1
|
Lin N, Gao XY, Li X, Chu WM. Involvement of ubiquitination in Alzheimer's disease. Front Neurol 2024; 15:1459678. [PMID: 39301473 PMCID: PMC11412110 DOI: 10.3389/fneur.2024.1459678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
The hallmark pathological features of Alzheimer's disease (AD) consist of senile plaques, which are formed by extracellular β-amyloid (Aβ) deposition, and neurofibrillary tangles, which are formed by the hyperphosphorylation of intra-neuronal tau proteins. With the increase in clinical studies, the in vivo imbalance of iron homeostasis and the dysfunction of synaptic plasticity have been confirmed to be involved in AD pathogenesis. All of these mechanisms are constituted by the abnormal accumulation of misfolded or conformationally altered protein aggregates, which in turn drive AD progression. Proteostatic imbalance has emerged as a key mechanism in the pathogenesis of AD. Ubiquitination modification is a major pathway for maintaining protein homeostasis, and protein degradation is primarily carried out by the ubiquitin-proteasome system (UPS). In this review, we provide an overview of the ubiquitination modification processes and related protein ubiquitination degradation pathways in AD, focusing on the microtubule-associated protein Tau, amyloid precursor protein (APP), divalent metal transporter protein 1 (DMT1), and α-amino-3-hyroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. We also discuss recent advances in ubiquitination-based targeted therapy for AD, with the aim of contributing new ideas to the development of novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Nan Lin
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xi-Yan Gao
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiao Li
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wen-Ming Chu
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Li YX, Tan ZN, Li XH, Ma B, Adu Nti F, Lv XQ, Tian ZJ, Yan R, Man HY, Ma XM. Increased gene dosage of RFWD2 causes autistic-like behaviors and aberrant synaptic formation and function in mice. Mol Psychiatry 2024; 29:2496-2509. [PMID: 38503925 DOI: 10.1038/s41380-024-02515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions, communication deficits and repetitive behaviors. A study of autistic human subjects has identified RFWD2 as a susceptibility gene for autism, and autistic patients have 3 copies of the RFWD2 gene. The role of RFWD2 as an E3 ligase in neuronal functions, and its contribution to the pathophysiology of ASD, remain unknown. We generated RFWD2 knockin mice to model the human autistic condition of high gene dosage of RFWD2. We found that heterozygous knockin (Rfwd2+/-) male mice exhibited the core symptoms of autism. Rfwd2+/- male mice showed deficits in social interaction and communication, increased repetitive and anxiety-like behavior, and spatial memory deficits, whereas Rfwd2+/- female mice showed subtle deficits in social communication and spatial memory but were normal in anxiety-like, repetitive, and social behaviors. These autistic-like behaviors in males were accompanied by a reduction in dendritic spine density and abnormal synaptic function on layer II/III pyramidal neurons in the prelimbic area of the medial prefrontal cortex (mPFC), as well as decreased expression of synaptic proteins. Impaired social behaviors in Rfwd2+/- male mice were rescued by the expression of ETV5, one of the major substrates of RFWD2, in the mPFC. These findings indicate an important role of RFWD2 in the pathogenesis of autism.
Collapse
Affiliation(s)
- Yong-Xia Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhi-Nei Tan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Boyu Ma
- Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frank Adu Nti
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiao-Qiang Lv
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhen-Jun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA.
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
3
|
Magnati S, Alladio E, Bracco E. A Survey on the Expression of the Ubiquitin Proteasome System Components HECT- and RBR-E3 Ubiquitin Ligases and E2 Ubiquitin-Conjugating and E1 Ubiquitin-Activating Enzymes during Human Brain Development. Int J Mol Sci 2024; 25:2361. [PMID: 38397039 PMCID: PMC10889685 DOI: 10.3390/ijms25042361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Human brain development involves a tightly regulated sequence of events that starts shortly after conception and continues up to adolescence. Before birth, neurogenesis occurs, implying an extensive differentiation process, sustained by changes in the gene expression profile alongside proteome remodeling, regulated by the ubiquitin proteasome system (UPS) and autophagy. The latter processes rely on the selective tagging with ubiquitin of the proteins that must be disposed of. E3 ubiquitin ligases accomplish the selective recognition of the target proteins. At the late stage of neurogenesis, the brain starts to take shape, and neurons migrate to their designated locations. After birth, neuronal myelination occurs, and, in parallel, neurons form connections among each other throughout the synaptogenesis process. Due to the malfunctioning of UPS components, aberrant brain development at the very early stages leads to neurodevelopmental disorders. Through deep data mining and analysis and by taking advantage of machine learning-based models, we mapped the transcriptomic profile of the genes encoding HECT- and ring-between-ring (RBR)-E3 ubiquitin ligases as well as E2 ubiquitin-conjugating and E1 ubiquitin-activating enzymes during human brain development, from early post-conception to adulthood. The inquiry outcomes unveiled some implications for neurodevelopment-related disorders.
Collapse
Affiliation(s)
- Stefano Magnati
- Centro Regionale Anti Doping—A. Bertinaria, Orbassano, 10043 Turin, Italy;
- Politecnico di Torino, 10129, Turin, Italy
| | - Eugenio Alladio
- Centro Regionale Anti Doping—A. Bertinaria, Orbassano, 10043 Turin, Italy;
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10043 Orbassano, Italy
- Istituto Nazionale Ricerca Metrologica, 10135 Turin, Italy
| |
Collapse
|
4
|
Epremyan KK, Goleva TN, Zvyagilskaya RA. Effect of Tau Protein on Mitochondrial Functions. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:689-701. [PMID: 36171651 DOI: 10.1134/s0006297922080028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease is the most common age-related progressive neurodegenerative disorder of brain cortex and hippocampus leading to cognitive impairment. Accumulation of extracellular amyloid plaques and intraneuronal neurofibrillary tangles are believed to be the main hallmarks of the disease. Origin of Alzheimer's disease is not totally clear, multiple initiator factors are likely to exist. Intracellular impacts of Alzheimer's disease include mitochondrial dysfunction, oxidative stress, ER-stress, disruption of autophagy, severe metabolic challenges leading to massive neuronal apoptosis. Mitochondria are the key players in all these processes. This formed the basis for the so-called mitochondrial cascade hypothesis. This review provides current data on the molecular mechanisms of the development of Alzheimer's disease associated with mitochondria. Special attention was paid to the interaction between Tau protein and mitochondria, as well as to the promising therapeutic approaches aimed at preventing development of neurodegeneration.
Collapse
Affiliation(s)
- Khoren K Epremyan
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Tatyana N Goleva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Renata A Zvyagilskaya
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
5
|
Kimura-Yoshida C, Mochida K, Kanno SI, Matsuo I. USP39 is essential for mammalian epithelial morphogenesis through upregulation of planar cell polarity components. Commun Biol 2022; 5:378. [PMID: 35440748 PMCID: PMC9018712 DOI: 10.1038/s42003-022-03254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Previously, we have shown that the translocation of Grainyhead-like 3 (GRHL3) transcription factor from the nucleus to the cytoplasm triggers the switch from canonical Wnt signaling for epidermal differentiation to non-canonical Wnt signaling for epithelial morphogenesis. However, the molecular mechanism that underlies the cytoplasmic localization of GRHL3 protein and that activates non-canonical Wnt signaling is not known. Here, we show that ubiquitin-specific protease 39 (USP39), a deubiquitinating enzyme, is involved in the subcellular localization of GRHL3 as a potential GRHL3-interacting protein and is necessary for epithelial morphogenesis to up-regulate expression of planar cell polarity (PCP) components. Notably, mouse Usp39-deficient embryos display early embryonic lethality due to a failure in primitive streak formation and apico-basal polarity in epiblast cells, resembling those of mutant embryos of the Prickle1 gene, a crucial PCP component. Current findings provide unique insights into how differentiation and morphogenesis are coordinated to construct three-dimensional complex structures via USP39. The ubiquitin specific protease 39 (USP39) interacts with the transcription factor and cytoplasmic regulator of planar cell polarity (PCP), Grainyheadlike 3 (Grhl3). USP39-dependent PCP gene upregulation contributes to epithelial morphogenesis.
Collapse
Affiliation(s)
- Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan.
| | - Kyoko Mochida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Shin-Ichiro Kanno
- IDAC Fellow Research Group for DNA Repair and Dynamic Proteome, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan. .,Department of Pediatric and Neonatal-Perinatal Research, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Ferreira JS, Kellermayer B, Carvalho AL, Groc L. Interplay between NMDA receptor dynamics and the synaptic proteasome. Eur J Neurosci 2021; 54:6000-6011. [PMID: 34405467 DOI: 10.1111/ejn.15427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/16/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Proteasome activity at the excitatory synapse plays an important role in neuronal communication. The proteasome translocation to synapses is mediated by neuronal activity, in particular the activation of N-methyl-d-aspartate receptors (NMDARs). These receptors are composed of different subunits with distinct trafficking properties that provide various signalling and plasticity features to the synapse. Yet whether the interplay between the proteasome and NMDAR relies on specific subunit properties remain unclear. Using a combination of single molecule and immunocytochemistry imaging approaches in rat hippocampal neurons, we unveil a specific interplay between GluN2B-containing NMDARs (GluN2B-NMDARs) and the synaptic proteasome. Sustained proteasome activation specifically increases GluN2B-NMDAR (not GluN2A-NMDAR) lateral diffusion. In addition, when GluN2B-NMDAR expression is downregulated, the proteasome localization decreases at glutamatergic synapses. Collectively, our data fuel a model in which the cellular dynamics and location of GluN2B-NMDARs and proteasome are intermingled, shedding new lights on the NMDAR-dependent regulation of synaptic adaptation.
