1
|
Bahrami M, Abbaszadeh HA, Norouzian M, Abdollahifar MA, Roozbahany NA, Saber M, Azimi M, Ehsani E, Bakhtiyari M, Serra AL, Moghadasali R. Enriched human embryonic stem cells-derived CD133 +, CD24 + renal progenitors engraft and restore function in a gentamicin-induced kidney injury in mice. Regen Ther 2024; 27:506-518. [PMID: 38745839 PMCID: PMC11091464 DOI: 10.1016/j.reth.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Acute kidney injury (AKI) is a common health problem that leads to high morbidity and potential mortality. The failure of conventional treatments to improve forms of this condition highlights the need for innovative and effective treatment approaches. Regenerative therapies with Renal Progenitor Cells (RPCs) have been proposed as a promising new strategy. A growing body of evidence suggests that progenitor cells differentiated from different sources, including human embryonic stem cells (hESCs), can effectively treat AKI. Methods Here, we describe a method for generating RPCs and directed human Embryoid Bodies (EBs) towards CD133+CD24+ renal progenitor cells and evaluate their functional activity in alleviating AKI. Results The obtained results show that hESCs-derived CD133+CD24+ RPCs can engraft into damaged renal tubules and restore renal function and structure in mice with gentamicin-induced kidney injury, and significantly decrease blood urea nitrogen levels, suppress oxidative stress and inflammation, and attenuate histopathological disturbances, including tubular necrosis, tubular dilation, urinary casts, and interstitial fibrosis. Conclusion The results suggest that RPCs have a promising regenerative potential in improving renal disease and can lay the foundation for future cell therapy and disease modeling.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Ahmady Roozbahany
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Private Practice, Bradford ON, Canada
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ehsan Ehsani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Mohsen Bakhtiyari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Andreas L. Serra
- Department of Internal Medicine and Nephrology, Klinik Hirslanden, Zurich, Switzerland
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
2
|
de Assis JL, Grelle GMRS, Fernandes AM, da Silva Aniceto B, Pompeu P, de Mello FV, Garrett R, Valverde RHF, Einicker-Lamas M. Sphingosine 1-phosphate protective effect on human proximal tubule cells submitted to an in vitro ischemia model: the role of JAK2/STAT3. J Physiol Biochem 2024; 80:831-843. [PMID: 39155330 DOI: 10.1007/s13105-024-01038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Acute kidney injury is a serious public health problem worldwide, being ischemia and reperfusion (I/R) the main lesion-aggravating factor that contributes to the evolution towards chronic kidney disease. Nonetheless, intervention approaches currently available are just considered palliative options. In order to offer an alternative treatment, it is important to understand key factors involved in the development of the disease including the rescue of the affected cells and/or the release of paracrine factors that are crucial for tissue repair. Bioactive lipids such as sphingosine 1-phosphate (S1P) have significant effects on the modulation of signaling pathways involved in tissue regeneration, such as cell survival, proliferation, differentiation, and migration. The main objective of this work was to explore the protective effect of S1P using human kidney proximal tubule cells submitted to a mimetic I/R lesion, via ATP depletion. We observed that the S1P pre-treatment increases cell survival by 50% and preserves the cell proliferation capacity of injured cells. We showed the presence of different bioactive lipids notably related to tissue repair but, more importantly, we noted that the pre-treatment with S1P attenuated the ischemia-induced effects in response to the injury, resulting in higher endogenous S1P production. All receptors but S1PR3 are present in these cells and the protective and proliferative effect of S1P/S1P receptors axis occur, at least in part, through the activation of the SAFE pathway. To our knowledge, this is the first time that S1PR4 and S1PR5 are referred in these cells and also the first indication of JAK2/STAT3 pathway involvement in S1P-mediated protection in an I/R renal model.
Collapse
Affiliation(s)
- Juliane Lopes de Assis
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gloria Maria Ramalho Soares Grelle
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Metabolômica, LADETEC, Instituto de Química - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Marie Fernandes
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bárbara da Silva Aniceto
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Pompeu
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Vieira de Mello
- Serviço de Citometria do Instituto de Pediatria e Puericultura Martagão Gesteira (IPPMG) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Garrett
- Laboratório de Metabolômica, LADETEC, Instituto de Química - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Hospodar Felippe Valverde
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Montenegro F, Giannuzzi F, Picerno A, Cicirelli A, Stea ED, Di Leo V, Sallustio F. How Stem and Progenitor Cells Can Affect Renal Diseases. Cells 2024; 13:1460. [PMID: 39273032 PMCID: PMC11393889 DOI: 10.3390/cells13171460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Stem and progenitor cells have been observed to contribute to regenerative processes in acute renal failure and chronic kidney disease. Recent research has delved into the intricate mechanisms by which stem and progenitor cells exert their influence on kidney diseases. Understanding how these cells integrate with the existing renal architecture and their response to injury could pave the way for innovative treatment strategies aimed at promoting kidney repair and regeneration. Overall, the role of stem and progenitor cells in kidney diseases is multifaceted, with their ability to contribute to tissue regeneration, immune modulation, and the maintenance of renal homeostasis. Here, we review the studies that we have available today about the involvement of stem and progenitor cells both in regenerative therapies and in the causes of renal diseases, as well as in natural healing mechanisms, taking into account the main kidney disorders, such as IgA nephropathy, lupus nephritis, diabetic nephropathy, C3 glomerulopathy, focal segmental glomerulosclerosis, idiopathic membranous nephropathy, anti-glomerular basement membrane glomerulonephritis, and ANCA-associated crescentic glomerulonephritis. Moreover, based on the comprehensive data available in the framework of the specific kidney diseases on stem cells and renal progenitors, we hypothesize a possible role of adult renal progenitors in exacerbating or recovering the illness.
