1
|
Lloret MJ, Fusaro M, Jørgensen HS, Haarhaus M, Gifre L, Alfieri CM, Massó E, D'Marco L, Evenepoel P, Bover J. Evaluating Osteoporosis in Chronic Kidney Disease: Both Bone Quantity and Quality Matter. J Clin Med 2024; 13:1010. [PMID: 38398323 PMCID: PMC10889712 DOI: 10.3390/jcm13041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Bone strength is determined not only by bone quantity [bone mineral density (BMD)] but also by bone quality, including matrix composition, collagen fiber arrangement, microarchitecture, geometry, mineralization, and bone turnover, among others. These aspects influence elasticity, the load-bearing and repair capacity of bone, and microcrack propagation and are thus key to fractures and their avoidance. In chronic kidney disease (CKD)-associated osteoporosis, factors traditionally associated with a lower bone mass (advanced age or hypogonadism) often coexist with non-traditional factors specific to CKD (uremic toxins or renal osteodystrophy, among others), which will have an impact on bone quality. The gold standard for measuring BMD is dual-energy X-ray absorptiometry, which is widely accepted in the general population and is also capable of predicting fracture risk in CKD. Nevertheless, a significant number of fractures occur in the absence of densitometric World Health Organization (WHO) criteria for osteoporosis, suggesting that methods that also evaluate bone quality need to be considered in order to achieve a comprehensive assessment of fracture risk. The techniques for measuring bone quality are limited by their high cost or invasive nature, which has prevented their implementation in clinical practice. A bone biopsy, high-resolution peripheral quantitative computed tomography, and impact microindentation are some of the methods established to assess bone quality. Herein, we review the current evidence in the literature with the aim of exploring the factors that affect both bone quality and bone quantity in CKD and describing available techniques to assess them.
Collapse
Affiliation(s)
- Maria J Lloret
- Nephrology Department, Fundació Puigvert, Cartagena 340-350, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR-Sant-Pau), 08025 Barcelona, Spain
| | - Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy
- Department of Medicine, University of Padua, 35128 Padua, Italy
| | - Hanne S Jørgensen
- Institute of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Nephrology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Mathias Haarhaus
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
- Diaverum AB, Hyllie Boulevard 53, 215 37 Malmö, Sweden
| | - Laia Gifre
- Rheumatology Department, University Hospital Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08193 Badalona, Spain
| | - Carlo M Alfieri
- Unit of Nephrology Dialysis and Renal Transplantation Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Elisabet Massó
- Nephrology Department, University Hospital Germans Trias I Pujol, REMAR-IGTP Group, Research Institute Germans Trias I Pujol (IGTP), Universitat Autònoma de Barcelona, 08193 Badalona, Spain
| | - Luis D'Marco
- Grupo de Investigación en Enfermedades Cardiorenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Jordi Bover
- Nephrology Department, University Hospital Germans Trias I Pujol, REMAR-IGTP Group, Research Institute Germans Trias I Pujol (IGTP), Universitat Autònoma de Barcelona, 08193 Badalona, Spain
| |
Collapse
|
2
|
Mao W, Bui HTD, Cho W, Yoo HS. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Adv Drug Deliv Rev 2023; 201:115074. [PMID: 37619771 DOI: 10.1016/j.addr.2023.115074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Spectroscopic techniques for monitoring stem cell and organoid proliferation have gained significant attention in therapeutic development. Spectroscopic techniques such as fluorescence, Raman spectroscopy, and infrared spectroscopy offer noninvasive and real-time monitoring of biochemical and biophysical changes that occur during stem cell and organoid proliferation. These techniques provide valuable insight into the underlying mechanisms of action of potential therapeutic agents, allowing for improved drug discovery and screening. This review highlights the importance of spectroscopic monitoring of stem cell and organoid proliferation and its potential impact on therapeutic development. Furthermore, this review discusses recent advances in spectroscopic techniques and their applications in stem cell and organoid research. Overall, this review emphasizes the importance of spectroscopic techniques as valuable tools for studying stem cell and organoid proliferation and their potential to revolutionize therapeutic development in the future.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanho Cho
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institue of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
3
|
Fusaro M, Pereira L, Bover J. Current and Emerging Markers and Tools Used in the Diagnosis and Management of Chronic Kidney Disease-Mineral and Bone Disorder in Non-Dialysis Adult Patients. J Clin Med 2023; 12:6306. [PMID: 37834950 PMCID: PMC10573159 DOI: 10.3390/jcm12196306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Chronic kidney disease (CKD) is a significant public health concern associated with significant morbidity and has become one of the foremost global causes of death in recent years. A frequent comorbidity of CKD is secondary hyperparathyroidism (SHPT), exemplified by high serum parathyroid hormone (PTH) levels. The mineral metabolism disturbances resulting from CKD and progression to SHPT are currently considered part of the definition of chronic kidney disease-mineral and bone disorder (CKD-MBD). However, CKD-MBD does not only include abnormalities in laboratory-measured parameters; it is a complex condition characterized by dysregulation of bone turnover, mineralization, growth and strength, accompanied by vascular or another soft-tissue calcification. Together, this increases the risk of bone fractures, cardiovascular disease, and overall mortality in CKD-MBD patients. Monitoring serum markers is essential in diagnosing SHPT and CKD-MBD, and there are several recognized indicators for prognosis, optimal clinical management and treatment response in late-stage kidney disease patients receiving dialysis. However, far fewer markers have been established for patients with non-dialysis CKD. This review provides an overview of current and emerging markers and tools used in the diagnosis and management of CKD-MBD in non-dialysis adult patients.
Collapse
Affiliation(s)
- Maria Fusaro
- National Research Council (CNR)—Institute of Clinical Physiology (IFC), Via G. Moruzzi 1, 56124 Pisa, Italy
- Department of Medicine, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Luciano Pereira
- Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- INEB—National Institute of Biomedical Engineering, University of Porto, 4150-180 Porto, Portugal
- DaVita Kidney Care, 4200-448 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-250 Porto, Portugal
| | - Jordi Bover
- Nephrology Department, University Hospital Germans Trias i Pujol (HGiTP), 08916 Barcelona, Spain
| |
Collapse
|
4
|
Williams MJ, White SC, Joseph Z, Hruska KA. Updates in the chronic kidney disease-mineral bone disorder show the role of osteocytic proteins, a potential mechanism of the bone-Vascular paradox, a therapeutic target, and a biomarker. Front Physiol 2023; 14:1120308. [PMID: 36776982 PMCID: PMC9909112 DOI: 10.3389/fphys.2023.1120308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The chronic kidney disease-mineral bone disorder (CKD-MBD) is a complex multi-component syndrome occurring during kidney disease and its progression. Here, we update progress in the components of the syndrome, and synthesize recent investigations, which suggest a potential mechanism of the bone-vascular paradox. The discovery that calcified arteries in chronic kidney disease inhibit bone remodeling lead to the identification of factors produced by the vasculature that inhibit the skeleton, thus providing a potential explanation for the bone-vascular paradox. Among the factors produced by calcifying arteries, sclerostin secretion is especially enlightening. Sclerostin is a potent inhibitor of bone remodeling and an osteocyte specific protein. Its production by the vasculature in chronic kidney disease identifies the key role of vascular cell osteoblastic/osteocytic transdifferentiation in vascular calcification and renal osteodystrophy. Subsequent studies showing that inhibition of sclerostin activity by a monoclonal antibody improved bone remodeling as expected, but stimulated vascular calcification, demonstrate that vascular sclerostin functions to brake the Wnt stimulation of the calcification milieu. Thus, the target of therapy in the chronic kidney disease-mineral bone disorder is not inhibition of sclerostin function, which would intensify vascular calcification. Rather, decreasing sclerostin production by decreasing the vascular osteoblastic/osteocytic transdifferentiation is the goal. This might decrease vascular calcification, decrease vascular stiffness, decrease cardiac hypertrophy, decrease sclerostin production, reduce serum sclerostin and improve skeletal remodeling. Thus, the therapeutic target of the chronic kidney disease-mineral bone disorder may be vascular osteoblastic transdifferentiation, and sclerostin levels may be a useful biomarker for the diagnosis of the chronic kidney disease-mineral bone disorder and the progress of its therapy.
Collapse
Affiliation(s)
- Matthew J. Williams
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Sarah C. White
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Zachary Joseph
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Keith A. Hruska
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
- Departments of Medicine and Cell Biology, Washington University, Saint Louis, MO, United States
| |
Collapse
|
5
|
Nagy E, Sobh MM, Abdalbary M, Elnagar S, Elrefaey R, Shabaka S, Elshabrawy N, Shemies R, Tawfik M, Santos CGS, Barreto FC, El-Husseini A. Is Adynamic Bone Always a Disease? Lessons from Patients with Chronic Kidney Disease. J Clin Med 2022; 11:jcm11237130. [PMID: 36498703 PMCID: PMC9736225 DOI: 10.3390/jcm11237130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Renal osteodystrophy (ROD) is a common complication of end-stage kidney disease that often starts early with loss of kidney function, and it is considered an integral part in management of patients with chronic kidney disease (CKD). Adynamic bone (ADB) is characterized by suppressed bone formation, low cellularity, and thin osteoid seams. There is accumulating evidence supporting increasing prevalence of ADB, particularly in early CKD. Contemporarily, it is not very clear whether it represents a true disease, an adaptive mechanism to prevent bone resorption, or just a transitional stage. Several co-players are incriminated in its pathogenesis, such as age, diabetes mellitus, malnutrition, uremic milieu, and iatrogenic factors. In the present review, we will discuss the up-to-date knowledge of the ADB and focus on its impact on bone health, fracture risk, vascular calcification, and long-term survival. Moreover, we will emphasize the proper preventive and management strategies of ADB that are pivotal issues in managing patients with CKD. It is still unclear whether ADB is always a pathologic condition or whether it can represent an adaptive process to suppress bone resorption and further bone loss. In this article, we tried to discuss this hard topic based on the available limited information in patients with CKD. More studies are needed to be able to clearly address this frequent ROD finding.
Collapse
Affiliation(s)
- Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud M. Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Rabab Elrefaey
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Shimaa Shabaka
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Nehal Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Rasha Shemies
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Mona Tawfik
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt
| | - Cássia Gomes S. Santos
- Department of Internal Medicine, Division of Nephrology, Federal University of Paraná, Curitiba 80060-00, PR, Brazil
| | - Fellype C. Barreto
- Department of Internal Medicine, Division of Nephrology, Federal University of Paraná, Curitiba 80060-00, PR, Brazil
| | - Amr El-Husseini
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40536-0298, USA
- Correspondence: ; Tel.: +1-859-218-0934; Fax: +1-859-323-0232
| |
Collapse
|
6
|
McGuigan FE, Malmgren L. Bone health as a co-morbidity of chronic kidney disease. Best Pract Res Clin Rheumatol 2022; 36:101760. [PMID: 35718689 DOI: 10.1016/j.berh.2022.101760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease and osteoporosis commonly co-exist in aged patients. Chronic kidney disease affects bone health because of its effect on mineral metabolism in the syndrome, Chronic Kidney Disease Mineral and Bone Disorder, resulting in an increased risk of fractures. Hip fracture risk may be as much as four-fold higher in the worst affected. Tools to estimate fracture risk such as FRAX® and measuring bone density can be used in patients with chronic kidney disease; however, bone density may underestimate fracture risk in this population as it does not give information on bone quality. While osteoporosis treatment in patients with chronic kidney disease stage 1-3 does not differ from the general population, in the absence of Chronic Kidney Disease Mineral and Bone Disorder, patients with disease stage 4-5 require special consideration. It is, however, of the utmost importance that these patients receive pharmacological treatment because of their high risk of fractures.