Collapse
Affiliation(s)
- Joana S Ferreira
- IINS-Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, University of Bordeaux, Bordeaux, France
| | - Blanka Kellermayer
- IINS-Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, University of Bordeaux, Bordeaux, France.,CNC-Center for Neuroscience and Cell Biology of Coimbra, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology of Coimbra, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Laurent Groc
- IINS-Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, University of Bordeaux, Bordeaux, France
| |
Collapse
|
7
|
Seo JH, Kim TY, Kim SJ, Choi JH, So HS, Kang JI. Possible Association of Polymorphisms in Ubiquitin Specific Peptidase 46 Gene With Post-traumatic Stress Disorder. Front Psychiatry 2021; 12:663647. [PMID: 34456759 PMCID: PMC8385240 DOI: 10.3389/fpsyt.2021.663647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Dynamic proteolysis, through the ubiquitin-proteasome system, has an important role in DNA transcription and cell cycle, and is considered to modulate cell stress response and synaptic plasticity. We investigated whether genetic variants in the ubiquitin carboxyl-terminal hydrolase 46 (USP46) would be associated with post-traumatic stress disorder (PTSD) in people with exposure to combat trauma using a case-control candidate gene association design. Methods: Korean male veterans exposed to the Vietnam War were grouped into those with (n = 128) and without (n = 128) PTSD. Seven tagging SNPs of USP46 were selected, and single-marker and haplotype-based association analyses were performed. All analyses were adjusted for sociodemographic factors and levels of combat exposure severity and alcohol problem. Results: One single-marker (rs2244291) showed nominal evidence of association with PTSD status and with the "re-experiencing" cluster, although the association was not significant after Bonferroni correction. No significant association with the other SNPs or the haplotypes was detected. Conclusion: The present finding suggests preliminarily that genetic vulnerability regarding the ubiquitin-proteasome system may be related to fear memory processes and the development of PTSD symptoms after trauma exposure. Further studies with a larger sample size will be needed to examine the role of the ubiquitin-proteasome system including USP46 in PTSD.
Collapse
Affiliation(s)
- Jun Ho Seo
- Institute of Behavioral Science in Medicine and Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Yong Kim
- Institute of Behavioral Science in Medicine and Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neuropsychiatry, Veterans Health Service Medical Center, Seoul, South Korea
| | - Se Joo Kim
- Institute of Behavioral Science in Medicine and Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Hee Choi
- Department of Neuropsychiatry, Veterans Health Service Medical Center, Seoul, South Korea
| | - Hyung Seok So
- Department of Neuropsychiatry, Veterans Health Service Medical Center, Seoul, South Korea
| | - Jee In Kang
- Institute of Behavioral Science in Medicine and Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Folci A, Mirabella F, Fossati M. Ubiquitin and Ubiquitin-Like Proteins in the Critical Equilibrium between Synapse Physiology and Intellectual Disability. eNeuro 2020; 7:ENEURO.0137-20.2020. [PMID: 32719102 PMCID: PMC7544190 DOI: 10.1523/eneuro.0137-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Posttranslational modifications (PTMs) represent a dynamic regulatory system that precisely modulates the functional organization of synapses. PTMs consist in target modifications by small chemical moieties or conjugation of lipids, sugars or polypeptides. Among them, ubiquitin and a large family of ubiquitin-like proteins (UBLs) share several features such as the structure of the small protein modifiers, the enzymatic cascades mediating the conjugation process, and the targeted aminoacidic residue. In the brain, ubiquitination and two UBLs, namely sumoylation and the recently discovered neddylation orchestrate fundamental processes including synapse formation, maturation and plasticity, and their alteration is thought to contribute to the development of neurological disorders. Remarkably, emerging evidence suggests that these pathways tightly interplay to modulate the function of several proteins that possess pivotal roles for brain homeostasis as well as failure of this crosstalk seems to be implicated in the development of brain pathologies. In this review, we outline the role of ubiquitination, sumoylation, neddylation, and their functional interplay in synapse physiology and discuss their implication in the molecular pathogenesis of intellectual disability (ID), a neurodevelopmental disorder that is frequently comorbid with a wide spectrum of brain pathologies. Finally, we propose a few outlooks that might contribute to better understand the complexity of these regulatory systems in regard to neuronal circuit pathophysiology.
Collapse
Affiliation(s)
- Alessandra Folci
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
| | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve 9 Emanuele - Milan, Italy
| | - Matteo Fossati
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
- CNR-Institute of Neuroscience, via Manzoni 56, 20089, Rozzano (MI), Italy
| |
Collapse
|
9
|
Wu X, Zhou Y, Huang Z, Cai M, Shu Y, Zeng C, Feng L, Xiao B, Zhan Q. The study of microtubule dynamics and stability at the postsynaptic density in a rat pilocarpine model of temporal lobe epilepsy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:863. [PMID: 32793707 DOI: 10.21037/atm-19-4636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The recurrence and drug resistance of temporal lobe epilepsy (TLE) has been ceaselessly challenging scientists and epilepsy experts. There has been an accumulation of evidence linking the dysregulation of postsynaptic proteins etiology and the pathology of epilepsy. For example, NMDA receptors, AMPA receptors, and metabotropic glutamate receptors (mGluRs). Furthermore, our earlier proteomic analysis proved there to be differential expressions of cytoskeletons like microtubules among rat groups. These differential expressions were shown in TLE-spontaneous recurrent seizures (TLE-SRS), TLE without SRS (TLE-NSRS) and control groups. Therefore, we aimed to understand how the microtubule system of the hippocampal postsynaptic density (PSD) regulates the development of TLE. Methods In this study, a pilocarpine-induced Sprague-Dawley rat TLE model were used, and Western blot, Nissl staining, and the immunoelectron microscopic method were utilized to determine the dynamic change of microtubules (α- and β-tubulin) in PSD and the extent of hippocampal neuron loss respectively in acute SE, and latent and chronic (spontaneous seizures) periods. Animal models were then stereotactically treated using colchicine, a microtubule depolymerizer, and paclitaxel, a microtubule polymerization agent, after each animal's acute SE period so as to further explore the function of PSD microtubules. Results Our study revealed 3 principal findings. One, both α- and β-tubulin were decreased from the 3rd to the 30th day (lowest at the 7th day) in the seizure group compared with the controls. Two, both α- and β-tubulin were found to be more downregulated in the TLE-SRS and the TLE-NSRS group than in the control group (especially in the TLE-SRS group). The same trend was also noticed for hippocampal neuron loss. Three, the paclitaxel lowered the chronic SRS rate and increased the expression of PSD β-tubulin in the hippocampus. Conclusions Altogether, these results indicate that the microtubule system of PSD may play an essential role in the development and recurrence of epilepsy, and it may be used as a new target for the prevention and treatment of this refractory disease.
Collapse
Affiliation(s)
- Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhou
- Department of Neurology, The First Hospital of Changsha, Changsha, China
| | - Zhiling Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingfei Cai
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Shu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Sullivan CR, Koene RH, Hasselfeld K, O'Donovan S, Ramsey A, McCullumsmith RE. Neuron-specific deficits of bioenergetic processes in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 2019; 24:1319-1328. [PMID: 29497148 PMCID: PMC6119539 DOI: 10.1038/s41380-018-0035-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/07/2017] [Accepted: 01/15/2018] [Indexed: 12/20/2022]
Abstract
Schizophrenia is a devastating illness that affects over 2 million people in the United States and costs society billions of dollars annually. New insights into the pathophysiology of schizophrenia are needed to provide the conceptual framework to facilitate development of new treatment strategies. We examined bioenergetic pathways in the dorsolateral prefrontal cortex (DLPFC) of subjects with schizophrenia and control subjects using western blot analysis, quantitative real-time polymerase chain reaction, and enzyme/substrate assays. Laser-capture microdissection-quantitative polymerase chain reaction was used to examine these pathways at the cellular level. We found decreases in hexokinase (HXK) and phosphofructokinase (PFK) activity in the DLPFC, as well as decreased PFK1 mRNA expression. In pyramidal neurons, we found an increase in monocarboxylate transporter 1 mRNA expression, and decreases in HXK1, PFK1, glucose transporter 1 (GLUT1), and GLUT3 mRNA expression. These results suggest abnormal bioenergetic function, as well as a neuron-specific defect in glucose utilization, in the DLPFC in schizophrenia.