Collapse
Affiliation(s)
- Francesca Montenegro
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Emma Diletta Stea
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Vincenzo Di Leo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
4
|
Kazeminia S, Eirin A. Role of mitochondria in endogenous renal repair. Clin Sci (Lond) 2024; 138:963-973. [PMID: 39076039 PMCID: PMC11410300 DOI: 10.1042/cs20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Renal tubules have potential to regenerate and repair after mild-to-moderate injury. Proliferation of tubular epithelial cells represents the initial step of this reparative process. Although for many years, it was believed that proliferating cells originated from a pre-existing intra-tubular stem cell population, there is now consensus that surviving tubular epithelial cells acquire progenitor properties to regenerate the damaged kidney. Scattered tubular-like cells (STCs) are dedifferentiated adult renal tubular epithelial cells that arise upon injury and contribute to renal self-healing and recovery by replacing lost neighboring tubular epithelial cells. These cells are characterized by the co-expression of the stem cell surface markers CD133 and CD24, as well as mesenchymal and kidney injury markers. Previous studies have shown that exogenous delivery of STCs ameliorates renal injury and dysfunction in murine models of acute kidney injury, underscoring the regenerative potential of this endogenous repair system. Although STCs contain fewer mitochondria than their surrounding terminally differentiated tubular epithelial cells, these organelles modulate several important cellular functions, and their integrity and function are critical to preserve the reparative capacity of STCs. Recent data suggest that the microenviroment induced by cardiovascular risk factors, such as obesity, hypertension, and renal ischemia may compromise STC mitochondrial integrity and function, limiting the capacity of these cells to repair injured renal tubules. This review summarizes current knowledge of the contribution of STCs to kidney repair and discusses recent insight into the key role of mitochondria in modulating STC function and their vulnerability in the setting of cardiovascular disease.
Collapse
Affiliation(s)
- Sara Kazeminia
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A
| | - Alfonso Eirin
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, U.S.A
| |
Collapse
|
5
|
Chen S, Lo CH, Liu Z, Wang Q, Ning K, Li T, Sun Y. Base editing correction of OCRL in Lowe syndrome: ABE-mediated functional rescue in patient-derived fibroblasts. Hum Mol Genet 2024; 33:1142-1151. [PMID: 38557732 DOI: 10.1093/hmg/ddae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Lowe syndrome, a rare X-linked multisystem disorder presenting with major abnormalities in the eyes, kidneys, and central nervous system, is caused by mutations in OCRL gene (NG_008638.1). Encoding an inositol polyphosphate 5-phosphatase, OCRL catalyzes the hydrolysis of PI(4,5)P2 into PI4P. There are no effective targeted treatments for Lowe syndrome. Here, we demonstrate a novel gene therapy for Lowe syndrome in patient fibroblasts using an adenine base editor (ABE) that can efficiently correct pathogenic point mutations. We show that ABE8e-NG-based correction of a disease-causing mutation in a Lowe patient-derived fibroblast line containing R844X mutation in OCRL gene, restores OCRL expression at mRNA and protein levels. It also restores cellular abnormalities that are hallmarks of OCRL dysfunction, including defects in ciliogenesis, microtubule anchoring, α-actinin distribution, and F-actin network. The study indicates that ABE-mediated gene therapy is a feasible treatment for Lowe syndrome, laying the foundation for therapeutic application of ABE in the currently incurable disease.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
| | - Zhiquan Liu
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
| | - Tingting Li
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong district, Shanghai 200120, China
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA 94304, United States
- Palo Alto Veterans Administration, 3801 Miranda Avenue, Palo Alto, CA 94304, United States
| |
Collapse
|
6
|
Bahrami M, Darabi S, Roozbahany NA, Abbaszadeh HA, Moghadasali R. Great potential of renal progenitor cells in kidney: From the development to clinic. Exp Cell Res 2024; 434:113875. [PMID: 38092345 DOI: 10.1016/j.yexcr.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The mammalian renal organ represents a pinnacle of complexity, housing functional filtering units known as nephrons. During embryogenesis, the depletion of niches containing renal progenitor cells (RPCs) and the subsequent incapacity of adult kidneys to generate new nephrons have prompted the formulation of protocols aimed at isolating residual RPCs from mature kidneys and inducing their generation from diverse cell sources, notably pluripotent stem cells. Recent strides in the realm of regenerative medicine and the repair of tissues using stem cells have unveiled critical signaling pathways essential for the maintenance and generation of human RPCs in vitro. These findings have ushered in a new era for exploring novel strategies for renal protection. The present investigation delves into potential transcription factors and signaling cascades implicated in the realm of renal progenitor cells, focusing on their protection and differentiation. The discourse herein elucidates contemporary research endeavors dedicated to the acquisition of progenitor cells, offering crucial insights into the developmental mechanisms of these cells within the renal milieu and paving the way for the formulation of innovative treatment modalities.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