Collapse
Affiliation(s)
- Fiona E McGuigan
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden.
| | - Linnea Malmgren
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Department of Geriatrics, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
7
|
Hou YC, Zheng CM, Chiu HW, Liu WC, Lu KC, Lu CL. Role of Calcimimetics in Treating Bone and Mineral Disorders Related to Chronic Kidney Disease. Pharmaceuticals (Basel) 2022; 15:952. [PMID: 36015101 PMCID: PMC9415417 DOI: 10.3390/ph15080952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/17/2022] Open
Abstract
Renal osteodystrophy is common in patients with chronic kidney disease and end-stage renal disease and leads to the risks of fracture and extraosseous vascular calcification. Secondary hyperparathyroidism (SHPT) is characterized by a compensatory increase in parathyroid hormone (PTH) secretion in response to decreased renal phosphate excretion, resulting in potentiating bone resorption and decreased bone quantity and quality. Calcium-sensing receptors (CaSRs) are group C G-proteins and negatively regulate the parathyroid glands through (1) increasing CaSR insertion within the plasma membrane, (2) increasing 1,25-dihydroxy vitamin D3 within the kidney and parathyroid glands, (3) inhibiting fibroblast growth factor 23 (FGF23) in osteocytes, and (4) attenuating intestinal calcium absorption through Transient Receptor Potential Vanilloid subfamily member 6 (TRPV6). Calcimimetics (CaMs) decrease PTH concentrations without elevating the serum calcium levels or extraosseous calcification through direct interaction with cell membrane CaSRs. CaMs reduce osteoclast activity by reducing stress-induced oxidative autophagy and improving Wnt-10b release, which promotes the growth of osteoblasts and subsequent mineralization. CaMs also directly promote osteoblast proliferation and survival. Consequently, bone quality may improve due to decreased bone resorption and improved bone formation. CaMs modulate cardiovascular fibrosis, calcification, and renal fibrosis through different mechanisms. Therefore, CaMs assist in treating SHPT. This narrative review focuses on the role of CaMs in renal osteodystrophy, including their mechanisms and clinical efficacy.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan;
- TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan;
| | - Hui-Wen Chiu
- TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 11031, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan;
- Section of Nephrology, Department of Medicine, Antai Medical Care Corporation, Anti Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, School of Medicine, Buddhist Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| |
Collapse
|
8
|
Pichone A, Gomes CP, Lima LFC, Moreira CA, Paranhos-Neto FDP, Madeira M, Lopes RT, Farias MLF, Leite Jr. M. Assessment of trabecular and cortical parameters using high-resolution peripheral quantitative computed tomography, histomorphometry and microCT of iliac crest bone core in hemodialysis patients. Bone Rep 2022; 16:101173. [PMID: 35198659 PMCID: PMC8850668 DOI: 10.1016/j.bonr.2022.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Patients with end-stage renal disease develop changes in bone quality and quantity, which can be assessed using different methods. This study aimed to compare and to correlate bone parameters obtained in vivo using high-resolution peripheral quantitative computed tomography (HR-pQCT) with those obtained by bone biopsy using histomorphometry and microcomputed tomography (microCT) analysis of the iliac crest core, and to evaluate if HR-pQCT is helpful in aiding with categorization of those with high turnover. Twenty hemodialysis patients, 13 females (7 postmenopausal), underwent bone biopsy from 2018 to 2020. The mean age was 48.5 ± 10.6 years, and the mean hemodialysis vintage was 15 years. Histomorphometry identified mineralization defects, low turnover, and high turnover in 65%, 45%, and 35% of the patients, respectively. The highest values of trabecular bone volume (BV/TV) were obtained by histomorphometry, while the highest values of cortical thickness (Ct.Th) were obtained by HR-pQCT at the distal tibia. Moderate correlations were found between BV/TV values obtained by microCT of the bone core and HR-pQCT at the distal radius (r = 0.531, p = 0.016) and at the distal tibia (r = 0.536, p = 0.015). BV/TV values obtained from the bone core by histomorphometry and microCT were also significantly correlated (r = 0.475, p = 0.04). Regarding Ct.Th, there was a strong correlation between the radius and tibia HR-pQCT (r = 0.800, p < 0.001), between bone core microCT and the distal radius HR-pQCT (r = 0.610, p < 0.01), as between histomorphometry and microCT (r = 0.899, p < 0.01). In groups classified by bone turnover, patients with high turnover presented lower BV/TV, Tb.N, Tb.Th, and Ct.Th than those with low turnover in peripheral sites using HR-pQCT. By this method, it was possible to identify low turnover from tibia BV/TV > 12,4% plus Tb.Sp ≤ 0.667 mm (AUC 0.810, 95% CI 0.575 to 0.948) and high turnover from total bone mineral density (BMD) ≤ 154.2 mg HA/cm3 (AUC 0.860, 95% CI 0.633 to 0.982, p < 0.001) and cortical BMD ≤ 691.6 mg HA/cm3 (AUC 0.840, 95% CI 0.609 to 0.963, p < 0.001). In conclusion, HR-pQCT had significant correlation with iliac crest bone in BV/TV and Ct.Th, which are known to provide bone strength. This method is quick and non-invasive and may be helpful in categorizing those with high versus low turnover in hemodialysis patients. Bone structure in hemodialysis patients can be assessed using different methods. There was correlation of BV/TV and Ct.Th between histomorphometry and bone core microCT. BV/TV and Ct.Th values obtained by radius HR-pQCT and bone core microCT were correlated. High turnover patients had lower BV/TV, Tb.N, Tb.Th, and Ct.Th by HR-pQCT. HR-pQCT was able to discriminate low and high turnover in hemodialysis patients.
Collapse
Affiliation(s)
- Alinie Pichone
- Division of Nephrology, HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Corresponding author at: Hospital Universitario Clementino Fraga Filho – Universidade Federal do Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco, 255/Serviço de nefrologia - sétimo andar, Rio de Janeiro, RJ 21941-617, Brazil.
| | - Carlos Perez Gomes
- Division of Nephrology, HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Felipe Cardoso Lima
- Laboratory of Nuclear Instrumentation, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Aguiar Moreira
- Division of Endocrinology (SEMPR), Internal Medicine Department of Federal University of Parana & Academic Research Center of Pro Renal Institute, Curitiba, Brazil
| | | | - Miguel Madeira
- Division of Endocrinology, HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Tadeu Lopes
- Laboratory of Nuclear Instrumentation, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maurilo Leite Jr.
- Division of Nephrology, HUCFF, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Swallow EA, Metzger CE, Chen NX, Wallace JM, Tippen SP, Kohler R, Moe SM, Allen MR. Cortical porosity is elevated after a single dose of zoledronate in two rodent models of chronic kidney disease. Bone Rep 2022; 16:101174. [PMID: 35252482 PMCID: PMC8891946 DOI: 10.1016/j.bonr.2022.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Patients with chronic kidney disease (CKD) have high risk of fracture in part due to cortical bone deterioration. The goal of this study was to assess the impact of two different bisphosphonates and dosing regimens on cortical microstructure (porosity, thickness, area) and bone mechanical properties in animal models of CKD. METHODS In experiment 1, Male Cy/+ (CKD) rats were treated with either a single dose or ten fractionated doses of zoledronate at 18 weeks of age. Fractionated animals received 1/10th of single dose given weekly for 10 weeks, with study endpoint at 28 weeks of age. In experiment 2, male C57Bl/6 J mice were given dietary adenine (0.2%) to induce CKD. Bisphosphonate treated groups were given either a single dose of zoledronate or weekly risedronate injections for 4 weeks. Cortical microstructure was assessed via μCT and mechanical parameters evaluated by monotonic bending tests. RESULTS Exp 1: CKD rats had higher blood urea nitrogen (BUN) and parathyroid hormone (PTH) compared to NL littermate controls. Single dose zoledronate had significantly higher cortical porosity in CKD S.Zol (2.29%) compared to NL control (0.04%) and untreated CKD (0.14%) (p = 0.004). Exp 2: All adenine groups had significantly higher BUN and PTH compared to control mice. Mice treated with single dose zoledronate (Ad + Zol) had the highest porosity (~6%), which was significantly higher compared to either Ad or Ad + Ris (~3%; p < 0.0001) and control mice had the lowest cortical porosity (0.35%). In both experiments, mechanics were minimally affected by any bisphosphonate dosing regimen. CONCLUSION A single dose of zoledronate leads to higher cortical porosity compared to more frequent dosing of bisphosphonates (fractionated zoledronate or risedronate). Bisphosphonate treatment demonstrated limited effectiveness in preventing cortical bone microstructure deterioration with mechanical parameters remaining compromised due to CKD and/or secondary hyperparathyroidism irrespective of bisphosphonate treatment.
Collapse
Affiliation(s)
- Elizabeth A. Swallow
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Corinne E. Metzger
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Neal X. Chen
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Samantha P. Tippen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Sharon M. Moe
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| |
Collapse
|
10
|
Bionic Design of the Vertical Bracket of Wide Angle Auroral Imager by Additive Manufacturing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the aerospace field, lightweight design is a never-ending pursuit. By integrating structural bionics and structural optimization, the vertical bracket of a wide angle auroral imager is designed and manufactured by additive manufacturing technology in this work. Initially, the classical topology optimization is utilized for the vertical bracket to find the optimal material layout and primary load carrying paths. Drawing on the width-to-diameter ratio and the bone mineral density distribution of human femur, the vertical support is designed as a bionic structure with a solid middle section and thin wall in other parts. Afterwards, size optimization is maintained for the bionic design model to obtain the optimal model. The simulation results show that the three-way eigenfrequencies of bionic optimized structure are 320 Hz, 303 Hz, and 765 Hz, respectively, which are closely approximate to the original structure. However, the mass of bionic optimized structure is reduced by 23%. Benefiting from Selective laser melting, the complex optimized design can be rapidly manufactured. The three-way eigenfrequencies of the optimized structure measured by the 0.2 g sweep tests are 307 Hz, 292 Hz, and 736 Hz, respectively. The vibration test of bionic optimized structure verifies the accuracy of the simulation results. This study indicates that the combination of structural bionics and structural optimization provides a powerful tool kit to the design of similar support structure for space applications.
Collapse
|
11
|
Gupta M, Orozco G, Rao M, Gedaly R, Malluche HH, Neyra JA. The Role of Alterations in Alpha-Klotho and FGF-23 in Kidney Transplantation and Kidney Donation. Front Med (Lausanne) 2022; 9:803016. [PMID: 35602513 PMCID: PMC9121872 DOI: 10.3389/fmed.2022.803016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease and mineral bone disorders are major contributors to morbidity and mortality among patients with chronic kidney disease and often persist after renal transplantation. Ongoing hormonal imbalances after kidney transplant (KT) are associated with loss of graft function and poor outcomes. Fibroblast growth factor 23 (FGF-23) and its co-receptor, α-Klotho, are key factors in the underlying mechanisms that integrate accelerated atherosclerosis, vascular calcification, mineral disorders, and osteodystrophy. On the other hand, kidney donation is also associated with endocrine and metabolic adaptations that include transient increases in circulating FGF-23 and decreases in α-Klotho levels. However, the long-term impact of these alterations and their clinical relevance have not yet been determined. This manuscript aims to review and summarize current data on the role of FGF-23 and α-Klotho in the endocrine response to KT and living kidney donation, and importantly, underscore specific areas of research that may enhance diagnostics and therapeutics in the growing population of KT recipients and kidney donors.
Collapse
Affiliation(s)
- Meera Gupta
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
- *Correspondence: Meera Gupta
| | - Gabriel Orozco
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Madhumati Rao
- Department of Internal Medicine - Nephrology, Bone and Mineral Metabolism Division, University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Roberto Gedaly
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Hartmut H. Malluche
- Department of Internal Medicine - Nephrology, Bone and Mineral Metabolism Division, University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Javier A. Neyra
- Department of Internal Medicine - Nephrology, Bone and Mineral Metabolism Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Javier A. Neyra
| |
Collapse
|
12
|
El-Husseini A, Abdalbary M, Lima F, Issa M, Ahmed MT, Winkler M, Srour H, Davenport D, Wang G, Faugere MC, Malluche HH. Low Turnover Renal Osteodystrophy With Abnormal Bone Quality and Vascular Calcification in Patients With Mild-to-Moderate CKD. Kidney Int Rep 2022; 7:1016-1026. [PMID: 35570986 PMCID: PMC9091581 DOI: 10.1016/j.ekir.2022.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Introduction Limited information is available on renal osteodystrophy (ROD) and vascular calcification (VC) during early chronic kidney disease (CKD). This study was designed to evaluate ROD and VC in 32 patients with CKD stages II to IV. Methods Patients underwent dual-energy X-ray absorptiometry (DXA) for assessment of bone mineral density (BMD) and trabecular bone score (TBS), thoracic computed tomography for VC scoring using the Agatston method, and anterior iliac crest bone biopsy for mineralized bone histology, histomorphometry, and Fourier transform infrared spectroscopy (FTIR). Classical and novel bone markers were determined in the blood. Results Mean estimated glomerular filtration rate (eGFR) was 44 ± 16 ml/min per 1.73 m2. Of the patients, 84% had low bone turnover. In Whites, eGFR correlated negatively with the turnover parameter activation frequency (Ac.f) (r -0.48, P = 0.019) and with parameters of bone formation. Most patients had VC (>80%) which correlated positively with levels of phosphorus, c-terminal fibroblast growth factor-23, and activin. Aortic calcifications (ACs) correlated negatively with bone formation rate (BFR) and Ac.f (rho -0.62, -0.61, P < 0.001). TBS correlated negatively with coronary calcification (rho -0.42, P = 0.019) and AC (rho -0.57, P = 0.001). These relationships remained after adjustment of age. The mineral-to-matrix ratio, an FTIR metric reflecting bone quality, was negatively related to Ac.f and positively related to AC. Conclusion Low bone turnover and VC are predominant in early stages of CKD. This is the first study demonstrating mineral abnormalities indicating reduced bone quality in these stages of CKD.