Collapse
Affiliation(s)
- Courtney R. Sullivan
- Corresponding author: , Phone number: 513-558-4855, Mail address: 231 Albert Sabin Way, Care 5830, Cincinnati, Ohio, 45267-2827
| | - Rachael H. Koene
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Kathryn Hasselfeld
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Sinead O'Donovan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Amy Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Robert E. McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
11
|
Pang L, Liu J, Li W, Xia Y, Xing J. Serum ubiquitin C-terminal hydrolase L1 predicts cognitive impairment in patients with acute organophosphorus pesticide poisoning. J Clin Lab Anal 2019; 33:e22947. [PMID: 31199012 PMCID: PMC6757117 DOI: 10.1002/jcla.22947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 05/18/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND To assess the usefulness of serum C-terminal hydrolase L1 (UCH-L1) level as a biomarker for predicting cognitive impairment in patients with acute organophosphorus pesticide poisoning (AOPP). METHODS Two hundred and seven adult patients with AOPP were included in this study. Serum UCH-L1 levels were assessed on admission (Day 1 postpoisoning) and on Days 3 and 7 postpoisoning. The associations between serum UCH-L1 levels, other clinical predictors, and cognitive function evaluated on Day 30 postpoisoning were investigated. RESULTS On multivariate analysis, serum UCH-L1 levels on admission (odds ratio [OR] 1.889, 95% confidence interval [CI] 1.609-3.082, P = 0.002) and 24-hour APACHE II score (OR 1.736, 95% CI 1.264-3.272, P = 0.012) were independent predictors of cognitive impairment on Day 30 postpoisoning. Based on the receiver operating characteristic curve, serum UCH-L1 levels >5.9 ng/mL on admission predicted cognitive impairment on Day 30 postpoisoning with 86.1% sensitivity and 72.5% specificity (area under the curve, 0.869; 95% CI 0.815-0.923). On admission [8.51 (6.53-10.22) ng/mL vs 4.25 (2.57-6.31) ng/mL, P < 0.001] and Day 3 [9.31 (7.92-10.98) ng/mL vs 3.32 (2.25-5.13) ng/mL, P < 0.001] and Day 7 [4.96 (3.28-7.26) ng/mL vs 2.27 (1.55-3.24) ng/mL, P < 0.001] postpoisoning, serum UCH-L1 concentration was significantly higher in patients that developed cognitive impairment compared to those that did not. CONCLUSION This study demonstrates that serum UCH-L1 level has potential as a novel biomarker for predicting cognitive impairment 30 days after AOPP.
Collapse
Affiliation(s)
- Li Pang
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Junlan Liu
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Yan Xia
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Khatri N, Man HY. The Autism and Angelman Syndrome Protein Ube3A/E6AP: The Gene, E3 Ligase Ubiquitination Targets and Neurobiological Functions. Front Mol Neurosci 2019; 12:109. [PMID: 31114479 PMCID: PMC6502993 DOI: 10.3389/fnmol.2019.00109] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
UBE3A is a gene implicated in neurodevelopmental disorders. The protein product of UBE3A is the E3 ligase E6-associated protein (E6AP), and its expression in the brain is uniquely regulated via genetic imprinting. Loss of E6AP expression leads to the development of Angelman syndrome (AS), clinically characterized by lack of speech, abnormal motor development, and the presence of seizures. Conversely, copy number variations (CNVs) that result in the overexpression of E6AP are strongly associated with the development of autism spectrum disorders (ASDs), defined by decreased communication, impaired social interest, and increased repetitive behavior. In this review article, we focus on the neurobiological function of Ube3A/E6AP. As an E3 ligase, many functional target proteins of E6AP have been discovered, including p53, Arc, Ephexin5, and SK2. On a neuronal level, E6AP is widely expressed within the cell, including dendritic arbors, spines, and the nucleus. E6AP regulates neuronal morphological maturation and plays an important role in synaptic plasticity and cortical development. These molecular findings provide insight into our understanding of the molecular events underlying AS and ASDs.
Collapse
Affiliation(s)
- Natasha Khatri
- Department of Biology, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
13
|
Vaden JH, Tian T, Golf S, McLean JW, Wilson JA, Wilson SM. Chronic over‐expression of ubiquitin impairs learning, reduces synaptic plasticity, and enhancesGRIAreceptor turnover in mice. J Neurochem 2018; 148:386-399. [DOI: 10.1111/jnc.14630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Jada H. Vaden
- Department of Neurobiology Evelyn F. McKnight Brain Institute Civitan International Research Center University of Alabama at Birmingham Birmingham Alabama USA
| | - Tina Tian
- Department of Neurobiology Evelyn F. McKnight Brain Institute Civitan International Research Center University of Alabama at Birmingham Birmingham Alabama USA
| | - Samantha Golf
- Department of Neurobiology Evelyn F. McKnight Brain Institute Civitan International Research Center University of Alabama at Birmingham Birmingham Alabama USA
| | - John W. McLean
- Department of Neurobiology Evelyn F. McKnight Brain Institute Civitan International Research Center University of Alabama at Birmingham Birmingham Alabama USA
| | - Julie A. Wilson
- Department of Neurobiology Evelyn F. McKnight Brain Institute Civitan International Research Center University of Alabama at Birmingham Birmingham Alabama USA
| | - Scott M. Wilson
- Department of Neurobiology Evelyn F. McKnight Brain Institute Civitan International Research Center University of Alabama at Birmingham Birmingham Alabama USA
| |
Collapse
|
14
|
Sullivan CR, O'Donovan SM, McCullumsmith RE, Ramsey A. Defects in Bioenergetic Coupling in Schizophrenia. Biol Psychiatry 2018; 83:739-750. [PMID: 29217297 PMCID: PMC5891385 DOI: 10.1016/j.biopsych.2017.10.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/18/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Synaptic neurotransmission relies on maintenance of the synapse and meeting the energy demands of neurons. Defects in excitatory and inhibitory synapses have been implicated in schizophrenia, likely contributing to positive and negative symptoms as well as impaired cognition. Recently, accumulating evidence has suggested that bioenergetic systems, important in both synaptic function and cognition, are abnormal in psychiatric illnesses such as schizophrenia. Animal models of synaptic dysfunction demonstrated endophenotypes of schizophrenia as well as bioenergetic abnormalities. We report findings on the bioenergetic interplay of astrocytes and neurons and discuss how dysregulation of these pathways may contribute to the pathogenesis of schizophrenia, highlighting metabolic systems as important therapeutic targets.
Collapse
Affiliation(s)
- Courtney R Sullivan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Sinead M O'Donovan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio.
| | - Amy Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada
| |
Collapse
|
15
|
Gracida X, Dion MF, Harris G, Zhang Y, Calarco JA. An Elongin-Cullin-SOCS Box Complex Regulates Stress-Induced Serotonergic Neuromodulation. Cell Rep 2017; 21:3089-3101. [PMID: 29241538 PMCID: PMC6283282 DOI: 10.1016/j.celrep.2017.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/15/2017] [Accepted: 11/11/2017] [Indexed: 02/07/2023] Open
Abstract
Neuromodulatory cells transduce environmental information into long-lasting behavioral responses. However, the mechanisms governing how neuronal cells influence behavioral plasticity are difficult to characterize. Here, we adapted the translating ribosome affinity purification (TRAP) approach in C. elegans to profile ribosome-associated mRNAs from three major tissues and the neuromodulatory dopaminergic and serotonergic cells. We identified elc-2, an Elongin C ortholog, specifically expressed in stress-sensing amphid neuron dual ciliated sensory ending (ADF) serotonergic sensory neurons, and we found that it plays a role in mediating a long-lasting change in serotonin-dependent feeding behavior induced by heat stress. We demonstrate that ELC-2 and the von Hippel-Lindau protein VHL-1, components of an Elongin-Cullin-SOCS box (ECS) E3 ubiquitin ligase, modulate this behavior after experiencing stress. Also, heat stress induces a transient redistribution of ELC-2, becoming more nuclearly enriched. Together, our results demonstrate dynamic regulation of an E3 ligase and a role for an ECS complex in neuromodulation and control of lasting behavioral states.
Collapse
Affiliation(s)
- Xicotencatl Gracida
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael F Dion
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gareth Harris
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yun Zhang
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - John A Calarco
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
16
|
Myeku N, Duff KE. Targeting the 26S Proteasome To Protect Against Proteotoxic Diseases. Trends Mol Med 2017; 24:18-29. [PMID: 29233753 DOI: 10.1016/j.molmed.2017.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
Abstract
Aggregates of misfolded proteins can compromise the function of the 26S proteasome complex, leaving neurons susceptible to accelerated and impaired protein homeostasis, thereby contributing to the pathogenesis of neurodegeneration. Strategies aimed at enhancing the function of the 26S proteasome via phosphorylation of key subunit epitopes have been effective in reducing protein aggregates in mouse models of disease. We discuss how phosphodiesterase (PDE) inhibitors and G protein-coupled receptor (GPCR)-targeted drugs might be considered as candidate therapeutics, acting on second messenger signal transduction. The range of candidates might address the need for region-, cell-, or even cellular compartment-specific modulation. Given the array of clinical and experimental drugs targeting cAMP/cGMP signaling, we propose that proteasome activators targeting secondary messengers might be exploited as novel agents for the treatment or prevention of some neurodegenerative diseases.
Collapse
Affiliation(s)
- Natura Myeku
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| | - Karen E Duff
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
17
|
Diminished stress resistance and defective adaptive homeostasis in age-related diseases. Clin Sci (Lond) 2017; 131:2573-2599. [PMID: 29070521 DOI: 10.1042/cs20160982] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/31/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023]
Abstract
Adaptive homeostasis is defined as the transient expansion or contraction of the homeostatic range following exposure to subtoxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events (Mol. Aspects Med. (2016) 49, 1-7). Adaptive homeostasis allows us to transiently adapt (and then de-adapt) to fluctuating levels of internal and external stressors. The ability to cope with transient changes in internal and external environmental stress, however, diminishes with age. Declining adaptive homeostasis may make older people more susceptible to many diseases. Chronic oxidative stress and defective protein homeostasis (proteostasis) are two major factors associated with the etiology of age-related disorders. In the present paper, we review the contribution of impaired responses to oxidative stress and defective adaptive homeostasis in the development of age-associated diseases.
