xenia Kobeleva
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Ruhr University Bochum, Bochum, Germany
| | | | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | | | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Peotter JL, Pustova I, Lettman MM, Shatadal S, Bradberry MM, Winter-Reed AD, Charan M, Sharkey EE, Alvin JR, Bren AM, Oie AK, Chapman ER, Salamat MS, Audhya A. TFG regulates secretory and endosomal sorting pathways in neurons to promote their activity and maintenance. Proc Natl Acad Sci U S A 2022; 119:e2210649119. [PMID: 36161950 PMCID: PMC9546632 DOI: 10.1073/pnas.2210649119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular pathways that intrinsically regulate neuronal maintenance are poorly understood, but rare pathogenic mutations that underlie neurodegenerative disease can offer important insights into the mechanisms that facilitate lifelong neuronal function. Here, we leverage a rat model to demonstrate directly that the TFG p.R106C variant implicated previously in complicated forms of hereditary spastic paraplegia (HSP) underlies progressive spastic paraparesis with accompanying ventriculomegaly and thinning of the corpus callosum, consistent with disease phenotypes identified in adolescent patients. Analyses of primary cortical neurons obtained from CRISPR-Cas9-edited animals reveal a kinetic delay in biosynthetic secretory protein transport from the endoplasmic reticulum (ER), in agreement with prior induced pluripotent stem cell-based studies. Moreover, we identify an unexpected role for TFG in the trafficking of Rab4A-positive recycling endosomes specifically within axons and dendrites. Impaired TFG function compromises the transport of at least a subset of endosomal cargoes, which we show results in down-regulated inhibitory receptor signaling that may contribute to excitation-inhibition imbalances. In contrast, the morphology and trafficking of other organelles, including mitochondria and lysosomes, are unaffected by the TFG p.R106C mutation. Our findings demonstrate a multifaceted role for TFG in secretory and endosomal protein sorting that is unique to cells of the central nervous system and highlight the importance of these pathways to maintenance of corticospinal tract motor neurons.
Collapse
Affiliation(s)
- Jennifer L. Peotter
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Molly M. Lettman
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Shalini Shatadal
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Mazdak M. Bradberry
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Allison D. Winter-Reed
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Maya Charan
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Erin E. Sharkey
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - James R. Alvin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Alyssa M. Bren
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Annika K. Oie
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Edwin R. Chapman
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- HHMI, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - M. Shahriar Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|
23
|
Angelotti T. Exploring the eukaryotic Yip and REEP/Yop superfamily of membrane-shaping adapter proteins (MSAPs): A cacophony or harmony of structure and function? Front Mol Biosci 2022; 9:912848. [PMID: 36060263 PMCID: PMC9437294 DOI: 10.3389/fmolb.2022.912848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Polytopic cargo proteins are synthesized and exported along the secretory pathway from the endoplasmic reticulum (ER), through the Golgi apparatus, with eventual insertion into the plasma membrane (PM). While searching for proteins that could enhance cell surface expression of olfactory receptors, a new family of proteins termed “receptor expression-enhancing proteins” or REEPs were identified. These membrane-shaping hairpin proteins serve as adapters, interacting with intracellular transport machinery, to regulate cargo protein trafficking. However, REEPs belong to a larger family of proteins, the Yip (Ypt-interacting protein) family, conserved in yeast and higher eukaryotes. To date, eighteen mammalian Yip family members, divided into four subfamilies (Yipf, REEP, Yif, and PRAF), have been identified. Yeast research has revealed many intriguing aspects of yeast Yip function, functions that have not completely been explored with mammalian Yip family members. This review and analysis will clarify the different Yip family nomenclature that have encumbered prior comparisons between yeast, plants, and eukaryotic family members, to provide a more complete understanding of their interacting proteins, membrane topology, organelle localization, and role as regulators of cargo trafficking and localization. In addition, the biological role of membrane shaping and sensing hairpin and amphipathic helical domains of various Yip proteins and their potential cellular functions will be described. Lastly, this review will discuss the concept of Yip proteins as members of a larger superfamily of membrane-shaping adapter proteins (MSAPs), proteins that both shape membranes via membrane-sensing and hairpin insertion, and well as act as adapters for protein-protein interactions. MSAPs are defined by their localization to specific membranes, ability to alter membrane structure, interactions with other proteins via specific domains, and specific interactions/effects on cargo proteins.
Collapse
|
24
|
Panza E, Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Exp Neurol 2022; 357:114203. [PMID: 35970204 DOI: 10.1016/j.expneurol.2022.114203] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Abstract
Hereditary Spastic Paraplegias (HSPs) are a heterogeneous group of disease, mainly characterized by progressive spasticity and weakness of the lower limbs resulting from distal degeneration of corticospinal tract axons. Although HSPs represent rare or ultra-rare conditions, with reported cases of mutated genes found in single families, overall, with 87 forms described, they are an important health and economic problem for society and patients. In fact, they are chronic and life-hindering conditions, still lacking a specific therapy. Notwithstanding the number of forms described, and 73 causative genes identified, overall, the molecular diagnostic rate varies among 29% to 61.8%, based on recent published analysis, suggesting that more genes are involved in HSP and/or that different molecular diagnostic approaches are necessary. The accumulating data in this field highlight several peculiar features of HSPs, such as genetic heterogeneity, the discovery that different mutations in a single gene can be transmitted in dominant and recessive trait in families and allelic heterogeneity, resulting in the involvement of HSP-genes in other conditions. Based on the observation of protein functions, the activity of many different proteins encoded by HSP-related genes converges into some distinct pathophysiological mechanisms. This suggests that common pathways could be a potential target for a therapy, possibly addressing several forms at once. Furthermore, the overlap of HSP genes with other neurological conditions can further expand this concept.