Collapse
Affiliation(s)
- Amr El-Husseini
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Mohamed Abdalbary
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Florence Lima
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Mohamed Issa
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Michael Winkler
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Habib Srour
- Department of Anesthesia, University of Kentucky, Lexington, Kentucky, USA
| | - Daniel Davenport
- Division of Healthcare Outcomes & Optimal Patient Services, University of Kentucky, Lexington, Kentucky, USA
| | - Guodong Wang
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Marie-Claude Faugere
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Hartmut H. Malluche
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Ghasem-Zadeh A, Bui M, Seeman E, Boyd SK, Iuliano S, Jaipurwala R, Mount PF, Toussaint ND, Chiang C. Bone microarchitecture and estimated failure load are deteriorated whether patients with chronic kidney disease have normal bone mineral density, osteopenia or osteoporosis. Bone 2022; 154:116260. [PMID: 34801763 DOI: 10.1016/j.bone.2021.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Measurement of bone mineral density (BMD) is recommended in patients with chronic kidney disease (CKD). However, most persons in the community and most patients with CKD have osteopenia, suggesting fracture risk is low. Bone loss compromises bone microarchitecture which increases fragility disproportionate to modest deficits in BMD. We therefore hypothesized that patients with CKD have reduced estimated failure load due to deterioration in microarchitecture irrespective of whether they have normal femoral neck (FN) BMD, osteopenia or osteoporosis. METHODS We measured distal tibial and distal radial microarchitecture in 128 patients with CKD and 275 age- and sex-matched controls using high resolution peripheral quantitative computed tomography, FN-BMD using bone densitometry and estimated failure load at the distal appendicular sites using finite element analysis. RESULTS Patients versus controls respectively had: lower tibial cortical area 219 (40.7) vs. 237 (35.3) mm2, p = 0.002, lower cortical volumetric BMD 543 (80.7) vs. 642 (81.7) mgHA/cm3 due to higher porosity 69.6 (6.19) vs. 61.9 (6.48)% and lower matrix mineral density 64.2 (0.62) vs. 65.1 (1.28)%, lower trabecular vBMD 92.2 (41.1) vs. 149 (43.0) mgHA/cm3 due to fewer and spatially disrupted trabeculae, lower FN-BMD 0.78 (0.12) vs. 0.94 (0.14) g/cm2 and reduced estimated failure load 3825 (1152) vs. 5778 (1467) N, all p < 0.001. Deterioration in microarchitecture and estimated failure load was most severe in patients and controls with osteoporosis. Patients with CKD with osteopenia and normal FN-BMD had more deteriorated tibial microarchitecture and estimated failure load than controls with BMD in the same category. In univariate analyses, microarchitecture and FN-BMD were both associated with estimated failure load. In multivariable analyses, only microarchitecture was independently associated with estimated failure load and accounted for 87% of the variance. CONCLUSIONS Bone fragility is likely to be present in patients with CKD despite them having osteopenia or normal BMD. Measuring microarchitecture may assist in targeting therapy to those at risk of fracture.
Collapse
Affiliation(s)
- Ali Ghasem-Zadeh
- Dept of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia.
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Ego Seeman
- Dept of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Sandra Iuliano
- Dept of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Rizwan Jaipurwala
- Dept of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Peter F Mount
- Dept of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia; Dept of Nephrology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Nigel D Toussaint
- Dept of Nephrology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Cherie Chiang
- Dept of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
14
|
Asadipooya K, Abdalbary M, Ahmad Y, Kakani E, Monier-Faugere MC, El-Husseini A. Bone Quality in CKD Patients: Current Concepts and Future Directions - Part I. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:268-277. [PMID: 34395542 PMCID: PMC8314761 DOI: 10.1159/000515534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND There is ample evidence that patients with CKD have an increased risk of osteoporotic fractures. Bone fragility is not only influenced by low bone volume and mass but also by poor microarchitecture and tissue quality. More emphasis has been given to the quantitative rather than qualitative assessment of bone health, both in general population and CKD patients. Although bone mineral density (BMD) is a very useful clinical tool in assessing bone strength, it may underestimate the fracture risk in CKD patients. Serum and urinary bone biomarkers have been found to be reflective of bone activities and predictive of fractures independently of BMD in CKD patients. Bone quality and fracture risk in CKD patients can be better assessed by utilizing new technologies such as trabecular bone score and high-resolution imaging studies. Additionally, invasive assessments such as bone histology and micro-indentation are useful counterparts in the evaluation of bone quality. SUMMARY A precise diagnosis of the underlying skeletal abnormalities in CKD patients is crucial to prevent further bone loss and fractures. We must consider bone quantity and quality abnormalities for management of CKD patients. Here in this part I, we are focusing on advances in bone quality diagnostics that are expected to help in proper understanding of the bone health in CKD patients. KEY MESSAGES Assessment of bone quality and quantity in CKD patients is essential. Both noninvasive and invasive techniques for the assessment of bone quality are available.
Collapse
Affiliation(s)
- Kamyar Asadipooya
- Division of Endocrinology, University of Kentucky, Lexington, Kentucky, USA
| | - Mohamed Abdalbary
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
- Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Yahya Ahmad
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Elijah Kakani
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | | | - Amr El-Husseini
- Division of Nephrology & Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
15
|
The Influence of Dietary Interventions on Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Nutrients 2021; 13:nu13062065. [PMID: 34208727 PMCID: PMC8235119 DOI: 10.3390/nu13062065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease is a health problem whose prevalence is increasing worldwide. The kidney plays an important role in the metabolism of minerals and bone health and therefore, even at the early stages of CKD, disturbances in bone metabolism are observed. In the course of CKD, various bone turnover or mineralization disturbances can develop including adynamic hyperparathyroid, mixed renal bone disease, osteomalacia. The increased risk of fragility fractures is present at any age in these patients. Nutritional treatment of patients with advanced stages of CKD is aiming at prevention or correction of signs, symptoms of renal failure, avoidance of protein-energy wasting (PEW), delaying or prevention of the occurrence of mineral/bone disturbances, and delaying the start of dialysis. The results of studies suggest that progressive protein restriction is beneficial with the progression of renal insufficiency; however, other aspects of dietary management of CKD patients, including changes in sodium, phosphorus, and energy intake, as well as the source of protein and lipids (animal or plant origin) should also be considered carefully. Energy intake must cover patients' energy requirement, in order to enable correct metabolic adaptation in the course of protein-restricted regimens and prevent negative nitrogen balance and protein-energy wasting.
Collapse
|
16
|
Hughes-Austin JM, Katz R, Semba RD, Kritchevsky SB, Bauer DC, Sarnak MJ, Ginsberg C, Shlipak MG, Lima F, Malluche HH, Ix JH. Biomarkers of Bone Turnover Identify Subsets of Chronic Kidney Disease Patients at Higher Risk for Fracture. J Clin Endocrinol Metab 2020; 105:5849341. [PMID: 32474604 PMCID: PMC7340189 DOI: 10.1210/clinem/dgaa317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/22/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND We sought to identify biomarkers that indicate low turnover on bone histomorphometry in chronic kidney disease (CKD) patients, and subsequently determined whether this panel identified differential risk for fractures in community-dwelling older adults. METHODS Among CKD patients who underwent iliac crest bone biopsies and histomorphometry, we evaluated candidate biomarkers to differentiate low turnover from other bone disease. We applied this biomarker panel to 641 participants in the Health Aging and Body Composition Study (Health ABC) study with estimated glomerular filtration rate (eGFR) less than 60 mL/min/1.73 m2 who were followed for fracture. Cox proportional hazards models evaluated the association of bone mineral density (BMD) with fracture risk and determined whether biomarker-defined low bone turnover modified fracture risk at any level of BMD. RESULTS In 39 CKD patients age 64 ± 13 years, 85% female, with mean eGFR 37 ± 14 mL/min/1.73 m2 who underwent bone biopsy, lower fibroblast growth factor (FGF)-23, higher ɑ-Klotho, and lower parathyroid hormone (PTH) indicated low bone turnover in accordance with bone histomorphometry parameters (individual area under the curve = 0.62, 0.73, and 0.55 respectively; sensitivity = 22%, specificity = 100%). In Health ABC, 641 participants with CKD were age 75 ± 3 years , 49% female, with mean eGFR 48 ± 10 mL/min/1.73 m2. For every SD lower hip BMD at baseline, there was an 8-fold higher fracture risk in individuals with biomarker-defined low turnover (hazard ratio 8.10 [95% CI, 3.40-19.30]) vs a 2-fold higher risk in the remaining individuals (hazard ratio 2.28 [95% CI, 1.69-3.08]) (Pinteraction = .082). CONCLUSIONS In CKD patients who underwent bone biopsy, lower FGF-23, higher ɑ-Klotho, and lower PTH together had high specificity for identifying low bone turnover. When applied to older individuals with CKD, BMD was more strongly associated with fracture risk in those with biomarker-defined low turnover.
Collapse
Affiliation(s)
- Jan M Hughes-Austin
- Department of Orthopaedic Surgery, School of Medicine, University of California, San Diego, La Jolla, California
- Correspondence and Reprint Requests: Jan Hughes-Austin, PT, PhD, Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, Mail Code 0863, La Jolla, CA 92093. E-mail:
| | - Ronit Katz
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Richard D Semba
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Stephen B Kritchevsky
- Department of Gerontology and Geriatric Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Douglas C Bauer
- Division of General Internal Medicine, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Mark J Sarnak
- Division of Nephrology, School of Medicine,Tufts University, Boston, Massachusetts
| | - Charles Ginsberg
- Division of Nephrology-Hypertension, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
- Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Michael G Shlipak
- Division of General Internal Medicine, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Florence Lima
- Division of Nephrology, Bone and Mineral Metabolism, Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Hartmut H Malluche
- Division of Nephrology, Bone and Mineral Metabolism, Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Joachim H Ix
- Division of Nephrology-Hypertension, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
- Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, California
- Division of Preventive Medicine, Department of Family Medicine and Public Health, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
17
|
Alexandrou ME, Balafa O, Sarafidis P. Assessment of Hydration Status in Peritoneal Dialysis Patients: Validity, Prognostic Value, Strengths, and Limitations of Available Techniques. Am J Nephrol 2020; 51:589-612. [PMID: 32721969 DOI: 10.1159/000509115] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The majority of patients undergoing peritoneal dialysis (PD) suffer from volume overload and this overhydration is associated with increased mortality. Thus, optimal assessment of volume status in PD is an issue of paramount importance. Patient symptoms and physical signs are often unreliable indexes of true hydration status. SUMMARY Over the past decades, a quest for a valid, reproducible, and easily applicable technique to assess hydration status is taking place. Among existing techniques, inferior vena cava diameter measurements with echocardiography and natriuretic peptides such as brain natriuretic peptide and N-terminal pro-B-type natriuretic peptide were not extensively examined in PD populations; while having certain advantages, their interpretation are complicated by the underlying cardiac status and are not widely available. Bioelectrical impedance analysis (BIA) techniques are the most studied tool assessing volume overload in PD. Volume overload assessed with BIA has been associated with technique failure and increased mortality in observational studies, but the results of randomized trials on the value of BIA-based strategies to improve volume-related outcomes are contradictory. Lung ultrasound (US) is a recent technique with the ability to identify volume excess in the critical lung area. Preliminary evidence in PD showed that B-lines from lung US correlate with echocardiographic parameters but not with BIA measurements. This review presents the methods currently used to assess fluid status in PD patients and discusses existing data on their validity, applicability, limitations, and associations with intermediate and hard outcomes in this population. Key Message: No method has proved its value as an intervening tool affecting cardiovascular events, technique, and overall survival in PD patients. As BIA and lung US estimate fluid overload in different compartments of the body, they can be complementary tools for volume status assessment.
Collapse
Affiliation(s)
- Maria-Eleni Alexandrou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Balafa
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece,
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
18
|
Dusceac R, Niculescu DA, Dobre R, Sorohan MC, Caragheorgheopol A, Tacu C, David C, Poiana C. Bone turnover correlates with bone quantity but not bone microarchitecture in chronic hemodialysis. J Bone Miner Metab 2020; 38:597-604. [PMID: 32144577 DOI: 10.1007/s00774-020-01094-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/11/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION In chronic hemodialysis, high-turnover bone disease was associated with decreased bone mineral density (BMD), poor bone quality (chemical and structural), and increased fracture risk. Our aim was to correlate bone turnover markers (BTMs) with bone microarchitecture measured by trabecular bone score (TBS) before and after correction for BMD. MATERIALS AND METHODS We measured lumbar spine (LS), femoral neck, and 1/3 radius BMD and LS TBS by dual X-ray absorptiometry in 81 patients on permanent hemodialysis. Bone turnover was assessed using serum parathyroid hormone, osteocalcin, C-terminal crosslaps of type 1 collagen, procollagen 1 N-terminal propeptide (P1NP), and alkaline phosphatase (ALP). No patient had any partial or total parathyroidectomy and no previous or current treatment with anti-osteoporotic drugs. RESULTS All BTMs correlated significantly with each other. Univariate regressions showed significant negative correlations between BTMs and BMD (best r = - 0.53, between P1NP and 1/3 radius Z-score) or BTMs and TBS (best r = - 0.27, p < 0.05 between ALP and TBS T-score). TBS correlated significantly with BMD at all three sites (best r = 0.5, between LS BMD and TBS T-score). Multivariate regression showed that TBS, crude or adjusted, correlated with LS BMD. No model retained any of the BTMs as independent variables due to the better prediction of BMD and multicollinearity. CONCLUSION We showed a progressively impaired bone microarchitecture with increasing bone turnover in chronic hemodialysis. However, this correlation is no longer present when controlling for bone mass. This suggests that impaired bone microarchitecture and increased fracture risk are dependent upon factors other than high bone turnover.