Collapse
|
18
|
SCRAPPER Selectively Contributes to Spontaneous Release and Presynaptic Long-Term Potentiation in the Anterior Cingulate Cortex. J Neurosci 2017; 37:3887-3895. [PMID: 28292828 DOI: 10.1523/jneurosci.0023-16.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 12/27/2022] Open
Abstract
SCRAPPER is an E3 ubiquitin ligase expressed in presynaptic terminals, neural cell body, and dendrites of the hippocampus and cortex, which is coded by the FBXL20 gene. SCRAPPER is known to regulate synaptic transmissions and long-term potentiation (LTP) in the hippocampus, but no report is available for the cortex. Here we show genetic evidence for critical roles of SCRAPPER in excitatory transmission and presynaptic LTP (pre-LTP) of the anterior cingulate cortex (ACC), a critical cortical region for pain, anxiety, and fear. Miniature and spontaneous releases, but not evoked release, of glutamate were significantly increased in SCRAPPER knock-out (SCR-KO) mice. Interestingly, SCRAPPER selectively contributes to the increases of frequency and amplitude. The pre-LTP in the ACC was completely blocked in SCR-KO mice. Our results thus provide direct evidence for SCRAPPER in both spontaneous release and pre-LTP in the ACC and reveal a potential novel target for treating anxiety-related disease.SIGNIFICANCE STATEMENT The anterior cingulate cortex (ACC) plays critical roles in pain, anxiety, and fear. Peripheral injury induces long-term changes in synaptic transmission in the ACC. Our recent study found that a presynaptic form of LTP (pre-LTP) in the ACC contributes to chronic pain-induced anxiety. Here, we show that SCRAPPER plays a critical role in ACC pre-LTP as well as synaptic transmission.
Collapse
|
19
|
Bach SV, Hegde AN. The proteasome and epigenetics: zooming in on histone modifications. Biomol Concepts 2017; 7:215-27. [PMID: 27522625 DOI: 10.1515/bmc-2016-0016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
The proteasome is a structural complex of many proteins that degrades substrates marked by covalent linkage to ubiquitin. Many years of research has shown a role for ubiquitin-proteasome-mediated proteolysis in synaptic plasticity and memory mainly in degrading synaptic, cytoplasmic and nuclear proteins. Recent work indicates that the proteasome has wider proteolytic and non-proteolytic roles in processes such as histone modifications that affect synaptic plasticity and memory. In this review, we assess the evidence gathered from neuronal as well as non-neuronal cell types regarding the function of the proteasome in positive or negative regulation of posttranslational modifications of histones, such as acetylation, methylation and ubiquitination. We discuss the critical roles of the proteasome in clearing excess histone proteins in various cellular contexts and the possible non-proteolytic functions in regulating transcription of target genes. In addition, we summarize the current literature on diverse chromatin-remodeling machineries, such as histone acetyltransferases, deacetylates, methyltransferases and demethylases, as targets for proteasomal degradation across experimental models. Lastly, we provide a perspective on how proteasomal regulation of histone modifications may modulate synaptic plasticity in the nervous system.
Collapse
|
20
|
Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95. Mol Neurobiol 2016; 54:1759-1776. [PMID: 26884267 DOI: 10.1007/s12035-016-9745-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/22/2016] [Indexed: 01/08/2023]
Abstract
The postsynaptic density (PSD) consists of a lattice-like array of interacting proteins that organizes and stabilizes synaptic receptors, ion channels, structural proteins, and signaling molecules required for normal synaptic transmission and synaptic function. The scaffolding and hub protein postsynaptic density protein-95 (PSD-95) is a major element of central chemical synapses and interacts with glutamate receptors, cell adhesion molecules, and cytoskeletal elements. In fact, PSD-95 can regulate basal synaptic stability as well as the activity-dependent structural plasticity of the PSD and, therefore, of the excitatory chemical synapse. Several studies have shown that PSD-95 is highly enriched at excitatory synapses and have identified multiple protein structural domains and protein-protein interactions that mediate PSD-95 function and trafficking to the postsynaptic region. PSD-95 is also a target of several signaling pathways that induce posttranslational modifications, including palmitoylation, phosphorylation, ubiquitination, nitrosylation, and neddylation; these modifications determine the synaptic stability and function of PSD-95 and thus regulate the fates of individual dendritic spines in the nervous system. In the present work, we review the posttranslational modifications that regulate the synaptic localization of PSD-95 and describe their functional consequences. We also explore the signaling pathways that induce such changes.
Collapse
|
21
|
Carboni L, Domenici E. Proteome effects of antipsychotic drugs: Learning from preclinical models. Proteomics Clin Appl 2015; 10:430-41. [PMID: 26548651 DOI: 10.1002/prca.201500087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 02/02/2023]
Abstract
Proteome-wide expression analyses are performed in the brain of schizophrenia patients to understand the biological basis of the disease and discover molecular paths for new clinical interventions. A major issue with postmortem analysis is the lack of tools to discern molecular modulation related to the disease from dysregulation due to medications. We review available proteome-wide analysis of antipsychotic treatment in rodents, highlighting shared dysregulated pathways that may contribute to an extended view of molecular processes underlying their pharmacological activity. Fourteen proteomic studies conducted with typical and atypical antipsychotic treatments were examined; hypothesis-based approaches are also briefly discussed. Treatment with antipsychotics mainly affects proteins belonging to metabolic pathways involved in energy generation, both in glycolytic and oxidative phosphorylation pathways, suggesting antipsychotics-induced impairments in metabolism. Nevertheless, schizophrenic patients show impaired glucose metabolism and mitochondrial dysfunctions independent of therapy. Other antipsychotics-induced changes shared by different studies implicate cytoskeletal and synaptic function proteins. The mechanism can be related to the reorganization of dendritic spines resulting from neural plasticity events induced by treatments affecting neurotransmitter circuitry. However, metabolic and plasticity pathways activated by antipsychotics can also play an authentic role in the etiopathological basis of schizophrenia.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Enrico Domenici
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery & Translational Medicine Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
22
|
Li Y, Sun Y, Li J, Wang Z, Lin Y, Tang L, Xia D, Zheng T, Yang X, Sha L, Sun CK. Changes of ubiquitin C-terminal hydrolase-L1 levels in serum and urine of patients with white matter lesions. J Neurol Sci 2015; 357:215-21. [PMID: 26232084 DOI: 10.1016/j.jns.2015.07.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/17/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) has been established as a potential biomarker of neuronal damage. There is not much information about the effects of white matter lesions (WMLs) on serum and urine UCH-L1 levels in white matter disease patients. This study was aimed to assess whether serum or urine UCH-L1 levels are a reliable marker of brain damage in patients with WMLs. DESIGN AND METHODS Serum and urine levels of UCH-L1 were assessed in 125 patients with dizziness, hypertension, type 2 diabetes mellitus, or dyslipidemia. Of these 125 patient cases, 41 showed periventricular WMLs (P-WMLs), 46 showed subcortical WMLs (S-WMLs), and 38 displayed no well-defined WMLs (controls). RESULTS Serum UCH-L1 levels were significantly different between the WML group and controls (p<0.05). Further subgroup analysis proved that serum UCH-L1 levels in participants with S-WMLs were significantly increased when compared with controls (p<0.001), but there was no significant differences between controls and patients with P-WMLs (p>0.05). However, urine levels of UCH-L1 were similar between these three groups (p>0.05). In addition, multivariate analysis showed that increased serum UCH-L1 levels were independently associated with the severity of WMLs using Fazekas scale (β=0.432, p<0.001). CONCLUSIONS These findings suggest that serum UCH-L1 levels may serve as a novel biomarker for neuronal damage from WMLs, especially S-WMLs.
Collapse
Affiliation(s)
- Yuyuan Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Western 9 Lvshunnan Road, Lvshun District, Dalian 116044, PR China.
| | - Yang Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Western 9 Lvshunnan Road, Lvshun District, Dalian 116044, PR China
| | - Jian Li
- Department of Orthopaedics, The Xinhua Hospital Affiliated to Dalian University, No. 156 Wansui Street, Dalian 116021, PR China
| | - Zhe Wang
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, PR China
| | - Yongzhong Lin
- Department of Neurology, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Ling Tang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Western 9 Lvshunnan Road, Lvshun District, Dalian 116044, PR China
| | - Dandan Xia
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Western 9 Lvshunnan Road, Lvshun District, Dalian 116044, PR China
| | - Tiezheng Zheng
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Western 9 Lvshunnan Road, Lvshun District, Dalian 116044, PR China
| | - Xiaohan Yang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Western 9 Lvshunnan Road, Lvshun District, Dalian 116044, PR China
| | - Li Sha
- Department of Psychology, Dalian Medical University, Western 9 Lvshunnan Road, Lvshun District, Dalian 116044, PR China
| | - C K Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Western 9 Lvshunnan Road, Lvshun District, Dalian 116044, PR China.