Collapse
Affiliation(s)
- Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Arun Meyyazhagan
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Antonio Orlacchio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy; Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
25
|
Tian W, Zheng H, Zhu Z, Zhang C, Luan X, Cao L. New phenotype of RTN2-related spectrum: Complicated form of spastic paraplegia-12. Ann Clin Transl Neurol 2022; 9:1108-1115. [PMID: 35684947 PMCID: PMC9380179 DOI: 10.1002/acn3.51605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Spastic paraplegia-12 (SPG12) is a subtype of hereditary spastic paraplegia caused by Reticulon-2 (RTN2) mutations. We described the clinical and genetic features of three SPG12 patients, functionally explored the potential pathogenic mechanism of RTN2 mutations, and reviewed RTN2-related cases worldwide. METHODS The three patients were 31, 36, and 50 years old, respectively, with chronic progressive lower limb spasticity and walking difficulty. Physical examination showed elevated muscle tone, hyperreflexia and Babinski signs in the lower limbs. Patients 1 and 3 additionally had visual, urinary, and/or coordination dysfunctions. Patient 2 also had epileptic seizures. RTN2 mutations were identified by whole-exome sequencing, followed by Sanger sequencing, segregation analysis, and phenotypic reevaluation. Functional examination of identified mutations was further explored. RESULTS Three variants in RTN2 were identified in Patient 1 (c.103C>T, p.R35X), Patient 2 (c.230G>A, p.G77D), and Patient 3 (c.337C>A, p.P113T) with SPG, respectively. Western blotting revealed the p.R35X with smaller molecular weight than WT and other two missense mutants. Immunostaining showed the wild type colocalized with endoplasmic reticulum (ER) in vitro. p.R35X mutant diffusely distributes in the cytoplasm, losing colocalization with ER. p.G77D and p.P113T co-localized with ER, which was abnormally aggregated in clumps. INTERPRETATION In this study, we identified three cases with complicated SPG12 due to three novel RTN2 mutations, respectively, presenting various phenotypes: classic SPG symptoms with (1) visual abnormalities and sphincter disturbances or (2) seizures. The phenotypic heterogeneity might arise from the abnormal subcellular localization of mutant Reticulon-2 and improper ER morphogenesis, revealing the RTN2-related spectrum is still expanding.
Collapse
Affiliation(s)
- Wotu Tian
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Haoran Zheng
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- School of MedicineAnhui University of Science and TechnologyHuainan232001China
| | - Zeyu Zhu
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Chao Zhang
- Suzhou Hospital of Anhui Medical University Suzhou Municipal Hospital of Anhui ProvinceSuzhou234000China
| | - Xinghua Luan
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Li Cao
- Department of NeurologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- School of MedicineAnhui University of Science and TechnologyHuainan232001China
| |
Collapse
|
26
|
A role for endoplasmic reticulum dynamics in the cellular distribution of microtubules. Proc Natl Acad Sci U S A 2022; 119:e2104309119. [PMID: 35377783 PMCID: PMC9169640 DOI: 10.1073/pnas.2104309119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The endoplasmic reticulum (ER) and the microtubule (MT) cytoskeleton form a coextensive, dynamic system that pervades eukaryotic cells. The shape of the ER is generated by a set of evolutionarily conserved membrane proteins that are able to control ER morphology and dynamics independently of MTs. Here we uncover that the molecular machinery that determines ER network dynamics can influence the subcellular distribution of MTs. We show that active control of local ER tubule junction density by ER tethering and fusion is important for the spatial organization of the combined ER–MT system. Our work suggests that cells might alter ER junction dynamics to drive formation of MT bundles, which are important structures, e.g., in migrating cells or in neuronal axons. The dynamic distribution of the microtubule (MT) cytoskeleton is crucial for the shape, motility, and internal organization of eukaryotic cells. However, the basic principles that control the subcellular position of MTs in mammalian interphase cells remain largely unknown. Here we show by a combination of microscopy and computational modeling that the dynamics of the endoplasmic reticulum (ER) plays an important role in distributing MTs in the cell. Specifically, our physics-based model of the ER–MT system reveals that spatial inhomogeneity in the density of ER tubule junctions results in an overall contractile force that acts on MTs and influences their distribution. At steady state, cells rapidly compensate for local variability of ER junction density by dynamic formation, release, and movement of ER junctions across the ER. Perturbation of ER junction tethering and fusion by depleting the ER fusogens called atlastins disrupts the dynamics of junction equilibration, rendering the ER–MT system unstable and causing the formation of MT bundles. Our study points to a mechanical role of ER dynamics in cellular organization and suggests a mechanism by which cells might dynamically regulate MT distribution in, e.g., motile cells or in the formation and maintenance of neuronal axons.
Collapse
|
27
|
Chen L, Wang H, Cha S, Li J, Zhang J, Wu J, Guo G, Zhang J. Phosphorylation of Spastin Promotes the Surface Delivery and Synaptic Function of AMPA Receptors. Front Cell Neurosci 2022; 16:809934. [PMID: 35418834 PMCID: PMC8995424 DOI: 10.3389/fncel.2022.809934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic plasticity is essential for cognitive functions such as learning and memory. One of the mechanisms involved in synaptic plasticity is the dynamic delivery of AMPA receptors (AMPARs) in and out of synapses. Mutations of SPAST, which encodes SPASTIN, a microtubule-severing protein, are considered the most common cause of hereditary spastic paraparesis (HSP). In some cases, patients with HSP also manifest cognitive impairment. In addition, mice with Spastin depletion exhibit working and associative memory deficits and reduced AMPAR levels. However, the exact effect and molecular mechanism of Spastin on AMPARs trafficking has remained unclear. Here, we report that Spastin interacts with AMPAR, and phosphorylation of Spastin enhances its interaction with AMPAR subunit GluA2. Further study shows that phosphorylation of Spastin can increase AMPAR GluA2 surface expression and the amplitude and frequency of miniature excitatory synaptic currents (mEPSC) in cultured hippocampal neurons. Moreover, phosphorylation of Spastin at Ser210 is crucial for GluA2 surface expression. Phosphorylation of Spastin K353A, which obliterates microtubule-severing activity, also promotes AMPAR GluA2 subunit trafficking to the surface and increases the amplitude and frequency of mEPSCs in cultured neurons. Taken together, our data demonstrate that Spastin phosphorylation promotes the surface delivery of the AMPAR GluA2 subunit independent of microtubule dynamics.