Collapse
Affiliation(s)
- Roxana Dusceac
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 34-38 Aviatorilor blvd, 011863, Bucharest, Romania
| | - Dan Alexandru Niculescu
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 34-38 Aviatorilor blvd, 011863, Bucharest, Romania.
| | - Ramona Dobre
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 34-38 Aviatorilor blvd, 011863, Bucharest, Romania
| | - Madalina Cristina Sorohan
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 34-38 Aviatorilor blvd, 011863, Bucharest, Romania
| | - Andra Caragheorgheopol
- Research Laboratory, C. I. Parhon National Institute of Endocrinology, 34-38 Aviatorilor blvd, 011863, Bucharest, Romania
| | - Catalin Tacu
- Diaverum Dialysis Center, 2N Industiilor blvd, 032895, Bucharest, Romania
| | - Cristiana David
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 13 Vitan-Barzesti rd, 042122, Bucharest, Romania
| | - Catalina Poiana
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 34-38 Aviatorilor blvd, 011863, Bucharest, Romania
| |
Collapse
|
19
|
Ishii H, Kurihara S, Hirai K, Yanai K, Ookawara S, Morishita Y. Warfarin-induced impairment of bone material quality in a patient undergoing maintenance hemodialysis: A case report. Medicine (Baltimore) 2020; 99:e20724. [PMID: 32569210 PMCID: PMC7310883 DOI: 10.1097/md.0000000000020724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION The use of warfarin in patients undergoing hemodialysis is associated with decreased bone mineral density and an increased incidence of bone fracture. However, no studies to date have directly estimated bone quality with bone histomorphometry in patients with bone abnormalities who are taking warfarin and undergoing hemodialysis. PATIENT CONCERNS A 47-year-old female with Noonan syndrome presented with progressive bilateral lower extremity pain on walking, and skin sclerosis. She had been undergoing maintenance hemodialysis for 25 years following 2 years of peritoneal dialysis for chronic glomerulonephritis. She had been taking warfarin as an anticoagulant agent for 13 years after she underwent an aortic valve replacement. DIAGNOSIS Warfarin-induced impairment of bone material quality. INTERVENTIONS AND OUTCOMES Histomorphometric analysis of the bone biopsy specimens showed impairment in bone calcification processes, a high turnover of bone remodeling, low bone volume, and mild fibrosis. The bone abnormality could not be categorized into any type of representative bone disease classification such as osteitis fibrosa, osteomalacia, adynamic bone disease, uremic osteodystrophy, or hyperparathyroidism, but was consistent with warfarin-induced impairment of bone material quality. CONCLUSION Warfarin can induce impairment of bone material quality in a patient undergoing hemodialysis.
Collapse
Affiliation(s)
- Hiroki Ishii
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University
| | | | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University
| | - Katsunori Yanai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University
| |
Collapse
|
20
|
Allen MR, Wallace J, McNerney E, Nyman J, Avin K, Chen N, Moe S. N-acetylcysteine (NAC), an anti-oxidant, does not improve bone mechanical properties in a rat model of progressive chronic kidney disease-mineral bone disorder. PLoS One 2020; 15:e0230379. [PMID: 32203558 PMCID: PMC7089527 DOI: 10.1371/journal.pone.0230379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/27/2020] [Indexed: 01/17/2023] Open
Abstract
Individuals with chronic kidney disease have elevated levels of oxidative stress and are at a significantly higher risk of skeletal fracture. Advanced glycation end products (AGEs), which accumulate in bone and compromise mechanical properties, are known to be driven in part by oxidative stress. The goal of this study was to study effects of N-acetylcysteine (NAC) on reducing oxidative stress and improving various bone parameters, most specifically mechanical properties, in an animal model of progressive CKD. Male Cy/+ (CKD) rats and unaffected littermates were untreated (controls) or treated with NAC (80 mg/kg, IP) from 30 to 35 weeks of age. Endpoint measures included serum biochemistries, assessments of systemic oxidative stress, bone morphology, and mechanical properties, and AGE levels in the bone. CKD rats had the expected phenotype that included low kidney function, elevated parathyroid hormone, higher cortical porosity, and compromised mechanical properties. NAC treatment had mixed effects on oxidative stress markers, significantly reducing TBARS (a measure of lipid peroxidation) while not affecting 8-OHdG (a marker of DNA oxidation) levels. AGE levels in the bone were elevated in CKD animals and were reduced with NAC although this did not translate to a benefit in bone mechanical properties. In conclusion, NAC failed to significantly improve bone architecture/geometry/mechanical properties in our rat model of progressive CKD.
Collapse
Affiliation(s)
- Matthew R. Allen
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Department of Biomedical Engineering, Indiana University—Purdue University, Indianapolis, IN, United States of America
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Roudebush VA Medical Center, Indianapolis, IN, United States of America
| | - Joseph Wallace
- Department of Biomedical Engineering, Indiana University—Purdue University, Indianapolis, IN, United States of America
| | - Erin McNerney
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jeffry Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Keith Avin
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Neal Chen
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Sharon Moe
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Roudebush VA Medical Center, Indianapolis, IN, United States of America
| |
Collapse
|
21
|
Wong AKO, Manske SL. A Comparison of Peripheral Imaging Technologies for Bone and Muscle Quantification: A Review of Segmentation Techniques. J Clin Densitom 2020; 23:92-107. [PMID: 29785933 DOI: 10.1016/j.jocd.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
Musculoskeletal science has developed many overlapping branches, necessitating specialists from 1 area of focus to often require the expertise in others. In terms of imaging, this means obtaining a comprehensive illustration of bone, muscle, and fat tissues. There is currently a lack of a reliable resource for end users to learn about these tissues' imaging and quantification techniques together. An improved understanding of these tissues has been an important progression toward better prediction of disease outcomes and better elucidation of their interaction with frailty, aging, and metabolic disorders. Over the last decade, there have been major advances into the image acquisition and segmentation of bone, muscle, and fat features using computed tomography (CT), magnetic resonance imaging (MRI), and peripheral modules of these systems. Dedicated peripheral quantitative musculoskeletal imaging systems have paved the way for mobile research units, lower cost clinical research facilities, and improved resolution per unit cost paid. The purpose of this review was to detail the segmentation techniques available for each of these peripheral CT and MRI modalities and to describe advances in segmentation methods as applied to study longitudinal changes and treatment-related dynamics. Although the peripheral CT units described herein have established feasible standardized protocols that users have adopted globally, there remain challenges in standardizing MRI protocols for bone and muscle imaging.
Collapse
Affiliation(s)
- Andy Kin On Wong
- Joint Department of Medical Imaging, Toronto General Research Institute, University Health Network, Toronto, ON, Canada; McMaster University, Department of Medicine, Faculty of Health Sciences, Hamilton, ON, Canada.
| | - Sarah Lynn Manske
- Department of Radiology, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Swallow EA, Aref MW, Metzger CE, Sacks S, Lehmkuhler DR, Chen N, Hammond MA, Territo PR, Nickolas TL, Moe SM, Allen MR. Skeletal levels of bisphosphonate in the setting of chronic kidney disease are independent of remodeling rate and lower with fractionated dosing. Bone 2019; 127:419-426. [PMID: 31299384 PMCID: PMC6708715 DOI: 10.1016/j.bone.2019.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) results in a dramatic increase in skeletal fracture risk. Bisphosphates (BP) are an effective treatment for reducing fracture risk but they are not recommended in advanced CKD. We have recently shown higher acute skeletal accumulation of fluorescently-tagged zoledronate (ZOL) in the setting of CKD but how this accumulation is retained/lost over time is unclear. Furthermore, it is unknown if alternative dosing approaches can modulate accumulation in the setting of CKD. METHODS To address these two questions normal (NL) and Cy/+ (CKD) rats were divided into control groups (no dosing), a single dose of a fluorescent-tagged ZOL (FAM-ZOL), a single dose of non-labelled zoledronate (ZOL) or ten weekly doses of FAM-ZOL each at 1/10th the dose of the single dose group. Half of the CKD animals in each group were provided water with 3% calcium in drinking water (CKD + Ca) to suppress PTH and remodeling. At 30 or 35 weeks of age, serum, tibia, ulna, radius, vertebra, femora, and mandible were collected and subjected to assessment methods including biochemistry, dynamic histomorphometry and multi-spectral fluorescence levels (using IVIS SpectrumCT). RESULTS FAM-ZOL did not significantly reduce bone remodeling in either NL or CKD animals while Ca supplementation in CKD produced remodeling levels comparable to NL. At five- and ten-weeks post-dosing, both CKD and CKD + Ca groups had higher levels of FAM-ZOL in most, but not all, skeletal sites compared to NL with no difference between the two CKD groups suggesting that the rate of remodeling did not affect skeletal retention of FAM-ZOL. Fractionating the FAM-ZOL into ten weekly doses led to 20-32% less (p < 0.05) accumulation/retention of compound in the vertebra, radius, and ulna compared to administration as a single dose. CONCLUSIONS The rate of bone turnover does not have significant effects on levels of FAM-ZOL accumulation/retention in animals with CKD. A lower dose/more frequent administration paradigm results in lower levels of accumulation/retention over time. These data provide information that could better inform the use of bisphosphonates in the setting of CKD in order to combat the dramatic increase in fracture risk.
Collapse
Affiliation(s)
- Elizabeth A Swallow
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mohammad W Aref
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Corinne E Metzger
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Spencer Sacks
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Demi R Lehmkuhler
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Neal Chen
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Max A Hammond
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Paul R Territo
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Thomas L Nickolas
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Sharon M Moe
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| |
Collapse
|
23
|
Tu SJ, Wang SP, Cheng FC, Chen YJ. Extraction of gray-scale intensity distributions from micro computed tomography imaging for femoral cortical bone differentiation between low-magnesium and normal diets in a laboratory mouse model. Sci Rep 2019; 9:8135. [PMID: 31148574 PMCID: PMC6544618 DOI: 10.1038/s41598-019-44610-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/13/2019] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that the geometric development of femoral trabecular bone is affected by insufficient dietary intake of magnesium. However, it is not clear whether the development of femoral cortical bone can be quantitatively evaluated according to a diet with inadequate magnesium supplementation. Therefore, we used a micro computed tomography (CT) imaging approach with a laboratory mouse model to explore the potential application of texture analysis for the quantitative assessment of femoral cortical bones. C57BL/6J male mice were divided into two groups, where one group was fed a normal diet and the other group was fed a low-magnesium diet. We used a micro CT scanner for image acquisition, and the subsequent development of cortical bone was examined by texture analysis based on the statistical distribution of gray-scale intensities in which seven essential parameters were extracted from the micro CT images. Our calculations showed that the mean intensity increased by 7.20% (p = 0.000134), sigma decreased by 29.18% (p = 1.98E-12), skewness decreased by 19.52% (p = 0.0000205), kurtosis increased by 9.62% (p = 0.0877), energy increased by 24.19% (p = 3.32E-09), entropy decreased by 6.14% (p = 3.00E-10), and the Nakagami parameter increased by 104.32% (p = 4.13E-12) in the low-magnesium group when compared to the normal group. We found that the statistical parameters extracted from the gray-scale intensity distribution were able to differentiate between femoral cortical bone developments in the two different diet groups.
Collapse
Affiliation(s)
- Shu-Ju Tu
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Shun-Ping Wang
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan.,College of Science, Tunghai University, Taichung, Taiwan
| | - Fu-Chou Cheng
- Stem Cell Center, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Ju Chen
- Department of Food and Nutrition, Providence University, Taichung, Taiwan.
| |
Collapse
|
24
|
Serum bone markers in ROD patients across the spectrum of decreases in GFR: Activin A increases before all other markers
. Clin Nephrol 2019; 91:222-230. [PMID: 30862350 PMCID: PMC6595397 DOI: 10.5414/cn109650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction: Renal osteodystrophy (ROD) develops early in chronic kidney disease (CKD) and progresses with loss of kidney function. While intact parathyroid hormone (PTH), 1,25-dihydroxyvitamin D3 (1,25D), and fibroblast growth factor-23 (FGF-23) levels are usually considered the primary abnormalities in ROD development, the role of serum activin A elevations in CKD and its relationships to ROD have not been explored. The aims of this study were to evaluate serum activin A at different CKD stages, and to establish the relationships between activin A, bone biomarkers, and bone histomorphometric parameters. Materials and methods: 104 patients with CKD stages 2 – 5D underwent bone biopsies. We measured in the serum activin A, BSAP, DKK1, FGF-23, α-Klotho, intact PTH, sclerostin, TRAP-5b, and 1,25D. Biochemical results were compared across CKD stages and with 19 age-matched controls with normal kidney function. Results: Median activin A levels were increased in all stages of CKD compared to controls from 544 pg/mL in CKD 2 (431 – 628) to 1,135 pg/mL in CKD 5D (816 – 1,456), compared to 369 pg/mL in controls (316 – 453, p < 0.01). The increase of activin A in CKD 2 (p = 0.016) occurred before changes in the other measured biomarkers. Activin A correlated with intact PTH and FGF-23 (r = 0.65 and 0.61; p < 0.01) and with histomorphometric parameters of bone turnover (BFR/BS, Acf, ObS/BS and OcS/BS; r = 0.47 – 0.52; p < 0.01). These correlations were comparable to those found with intact PTH and FGF-23. Conclusion: Serum activin A levels increase starting at CKD 2 before elevations in intact PTH and FGF-23. Activin A correlates with bone turnover similar to intact PTH and FGF-23. These findings suggest a role for activin A in early development of ROD.