| |
Collapse
|
23
|
Li Q, Korte M, Sajikumar S. Ubiquitin-Proteasome System Inhibition Promotes Long-Term Depression and Synaptic Tagging/Capture. Cereb Cortex 2015; 26:2541-2548. [DOI: 10.1093/cercor/bhv084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Dennis KE, Valentine WM. Ziram and sodium N,N-dimethyldithiocarbamate inhibit ubiquitin activation through intracellular metal transport and increased oxidative stress in HEK293 cells. Chem Res Toxicol 2015; 28:682-90. [PMID: 25714994 PMCID: PMC4406076 DOI: 10.1021/tx500450x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Ubiquitin activating enzyme E1 plays
a pivotal role in ubiquitin
based protein signaling through regulating the initiating step of
the cascade. Previous studies demonstrated that E1 is inhibited by
covalent modification of reactive cysteines contained within the ubiquitin-binding
groove and by conditions that increase oxidative stress and deplete
cellular antioxidants. In this study, we determined the relative contribution
of covalent adduction and oxidative stress to E1 inhibition produced
by ziram and sodium N,N-dimethyldithiocarbamate
(DMDC) in HEK293 cells. Although no dithiocarbamate-derived E1 adducts
were identified on E1 using shotgun LC/MS/MS for either ziram or DMDC,
both dithiocarbamates significantly decreased E1 activity, with ziram
demonstrating greater potency. Ziram increased intracellular levels
of zinc and copper, DMDC increased intracellular levels of only copper,
and both dithiocarbamates enhanced oxidative injury evidenced by elevated
levels of protein carbonyls and expression of heme oxygenase-1. To
assess the contribution of intracellular copper transport to E1 inhibition,
coincubations were performed with the copper chelator triethylenetetramine
hydrochloride (TET). TET significantly protected E1 activity for both
of the dithiocarbamates and decreased the associated oxidative injury
in HEK293 cells as well as prevented dithiocarbamate-mediated lipid
peroxidation assayed using an ethyl aracidonate micelle system. Because
TET did not completely ameliorate intracellular transport of copper
or zinc for ziram, TET apparently maintained E1 activity through its
ability to diminish dithiocarbamate-mediated oxidative stress. Experiments
to determine the relative contribution of elevated intracellular zinc
and copper were performed using a metal free incubation system and
showed that increases in either metal were sufficient to inhibit E1.
To evaluate the utility of the HEK293 in vitro system for screening
environmental agents, a series of additional pesticides and metals
was assayed, and eight agents that produced a significant decrease
and five that produced a significant increase in activated E1 were
identified. These studies suggest that E1 is a sensitive redox sensor
that can be modulated by exposure to environmental agents and can
regulate downstream cellular processes.
Collapse
Affiliation(s)
- Kathleen E Dennis
- †Department of Pathology, Microbiology and Immunology, ‡Center in Molecular Toxicology, §Vanderbilt Brain Institute, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, Tennessee 37232-2561, United States
| | - William M Valentine
- †Department of Pathology, Microbiology and Immunology, ‡Center in Molecular Toxicology, §Vanderbilt Brain Institute, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, Tennessee 37232-2561, United States
| |
Collapse
|
25
|
Corsetti V, Florenzano F, Atlante A, Bobba A, Ciotti MT, Natale F, Della Valle F, Borreca A, Manca A, Meli G, Ferraina C, Feligioni M, D'Aguanno S, Bussani R, Ammassari-Teule M, Nicolin V, Calissano P, Amadoro G. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease. Hum Mol Genet 2015; 24:3058-81. [PMID: 25687137 DOI: 10.1093/hmg/ddv059] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/10/2015] [Indexed: 01/26/2023] Open
Abstract
Disarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model. Pharmacological or genetic suppression of improper mitophagy, either by inhibition of mitochondrial targeting to autophagosomes or by shRNA-mediated silencing of Parkin or UCHL-1 gene expression, restores synaptic and mitochondrial content providing partial but significant protection against the NH2htau-induced neuronal death. Moreover, in mitochondria from human AD synapses, the endogenous NH2htau is stably associated with Parkin and with UCHL-1. Taken together, our studies show a causative link between the excessive mitochondrial turnover and the NH2htau-induced in vitro neuronal death, suggesting that pathogenetic tau truncation may contribute to synaptic deterioration in AD by aberrant recruitment of Parkin and UCHL-1 to mitochondria making them more prone to detrimental autophagic clearance.
Collapse
Affiliation(s)
- V Corsetti
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy
| | - F Florenzano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Atlante
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - A Bobba
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - M T Ciotti
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Natale
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Della Valle
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Borreca
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Manca
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Meli
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - C Ferraina
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - M Feligioni
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - S D'Aguanno
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - R Bussani
- UCO Pathological Anatomy and Histopathology Unit, Cattinara Hospital Strada di Fiume 447, 34149 Trieste, Italy and
| | - M Ammassari-Teule
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - V Nicolin
- Department of Medical, Surgical and Health Science, University of Trieste, Strada di Fiume 449, 34149 Trieste, Italy
| | - P Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Amadoro
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| |
Collapse
|
26
|
Neves-Carvalho A, Logarinho E, Freitas A, Duarte-Silva S, Costa MDC, Silva-Fernandes A, Martins M, Serra SC, Lopes AT, Paulson HL, Heutink P, Relvas JB, Maciel P. Dominant negative effect of polyglutamine expansion perturbs normal function of ataxin-3 in neuronal cells. Hum Mol Genet 2014; 24:100-17. [PMID: 25143392 DOI: 10.1093/hmg/ddu422] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The physiological function of Ataxin-3 (ATXN3), a deubiquitylase (DUB) involved in Machado-Joseph Disease (MJD), remains elusive. In this study, we demonstrate that ATXN3 is required for neuronal differentiation and for normal cell morphology, cytoskeletal organization, proliferation and survival of SH-SY5Y and PC12 cells. This cellular phenotype is associated with increased proteasomal degradation of α5 integrin subunit (ITGA5) and reduced activation of integrin signalling and is rescued by ITGA5 overexpression. Interestingly, silencing of ATXN3, overexpression of mutant versions of ATXN3 lacking catalytic activity or bearing an expanded polyglutamine (polyQ) tract led to partially overlapping phenotypes. In vivo analysis showed that both Atxn3 knockout and MJD transgenic mice had decreased levels of ITGA5 in the brain. Furthermore, abnormal morphology and reduced branching were observed both in cultured neurons expressing shRNA for ATXN3 and in those obtained from MJD mice. Our results show that ATXN3 rescues ITGA5 from proteasomal degradation in neurons and that polyQ expansion causes a partial loss of this cellular function, resulting in reduced integrin signalling and neuronal cytoskeleton modifications, which may be contributing to neurodegeneration.
Collapse
Affiliation(s)
- Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães and
| | - Elsa Logarinho
- Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - Ana Freitas
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães and
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães and
| | | | - Anabela Silva-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães and
| | - Margarida Martins
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães and
| | - Sofia Cravino Serra
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães and
| | - André T Lopes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães and
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA and
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - João B Relvas
- Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães and
| |
Collapse
|
27
|
Seo YA, Lee S, Hennigar SR, Kelleher SL. Prolactin (PRL)-stimulated ubiquitination of ZnT2 mediates a transient increase in zinc secretion followed by ZnT2 degradation in mammary epithelial cells. J Biol Chem 2014; 289:23653-61. [PMID: 25016022 DOI: 10.1074/jbc.m113.531145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The zinc transporter ZnT2 imports zinc into secretory vesicles and regulates zinc export from the mammary epithelial cell. Mutations in ZnT2 substantially impair zinc secretion into milk. The lactogenic hormone prolactin (PRL) transcriptionally increases ZnT2 expression through the Jak2/STAT5 signaling pathway, increasing zinc accumulation in secretory vesicles and zinc secretion. Herein, we report that PRL post-translationally stimulated ZnT2 ubiquitination, which altered ZnT2 trafficking and augmented vesicular zinc accumulation and secretion from mammary epithelial cells in a transient manner. Ubiquitination then down-regulated zinc secretion by stimulating degradation of ZnT2. Mutagenesis of two N-terminal lysine residues (K4R and K6R) inhibited ZnT2 ubiquitination, vesicular zinc accumulation and secretion, and protein degradation. These findings establish that PRL post-translationally regulates ZnT2-mediated zinc secretion in a multifactorial manner, first by enhancing zinc accumulation in vesicles to transiently enhance zinc secretion and then by activating ubiquitin-dependent ZnT2 degradation. This provides insight into novel mechanisms through which ZnT2 and zinc transport is tightly regulated in mammary epithelial cells.
Collapse
Affiliation(s)
- Young Ah Seo
- the Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Genetics and Complex Diseases and Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Sooyeon Lee
- the Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, and From the Departments of Cell and Molecular Physiology
| | - Stephen R Hennigar
- the Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Shannon L Kelleher
- the Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, and From the Departments of Cell and Molecular Physiology, Pharmacology, and Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
28
|
Bhatnagar S, Soni MS, Wrighton LS, Hebert AS, Zhou AS, Paul PK, Gregg T, Rabaglia ME, Keller MP, Coon JJ, Attie AD. Phosphorylation and degradation of tomosyn-2 de-represses insulin secretion. J Biol Chem 2014; 289:25276-86. [PMID: 25002582 DOI: 10.1074/jbc.m114.575985] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The abundance and functional activity of proteins involved in the formation of the SNARE complex are tightly regulated for efficient exocytosis. Tomosyn proteins are negative regulators of exocytosis. Tomosyn causes an attenuation of insulin secretion by limiting the formation of the SNARE complex. We hypothesized that glucose-dependent stimulation of insulin secretion from β-cells must involve reversing the inhibitory action of tomosyn. Here, we show that glucose increases tomosyn protein turnover. Within 1 h of exposure to 15 mM glucose, ~50% of tomosyn was degraded. The degradation of tomosyn in response to high glucose was blocked by inhibitors of the proteasomal pathway. Using (32)P labeling and mass spectrometry, we showed that tomosyn-2 is phosphorylated in response to high glucose, phorbol esters, and analogs of cAMP, all key insulin secretagogues. We identified 11 phosphorylation sites in tomosyn-2. Site-directed mutagenesis was used to generate phosphomimetic (Ser → Asp) and loss-of-function (Ser → Ala) mutants. The Ser → Asp mutant had enhanced protein turnover compared with the Ser → Ala mutant and wild type tomosyn-2. Additionally, the Ser → Asp tomosyn-2 mutant was ineffective at inhibiting insulin secretion. Using a proteomic screen for tomosyn-2-binding proteins, we identified Hrd-1, an E3-ubiquitin ligase. We showed that tomosyn-2 ubiquitination is increased by Hrd-1, and knockdown of Hrd-1 by short hairpin RNA resulted in increased abundance in tomosyn-2 protein levels. Taken together, our results reveal a mechanism by which enhanced phosphorylation of a negative regulator of secretion, tomosyn-2, in response to insulin secretagogues targets it to degradation by the Hrd-1 E3-ubiquitin ligase.