Collapse
Affiliation(s)
- Li Chen
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Hanjie Wang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Shuhan Cha
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Jiaqi Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Jiaming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
- *Correspondence: Guoqing Guo Jifeng Zhang
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
- *Correspondence: Guoqing Guo Jifeng Zhang
| |
Collapse
|
28
|
Thalamuthu A, Mills NT, Berger K, Minnerup H, Grotegerd D, Dannlowski U, Meinert S, Opel N, Repple J, Gruber M, Nenadić I, Stein F, Brosch K, Meller T, Pfarr JK, Forstner AJ, Hoffmann P, Nöthen MM, Witt S, Rietschel M, Kircher T, Adams M, McIntosh AM, Porteous DJ, Deary IJ, Hayward C, Campbell A, Grabe HJ, Teumer A, Homuth G, van der Auwera-Palitschka S, Schubert KO, Baune BT. Genome-wide interaction study with major depression identifies novel variants associated with cognitive function. Mol Psychiatry 2022; 27:1111-1119. [PMID: 34782712 PMCID: PMC7612684 DOI: 10.1038/s41380-021-01379-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Major Depressive Disorder (MDD) often is associated with significant cognitive dysfunction. We conducted a meta-analysis of genome-wide interaction of MDD and cognitive function using data from four large European cohorts in a total of 3510 MDD cases and 6057 controls. In addition, we conducted analyses using polygenic risk scores (PRS) based on data from the Psychiatric Genomics Consortium (PGC) on the traits of MDD, Bipolar disorder (BD), Schizophrenia (SCZ), and mood instability (MIN). Functional exploration contained gene expression analyses and Ingenuity Pathway Analysis (IPA®). We identified a set of significantly interacting single nucleotide polymorphisms (SNPs) between MDD and the genome-wide association study (GWAS) of cognitive domains of executive function, processing speed, and global cognition. Several of these SNPs are located in genes expressed in brain, with important roles such as neuronal development (REST), oligodendrocyte maturation (TNFRSF21), and myelination (ARFGEF1). IPA® identified a set of core genes from our dataset that mapped to a wide range of canonical pathways and biological functions (MPO, FOXO1, PDE3A, TSLP, NLRP9, ADAMTS5, ROBO1, REST). Furthermore, IPA® identified upstream regulator molecules and causal networks impacting on the expression of dataset genes, providing a genetic basis for further clinical exploration (vitamin D receptor, beta-estradiol, tadalafil). PRS of MIN and meta-PRS of MDD, MIN and SCZ were significantly associated with all cognitive domains. Our results suggest several genes involved in physiological processes for the development and maintenance of cognition in MDD, as well as potential novel therapeutic agents that could be explored in patients with MDD associated cognitive dysfunction.
Collapse
Affiliation(s)
- Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Natalie T Mills
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Heike Minnerup
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg - UKGM Marburg, Marburg, Germany
| | - Mark Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | | | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sandra van der Auwera-Palitschka
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - K Oliver Schubert
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Mental Health Service, Salisbury, SA, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
- Department of Psychiatry and Psychotherapy, University Hospital Münster, University of Münster, Münster, Germany.
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Chen Z, Chai E, Mou Y, Roda RH, Blackstone C, Li XJ. Inhibiting mitochondrial fission rescues degeneration in hereditary spastic paraplegia neurons. Brain 2022; 145:4016-4031. [PMID: 35026838 DOI: 10.1093/brain/awab488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Hereditary spastic paraplegias (HSPs) are characterized by lower limb spasticity resulting from degeneration of long corticospinal axons. SPG11 is one of the most common autosomal recessive HSPs, and the SPG11 protein spatacsin forms a complex with the SPG15 protein spastizin and heterotetrameric AP5 adaptor protein complex, which includes the SPG48 protein AP5Z1. Using the integration-free episomal method, we established SPG11 patient-specific induced pluripotent stem cells (iPSCs) from patient fibroblasts. We differentiated SPG11 iPSCs, as well as SPG48 iPSCs previously established, into cortical projection neurons (PNs) and examined protective effects by targeting mitochondrial dynamics using P110, a peptide that selectively inhibits mitochondrial fission GTPase Drp1. P110 treatment mitigates mitochondrial fragmentation, improves mitochondrial motility, and restores mitochondrial health and ATP levels in SPG11 and SPG48 neurons. Neurofilament (NF) aggregations are increased in SPG11 and SPG48 axons, and these are also suppressed by P110. Similarly, P110 mitigates NF disruption in both SPG11 and SPG48 knockdown cortical PNs, confirming the contribution of HSP gene deficiency to subsequent NF and mitochondrial defects. Strikingly, NF aggregations in SPG11 and SPG48 deficient neurons double stain with ubiquitin and autophagy related proteins, resembling the pathological hallmark observed in SPG11 autopsy brain sections. To confirm the cause-effect relationship between the SPG11 mutations and disease phenotypes, we knocked-in SPG11 disease mutations to human embryonic stem cells (hESCs) and differentiated these stem cells into cortical PNs. Reduced ATP levels and accumulated NF aggregations along axons are observed, and both are mitigated by P110. Furthermore, rescue experiment with expression of wildtype SPG11 in cortical PNs derived from both SPG11 patient iPSCs and SPG11 disease mutation knock-in hESCs leads to rescue of mitochondrial dysfunction and NF aggregations in these SPG11 neurons. Finally, in SPG11 and SPG48 long-term cultures, increased release of phosphoNF-H, a biomarker for nerve degeneration, is significantly reduced by inhibiting mitochondrial fission pharmacologically using P110 and genetically using Drp1 shRNA. Taken together, our results demonstrate that impaired mitochondrial dynamics underlie both cytoskeletal disorganization and axonal degeneration in SPG11 and SPG48 neurons, highlighting the importance of targeting these pathologies therapeutically.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ricardo H. Roda
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurology, Johns Hopkins University of Medicine, Baltimore, MD 21205, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Movement Disorders Division, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
30
|
Genetic architecture of motor neuron diseases. J Neurol Sci 2021; 434:120099. [PMID: 34965490 DOI: 10.1016/j.jns.2021.120099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Motor neuron diseases (MNDs) are rare and frequently fatal neurological disorders in which motor neurons within the brainstem and spinal cord regions slowly die. MNDs are primarily caused by genetic mutations, and > 100 different mutant genes in humans have been discovered thus far. Given the fact that many more MND-related genes have yet to be discovered, the growing body of genetic evidence has offered new insights into the diverse cellular and molecular mechanisms involved in the aetiology and pathogenesis of MNDs. This search may aid in the selection of potential candidate genes for future investigation and, eventually, may open the door to novel interventions to slow down disease progression. In this review paper, we have summarized detailed existing research findings of different MNDs, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal bulbar muscle atrophy (SBMA) and hereditary spastic paraplegia (HSP) in relation to their complex genetic architecture.