Collapse
|
25
|
Yoon HE, Kim Y, Shin SJ, Hong YS, Kang KY. Factors associated with low trabecular bone scores in patients with end-stage kidney disease. J Bone Miner Metab 2019; 37:475-483. [PMID: 29956021 DOI: 10.1007/s00774-018-0938-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022]
Abstract
The trabecular bone score (TBS) is a textural index that indirectly assesses bone trabecular microarchitecture using lumbar spine images obtained by dual-energy X-ray absorptiometry (DXA). This study compared the TBS of patients with end-stage kidney disease (ESKD) with that of matched controls to identify risk factors associated with a low TBS. TBS and bone mineral density (BMD) were assessed in ESKD patients (n = 76) and age- and sex-matched control subjects (n = 76) using DXA. The TBS of both groups was then compared, and risk factors associated with a low TBS (defined as ≤ 1.31) were evaluated. The mean TBS in the ESKD group was significantly lower than that in the control group (1.34 ± 0.15 vs. 1.43 ± 0.08, respectively; p < 0.001). More subjects in the ESKD group had a low TBS [34.2% (ESRD) vs. 5.3% (controls); p < 0.001]. The TBS was negatively correlated with age, alkaline phosphatase and C-reactive protein levels, and dialysis vintage, and positively correlated with BMD at the lumbar spine, femoral neck, and hip. Multivariate analysis identified lower estimated glomerular filtration rate and increased C-reactive protein levels as being significantly associated with a low TBS. In conclusion, ESKD patients had abnormal bone microarchitecture (as assessed by the TBS). The TBS was positively correlated with BMD. Renal function and inflammatory marker levels were independently associated with a low TBS. Thus, TBS may be a useful clinical tool for assessing cancellous bone connectivity in ESKD patients.
Collapse
Affiliation(s)
- Hye Eun Yoon
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea
| | - Seok Joon Shin
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea
| | - Yeon Sik Hong
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kwi Young Kang
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea.
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
26
|
Jazani NH, Savoj J, Lustgarten M, Lau WL, Vaziri ND. Impact of Gut Dysbiosis on Neurohormonal Pathways in Chronic Kidney Disease. Diseases 2019; 7:diseases7010021. [PMID: 30781823 PMCID: PMC6473882 DOI: 10.3390/diseases7010021] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a worldwide major health problem. Traditional risk factors for CKD are hypertension, obesity, and diabetes mellitus. Recent studies have identified gut dysbiosis as a novel risk factor for the progression CKD and its complications. Dysbiosis can worsen systemic inflammation, which plays an important role in the progression of CKD and its complications such as cardiovascular diseases. In this review, we discuss the beneficial effects of the normal gut microbiota, and then elaborate on how alterations in the biochemical environment of the gastrointestinal tract in CKD can affect gut microbiota. External factors such as dietary restrictions, medications, and dialysis further promote dysbiosis. We discuss the impact of an altered gut microbiota on neuroendocrine pathways such as the hypothalamus⁻pituitary⁻adrenal axis, the production of neurotransmitters and neuroactive compounds, tryptophan metabolism, and the cholinergic anti-inflammatory pathway. Finally, therapeutic strategies including diet modification, intestinal alpha-glucosidase inhibitors, prebiotics, probiotics and synbiotics are reviewed.
Collapse
Affiliation(s)
- Nima H Jazani
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| | - Javad Savoj
- Department of Internal Medicine, Riverside Community Hospital, University of California-Riverside School of Medicine, Riverside, CA 92501, USA.
| | - Michael Lustgarten
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | - Wei Ling Lau
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| | - Nosratola D Vaziri
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
27
|
Abstract
Chronic kidney disease is an ongoing deterioration of renal function that often progresses to end-stage renal disease. Management goals in children include slowing disease progression, prevention and treatment of complications, and optimizing growth, development, and quality of life. Nutritional management is critically important to achieve these goals. Control of blood pressure, proteinuria, and metabolic acidosis with dietary and pharmacologic measures may slow progression of chronic kidney disease. Although significant progress in management has been made, further research is required to resolve many outstanding controversies. We review recent developments in pediatric chronic kidney disease, focusing on dietary measures to improve outcomes.
Collapse
|
28
|
Barreto FDC, Costa CRVD, Reis LMD, Custódio MR. Bone biopsy in nephrology practice. ACTA ACUST UNITED AC 2018; 40:366-374. [PMID: 30525179 PMCID: PMC6534004 DOI: 10.1590/2175-8239-jbn-2017-0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Renal osteodystrophy (ROD), a group of metabolic bone diseases secondary to chronic kidney disease (CKD), still represents a great challenge to nephrologists. Its management is tailored by the type of bone lesion - of high or low turnover - that cannot be accurately predicted by serum biomarkers of bone remodeling available in daily clinical practice, mainly parathyroid hormone (PTH) and alkaline phosphatase (AP). In view of this limitation, bone biopsy followed by bone quantitative histomorphometry, the gold-standard method for the diagnosis of ROD, is still considered of paramount importance. Bone biopsy has also been recommended for evaluation of osteoporosis in the CKD setting to help physicians choose the best anti-osteoporotic drug. Importantly, bone biopsy is the sole diagnostic method capable of providing dynamic information on bone metabolism. Trabecular and cortical bones may be analyzed separately by evaluating their structural and dynamic parameters, thickness and porosity, respectively. Deposition of metals, such as aluminum and iron, on bone may also be detected. Despite of these unique characteristics, the interest on bone biopsy has declined over the last years and there are currently few centers around the world specialized on bone histomorphometry. In this review, we will discuss the bone biopsy technique, its indications, and the main information it can provide. The interest on bone biopsy should be renewed and nephrologists should be capacitated to perform it as part of their training during medical residency.
Collapse
Affiliation(s)
| | | | - Luciene Machado Dos Reis
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clinicas, Laboratório de Fisiopatologia Renal São Paulo, SP, Brasil
| | - Melani Ribeiro Custódio
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clinicas, Laboratório de Fisiopatologia Renal São Paulo, SP, Brasil
| |
Collapse
|
29
|
Dusceac R, Niculescu DA, Dobre R, Dragne MC, Tacu C, Peride I, David C, Checherita I, Poiana C. Chronic hemodialysis is associated with lower trabecular bone score, independent of bone mineral density: a case-control study. Arch Osteoporos 2018; 13:125. [PMID: 30426286 DOI: 10.1007/s11657-018-0541-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 02/03/2023]
Abstract
UNLABELLED We measured trabecular bone score (TBS) in 98 patients on permanent hemodialysis (HD) and 98 subjects with similar bone mineral density and normal kidney function. TBS was significantly lower in HD patients, indicating deteriorated bone microarchitecture, independent of bone mass. This might partially explain the increased fracture risk in HD. PURPOSE In the general population, trabecular bone score (TBS) was shown to predict fracture independent of bone mineral density (BMD). In end-stage renal disease patients on hemodialysis (HD), the value of TBS is beyond that of BMD in currently unclear. Our aim was to assess lumbar spine (LS) TBS in HD patients compared with subjects with normal kidney function matched for age, sex, and LS BMD. METHODS We assessed TBS and LS and femoral neck (FN) BMD in 98 patient on permanent HD (42.8% males; mean age 57.5 ± 11.3 years; dialysis vintage 5.5 ± 3.8 years) and 98 control subjects (glomerular filtration rate > 60 mL/min) using DXA. We simultaneously controlled for sex, age (± 3 years), and LS BMD (± 0.03 g/cm2). RESULTS HD patients had significantly lower LS TBS (0.07 [95% CI 0.03-0.1]; p = 0.0004), TBS T-score (0.83 SD [95% CI 0.42-1.24]; p = 0.0001)) and TBS Z-score (0.81 SD [95% CI 0.41-1.20]; p = 0.0001) than matched controls. TBS significantly correlated with LS BMD in both HD patients (r = 0.382; p = 0.001) and controls (r = 0.36; p = 0.002). The two regression lines had similar slopes (0.3 vs. 0.28; p = 0.84) with different intercepts (0.88 vs. 0.98). TBS adjustment significantly increased the 10-year fracture risk from 3.7 to 5.3 for major osteoporotic fracture and from 0.9 to 1.5 for hip fracture. CONCLUSIONS HD patients have lower TBS than controls matched for LS BMD, indicating altered bone microarchitecture. Also, the magnitude of TBS reduction in HD patients is constant at any LS BMD. Adjustment for TBS partially corrects the absolute 10-year fracture risk.
Collapse
Affiliation(s)
- Roxana Dusceac
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 34-38 Aviatorilor blvd, 011863, Bucharest, Romania
| | - Dan Alexandru Niculescu
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 34-38 Aviatorilor blvd, 011863, Bucharest, Romania.
| | - Ramona Dobre
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 34-38 Aviatorilor blvd, 011863, Bucharest, Romania
| | - Madalina Cristina Dragne
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 34-38 Aviatorilor blvd, 011863, Bucharest, Romania
| | - Catalin Tacu
- Diaverum Dialysis Center, 2N Industiilor blvd, 032895, Bucharest, Romania
| | - Ileana Peride
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 13 Vitan-Barzesti rd, 042122, Bucharest, Romania
| | - Cristiana David
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 13 Vitan-Barzesti rd, 042122, Bucharest, Romania
| | - Ionel Checherita
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 13 Vitan-Barzesti rd, 042122, Bucharest, Romania
| | - Catalina Poiana
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 34-38 Aviatorilor blvd, 011863, Bucharest, Romania
| |
Collapse
|
30
|
Vlot MC, den Heijer M, de Jongh RT, Vervloet MG, Lems WF, de Jonge R, Obermayer-Pietsch B, Heijboer AC. Clinical utility of bone markers in various diseases. Bone 2018; 114:215-225. [PMID: 29920402 DOI: 10.1016/j.bone.2018.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
Measurements of bone markers (BMs) in peripheral blood or urine are a pivotal part of bone research within modern clinical medicine. In recent years the use of BMs increased substantially as they can be useful either to diagnose bone (related) disease and to follow its natural history, but also to monitor the effects of interventions. However, the use of BMs is still complicated mainly due to (pre)analytical variability of these substances, limited accessibility of assays, variable cut-off values in different countries and laboratories and heterogeneous results with regard to clinical implications of measuring BMs in several studies. This review will provide the clinician with a practical guide, based on current evidence, in which circumstances to test which bone markers for optimal diagnostic purposes, in order to improve patient care in different areas of bone diseases including Paget's disease, primary osteoporosis, tumor induced osteomalacia, hypophosphatemic rickets, van Buchem disease, chronic kidney disease, rheumatoid arthritis, neoplasma/multiple myeloma, type 2 diabetes mellitus and primary hyperparathyroidism. The clinician should consider fasting state, recent fractures, aging, menopausal status, concomitant liver and kidney disease when ordering and interpreting BM measurements as these factors might result in misleading BM concentrations. We found that BMs are clearly useful in the current diagnosis of tumor induced osteomalacia, van Buchem disease, Paget's disease and hypophosphatemic rickets. In addition, BMs are useful to monitor disease activity in chronic kidney disease, Paget's disease and are useful to monitor treatment adherence in osteoporosis.