Collapse
Affiliation(s)
| | | | | | - Alexander S Hebert
- Chemistry and Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | | | | | | | | | | | - Joshua J Coon
- Chemistry and Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | | |
Collapse
|
29
|
Wen S, Schroeter A, Klöcker N. Synaptic plasticity in hepatic encephalopathy - a molecular perspective. Arch Biochem Biophys 2013; 536:183-8. [PMID: 23624147 DOI: 10.1016/j.abb.2013.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 01/04/2023]
Abstract
Hepatic encephalopathy (HE)(1) is a common neuropsychiatric complication of both acute and chronic liver disease. Clinical symptoms may include motor disturbances and cognitive dysfunction. Available animal models of HE mimic the deficits in cognitive performance including the impaired ability to learn and memorize information. This review explores the question how HE might affect cognitive functions at molecular levels. Both acute and chronic models of HE constrain the plasticity of glutamatergic neurotransmission. Thus, long-lasting activity-dependent changes in synaptic efficiency, known as long-term potentiation (LTP) and long-term depression (LTD) are significantly impeded. We discuss molecules and signal transduction pathways of LTP and LTD that are targeted by experimental HE, with a focus on ionotropic glutamate receptors of the AMPA-subtype. Finally, a novel strategy of functional proteomic analysis is presented, which, if applied differentially, may provide molecular insight into disease-related dysfunction of membrane protein complexes, i.e. disturbed ionotropic glutamate receptor signaling in HE.
Collapse
Affiliation(s)
- Shuping Wen
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
30
|
Wang X, Wei MQ, Liu X. Targeting CD83 for the treatment of graft-versus-host disease. Exp Ther Med 2013; 5:1545-1550. [PMID: 23837028 PMCID: PMC3702702 DOI: 10.3892/etm.2013.1033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/22/2013] [Indexed: 01/12/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a common and often fatal complication of bone marrow transplantation. Antigen-presenting cells from donor and recipient play a critical role in the initiation and maintenance of GVHD. CD83, which is expressed in activated lymphocytes and dendritic cells, is regarded as a marker of mature dendritic cells. Targeting CD83 using soluble CD83 molecules or antibodies has been demonstrated to have therapeutic effects against GVHD in preclinical models. Understanding the biological function of CD83 and the underlying mechanisms through which targeting CD83 attenuates GVHD is likely to greatly improve current treatments and provide new methods for the treatment of GVHD.
Collapse
Affiliation(s)
- Xiongfei Wang
- Division of Molecular and Gene Therapies, Griffith Health Institute and School of Medical Science, Griffith University, Gold Coast, Queensland 4222, Australia
| | | | | |
Collapse
|
31
|
Bahuleyan B, Singh S. Olfactory memory impairment in neurodegenerative diseases. J Clin Diagn Res 2012; 6:1437-41. [PMID: 23205370 PMCID: PMC3471510 DOI: 10.7860/jcdr/2012/3408.2382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 07/24/2012] [Indexed: 11/24/2022]
Abstract
Olfactory disorders are noted in a majority of neurodegenerative diseases, but they are often misjudged and are rarely rated in the clinical setting. Severe changes in the olfactory tests are observed in Parkinson's disease. Olfactory deficits are an early feature in Alzheimer's disease and they worsen with the disease progression. Alterations in the olfactory function are also noted after severe head injuries, temporal lobe epilepsy, multiple sclerosis, and migraine. The purpose of the present review was to discuss the available scientific knowledge on the olfactory memory and to relate its impairment with neurodegenerative diseases.
Collapse
Affiliation(s)
- Biju Bahuleyan
- Associate Professor, Department of Physiology, Amala Institute of Medical Sciences, Amala Nagar, Thrissur, Kerala-680 555, India
| | - Satendra Singh
- Assistant Professor, Department of Physiology, University College of Medical Sciences, Delhi-110 095, India
| |
Collapse
|
32
|
Na CH, Jones DR, Yang Y, Wang X, Xu Y, Peng J. Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. J Proteome Res 2012; 11:4722-32. [PMID: 22871113 DOI: 10.1021/pr300536k] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein ubiquitination is an essential post-translational modification regulating neurodevelopment, synaptic plasticity, learning, and memory, and its dysregulation contributes to the pathogenesis of neurological diseases. Here we report a systematic analysis of ubiquitinated proteome (ubiquitome) in rat brain using a newly developed monoclonal antibody that recognizes the diglycine tag on lysine residues in trypsinized peptides (K-GG peptides). Initial antibody specificity analysis showed that the antibody can distinguish K-GG peptides from linear GG peptides or pseudo K-GG peptides derived from iodoacetamide. To evaluate the false discovery rate of K-GG peptide matches during database search, we introduced a null experiment using bacterial lysate that contains no such peptides. The brain ubiquitome was then analyzed by this antibody enrichment with or without strong cation exchange (SCX) prefractionation. During SCX chromatography, although the vast majority of K-GG peptides were detected in the fractions containing at least three positive charged peptides, specific K-GG peptides with two positive charges (e.g., protein N-terminal acetylated and C-terminal non-K/R peptides) were also identified in early fractions. The reliability of C-terminal K-GG peptides was also extensively investigated. Finally, we collected a data set of 1786 K-GG sites on 2064 peptides in 921 proteins and estimated their abundance by spectral counting. The study reveals a wide range of ubiquitination events on key components in presynaptic region (e.g., Bassoon, NSF, SNAP25, synapsin, synaptotagmin, and syntaxin) and postsynaptic density (e.g., PSD-95, GKAP, CaMKII, as well as receptors for NMDA, AMPA, GABA, serotonin, and acetylcholine). We also determined ubiquitination sites on amyloid precursor protein and alpha synuclein that are thought to be causative agents in Alzhermer's and Parkinson's disorders, respectively. As K-GG peptides can also be produced from Nedd8 or ISG15 modified proteins, we quantified these proteins in the brain and found that their levels are less than 2% of ubiquitin. Together, this study demonstrates that a large number of neuronal proteins are modified by ubiquitination and provides a feasible method for profiling the ubiquitome in the brain.
Collapse
Affiliation(s)
- Chan Hyun Na
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
33
|
Brunelli L, Llansola M, Felipo V, Campagna R, Airoldi L, De Paola M, Fanelli R, Mariani A, Mazzoletti M, Pastorelli R. Insight into the neuroproteomics effects of the food-contaminant non-dioxin like polychlorinated biphenyls. J Proteomics 2012; 75:2417-30. [PMID: 22387315 DOI: 10.1016/j.jprot.2012.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 01/20/2023]
Abstract
Recent studies showed that food-contaminant non-dioxin-like polychlorinated biphenyls (NDL-PCBs) congeners (PCB52, PCB138, PCB180) have neurotoxic potential, but the cellular and molecular mechanisms underlying neuronal damage are not entirely known. The aim of this study was to assess whether in-vitro exposure to NDL-PCBs may alter the proteome profile of primary cerebellar neurons in order to expand our knowledge on NDL-PCBs neurotoxicity. Comparison of proteome from unexposed and exposed rat cerebellar neurons was performed using state-of-the-art label-free semi-quantitative mass-spectrometry method. We observed significant changes in the abundance of several proteins, that fall into two main classes: (i) novel targets for both PCB138 and 180, mediating the dysregulation of CREB pathways and ubiquitin-proteasome system; (ii) different congeners-specific targets (alpha-actinin-1 for PCB138; microtubule-associated-protein-2 for PCB180) that might lead to similar deleterious consequences on neurons cytoskeleton organization. Interference of the PCB congeners with synaptic formation was supported by the increased expression of pre- and post-synaptic proteins quantified by western blot and immunocytochemistry. Expression alteration of synaptic markers was confirmed in the cerebellum of rats developmentally exposed to these congeners, suggesting an adaptive response to neurodevelopmental toxicity on brain structures. As such, our work is expected to lead to new insights into the mechanisms of NDL-PCBs neurotoxicity.