Collapse
|
31
|
Piermarini E, Akarsu S, Connors T, Kneussel M, Lane MA, Morfini G, Karabay A, Baas PW, Qiang L. Modeling gain-of-function and loss-of-function components of SPAST-based hereditary spastic paraplegia using transgenic mice. Hum Mol Genet 2021; 31:1844-1859. [PMID: 34935948 PMCID: PMC9169457 DOI: 10.1093/hmg/ddab367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a disease in which dieback degeneration of corticospinal tracts, accompanied by axonal swellings, leads to gait deficiencies. SPG4-HSP, the most common form of the disease, results from mutations of human spastin gene (SPAST), which is the gene that encodes spastin, a microtubule-severing protein. The lack of a vertebrate model that recapitulates both the etiology and symptoms of SPG4-HSP has stymied the development of effective therapies for the disease. hSPAST-C448Y mice, which express human mutant spastin at the ROSA26 locus, display corticospinal dieback and gait deficiencies but not axonal swellings. On the other hand, mouse spastin gene (Spast)-knockout (KO) mice display axonal swellings but not corticospinal dieback or gait deficiencies. One possibility is that reduced spastin function, resulting in axonal swellings, is not the cause of the disease but exacerbates the toxic effects of the mutant protein. To explore this idea, Spast-KO and hSPAST-C448Y mice were crossbred, and the offspring were compared with the parental lines via histological and behavioral analyses. The crossbred animals displayed axonal swellings as well as earlier onset, worsened gait deficiencies and corticospinal dieback compared with the hSPAST-C448Y mouse. These results, together with observations on changes in histone deacetylases 6 and tubulin modifications in the axon, indicate that each of these three transgenic mouse lines is valuable for investigating a different component of the disease pathology. Moreover, the crossbred mice are the best vertebrate model to date for testing potential therapies for SPG4-HSP.
Collapse
Affiliation(s)
- Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Seyma Akarsu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA,Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Theresa Connors
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Peter W Baas
- To whom correspondence should be addressed at: Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA. Tel: +1 2159918311; Fax: +1 2158439082; ; Tel: +1 2159918298;
| | - Liang Qiang
- To whom correspondence should be addressed at: Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA. Tel: +1 2159918311; Fax: +1 2158439082; ; Tel: +1 2159918298;
| |
Collapse
|
32
|
Lewis PA. Vesicular dysfunction and pathways to neurodegeneration. Essays Biochem 2021; 65:941-948. [PMID: 34897416 PMCID: PMC8709888 DOI: 10.1042/ebc20210034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022]
Abstract
Cellular control of vesicle biology and trafficking is critical for cell viability, with disruption of these pathways within the cells of the central nervous system resulting in neurodegeneration and disease. The past two decades have provided important insights into both the genetic and biological links between vesicle trafficking and neurodegeneration. In this essay, the pathways that have emerged as being critical for neuronal survival in the human brain will be discussed - illustrating the diversity of proteins and cellular events with three molecular case studies drawn from different neurological diseases.
Collapse
Affiliation(s)
- Patrick A Lewis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States of America
| |
Collapse
|
33
|
Li XJ. Non-cell autonomous role of astrocytes in axonal degeneration of cortical projection neurons in hereditary spastic paraplegias. Neural Regen Res 2021; 17:1265-1266. [PMID: 34782566 PMCID: PMC8643063 DOI: 10.4103/1673-5374.327342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
34
|
ER Morphology in the Pathogenesis of Hereditary Spastic Paraplegia. Cells 2021; 10:cells10112870. [PMID: 34831093 PMCID: PMC8616106 DOI: 10.3390/cells10112870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is the most abundant and widespread organelle in cells. Its peculiar membrane architecture, formed by an intricate network of tubules and cisternae, is critical to its multifaceted function. Regulation of ER morphology is coordinated by a few ER-specific membrane proteins and is thought to be particularly important in neurons, where organized ER membranes are found even in the most distant neurite terminals. Mutation of ER-shaping proteins has been implicated in the neurodegenerative disease hereditary spastic paraplegia (HSP). In this review we discuss the involvement of these proteins in the pathogenesis of HSP, focusing on the experimental evidence linking their molecular function to disease onset. Although the precise biochemical activity of some ER-related HSP proteins has been elucidated, the pathological mechanism underlying ER-linked HSP is still undetermined and needs to be further investigated.
Collapse
|
35
|
Morejon-Garcia P, Keren B, Marcos-Alcalde I, Gomez-Puertas P, Mochel F, Lazo PA. Dysfunctional Homozygous VRK1-D263G Variant Impairs the Assembly of Cajal Bodies and DNA Damage Response in Hereditary Spastic Paraplegia. NEUROLOGY-GENETICS 2021; 7:e624. [PMID: 34504951 PMCID: PMC8422991 DOI: 10.1212/nxg.0000000000000624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Background and Objectives To conduct a genetic and molecular functional study of a family with members affected of hereditary spastic paraplegia (HSP) of unknown origin and carrying a novel pathogenic vaccinia-related kinase 1 (VRK1) variant. Methods Whole-exome sequencing was performed in 2 patients, and their parents diagnosed with HSP. The novel VRK1 variant was detected by whole-exome sequencing, molecularly modeled and biochemically characterized in kinase assays. Functionally, we studied the role of this VRK1 variant in DNA damage response and its effect on the assembly of Cajal bodies (CBs). Results We have identified a very rare homozygous variant VRK1-D263G with a neurologic phenotype associated with HSP and moderate intellectual disability. The molecular modeling of this VRK1 variant protein predicted an alteration in the folding of a loop that interferes with the access to the kinase catalytic site. The VRK1-D263G variant is kinase inactive and does not phosphorylate histones H2AX and H3, transcription factors activating transcription factor 2 and p53, coilin needed for assembly of CBs, and p53 binding protein 1, a DNA repair protein. Functionally, this VRK1 variant protein impairs CB formation and the DNA damage response. Discussion This report expands the neurologic spectrum of neuromotor syndromes associated with a new and rare VRK1 variant, representing a novel pathogenic participant in complicated HSP and demonstrates that CBs and the DNA damage response are impaired in these patients.