Collapse
Affiliation(s)
- M C Vlot
- Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Internal Medicine, Endocrinology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - M den Heijer
- Department of Internal Medicine, Endocrinology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - R T de Jongh
- Department of Internal Medicine, Endocrinology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - M G Vervloet
- Department Nephrology, Amsterdam Cardiovascular Sciences (ACS) VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - W F Lems
- Department of Rheumatology, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - R de Jonge
- Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - B Obermayer-Pietsch
- Department of Internal Medicine, Endocrinology and Diabetology, Medical University of Graz, Graz 8036, Austria
| | - A C Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Swallow EA, Aref MW, Chen N, Byiringiro I, Hammond MA, McCarthy BP, Territo PR, Kamocka MM, Winfree S, Dunn KW, Moe SM, Allen MR. Skeletal accumulation of fluorescently tagged zoledronate is higher in animals with early stage chronic kidney disease. Osteoporos Int 2018; 29:2139-2146. [PMID: 29947866 PMCID: PMC6103914 DOI: 10.1007/s00198-018-4589-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/25/2018] [Indexed: 11/28/2022]
Abstract
This work examines the skeletal accumulation of fluorescently tagged zoledronate in an animal model of chronic kidney disease. The results show higher accumulation in 24-h post-dose animals with lower kidney function due to greater amounts of binding at individual surfaces. INTRODUCTION Chronic kidney disease (CKD) patients suffer from increased rates of skeletal-related mortality from changes driven by biochemical abnormalities. Bisphosphonates are commonly used in reducing fracture risk in a variety of diseases, yet their use is not recommended in advanced stages of CKD. This study aimed to characterize the accumulation of a single dose of fluorescently tagged zoledronate (FAM-ZOL) in the setting of reduced kidney function. METHODS At 25 weeks of age, FAM-ZOL was administered to normal and CKD rats. Twenty-four hours later, multiple bones were collected and assessed using bulk fluorescence imaging, two-photon imaging, and dynamic histomorphometry. RESULTS CKD animals had significantly higher levels of FAM-ZOL accumulation in the proximal tibia, radius, and ulna, but not in lumbar vertebral body or mandible, based on multiple measurement modalities. Although a majority of trabecular bone surfaces were covered with FAM-ZOL in both normal and CKD animals, the latter had significantly higher levels of fluorescence per unit bone surface in the proximal tibia. CONCLUSIONS These results provide new data regarding how reduced kidney function affects drug accumulation in rat bone.
Collapse
Affiliation(s)
- E A Swallow
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - M W Aref
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - N Chen
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - I Byiringiro
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - M A Hammond
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - B P McCarthy
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - P R Territo
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M M Kamocka
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Winfree
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K W Dunn
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S M Moe
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - M R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA.
- Department of Medicine - Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
32
|
Time to rethink the use of bone biopsy to prevent fractures in patients with chronic kidney disease. Curr Opin Nephrol Hypertens 2018; 27:243-250. [DOI: 10.1097/mnh.0000000000000418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Sharma AK, Toussaint ND, Masterson R, Holt SG, Rajapakse CS, Ebeling PR, Mohanty ST, Baldock P, Elder GJ. Deterioration of Cortical Bone Microarchitecture: Critical Component of Renal Osteodystrophy Evaluation. Am J Nephrol 2018; 47:376-384. [PMID: 29791896 DOI: 10.1159/000489671] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/27/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Cortical bone is a significant determinant of bone strength and its deterioration contributes to bone fragility. Thin cortices and increased cortical porosity have been noted in patients with chronic kidney disease (CKD), but the "Turnover Mineralization Volume" classification of renal osteodystrophy does not emphasize cortical bone as a key parameter. We aimed to assess trabecular and cortical bone microarchitecture by histomorphometry and micro-CT in patients with CKD G5 and 5D (dialysis). METHODS Transiliac bone biopsies were performed in 14 patients undergoing kidney transplantation (n = 12) and parathyroidectomy (n = 2). Structural parameters were analysed by histomorphometry and micro-CT including trabecular bone volume, thickness (TbTh), number (TbN) and separation and cortical thickness (CtTh) and porosity (CtPo). Indices of bone remodelling and mineralisation were obtained and relationships to bone biomarkers examined. Associations were determined by Spearman's or Pearson's rank correlation coefficients. RESULTS By micro-CT, trabecular parameters were within normal ranges in most patients, but all patients showed very low CtTh (127 ± 44 µm) and high CtPo (60.3 ± 22.5%). CtPo was inversely related to TbN (r = -0.56; p = 0.03) by micro-CT and to TbTh (r = -0.60; p = 0.024) by histomorphometry and correlated to parathyroid hormone values (r = 0.62; p = 0.021). By histomorphometry, bone turnover was high in 50%, low in 21% and normal in 29%, while 36% showed abnormal patterns of mineralization. Significant positive associations were observed between osteoblast surface, osteoclast surface, mineralization surface and bone turnover markers. CONCLUSIONS Deterioration of cortical -microarchitecture despite predominantly normal trabecular parameters reinforces the importance of comprehensive cortical evaluation in patients with CKD.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Rosemary Masterson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Sindhu T Mohanty
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Paul Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Grahame J Elder
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
34
|
Evenepoel P, D'Haese P, Bacchetta J, Cannata-Andia J, Ferreira A, Haarhaus M, Mazzaferro S, Lafage Proust MH, Salam S, Spasovski G, Cozzolino M. Bone biopsy practice patterns across Europe: the European renal osteodystrophy initiative-a position paper. Nephrol Dial Transplant 2018; 32:1608-1613. [PMID: 28339949 DOI: 10.1093/ndt/gfw468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/20/2016] [Indexed: 02/04/2023] Open
Abstract
Renal osteodystrophy (ROD) is a heterogeneous group of metabolic bone diseases complicating progressive chronic kidney disease (CKD). Bone biomarkers and bone imaging techniques may help to assess bone health and predict fractures in CKD but do have important inherent limitations. By informing on bone turnover and mineralization, a bone biopsy may help to guide prevention and treatment of ROD and its consequences. According to a recent survey conducted among European nephrologists, bone biopsies are performed rather exceptionally, both for clinical and research purposes. Obviously, clinical research in the field of ROD is threatened by vanishing clinical and pathological expertise, small patient cohorts and scientific isolation. In March 2016, the European Renal Osteodystrophy (EU-ROD) initiative was created under the umbrella of the ERA-EDTA CKD-mineral and bone disorder (MBD) Working Group to revitalize bone biopsy as a clinically useful tool in the diagnostic workup of CKD-MBD and to foster research on the epidemiology, implications and reversibility of ROD. As such, the EU-ROD initiative aims to increase the understanding of ROD and ultimately to improve outcomes in CKD patients.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Department of Immunology and Microbiology, Laboratory of Nephrology, KU Leuven - University of Leuven and Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Belgium
| | - Patrick D'Haese
- Department of Biomedical Sciences, Laboratory of Pathophysiology, Antwerp University, Wilrijk, Belgium
| | - Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Bron, France
| | - Jorge Cannata-Andia
- Hospital Universitario Central de Asturias, Oviedo University REDinREN IIS Carlos III, Bone and Mineral Research Unit, Oviedo, Spain
| | - Anibal Ferreira
- Nova Medical School - Faculdade de Ciências Médicas da Universidade Nova de Lisboa e Centro Hospitalar Lisboa Central - Hospital de Curry Cabral, Lisboa, Portugal
| | - Mathias Haarhaus
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet and Department of Nephrology, Karolinska University Hospital, Stockholm, Sweden
| | - Sandro Mazzaferro
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University, Rome, Italy
| | | | - Syazrah Salam
- Sheffield Kidney Institute and Academic Unit of Bone Metabolism, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Goce Spasovski
- Department of Nephrology, Medical Faculty, University of Skopje, Macedonia
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, San Paolo Hospital, University of Milan, Milan, Italy
| | | |
Collapse
|
35
|
Molina P, Carrero JJ, Bover J, Chauveau P, Mazzaferro S, Torres PU. Vitamin D, a modulator of musculoskeletal health in chronic kidney disease. J Cachexia Sarcopenia Muscle 2017; 8:686-701. [PMID: 28675610 PMCID: PMC5659055 DOI: 10.1002/jcsm.12218] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/04/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
The spectrum of activity of vitamin D goes beyond calcium and bone homeostasis, and growing evidence suggests that vitamin D contributes to maintain musculoskeletal health in healthy subjects as well as in patients with chronic kidney disease (CKD), who display the combination of bone metabolism disorder, muscle wasting, and weakness. Here, we review how vitamin D represents a pathway in which bone and muscle may interact. In vitro studies have confirmed that the vitamin D receptor is present on muscle, describing the mechanisms whereby vitamin D directly affects skeletal muscle. These include genomic and non-genomic (rapid) effects, regulating cellular differentiation and proliferation. Observational studies have shown that circulating 25-hydroxyvitamin D levels correlate with the clinical symptoms and muscle morphological changes observed in CKD patients. Vitamin D deficiency has been linked to low bone formation rate and bone mineral density, with an increased risk of skeletal fractures. The impact of low vitamin D status on skeletal muscle may also affect muscle metabolic pathways, including its sensitivity to insulin. Although some interventional studies have shown that vitamin D may improve physical performance and protect against the development of histological and radiological signs of hyperparathyroidism, evidence is still insufficient to draw definitive conclusions.
Collapse
Affiliation(s)
- Pablo Molina
- Department of NephrologyHospital Universitario Doctor PesetValenciaSpain
- REDinRENMadridSpain
- Department of MedicineUniversitat de ValènciaValenciaSpain
| | - Juan J. Carrero
- Division of Renal MedicineCLINTEC, Karolinska InstitutetStockholmSweden
| | - Jordi Bover
- REDinRENMadridSpain
- Department of NephrologyFundació PuigvertBarcelonaSpain
- IIB Sant PauBarcelonaSpain
| | - Philippe Chauveau
- Service de Néphrologie Transplantation DialyseCentre Hospitalier Universitaire de Bordeaux et Aurad‐AquitaineBordeauxFrance
| | - Sandro Mazzaferro
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric SciencesSapienza University of RomeRomeItaly
| | - Pablo Ureña Torres
- Department of Nephrology and DialysisClinique du Landy, Ramsay‐Générale de SantéSaint OuenParisFrance
- Department of Renal PhysiologyNecker Hospital, University of Paris DescartesParisFrance
| | | |
Collapse
|
36
|
Hruska KA, Sugatani T, Agapova O, Fang Y. The chronic kidney disease - Mineral bone disorder (CKD-MBD): Advances in pathophysiology. Bone 2017; 100:80-86. [PMID: 28119179 PMCID: PMC5502716 DOI: 10.1016/j.bone.2017.01.023] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 01/01/2023]
Abstract
The causes of excess cardiovascular mortality associated with chronic kidney disease (CKD) have been attributed in part to the CKD-mineral bone disorder syndrome (CKD-MBD), wherein, novel cardiovascular risk factors have been identified. New advances in the causes of the CKD-MBD are discussed in this review. They demonstrate that repair and disease processes in the kidneys release factors to the circulation that cause the systemic complications of CKD. The discovery of WNT inhibitors, especially Dickkopf 1 (Dkk1), produced during renal repair as participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical. This lead to the discovery that activin A is a second renal repair factor circulating in increased levels during CKD. Activin A derives from peritubular myofibroblasts of diseased kidneys, wherein it stimulates fibrosis, and decreases tubular klotho expression. Activin A binds to the type 2 activin A receptor, ActRIIA, which is variably affected by CKD in the vasculature. In diabetic/atherosclerotic aortas, specifically in vascular smooth muscle cells (VSMC), ActRIIA signaling is inhibited and contributes to CKD induced VSMC dedifferentiation, osteogenic transition and neointimal atherosclerotic calcification. In nondiabetic/nonatherosclerotic aortas, CKD increases VSMC ActRIIA signaling, and vascular fibroblast signaling causing the latter to undergo osteogenic transition and stimulate vascular calcification. In both vascular situations, a ligand trap for ActRIIA prevented vascular calcification. In the skeleton, activin A is responsible for CKD stimulation of osteoclastogenesis and bone remodeling increasing bone turnover. These studies demonstrate that circulating renal repair and injury factors are causal of the CKD-MBD and CKD associated cardiovascular disease.
Collapse
Affiliation(s)
- Keith A Hruska
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO, United States; Departments of Medicine, Washington University Saint Louis, MO, United States; Department of Cell Biology, Washington University Saint Louis, MO, United States.
| | - Toshifumi Sugatani
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO, United States
| | - Olga Agapova
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO, United States
| | - Yifu Fang
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO, United States
| |
Collapse
|
37
|
Serum irisin levels correlated to peritoneal dialysis adequacy in nondiabetic peritoneal dialysis patients. PLoS One 2017; 12:e0176137. [PMID: 28445520 PMCID: PMC5406024 DOI: 10.1371/journal.pone.0176137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/05/2017] [Indexed: 11/19/2022] Open
Abstract
Background Irisin is a recently discovered myokine thought to be involved in multiple metabolism abnormalities in most dialysis patients. However, the myokine has not been thoroughly studied in peritoneal dialysis. This study aimed to evaluate serum irisin levels and establish their relation to dialysis adequacy, insulin resistance, and bone metabolism status in patients on peritoneal dialysis. Methods A total of 59 nondiabetic prevalent peritoneal dialysis patients and 52 age- and sex-matched healthy controls were enrolled in this cross-sectional study. Serum irisin concentration was assessed by enzyme-linked immunosorbent assay. The correlations between serum irisin and dialysis adequacy, clinical, and metabolic variables were investigated. Results Serum irisin levels were lower in nondiabetic peritoneal dialysis patients (17.02ng/ml) compared with healthy controls (22.17ng/ml, P<0.001). Multivariate regression analysis revealed that fasting glucose levels were correlated inversely with serum irisin levels in peritoneal dialysis patients. Serum irisin levels were associated with neither insulin resistance nor bone metabolism in our patients. Serum irisin levels were positively associated with peritoneal Kt/Vurea (β = 4.933, 95% confidence interval [CI] = 0.536–9.331, P = 0.029) and peritoneal CCr (β = 0.259, 95% CI = 0.053–0.465, P = 0.015) among peritoneal dialysis patients. Conclusions The study demonstrated that non-diabetic peritoneal dialysis patients have lower serum irisin levels, and the levels were correlated with peritoneal dialysis adequacy, indicating adequate dialysis may improve irisin secretion. Additional studies are needed to provide a confirmation.