Collapse
Affiliation(s)
- Laura Brunelli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The changes of signal transduction pathways in hippocampal regions and postsynaptic densities after chronic cerebral hypoperfusion in rats. Brain Res 2012; 1429:9-17. [DOI: 10.1016/j.brainres.2011.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 11/15/2022]
|
35
|
Dephosphorylation of specific sites in the kinase-specificity sequence domain leads to ubiquitin-mediated degradation of the tyrosine phosphatase STEP. Biochem J 2011; 440:115-25. [PMID: 21777200 DOI: 10.1042/bj20110240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
STEP (striatal-enriched phosphatase) is a non-receptor tyrosine phosphatase that is specifically expressed in the neurons of the central nervous system. STEP regulates the activity of several effector molecules involved in synaptic plasticity and neuronal cell survival, including MAPKs (mitogen-activated protein kinases), Src family kinases and NMDA (N-methyl-D-aspartic acid) receptors. The critical role of STEP in regulating these effectors requires that its activity be tightly regulated. Previous studies have demonstrated that the activity of STEP is regulated through reversible phosphorylation of a serine residue within the KIM (kinase-interacting motif), by cAMP-dependent PKA (protein kinase A). In the present paper we show that STEP is endogenously phosphorylated at two additional sites located within the KISs (kinase-specificity sequences). The basal activity of ERK (extracellular-signal-regulated kinase) and p38 MAPKs plays an important role in the phosphorylation of these two sites. Dephosphorylation of these two sites leads to polyubiquitination and proteolytic degradation of STEP. Conversely, the proteasome inhibitors MG-132 and epoxomicin can stabilize STEP. The active form of STEP is more susceptible to degradation than the inactive form. Taken together the results of the present paper establish that ubiquitin-dependent proteolysis could be a novel mechanism for irreversibly terminating the activity of STEP.
Collapse
|
36
|
Bhattacharyya BJ, Wilson SM, Jung H, Miller RJ. Altered neurotransmitter release machinery in mice deficient for the deubiquitinating enzyme Usp14. Am J Physiol Cell Physiol 2011; 302:C698-708. [PMID: 22075695 DOI: 10.1152/ajpcell.00326.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homozygous ataxic mice (ax(J)) express reduced levels of the deubiquitinating enzyme Usp14. They develop severe tremors by 2-3 wk of age, followed by hindlimb paralysis, and death by 6-8 wk. While changes in the ubiquitin proteasome system often result in the accumulation of ubiquitin protein aggregates and neuronal loss, these pathological markers are not observed in the ax(J) mice. Instead, defects in neurotransmission were observed in both the central and peripheral nervous systems of ax(J) mice. We have now identified several new alterations in peripheral neurotransmission in the ax(J) mice. Using the two-microelectrode voltage clamp technique on diaphragm muscles of ax(J) mice, we observed that under normal neurotransmitter release conditions ax(J) mice lacked paired-pulse facilitation and exhibited a frequency-dependent increase in rundown of the end plate current at high-frequency stimulation (HFS). Combined electrophysiology and styryl dye staining revealed a significant reduction in quantal content during the initial and plateau portions of the HFS train. In addition, uptake of styryl dyes (FM dye) during HFS demonstrated that the size of the readily releasable vesicle pool was significantly reduced. Destaining rates for styryl dyes suggested that ax(J) neuromuscular junctions are unable to mobilize a sufficient number of vesicles during times of intense activity. These results imply that ax(J) nerve terminals are unable to recruit a sufficient number of vesicles to keep pace with physiological rates of transmitter release. Therefore, ubiquitination of synaptic proteins appears to play an important role in the normal operation of the neurotransmitter release machinery and in regulating the size of pools of synaptic vesicles.
Collapse
Affiliation(s)
- Bula J Bhattacharyya
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
37
|
Hogins J, Crawford DC, Jiang X, Mennerick S. Presynaptic silencing is an endogenous neuroprotectant during excitotoxic insults. Neurobiol Dis 2011; 43:516-25. [PMID: 21605675 DOI: 10.1016/j.nbd.2011.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/26/2011] [Accepted: 05/07/2011] [Indexed: 12/20/2022] Open
Abstract
Glutamate release is a root cause of acute and delayed neuronal damage in response to hypoxic/ischemic insults. Nevertheless, therapeutics that target the postsynaptic compartment have been disappointing clinically. Here we explored whether presynaptic silencing (muting) of glutamatergic terminals is sufficient to reduce excitotoxic damage resulting from hypoxia and oxygen/glucose deprivation. Our evidence suggests that strong depolarization, previously shown to mute glutamate synapses, protects neurons by a presynaptic mechanism that is sensitive to inhibition of the proteasome. Postsynaptic Ca2+ rises in response to glutamate application and toxicity in response to exogenous glutamate treatment were unaffected by depolarization preconditioning. These features strongly suggest that reduced glutamate release explains preconditioning protection. We addressed whether hypoxic depolarization itself induces presynaptic silencing, thereby participating in the damage threshold for hypoxic insult. Indeed, we found that the hypoxic insult increased the percentage of mute glutamate synapses in a proteasome-dependent manner. Furthermore, proteasome inhibition exacerbated neuronal loss to mild hypoxia and prevented hypoxia-induced muting. In total our results suggest that presynaptic silencing is an endogenous neuroprotective mechanism that could be exploited to reduce damage from insults involving excess synaptic glutamate release.
Collapse
Affiliation(s)
- Joshua Hogins
- Dept of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
38
|
Fioravante D, Byrne JH. Protein degradation and memory formation. Brain Res Bull 2011; 85:14-20. [PMID: 21078374 PMCID: PMC3079012 DOI: 10.1016/j.brainresbull.2010.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/21/2010] [Accepted: 11/03/2010] [Indexed: 11/16/2022]
Abstract
Long-term memories are created when labile short-term memory traces are converted to more enduring forms. This process, called consolidation, is associated with changes in the synthesis of proteins that alter the biophysical properties of neurons and the strength of their synaptic connections. Recently, it has become clear that the consolidation process requires not only protein synthesis but also degradation. Here, we discuss recent findings on the roles of ubiquitination and protein degradation in synaptic plasticity and learning and memory.
Collapse
Affiliation(s)
| | - John H. Byrne
- Dept. Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston TX 77030
| |
Collapse
|
39
|
Marshall J, Blair LAC, Singer JD. BTB-Kelch proteins and ubiquitination of kainate receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 717:115-25. [PMID: 21713671 DOI: 10.1007/978-1-4419-9557-5_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kainate receptors (KAR) form a class of glutamate receptors that have been implicated in epilepsy, stroke, Alzheimer's and neuropathic pain.1 KAR subtypes are known to be segregated to specific locations within neurons and play significant roles in synaptic transmission and plasticity.2 Increasing evidence suggests a the role for ubiqutination in regulating the number of synaptic neurotransmitter receptors.3-5 The ubiquitin pathway consists of activation (E1), conjugation (E2) and ligation (E3). Cullins form the largest family of E3 ligase complexes. We have recently shown that the BTB/Kelch domain proteins, actinfilin and mayven, bind both Cul3 and specific KAR subtypes (GluR6 and GluR5-2b) to target these KARs for ubiquitination and degradation.5 In this chapter we will review how these interactions occur, what they mean for the stability of KARs and their associated proteins and how, in turn, they may affect synaptic functions in the central nervous system.
Collapse
Affiliation(s)
- John Marshall
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
40
|
Abstract
Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for degradation by a multisubunit complex called the proteasome. Linkage of ubiquitin to protein substrates is highly specific and occurs through a series of well-orchestrated enzymatic steps. The UPP regulates neurotransmitter receptors, protein kinases, synaptic proteins, transcription factors, and other molecules critical for synaptic plasticity. Accumulating evidence indicates that the operation of the UPP in neurons is not homogeneous and is subject to tightly managed local regulation in different neuronal subcompartments. Investigations on both invertebrate and vertebrate model systems have revealed local roles for enzymes that attach ubiquitin to substrate proteins, as well as for enzymes that remove ubiquitin from substrates. The proteasome also has been shown to possess disparate functions in different parts of the neuron. Here I give a broad overview of the role of the UPP in synaptic plasticity and highlight the local roles and regulation of the proteolytic pathway in neurons.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
41
|
Ubiquitination acutely regulates presynaptic neurotransmitter release in mammalian neurons. J Neurosci 2010; 30:3157-66. [PMID: 20203175 DOI: 10.1523/jneurosci.3712-09.2010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ubiquitin proteasome system (UPS) plays a crucial role in modulating synaptic physiology both presynaptically and postsynaptically, but the regulatory mechanisms remain obscure. To determine acute effects of proteasome inhibition on neurotransmission, we performed whole-cell voltage-clamp recordings from cultured rodent hippocampal neurons. We find that proteasome inhibitors induce a strikingly fast, severalfold increase in the frequency of both miniature (mini) and spontaneous synaptic currents at excitatory and inhibitory synapses. The lack of change in mini amplitude and kinetics indicates a presynaptic site of action. This effect does not depend on increased levels of presynaptic proteins, previously suggested as proteasomal targets. Furthermore, blockade of the UPS using E1-activating enzyme inhibitors also increases mini frequency, demonstrating that accumulation of ubiquitinated proteins is not required. Overall, these data suggest that the UPS not only orchestrates protein turnover, but also dynamically regulates the activity state of presynaptic proteins, thus crucially shaping synaptic transmission.
Collapse
|
42
|
Castro-Dias E, Vieira AS, Werneck CC, Langone F, Novello JC, Martins-de-Souza D. Proteome analysis of lumbar spinal cord from rats submitted to peripheral lesion during neonatal period. J Neural Transm (Vienna) 2010; 117:689-93. [DOI: 10.1007/s00702-010-0403-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/26/2010] [Indexed: 12/14/2022]
|
43
|
Association study of ubiquitin-specific peptidase 46 (USP46) with bipolar disorder and schizophrenia in a Japanese population. J Hum Genet 2010; 55:133-6. [PMID: 20111060 DOI: 10.1038/jhg.2009.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently, ubiquitin-specific peptidase 46 (Usp46) has been identified as a quantitative trait gene responsible for immobility in the tail suspension test and forced swimming test in mice. Mice with 3-bp deletion in Usp46 exhibited loss of 'behavioral despair' under inescapable stresses in addition to abnormalities in circadian behavioral rhythms and the GABAergic system. Considering the face and construct validity as an animal model for bipolar disorder, we explored an association of USP46 and bipolar disorder in a Japanese population. We also examined an association of USP46 and schizophrenia. We found nominal evidence for an association of rs12646800 and schizophrenia. This association was not significant after correction for multiple testing. No significant association was detected for bipolar disorder. In conclusion, our data argue against the presence of any strong genetic susceptibility factors for bipolar disorder or schizophrenia in the region USP46.