Collapse
Affiliation(s)
- Patricia Morejon-Garcia
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Boris Keren
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Iñigo Marcos-Alcalde
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Paulino Gomez-Puertas
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Fanny Mochel
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| |
Collapse
|
36
|
Amaya C, Cameron CJF, Devarkar SC, Seager SJH, Gerstein MB, Xiong Y, Schlieker C. Nodal modulator (NOMO) is required to sustain endoplasmic reticulum morphology. J Biol Chem 2021; 297:100937. [PMID: 34224731 PMCID: PMC8327139 DOI: 10.1016/j.jbc.2021.100937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
The endoplasmic reticulum (ER) is a membrane-bound organelle responsible for protein folding, lipid synthesis, and calcium homeostasis. Maintenance of ER structural integrity is crucial for proper function, but much remains to be learned about the molecular players involved. To identify proteins that support the structure of the ER, we performed a proteomic screen and identified nodal modulator (NOMO), a widely conserved type I transmembrane protein of unknown function, with three nearly identical orthologs specified in the human genome. We found that overexpression of NOMO1 imposes a sheet morphology on the ER, whereas depletion of NOMO1 and its orthologs causes a collapse of ER morphology concomitant with the formation of membrane-delineated holes in the ER network positive for the lysosomal marker lysosomal-associated protein 1. In addition, the levels of key players of autophagy including microtubule-associated protein light chain 3 and autophagy cargo receptor p62/sequestosome 1 strongly increase upon NOMO depletion. In vitro reconstitution of NOMO1 revealed a "beads on a string" structure likely representing consecutive immunoglobulin-like domains. Extending NOMO1 by insertion of additional immunoglobulin folds results in a correlative increase in the ER intermembrane distance. Based on these observations and a genetic epistasis analysis including the known ER-shaping proteins Atlastin2 and Climp63, we propose a role for NOMO1 in the functional network of ER-shaping proteins.
Collapse
Affiliation(s)
- Catherine Amaya
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christopher J F Cameron
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Sebastian J H Seager
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA; Department of Computer Science, Yale University, New Haven, Connecticut, USA; Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
37
|
Vavouraki N, Tomkins JE, Kara E, Houlden H, Hardy J, Tindall MJ, Lewis PA, Manzoni C. Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias. iScience 2021; 24:102484. [PMID: 34113825 PMCID: PMC8169945 DOI: 10.1016/j.isci.2021.102484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
The Hereditary Spastic Paraplegias are a group of neurodegenerative diseases characterized by spasticity and weakness in the lower body. Owing to the combination of genetic diversity and variable clinical presentation, the Hereditary Spastic Paraplegias are a strong candidate for protein-protein interaction network analysis as a tool to understand disease mechanism(s) and to aid functional stratification of phenotypes. In this study, experimentally validated human data were used to create a protein-protein interaction network based on the causative genes. Network evaluation as a combination of topological analysis and functional annotation led to the identification of core proteins in putative shared biological processes, such as intracellular transport and vesicle trafficking. The application of machine learning techniques suggested a functional dichotomy linked with distinct sets of clinical presentations, indicating that there is scope to further classify conditions currently described under the same umbrella-term of Hereditary Spastic Paraplegias based on specific molecular mechanisms of disease.
Collapse
Affiliation(s)
- Nikoleta Vavouraki
- School of Pharmacy, University of Reading, Reading, RG6 6AX, UK
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK
| | | | - Eleanna Kara
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL IoN, UCL London, W1T 7NF UK
- Reta Lila Weston Institute, UCL IoN, 1 Wakefield Street, London, WC1N 1PJ, UK
- UCL Movement Disorders Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Marcus J. Tindall
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK
- Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AS, UK
| | - Patrick A. Lewis
- School of Pharmacy, University of Reading, Reading, RG6 6AX, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, Reading, RG6 6AX, UK
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| |
Collapse
|
38
|
Tadepalle N, Rugarli EI. Lipid Droplets in the Pathogenesis of Hereditary Spastic Paraplegia. Front Mol Biosci 2021; 8:673977. [PMID: 34041268 PMCID: PMC8141572 DOI: 10.3389/fmolb.2021.673977] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are genetically heterogeneous conditions caused by the progressive dying back of the longest axons in the central nervous system, the corticospinal axons. A wealth of data in the last decade has unraveled disturbances of lipid droplet (LD) biogenesis, maturation, turnover and contact sites in cellular and animal models with perturbed expression and function of HSP proteins. As ubiquitous organelles that segregate neutral lipid into a phospholipid monolayer, LDs are at the cross-road of several processes including lipid metabolism and trafficking, energy homeostasis, and stress signaling cascades. However, their role in brain cells, especially in neurons remains enigmatic. Here, we review experimental findings linking LD abnormalities to defective function of proteins encoded by HSP genes, and discuss arising questions in the context of the pathogenesis of HSP.
Collapse
Affiliation(s)
- Nimesha Tadepalle
- Molecular and Cell Biology Laboratory, Salk Institute of Biological Sciences, La Jolla, CA, United States
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Center for Molecular Medicine (CMMC),Cologne, Germany
| |
Collapse
|
39
|
Courtland JL, Bradshaw TWA, Waitt G, Soderblom EJ, Ho T, Rajab A, Vancini R, Kim IH, Soderling SH. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. eLife 2021; 10:e61590. [PMID: 33749590 PMCID: PMC7984842 DOI: 10.7554/elife.61590] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Mutation of the Wiskott-Aldrich syndrome protein and SCAR homology (WASH) complex subunit, SWIP, is implicated in human intellectual disability, but the cellular etiology of this association is unknown. We identify the neuronal WASH complex proteome, revealing a network of endosomal proteins. To uncover how dysfunction of endosomal SWIP leads to disease, we generate a mouse model of the human WASHC4c.3056C>G mutation. Quantitative spatial proteomics analysis of SWIPP1019R mouse brain reveals that this mutation destabilizes the WASH complex and uncovers significant perturbations in both endosomal and lysosomal pathways. Cellular and histological analyses confirm that SWIPP1019R results in endo-lysosomal disruption and uncover indicators of neurodegeneration. We find that SWIPP1019R not only impacts cognition, but also causes significant progressive motor deficits in mice. A retrospective analysis of SWIPP1019R patients reveals similar movement deficits in humans. Combined, these findings support the model that WASH complex destabilization, resulting from SWIPP1019R, drives cognitive and motor impairments via endo-lysosomal dysfunction in the brain.