Collapse
|
38
|
Tu SJ, Wang SP, Cheng FC, Weng CE, Huang WT, Chang WJ, Chen YJ. Attenuating trabecular morphology associated with low magnesium diet evaluated using micro computed tomography. PLoS One 2017; 12:e0174806. [PMID: 28369124 PMCID: PMC5378393 DOI: 10.1371/journal.pone.0174806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/15/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The literature shows that bone mineral density (BMD) and the geometric architecture of trabecular bone in the femur may be affected by inadequate dietary intake of Mg. In this study, we used microcomputed tomography (micro-CT) to characterize and quantify the impact of a low-Mg diet on femoral trabecular bones in mice. MATERIALS AND METHODS Four-week-old C57BL/6J male mice were randomly assigned to 2 groups and supplied either a normal or low-Mg diet for 8weeks. Samples of plasma and urine were collected for biochemical analysis, and femur tissues were removed for micro-CT imaging. In addition to considering standard parameters, we regarded trabecular bone as a cylindrical rod and used computational algorithms for a technical assessment of the morphological characteristics of the bones. BMD (mg-HA/cm3) was obtained using a standard phantom. RESULTS We observed a decline in the total tissue volume, bone volume, percent bone volume, fractal dimension, number of trabecular segments, number of connecting nodes, bone mineral content (mg-HA), and BMD, as well as an increase in the structural model index and surface-area-to-volume ratio in low-Mg mice. Subsequently, we examined the distributions of the trabecular segment length and radius, and a series of specific local maximums were identified. The biochemical analysis revealed a 43% (96%) decrease in Mg and a 40% (71%) decrease in Ca in plasma (urine excretion). CONCLUSIONS This technical assessment performed using micro-CT revealed a lower population of femoral trabecular bones and a decrease in BMD at the distal metaphysis in the low-Mg mice. Examining the distributions of the length and radius of trabecular segments showed that the average length and radius of the trabecular segments in low-Mg mice are similar to those in normal mice.
Collapse
Affiliation(s)
- Shu-Ju Tu
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Medical Imaging and Intervention, Linkuo Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Shun-Ping Wang
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Fu-Chou Cheng
- Stem Cell Center, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-En Weng
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Wei-Tzu Huang
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Wei-Jeng Chang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Ying-Ju Chen
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
39
|
Molecular Abnormalities Underlying Bone Fragility in Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3485785. [PMID: 28421193 PMCID: PMC5380833 DOI: 10.1155/2017/3485785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 02/08/2023]
Abstract
Prevention of bone fractures is one goal of therapy for patients with chronic kidney disease-mineral and bone disorder (CKD-MBD), as indicated by the Kidney Disease: Improving Global Outcomes guidelines. CKD patients, including those on hemodialysis, are at higher risk for fractures and fracture-related death compared to people with normal kidney function. However, few clinicians focus on this issue as it is very difficult to estimate bone fragility. Additionally, uremia-related bone fragility has a more complicated pathological process compared to osteoporosis. There are many uremia-associated factors that contribute to bone fragility, including severe secondary hyperparathyroidism, skeletal resistance to parathyroid hormone, and bone mineralization disorders. Uremia also aggravates bone volume loss, disarranges microarchitecture, and increases the deterioration of material properties of bone through abnormal bone cells or excess oxidative stress. In this review, we outline the prevalence of fractures, the interaction of CKD-MBD with osteoporosis in CKD patients, and discuss possible factors that exacerbate the mechanical properties of bone.
Collapse
|
40
|
Sotiropoulou P, Fountos G, Martini N, Koukou V, Michail C, Kandarakis I, Nikiforidis G. Polynomial dual energy inverse functions for bone Calcium/Phosphorus ratio determination and experimental evaluation. Appl Radiat Isot 2016; 118:18-24. [DOI: 10.1016/j.apradiso.2016.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/27/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
|
41
|
Naylor KL, Prior J, Garg AX, Berger C, Langsetmo L, Adachi JD, Goltzman D, Kovacs CS, Josse RG, Leslie WD. Trabecular Bone Score and Incident Fragility Fracture Risk in Adults with Reduced Kidney Function. Clin J Am Soc Nephrol 2016; 11:2032-2040. [PMID: 27797885 PMCID: PMC5108183 DOI: 10.2215/cjn.00720116] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Trabecular bone score is a gray-level textural measure obtained from dual energy x-ray absorptiometry lumbar spine images that provides information independent of areal bone mineral density. The association between trabecular bone score and incident fractures in adults with reduced kidney function and whether this association differs from that of adults with normal kidney function are unknown. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We included 1426 participants ages ≥40 years old (mean age of 67 years) in the community-based Canadian Multicentre Osteoporosis Study. We stratified participants at cohort entry (2005-2008) by eGFR (eGFR<60 ml/min per 1.73 m2 [n=199; 72.4% stage 3a, 25.1% stage 3b, and 2.5% stage 4] versus ≥60 ml/min per 1.73 m2 [n=1227]). Trabecular bone score was obtained from lumbar spine (L1-L4) dual energy x-ray absorptiometry images, with a lower trabecular bone score representing worse bone structure. Over an average of 4.7 years follow-up (maximum follow-up of 5 years), we documented incident fragility (low-trauma) fracture events (excluding craniofacial, foot, and hand sites). We used a modified Kaplan-Meier estimator to determine the 5-year probability of fracture. Cox proportional hazard regression per SD lower trabecular bone score expressed the gradient of fracture risk. RESULTS Individuals with an eGFR<60 ml/min per 1.73 m2 who had a trabecular bone score value below the median (<1.277) had a significantly higher 5-year fracture probability than those above the median (18.1% versus 6.2%; P=0.01). The association between trabecular bone score and fracture was independent of bone mineral density and other clinical risk factors in adults with reduced and normal kidney function (adjusted hazard ratio per SD lower trabecular bone score: eGFR<60 ml/min per 1.73 m2: adjusted hazard ratio, 1.62; 95% confidence interval, 1.04 to 2.51; eGFR≥60 ml/min per 1.73 m2: adjusted hazard ratio, 1.44; 95% confidence interval, 1.13 to 1.83). CONCLUSIONS Lower lumbar spine trabecular bone score is independently associated with a higher fracture risk in adults with reduced kidney function. Additional study is needed to examine the association between trabecular bone score and fractures in individuals with diagnosed CKD-mineral and bone disorder.
Collapse
Affiliation(s)
- Kyla L Naylor
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Krishnasamy R, Hawley CM, Johnson DW. An update on bone imaging and markers in chronic kidney disease. Expert Rev Endocrinol Metab 2016; 11:455-466. [PMID: 30058917 DOI: 10.1080/17446651.2016.1239527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bone disorders in chronic kidney disease (CKD) are associated with heightened risks of fractures, vascular calcification, poor quality of life and mortality compared to the general population. However, diagnosis and management of these disorders in CKD are complex and appreciably limited by current diagnostic modalities. Areas covered: Bone histomorphometry remains the gold standard for diagnosis but is not widely utilised and lacks feasibility as a monitoring tool. In practice, non-invasive imaging and biochemical markers are preferred to guide therapeutic decisions. Expert commentary: This review aims to summarize the risk factors for, and spectrum of bone disease in CKD, as well as appraise the clinical utility of dual energy X-ray densitometry, peripheral quantitative computed tomography, high-resolution peripheral quantitative computed tomography, and bone turnover markers.
Collapse
Affiliation(s)
- Rathika Krishnasamy
- a Department of Nephrology , Nambour General Hospital , Nambour , Australia
- c School of Medicine , The University of Queensland , Brisbane , Australia
| | - Carmel M Hawley
- b Department of Nephrology , Princess Alexandra Hospital , Brisbane , Australia
- c School of Medicine , The University of Queensland , Brisbane , Australia
- d Department of Nephrology , Translation Research Institute , Brisbane , Australia
| | - David W Johnson
- b Department of Nephrology , Princess Alexandra Hospital , Brisbane , Australia
- c School of Medicine , The University of Queensland , Brisbane , Australia
- d Department of Nephrology , Translation Research Institute , Brisbane , Australia
| |
Collapse
|
43
|
Jokihaara J, Pörsti IH, Sievänen H, Kööbi P, Kannus P, Niemelä O, Turner RT, Iwaniec UT, Järvinen TLN. Phosphate Binding with Sevelamer Preserves Mechanical Competence of Bone Despite Acidosis in Advanced Experimental Renal Insufficiency. PLoS One 2016; 11:e0163022. [PMID: 27658028 PMCID: PMC5033583 DOI: 10.1371/journal.pone.0163022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
Introduction Phosphate binding with sevelamer can ameliorate detrimental histomorphometric changes of bone in chronic renal insufficiency (CRI). Here we explored the effects of sevelamer-HCl treatment on bone strength and structure in experimental CRI. Methods Forty-eight 8-week-old rats were assigned to surgical 5/6 nephrectomy (CRI) or renal decapsulation (Sham). After 14 weeks of disease progression, the rats were allocated to untreated and sevelamer-treated (3% in chow) groups for 9 weeks. Then the animals were sacrificed, plasma samples collected, and femora excised for structural analysis (biomechanical testing, quantitative computed tomography). Results Sevelamer-HCl significantly reduced blood pH, and final creatinine clearance in the CRI groups ranged 30%-50% of that in the Sham group. Final plasma phosphate increased 2.4- to 2.9-fold, and parathyroid hormone 13- to 21-fold in CRI rats, with no difference between sevelamer-treated and untreated animals. In the femoral midshaft, CRI reduced cortical bone mineral density (-3%) and breaking load (-15%) (p<0.05 for all versus Sham), while sevelamer increased bone mineral density (+2%) and prevented the deleterious changes in bone. In the femoral neck, CRI reduced bone mineral density (-11%) and breaking load (-10%), while sevelamer prevented the decrease in bone mineral density (+6%) so that breaking load did not differ from controls. Conclusions In this model of stage 3–4 CRI, sevelamer-HCl treatment ameliorated the decreases in femoral midshaft and neck mineral density, and restored bone strength despite prevailing acidosis. Therefore, treatment with sevelamer can efficiently preserve mechanical competence of bone in CRI.
Collapse
Affiliation(s)
- Jarkko Jokihaara
- Department of Hand and Microsurgery, Tampere University Hospital, Tampere, Finland
- Center for Hip Health and Mobility, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| | | | | | - Peeter Kööbi
- Medical School, University of Tampere, Tampere, Finland
| | - Pekka Kannus
- Bone Research Group, UKK-Institute, Tampere, Finland
| | - Onni Niemelä
- Medical School, University of Tampere, Tampere, Finland
- Department of Laboratory Medicine, Seinäjoki Central Hospital Laboratory, Seinäjoki, Finland
| | - Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Teppo L. N. Järvinen
- Center for Hip Health and Mobility, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Abstract
The last 25 years have been characterized by dramatic improvements in short-term patient and allograft survival after kidney transplantation. Long-term patient and allograft survival remains limited by cardiovascular disease and chronic allograft injury, among other factors. Cardiovascular disease remains a significant contributor to mortality in native chronic kidney disease as well as cardiovascular mortality in chronic kidney disease more than doubles that of the general population. The chronic kidney disease (CKD)-mineral bone disorder (MBD) is a syndrome recently coined to embody the biochemical, skeletal, and cardiovascular pathophysiology that results from disrupting the complex systems biology between the kidney, skeleton, and cardiovascular system in native and transplant kidney disease. The CKD-MBD is a unique kidney disease-specific syndrome containing novel cardiovascular risk factors, with an impact reaching far beyond traditional notions of renal osteodystrophy and hyperparathyroidism. This overview reviews current knowledge of the pathophysiology of the CKD-MBD, including emerging concepts surrounding the importance of circulating pathogenic factors released from the injured kidney that directly cause cardiovascular disease in native and transplant chronic kidney disease, with potential application to mechanisms of chronic allograft injury and vasculopathy.
Collapse
|
45
|
Zheng CM, Zheng JQ, Wu CC, Lu CL, Shyu JF, Yung-Ho H, Wu MY, Chiu IJ, Wang YH, Lin YF, Lu KC. Bone loss in chronic kidney disease: Quantity or quality? Bone 2016; 87:57-70. [PMID: 27049042 DOI: 10.1016/j.bone.2016.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) patients experience bone loss and fracture because of a specific CKD-related systemic disorder known as CKD-mineral bone disorder (CKD-MBD). The bone turnover, mineralization, and volume (TMV) system describes the morphological bone lesions in renal osteodystrophy related to CKD-MBD. Bone turnover and bone volume are defined as high, normal, or low, and bone mineralization is classified as normal or abnormal. All types of bone histology related to TMV are responsible for both bone quantity and bone quality losses in CKD patients. This review focuses on current bone quantity and bone quality losses in CKD patients and finally discusses potential therapeutic measures.