Collapse
|
44
|
Horch HW, McCarthy SS, Johansen SL, Harris JM. Differential gene expression during compensatory sprouting of dendrites in the auditory system of the cricket Gryllus bimaculatus. INSECT MOLECULAR BIOLOGY 2009; 18:483-96. [PMID: 19453768 PMCID: PMC3551613 DOI: 10.1111/j.1365-2583.2009.00891.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Neurones that lose their presynaptic partners because of injury usually retract or die. However, when the auditory interneurones of the cricket Gryllus bimaculatus are denervated, dendrites respond by growing across the midline and forming novel synapses with the opposite auditory afferents. Suppression subtractive hybridization was used to detect transcriptional changes 3 days after denervation. This is a stage at which we demonstrate robust compensatory dendritic sprouting. Whereas 49 unique candidates were down-regulated, no sufficiently up-regulated candidates were identified at this time point. Several candidates identified in this study are known to influence the translation and degradation of proteins in other systems. The potential role of these factors in the compensatory sprouting of cricket auditory interneurones in response to denervation is discussed.
Collapse
Affiliation(s)
- H W Horch
- Bowdoin College, Department of Biology and Neuroscience, Brunswick, ME 04011, USA.
| | | | | | | |
Collapse
|
45
|
Think locally: control of ubiquitin-dependent protein degradation in neurons. EMBO Rep 2008; 10:44-50. [PMID: 19079132 DOI: 10.1038/embor.2008.229] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 11/13/2008] [Indexed: 11/08/2022] Open
Abstract
The nervous system coordinates many aspects of body function such as learning, memory, behaviour and locomotion. Therefore, it must develop and maintain an intricate network of differentiated neuronal cells, which communicate efficiently with each other and with non-neuronal target cells. Unlike most somatic cells, differentiated neurons are post-mitotic and characterized by a highly polarized morphology that determines the flow of information. Among other post-translational modifications, the ubiquitination of specific protein substrates was recently shown to have a crucial role in the regulation of neuronal development and differentiation. Here, we review recent findings that illustrate the mechanisms that mediate the temporal and spatial control of neuronal protein turnover by the ubiquitin-proteasome system (UPS), which is crucial for the development and function of the nervous system.
Collapse
|
46
|
Tai HC, Schuman EM. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci 2008; 9:826-38. [PMID: 18931696 DOI: 10.1038/nrn2499] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic protein degradation by the proteasome and the lysosome is a dynamic and complex process in which ubiquitin has a key regulatory role. The distinctive morphology of the postmitotic neuron creates unique challenges for protein degradation systems with respect to cell-surface protein turnover and substrate delivery to proteolytic machineries that are required for both synaptic plasticity and self-renewal. Moreover, the discovery of ubiquitin-positive protein aggregates in a wide spectrum of neurodegenerative diseases underlines the importance and vulnerability of the degradative system in neurons. In this article, we discuss the molecular mechanism of protein degradation in the neuron with respect to both its function and its dysfunction.
Collapse
Affiliation(s)
- Hwan-Ching Tai
- Division of Chemistry of Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
47
|
Fioravante D, Liu RY, Byrne JH. The ubiquitin-proteasome system is necessary for long-term synaptic depression in Aplysia. J Neurosci 2008; 28:10245-56. [PMID: 18842884 PMCID: PMC2571080 DOI: 10.1523/jneurosci.2139-08.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/20/2008] [Accepted: 08/05/2008] [Indexed: 01/24/2023] Open
Abstract
The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.
Collapse
Affiliation(s)
- Diasinou Fioravante
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030
| | - Rong-Yu Liu
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030
| | - John H. Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030
| |
Collapse
|
48
|
Sunyer B, Diao W, Lubec G. The role of post-translational modifications for learning and memory formation. Electrophoresis 2008; 29:2593-602. [PMID: 18494028 DOI: 10.1002/elps.200700791] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Learning and memory depend on molecular mechanisms involving the protein machinery. Recent evidence proposes that post-translational modifications (PTMs) play a major role in these cognitive processes. PTMs including phosphorylation of serine, threonine, and tyrosine are already well-documented to play a role for synaptic plasticity of the brain, neurotransmitter release, vesicle trafficking and synaptosomal or synaptosomal-associated proteins are substrates of a series of specific protein kinases and their counterparts, protein phosphatases. But protein phosphorylation is only one out of many possible PTMs and first work shows a role of palmitoylation as well as glycosylation for proteins involved in memory formation. Recent technology may now allow reliable detection and even quantification of PTMs of proteins involved in the cognitive system. This will contribute to the understanding of mechanisms for learning and memory formation at the chemical level and has to complement determination of protein levels and indeed determination of protein expression per se generates limited information. The many other PTMs expected including protein nitrosylation and alkylation will even represent targets for pharmacological interventions but in turn increase the complexity of the system. Nevertheless, determination of the presence and the function of PTMs is mandatory and promising cognitive research at the protein chemical level.
Collapse
Affiliation(s)
- Berta Sunyer
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
49
|
Dong C, Upadhya SC, Ding L, Smith TK, Hegde AN. Proteasome inhibition enhances the induction and impairs the maintenance of late-phase long-term potentiation. Learn Mem 2008; 15:335-47. [PMID: 18441292 PMCID: PMC2364605 DOI: 10.1101/lm.984508] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 03/20/2008] [Indexed: 01/21/2023]
Abstract
Protein degradation by the ubiquitin-proteasome pathway plays important roles in synaptic plasticity, but the molecular mechanisms by which proteolysis regulates synaptic strength are not well understood. We investigated the role of the proteasome in hippocampal late-phase long-term potentiation (L-LTP), a model for enduring synaptic plasticity. We show here that inhibition of the proteasome enhances the induction of L-LTP, but inhibits its maintenance. Proteasome inhibitor-mediated enhancement of the early part of L-LTP requires activation of NMDA receptors and the cAMP-dependent protein kinase. Augmentation of L-LTP induction by proteasome inhibition is blocked by a protein synthesis inhibitor anisomycin and is sensitive to the drug rapamycin. Our findings indicate that proteasome inhibition increases the induction of L-LTP by stabilizing locally translated proteins in dendrites. In addition, our data show that inhibition of the proteasome blocks transcription of brain-derived neurotrophic factor (BDNF), which is a cAMP-responsive element-binding protein (CREB)-inducible gene. Furthermore, our results demonstrate that the proteasome inhibitors block degradation of ATF4, a CREB repressor. Thus, proteasome inhibition appears to hinder CREB-mediated transcription. Our results indicate that blockade of proteasome activity obstructs the maintenance of L-LTP by interfering with transcription as well as translation required to sustain L-LTP. Thus, proteasome-mediated proteolysis has different roles during the induction and the maintenance of L-LTP.
Collapse
Affiliation(s)
- Chenghai Dong
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Sudarshan C. Upadhya
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Lan Ding
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Thuy K. Smith
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Ashok N. Hegde
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
50
|
Kaplow ME, Mannava LJ, Pimentel AC, Fermin HA, Hyatt VJ, Lee JJ, Venkatesh TR. A genetic modifier screen identifies multiple genes that interact with Drosophila Rap/Fzr and suggests novel cellular roles. J Neurogenet 2008; 21:105-51. [PMID: 17849284 DOI: 10.1080/01677060701503140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the developing Drosophila eye, Rap/Fzr plays a critical role in neural patterning by regulating the timely exit of precursor cells. Rap/Fzr (Retina aberrant in pattern/Fizzy related) is an activator of the E3 Ubiquitin ligase, the APC (Anaphase Promoting Complex-cyclosome) that facilitates the stage specific proteolytic destruction of mitotic regulators, such as cyclins and cyclin-dependent kinases. To identify novel functional roles of Rap/Fzr, we conducted an F(1) genetic modifier screen to identify genes which interact with the partial-loss-function mutations in rap/fzr. We screened 2741 single P-element, lethal insertion lines and piggyBac lines on the second and third chromosome for dominant enhancers and suppressors of the rough eye phenotype of rap/fzr. From this screen, we have identified 40 genes that exhibit dosage-sensitive interactions with rap/fzr; of these, 31 have previously characterized cellular functions. Seven of the modifiers identified in this study are regulators of cell cycle progression with previously known interactions with rap/fzr. Among the remaining modifiers, 27 encode proteins involved in other cellular functions not directly related to cell-cycle progression. The newly identified variants fall into at least three groups based on their previously known cellular functions: transcriptional regulation, regulated proteolysis, and signal transduction. These results suggest that, in addition to cell cycle regulation, rap/fzr regulates ubiquitin-ligase-mediated protein degradation in the developing nervous system as well as in other tissues.
Collapse
Affiliation(s)
- Margarita E Kaplow
- Department of Biology, City College and The Graduate Center, City University of New York, New York, NY 10031, USA
| | | | | | | | | | | | | |
Collapse
|