Collapse
Affiliation(s)
- Jamie L Courtland
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Tyler WA Bradshaw
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Greg Waitt
- Proteomics and Metabolomics Shared Resource, Duke University School of MedicineDurhamUnited States
| | - Erik J Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Tricia Ho
- Proteomics and Metabolomics Shared Resource, Duke University School of MedicineDurhamUnited States
| | - Anna Rajab
- Burjeel Hospital, VPS HealthcareMuscatOman
| | - Ricardo Vancini
- Department of Pathology, Duke University School of MedicineDurhamUnited States
| | - Il Hwan Kim
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Anatomy and Neurobiology, University of Tennessee Heath Science CenterMemphisUnited States
| | - Scott H Soderling
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
40
|
Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury. Int J Mol Sci 2021; 22:ijms22041798. [PMID: 33670312 PMCID: PMC7918155 DOI: 10.3390/ijms22041798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Investigating the molecular mechanisms governing developmental axon growth has been a useful approach for identifying new strategies for boosting axon regeneration after injury, with the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture emerging is that various axonal organelles are important centers for organizing the molecular mechanisms and machinery required for growth cone development and axon extension, and these have recently been targeted to stimulate robust regeneration in the injured adult central nervous system (CNS). This review summarizes recent literature highlighting a central role for organelles such as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and the proteasome in developmental axon growth, and describes how these organelles can be targeted to promote axon regeneration after injury to the adult CNS. This review also examines the connections between these organelles in developing and regenerating axons, and finally discusses the molecular mechanisms within the axon that are required for successful axon growth.
Collapse
|
41
|
Edmison D, Wang L, Gowrishankar S. Lysosome Function and Dysfunction in Hereditary Spastic Paraplegias. Brain Sci 2021; 11:152. [PMID: 33498913 PMCID: PMC7911997 DOI: 10.3390/brainsci11020152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary Spastic Paraplegias (HSPs) are a genetically diverse group of inherited neurological diseases with over 80 associated gene loci. Over the last decade, research into mechanisms underlying HSPs has led to an emerging interest in lysosome dysfunction. In this review, we highlight the different classes of HSPs that have been linked to lysosome defects: (1) a subset of complex HSPs where mutations in lysosomal genes are causally linked to the diseases, (2) other complex HSPs where mutation in genes encoding membrane trafficking adaptors lead to lysosomal defects, and (3) a subset of HSPs where mutations affect genes encoding proteins whose function is primarily linked to a different cellular component or organelle such as microtubule severing and Endoplasmic Reticulum-shaping, while also altering to lysosomes. Interestingly, aberrant axonal lysosomes, associated with the latter two subsets of HSPs, are a key feature observed in other neurodegenerative diseases such as Alzheimer's disease. We discuss how altered lysosome function and trafficking may be a critical contributor to HSP pathology and highlight the need for examining these features in the cortico-spinal motor neurons of HSP mutant models.
Collapse
Affiliation(s)
| | | | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.E.); (L.W.)
| |
Collapse
|
42
|
TSUBOI M, HIRABAYASHI Y. New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:559-572. [PMID: 34897182 PMCID: PMC8687855 DOI: 10.2183/pjab.97.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Mammalian neurons are highly compartmentalized yet very large cells. To provide each compartment with its distinct properties, metabolic homeostasis and molecular composition need to be precisely coordinated in a compartment-specific manner. Despite the importance of the endoplasmic reticulum (ER) as a platform for various biochemical reactions, such as protein synthesis, protein trafficking, and intracellular calcium control, the contribution of the ER to neuronal compartment-specific functions and plasticity remains elusive. Recent advances in the development of live imaging and serial scanning electron microscopy (sSEM) analysis have revealed that the neuronal ER is a highly dynamic organelle with compartment-specific structures. sSEM studies also revealed that the ER forms contacts with other membranes, such as the mitochondria and plasma membrane, although little is known about the functions of these ER-membrane contacts. In this review, we discuss the mechanisms and physiological roles of the ER structure and ER-mitochondria contacts in synaptic transmission and plasticity, thereby highlighting a potential link between organelle ultrastructure and neuronal functions.
Collapse
Affiliation(s)
- Masafumi TSUBOI
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
43
|
Schurmans S, Vande Catsyne CA, Desmet C, Moës B. The phosphoinositide 5-phosphatase INPP5K: From gene structure to in vivo functions. Adv Biol Regul 2021; 79:100760. [PMID: 33060052 DOI: 10.1016/j.jbior.2020.100760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
INPP5K (Inositol Polyphosphate 5-Phosphatase K, or SKIP (for Skeletal muscle and Kidney enriched Inositol Phosphatase) is a member of the phosphoinositide 5-phosphatases family. Its protein structure is comprised of a N-terminal catalytic domain which hydrolyses both PtdIns(4,5)P2 and PtdIns(3,4,5)P3, followed by a SKICH domain at the C-terminus which is responsible for protein-protein interactions and subcellular localization of INPP5K. Strikingly, INPP5K is mostly concentrated in the endoplasmic reticulum, although it is also detected at the plasma membrane, in the cytosol and the nucleus. Recently, mutations in INPP5K have been detected in patients with a rare form of autosomal recessive congenital muscular dystrophy with cataract, short stature and intellectual disability. INPP5K functions extend from control of insulin signaling, endoplasmic reticulum stress response and structural integrity, myoblast differentiation, cytoskeleton organization, cell adhesion and migration, renal osmoregulation, to cancer. The goal of this review is thus to summarize and comment recent and less recent data in the literature on INPP5K, in particular on the structure, expression, intracellular localization, interactions and functions of this specific member of the 5-phosphatases family.
Collapse
Affiliation(s)
- Stéphane Schurmans
- Laboratoire de Génétique Fonctionnelle, GIGA-Research Centre, Building B34, CHU Sart-Tilman, Université de Liège, Avenue de l'Hôpital 11, 4000-Liège, Belgium; Secteur de Biochimie Métabolique Vétérinaire, Département des Sciences Fonctionnelles, Faculté de Médecine Vétérinaire, Building B42, Université de Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000-Liège, Belgium.