Collapse
Affiliation(s)
- Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Jin-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Division of Pulmonary and Critical Care, Department of Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Lin Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsu Yung-Ho
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - I-Jen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Kuo-Cheng Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan; Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City,Taiwan.
| |
Collapse
|
46
|
Marques EA, Gudnason V, Sigurdsson G, Lang T, Johannesdottir F, Siggeirsdottir K, Launer L, Eiriksdottir G, Harris TB. Are bone turnover markers associated with volumetric bone density, size, and strength in older men and women? The AGES-Reykjavik study. Osteoporos Int 2016; 27:1765-76. [PMID: 26630978 PMCID: PMC5560050 DOI: 10.1007/s00198-015-3442-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/23/2015] [Indexed: 12/23/2022]
Abstract
UNLABELLED Association between serum bone formation and resorption markers and bone mineral, structural, and strength variables derived from quantitative computed tomography (QCT) in a population-based cohort of 1745 older adults was assessed. The association was weak for lumbar spine and femoral neck areal and volumetric bone mineral density. INTRODUCTION The aim of this study was to examine the relationship between levels of bone turnover markers (BTMs; osteocalcin (OC), C-terminal cross-linking telopeptide of type I collagen (CTX), and procollagen type 1N propeptide (P1NP)) and quantitative computed tomography (QCT)-derived bone density, geometry, and strength indices in the lumbar spine and femoral neck (FN). METHODS A total of 1745 older individuals (773 men and 972 women, aged 66-92 years) from the Age, Gene/Environment Susceptibility (AGES)-Reykjavik cohort were studied. QCT was performed in the lumbar spine and hip to estimate volumetric trabecular, cortical, and integral bone mineral density (BMD), areal BMD, bone geometry, and bone strength indices. Association between BTMs and QCT variables were explored using multivariable linear regression. RESULTS Major findings showed that all BMD measures, FN cortical index, and compressive strength had a low negative correlation with the BTM levels in both men and women. Correlations between BTMs and bone size parameters were minimal or not significant. No associations were found between BTMs and vertebral cross-sectional area in women. BTMs alone accounted for only a relatively small percentage of the bone parameter variance (1-10 %). CONCLUSION Serum CTX, OC, and P1NP were weakly correlated with lumbar spine and FN areal and volumetric BMD and strength measures. Most of the bone size indices were not associated with BTMs; thus, the selected bone remodeling markers do not reflect periosteal bone formation. These results confirmed the limited ability of the most sensitive established BTMs to predict bone structural integrity in older adults.
Collapse
Affiliation(s)
- E A Marques
- Laboratory of Epidemiology and Population Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Ave, 3C-309 Gateway Building, Bethesda, MD, 20814, USA.
| | - V Gudnason
- Icelandic Heart Association Research Institute, Kópavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - G Sigurdsson
- Icelandic Heart Association Research Institute, Kópavogur, Iceland
- University of Iceland, Reykjavik, Iceland
- Landspitalinn University Hospital, Reykjavik, Iceland
| | - T Lang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | - K Siggeirsdottir
- Icelandic Heart Association Research Institute, Kópavogur, Iceland
| | - L Launer
- Laboratory of Epidemiology and Population Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Ave, 3C-309 Gateway Building, Bethesda, MD, 20814, USA
| | - G Eiriksdottir
- Icelandic Heart Association Research Institute, Kópavogur, Iceland
| | - T B Harris
- Laboratory of Epidemiology and Population Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Ave, 3C-309 Gateway Building, Bethesda, MD, 20814, USA
| |
Collapse
|
47
|
Manske SL, Zhu Y, Sandino C, Boyd SK. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone 2015; 79:213-21. [PMID: 26079995 DOI: 10.1016/j.bone.2015.06.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 05/16/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022]
Abstract
The second generation HR-pQCT scanner (XtremeCTII, Scanco Medical) can assess human bone microarchitecture of peripheral limbs with a 61 μm nominal isotropic voxel size. This is a marked improvement from the first generation HR-pQCT that had a nominal isotropic voxel size of 82 μm, which is at the limit to accurately determine the thickness of individual human trabeculae. We sought to determine the accuracy of a direct morphometric approach to measure trabecular bone microarchitecture with three-dimensional morphological techniques using second generation HR-pQCT, and to compare this with the approach currently applied by the first generation HR-pQCT scanner based on derived indices using ex vivo scans of human cadaveric radii. We also compared images acquired and resampled to mimic the first generation HR-pQCT with those obtained directly from the first generation HR-pQCT. We evaluated 20 human cadaveric radii and a micro-CT performance phantom using the first (XtremeCT, Scanco Medical) and second generation HR-pQCT scanner (XtremeCTII) and compared a patient evaluation (XCTII, 61 μm) with a high resolution ex vivo protocol (HR, 30μm). We generated 82 μm scans of the same specimens to mimic a first-generation HR-pQCT evaluation (XCTIM, 82 μm) and compared these with a first-generation patient evaluation (XCTI, 82 μm). A standard structural extraction approach was applied to both XCTII and HR evaluations for assessment of bone volume fraction (BV/TV), and a distance transform was used to assess trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp). For XCTI and XCTIM evaluations we followed the manufacturer's standard procedure and assessed bone mineral density (BMD), Tb.N with a distance transform, and then derived bone volume ratio (BV/TV(d)), trabecular thickness (Tb.Th(d)) and separation (Tb.Sp(d)). The spatial resolution (10% MTF) was 142.2 μm for XCTI, 108.9 μm for XCTIM, 95.2μm for XCTII, and 55.9 μm for HR. XCTI and XCTIM provided strongly associated measurements of BMD and microarchitectural outcomes (R(2)>0.97), however there were systematic differences in all outcomes. The Tb.N was highly associated with HR by both XCTII (R(2)=0.93, mean error=-0.12 mm(-1)) and XCTIM (R(2)=0.98, mean error=0.25 mm(-1)). Also, both XCTII (R(2)=0.99, mean error=0.20mm) and XCTIM (R(2)=0.99, mean error=-0.18 mm) had Tb.Sp that were strongly related to HR. For Tb.Th, the XCTII was more closely related to HR (R(2)=0.94, mean error=0.04 mm) than the relatively weak XCTIM (R(2)=0.16, mean error=- 0.076 mm). We found that trabecular microarchitecture assessment following the XCTII direct morphometric approach accurately represented the HR data. In particular, the measure of Tb.Th was markedly improved for XCTII compared with the derived approach of XCTIM. These data support the application of analysis techniques in HR-pQCT that are analogous to those traditionally used for micro-CT to assess trabecular microarchitecture. The decreased dependence of structural outcomes on density provides a new, important opportunity to monitor human in vivo bone microarchitecture.
Collapse
Affiliation(s)
- Sarah L Manske
- McCaig Institute for Bone and Joint Health and Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Ying Zhu
- McCaig Institute for Bone and Joint Health and Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Clara Sandino
- McCaig Institute for Bone and Joint Health and Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health and Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada.
| |
Collapse
|
48
|
Isakova T, Craven TE, Scialla JJ, Nickolas TL, Schnall A, Barzilay J, Schwartz AV. Change in estimated glomerular filtration rate and fracture risk in the Action to Control Cardiovascular Risk in Diabetes Trial. Bone 2015; 78:23-7. [PMID: 25937184 PMCID: PMC4466209 DOI: 10.1016/j.bone.2015.04.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Patients with type 2 diabetes (T2DM) are at increased risk of fracture. High prevalence of chronic kidney disease (CKD) in T2DM may contribute to bone fragility, but whether dynamic change in kidney function is associated with fracture risk is unclear. RESEARCH DESIGN AND METHODS To evaluate the association of pre-randomization baseline estimated glomerular filtration (eGFR) and its change over time with subsequent fracture risk in the Bone substudy of Action to Control Cardiovascular Risk in Diabetes (ACCORD) Trial, we conducted an observational study of 2262 women and 4737 men with T2DM and with at least 2 eGFR values. RESULTS During a mean follow-up of 4.40±1.54 years, 235 women and 223 men sustained a new non-vertebral fracture. In multivariable adjusted sex-specific models, pre-randomization baseline eGFR was not a significant predictor of fracture risk in either men or women. However, a steeper decline in eGFR was associated with greater risk of fracture in women (hazard ratio [HR] per standard deviation [SD] decrement in eGFR slope, 1.30; 95% CI 1.17-1.44) but not men (HR per SD decrement in eGFR slope, 0.97; 95%CI 0.82-1.13). Accounting for competing risk of death modestly attenuated the association in women (HR per SD decrement in eGFR slope, 1.19; 95% CI 1.04-1.37), with the relationship in men remaining non-significant (HR per SD decrement in eGFR slope, 0.96; 95% CI 0.77-1.18). CONCLUSIONS Declining kidney function predicts fracture risk in women but not in men with T2DM. Future studies should investigate the mechanisms for these associations.
Collapse
Affiliation(s)
- Tamara Isakova
- Department of Medicine, Division of Nephrology, Institute of Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Timothy E Craven
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Julia J Scialla
- Department of Medicine, Division of Nephrology, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Thomas L Nickolas
- Department of Medicine, Division of Nephrology, Columbia University Medical Center, New York, NY, USA
| | - Adrian Schnall
- University Suburban Health Center, South Euclid, OH, USA
| | - Joshua Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia and Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
49
|
Mellibovsky L, Prieto-Alhambra D, Mellibovsky F, Güerri-Fernández R, Nogués X, Randall C, Hansma PK, Díez-Perez A. Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis. J Bone Miner Res 2015; 30:1651-6. [PMID: 25736591 DOI: 10.1002/jbmr.2497] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/07/2022]
Abstract
Glucocorticoids, widely used in inflammatory disorders, rapidly increase bone fragility and, therefore, fracture risk. However, common bone densitometry measurements are not sensitive enough to detect these changes. Moreover, densitometry only partially recognizes treatment-induced fracture reductions in osteoporosis. Here, we tested whether the reference point indentation technique could detect bone tissue property changes early after glucocorticoid treatment initiation. After initial laboratory and bone density measurements, patients were allocated into groups receiving calcium + vitamin D (Ca+D) supplements or anti-osteoporotic drugs (risedronate, denosumab, teriparatide). Reference point indentation was performed on the cortical bone layer of the tibia by a handheld device measuring bone material strength index (BMSi). Bone mineral density was measured by dual-energy X-ray absorptiometry (DXA). Although Ca+D-treated patients exhibited substantial and significant deterioration, risedronate-treated patients exhibited no significant change, and both denosumab- and teriparatide-treated participants exhibited significantly improved BMSi 7 weeks after initial treatment compared with baseline; these trends remained stable for 20 weeks. In contrast, no densitometry changes were observed during this study period. In conclusion, our study is the first to our knowledge to demonstrate that reference point indentation is sensitive enough to reflect changes in cortical bone indentation after treatment with osteoporosis therapies in patients newly exposed to glucocorticoids.
Collapse
Affiliation(s)
- Leonardo Mellibovsky
- Hospital del Mar-IMIM, Universitat Autònoma de Barcelona, RETICEF, Instituto Carlos III, Barcelona, Spain
| | - Daniel Prieto-Alhambra
- Hospital del Mar-IMIM, Universitat Autònoma de Barcelona, RETICEF, Instituto Carlos III, Barcelona, Spain
- Oxford NIHR Musculoskeletal Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- GREMPAL Research Group, Idiap Jordi Gol Primary Care Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernando Mellibovsky
- Castelldefels School of Telecom and Aerospace Engineering (EETAC), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Roberto Güerri-Fernández
- Hospital del Mar-IMIM, Universitat Autònoma de Barcelona, RETICEF, Instituto Carlos III, Barcelona, Spain
| | - Xavier Nogués
- Hospital del Mar-IMIM, Universitat Autònoma de Barcelona, RETICEF, Instituto Carlos III, Barcelona, Spain
| | - Connor Randall
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Paul K Hansma
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Adolfo Díez-Perez
- Hospital del Mar-IMIM, Universitat Autònoma de Barcelona, RETICEF, Instituto Carlos III, Barcelona, Spain
| |
Collapse
|
50
|
Lewis JB. Government Quality Measures: First Do No Harm. Semin Dial 2015; 28:657-60. [PMID: 26271368 DOI: 10.1111/sdi.12418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A technical expert panel (TEP) was convened to evaluate all available literature in the area of bone and mineral metabolism and advise the Centers for Medicare and Medicaid services on the creation and collection of quality measures. The proposed quality measures were evaluated for importance, usability, feasibility, and scientific acceptability. All are important parameters to avoid unintended harmful consequences of a quality measure causing harm to patients or to the delivery of their health care.
Collapse
Affiliation(s)
- Julia B Lewis
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|