| | - Charles-Andrew Vande Catsyne
- Laboratoire de Génétique Fonctionnelle, GIGA-Research Centre, Building B34, CHU Sart-Tilman, Université de Liège, Avenue de l'Hôpital 11, 4000-Liège, Belgium
| | - Christophe Desmet
- Laboratory of Cellular and Molecular Immunology, GIGA-Research Centre, Building B34, CHU Sart-Tilman, Université de Liège, Avenue de l'Hôpital 11, 4000-Liège, Belgium
| | - Bastien Moës
- Laboratoire de Génétique Fonctionnelle, GIGA-Research Centre, Building B34, CHU Sart-Tilman, Université de Liège, Avenue de l'Hôpital 11, 4000-Liège, Belgium
| |
Collapse
|
44
|
Snx14 proximity labeling reveals a role in saturated fatty acid metabolism and ER homeostasis defective in SCAR20 disease. Proc Natl Acad Sci U S A 2020; 117:33282-33294. [PMID: 33310904 DOI: 10.1073/pnas.2011124117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Fatty acids (FAs) are central cellular metabolites that contribute to lipid synthesis, and can be stored or harvested for metabolic energy. Dysregulation in FA processing and storage causes toxic FA accumulation or altered membrane compositions and contributes to metabolic and neurological disorders. Saturated lipids are particularly detrimental to cells, but how lipid saturation levels are maintained remains poorly understood. Here, we identify the cerebellar ataxia spinocerebellar ataxia, autosomal recessive 20 (SCAR20)-associated protein Snx14, an endoplasmic reticulum (ER)-lipid droplet (LD) tethering protein, as a factor required to maintain the lipid saturation balance of cell membranes. We show that following saturated FA (SFA) treatment, the ER integrity of SNX14 KO cells is compromised, and both SNX14 KO cells and SCAR20 disease patient-derived cells are hypersensitive to SFA-mediated lipotoxic cell death. Using APEX2-based proximity labeling, we reveal the protein composition of Snx14-associated ER-LD contacts and define a functional interaction between Snx14 and Δ-9 FA desaturase SCD1. Lipidomic profiling reveals that SNX14 KO cells increase membrane lipid saturation following exposure to palmitate, phenocopying cells with perturbed SCD1 activity. In line with this, SNX14 KO cells manifest delayed FA processing and lipotoxicity, which can be rescued by SCD1 overexpression. Altogether, these mechanistic insights reveal a role for Snx14 in FA and ER homeostasis, defects in which may underlie the neuropathology of SCAR20.
Collapse
|
45
|
Mou Y, Dong Y, Chen Z, Denton KR, Duff MO, Blackstone C, Zhang SC, Li XJ. Impaired lipid metabolism in astrocytes underlies degeneration of cortical projection neurons in hereditary spastic paraplegia. Acta Neuropathol Commun 2020; 8:214. [PMID: 33287888 PMCID: PMC7720406 DOI: 10.1186/s40478-020-01088-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection neurons (PNs) degenerate remains elusive. We generated isogenic human pluripotent stem cell (hPSC) lines for two ATL1 missense mutations associated with SPG3A, the most common early-onset autosomal dominant HSP. In hPSC-derived cortical PNs, ATL1 mutations resulted in reduced axonal outgrowth, impaired axonal transport, and accumulated axonal swellings, recapitulating disease-specific phenotypes. Importantly, ATL1 mutations dysregulated proteolipid gene expression, reduced lipid droplet size in astrocytes, and unexpectedly disrupted cholesterol transfer from glia to neurons, leading to cholesterol deficiency in SPG3A cortical PNs. Applying cholesterol or conditioned medium from control astrocytes, a major source of cholesterol in the brain, rescued aberrant axonal transport and swellings in SPG3A cortical PNs. Furthermore, treatment with the NR1H2 agonist GW3965 corrected lipid droplet defects in SPG3A astrocytes and promoted cholesterol efflux from astrocytes, leading to restoration of cholesterol levels and rescue of axonal degeneration in SPG3A cortical PNs. These results reveal a non-cell autonomous mechanism underlying axonal degeneration of cortical PNs mediated by impaired cholesterol homeostasis in glia.
Collapse
|
46
|
Lu M, van Tartwijk FW, Lin JQ, Nijenhuis W, Parutto P, Fantham M, Christensen CN, Avezov E, Holt CE, Tunnacliffe A, Holcman D, Kapitein L, Schierle GSK, Kaminski CF. The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes. SCIENCE ADVANCES 2020; 6:eabc7209. [PMID: 33328230 PMCID: PMC7744115 DOI: 10.1126/sciadv.abc7209] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
The endoplasmic reticulum (ER) comprises morphologically and functionally distinct domains: sheets and interconnected tubules. These domains undergo dynamic reshaping in response to changes in the cellular environment. However, the mechanisms behind this rapid remodeling are largely unknown. Here, we report that ER remodeling is actively driven by lysosomes, following lysosome repositioning in response to changes in nutritional status: The anchorage of lysosomes to ER growth tips is critical for ER tubule elongation and connection. We validate this causal link via the chemo- and optogenetically driven repositioning of lysosomes, which leads to both a redistribution of the ER tubules and a change of its global morphology. Therefore, lysosomes sense metabolic change in the cell and regulate ER tubule distribution accordingly. Dysfunction in this mechanism during axonal extension may lead to axonal growth defects. Our results demonstrate a critical role of lysosome-regulated ER dynamics and reshaping in nutrient responses and neuronal development.
Collapse
Affiliation(s)
- Meng Lu
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Francesca W van Tartwijk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Julie Qiaojin Lin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
| | - Wilco Nijenhuis
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Pierre Parutto
- Group of Computational Biology and Applied Mathematics, Institut de Biologie de l'École Normale Supérieure-PSL, 46 rue d'Ulm, 75005 Paris, France
| | - Marcus Fantham
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Charles N Christensen
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Edward Avezov
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Alan Tunnacliffe
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - David Holcman
- Group of Computational Biology and Applied Mathematics, Institut de Biologie de l'École Normale Supérieure-PSL, 46 rue d'Ulm, 75005 Paris, France
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - Lukas Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Gabriele S Kaminski Schierle
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Clemens F Kaminski
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
| |
Collapse
|
47
|
Almeida C, Amaral MD. A central role of the endoplasmic reticulum in the cell emerges from its functional contact sites with multiple organelles. Cell Mol Life Sci 2020; 77:4729-4745. [PMID: 32313974 PMCID: PMC11104799 DOI: 10.1007/s00018-020-03523-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
Early eukaryotic cells emerged from the compartmentalization of metabolic processes into specific organelles through the development of an endomembrane system (ES), a precursor of the endoplasmic reticulum (ER), which was essential for their survival. Recently, substantial evidence emerged on how organelles communicate among themselves and with the plasma membrane (PM) through contact sites (CSs). From these studies, the ER-the largest single structure in eukaryotic cells-emerges as a central player communicating with all organelles to coordinate cell functions and respond to external stimuli to maintain cellular homeostasis. Herein we review the functional insights into the ER-CSs with other organelles in a physiological perspective. We hypothesize that, in addition to the primitive role by the ES in the appearance of proto-eukaryotes, its successor-the ER-emerges as the key coordinator of inter-organelle/PM communication. The ER thus appears to be the 'maestro' driving eukaryotic cell evolution by incorporating new functions/organelles, while remaining the real coordinator overarching cellular functions and orchestrating them with the external milieu.
Collapse
Affiliation(s)
- Celso Almeida
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, 1749-016, Lisbon, Portugal.
| | - Margarida D Amaral
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, 1749-016, Lisbon, Portugal.
| |
Collapse
|
48
|
Abbas S, Brugger B, Zubair M, Gul S, Blatterer J, Wenninger J, Rehman K, Tatrai B, Khan MA, Windpassinger C. Exome sequencing of a Pakistani family with spastic paraplegia identified an 18 bp deletion in the cytochrome B5 domain of FA2H. Neurol Res 2020; 43:133-140. [PMID: 33246395 DOI: 10.1080/01616412.2020.1831329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are a diverse class of neurodegenerative disorders that mainly affect the corticospinal tract of the body and result in various clinical conditions such as lower limb spasticity and muscle weakness in the lower extremities. Worldwide, more than 70 chromosomal loci/genes have been reported to be associated with HSPs, out of which, six genes viz., ATL1, FA2H, GJC2, AP4E1, ALDH18A1 and ATP13A2 have been mapped in Pakistani families. In the present genetic study, we report on a large consanguineous Pakistani family with a complex form of HSP segregating with a 18 bp deletion in the first exon of the Fatty Acid 2-Hydroxylase (FA2H) gene (NM_024306.5:c.159_176del). The identified in-frame deletion results in loss of six amino acids (p.Arg53_Ile58del) within the cytochrome B5 domain of the protein. FA2H is required for alpha-hydroxylation of free fatty acids to form alpha-hydroxylated sphingolipids. Its cytochrome b5-like heme-binding domain, which spans from residues 15 to 85, imparts the redox activity to FA2H. This mutation has previously been reported in a Pakistani family presenting with a similar form of complex HSP. Together with our findings the pathogenic role of the observed variant is further supported. Mutation studies on additional Pakistani families for FA2H will further elucidate its mutational spectrum, which may help in developing a prenatal diagnostic test for Khyber Pakhtunkhwa resident Pakistani families.
Collapse
Affiliation(s)
- Safdar Abbas
- Gomal Center of Biochemistry and Biotechnology, Gomal University , D.I.Khan, Pakistan
| | - Beatrice Brugger
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz , Graz, Austria
| | - Muhammad Zubair
- Gomal Center of Biochemistry and Biotechnology, Gomal University , D.I.Khan, Pakistan.,Department of Cell and Developmental Biology, School of Life Sciences, University of Science and Technology , Hefei, China
| | - Sana Gul
- Gomal Center of Biochemistry and Biotechnology, Gomal University , D.I.Khan, Pakistan
| | - Jasmin Blatterer
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz , Graz, Austria
| | - Julian Wenninger
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz , Graz, Austria
| | - Khurram Rehman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gomal University , D.I.Khan, Pakistan
| | - Benjamin Tatrai
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz , Graz, Austria
| | - Muzammil Ahmad Khan
- Gomal Center of Biochemistry and Biotechnology, Gomal University , D.I.Khan, Pakistan
| | - Christian Windpassinger
- Diagnostic and Research Institute of Human Genetics, Medical University of Graz , Graz, Austria
| |
Collapse
|
49
|
Ji ZS, Liu QL, Zhang JF, Yang YH, Li J, Zhang GW, Tan MH, Lin HS, Guo GQ. SUMOylation of spastin promotes the internalization of GluA1 and regulates dendritic spine morphology by targeting microtubule dynamics. Neurobiol Dis 2020; 146:105133. [PMID: 33049318 DOI: 10.1016/j.nbd.2020.105133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Dendritic spines are specialized structures involved in neuronal processes on which excitatory synaptic contact occurs. The microtubule cytoskeleton is vital for maintaining spine morphology and mature synapses. Spastin is related to microtubule-severing proteases and is involved in synaptic bouton formation. However, it is not yet known if spastin can be modified by Small Ubiquitin-like Modifier (SUMO) or how this modification regulates dendritic spines. Spastin was shown to be SUMOylated at K427, and its deSUMOylation promoted microtubule stability. In addition, SUMOylation of spastin was shown to affect signalling pathways associated with long term synaptic depression. SUMOylated spastin promoted the development of dendrites and dendritic spines. Moreover, SUMOylated spastin regulated endocytosis and affected the transport of the AMPA receptor, GluA1. Our findings suggest that SUMOylation of spastin promotes GluA1 internalization and regulates dendritic spine morphology through targeting of microtubule dynamics.
Collapse
Affiliation(s)
- Zhi-Sheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Qiu-Ling Liu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Ji-Feng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Yu-Hao Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Guo-Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China
| | - Ming-Hui Tan
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China.
| | - Hong-Sheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China.
| | - Guo-Qing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, No.601 West Huangpu Avenue, Tianhe, Guangzhou 510630, China.
| |
Collapse
|
50
|
Wang B, Yu Y, Wei L, Zhang Y. Inhibition of ER stress improves progressive motor deficits in a REEP1-null mouse model of hereditary spastic paraplegia. Biol Open 2020; 9:bio054296. [PMID: 32878877 PMCID: PMC7541344 DOI: 10.1242/bio.054296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) are genetic neurodegenerative diseases. HSPs are characterized by lower-extremity weakness and spasticity. However, there is no specific clinical treatment strategy to prevent or reverse nerve degeneration in HSPs. Mutations in receptor expression-enhancing protein 1 (REEP1) are well-recognized and relatively common causes of autosomal dominant HSPs. REEP1 modifies the endoplasmic reticulum (ER) shape, and is implicated in the ER stress response. Defects in the ER stress response seem to be crucial mechanisms underlying HSP neurodegeneration. Here, we report that REEP1-/- mice exhibit progressive motor deficits, along with denervation of neuromuscular junctions and increased ER stress. Moreover, marked axonal degeneration and morphological abnormalities are observed. In this study, we treated both REEP1-/- and wild-type (WT) mice with salubrinal, which is a specific inhibitor of ER stress, and we observed increased nerve-muscle connections and enhanced motor functions. Our data highlight the importance of ER homeostasis in HSPs, providing new opportunities for HSP treatment.
Collapse
Affiliation(s)
- Bingjie Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - You Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lai Wei
- State Key Laboratory of Membrane Biology, School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|