7
|
Cha SG, Rhim WK, Kim JY, Lee EH, Lee SY, Park JM, Lee JE, Yoon H, Park CG, Kim BS, Kwon TG, Lee Y, Lee DR, Han DK. Kidney tissue regeneration using bioactive scaffolds incorporated with differentiating extracellular vesicles and intermediate mesoderm cells. Biomater Res 2023; 27:126. [PMID: 38049879 PMCID: PMC10696796 DOI: 10.1186/s40824-023-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND To overcome the limitations of current alternative therapies for chronic kidney disease (CKD), tissue engineering-mediated regeneration strategies have demonstrated the possibilities for complete kidney tissue regeneration. Given the challenges associated with the reproducibility of renal basal cells, the incorporation of intermediate mesoderm (IM) cells and bioactive materials to control bioactivities of cells with supported scaffolds should be considered as a viable approach to enable the regeneration of the complex kidney structure via renal differentiation. METHODS We developed PMEZ scaffolds by combining crucial bioactive components, such as ricinoleic acid-grafted Mg(OH)2 (M), extracellular matrix (E), and alpha lipoic acid-conjugated ZnO (Z) integrated into biodegradable porous PLGA (P) platform. Additionally, we utilized differentiating extracellular vesicles (dEV) isolated during intermediate mesoderm differentiation into kidney progenitor cells, and IM cells were serially incorporated to facilitate kidney tissue regeneration through their differentiation into kidney progenitor cells in the 3/4 nephrectomy mouse model. RESULTS The use of differentiating extracellular vesicles facilitated IM differentiation into kidney progenitor cells without additional differentiation factors. This led to improvements in various regeneration-related bioactivities including tubule and podocyte regeneration, anti-fibrosis, angiogenesis, and anti-inflammation. Finally, implanting PMEZ/dEV/IM scaffolds in mouse injury model resulted in the restoration of kidney function. CONCLUSIONS Our study has demonstrated that utilizing biodegradable PLGA-based scaffolds, which include multipotent cells capable of differentiating into various kidney progenitor cells along with supporting components, can facilitate kidney tissue regeneration in the mouse model that simulates CKD through 3/4 nephrectomy.
Collapse
Affiliation(s)
- Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Eun Hye Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Jeong Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Jeoung Eun Lee
- Bundang Medical Center, CHA Advanced Research Institute, CHA University, Sungnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Hyeji Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Bum Soo Kim
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Urology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
| | - Tae Gyun Kwon
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Urology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
| | - Youngmi Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
- Bundang Medical Center, CHA Advanced Research Institute, CHA University, Sungnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
8
|
Peek JL, Wilson MH. Cell and gene therapy for kidney disease. Nat Rev Nephrol 2023:10.1038/s41581-023-00702-3. [PMID: 36973494 DOI: 10.1038/s41581-023-00702-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Kidney disease is a leading cause of morbidity and mortality across the globe. Current interventions for kidney disease include dialysis and renal transplantation, which have limited efficacy or availability and are often associated with complications such as cardiovascular disease and immunosuppression. There is therefore a pressing need for novel therapies for kidney disease. Notably, as many as 30% of kidney disease cases are caused by monogenic disease and are thus potentially amenable to genetic medicine, such as cell and gene therapy. Systemic disease that affects the kidney, such as diabetes and hypertension, might also be targetable by cell and gene therapy. However, although there are now several approved gene and cell therapies for inherited diseases that affect other organs, none targets the kidney. Promising recent advances in cell and gene therapy have been made, including in the kidney research field, suggesting that this form of therapy might represent a potential solution for kidney disease in the future. In this Review, we describe the potential for cell and gene therapy in treating kidney disease, focusing on recent genetic studies, key advances and emerging technologies, and we describe several crucial considerations for renal genetic and cell therapies.
Collapse
Affiliation(s)
- Jennifer L Peek
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Matthew H Wilson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Health Services, Nashville, TN, USA.
| |
Collapse
|
9
|
Botelho BF, Barreira AL, Leite M, Morales MM. Chronic Kidney Disease: Challenges in Translational Medicine. Methods Mol Biol 2023; 2575:61-75. [PMID: 36301471 DOI: 10.1007/978-1-0716-2716-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chronic kidney disease (CKD) has long been recognized as a state of progressive decline in renal function. Morbidity and mortality are well correlated to the stage of renal function decline. Approximately one million deaths are estimated to be related to CKD worldwide. They are mostly associated with cardiovascular disease as a result of concurrent hypertension, accelerated atherosclerosis, and volume overload. Even with the best current treatment, disease progression is the general rule with a small fraction who reach CKD stage 5 requiring kidney transplantation or dialysis. Transplant patients show substantial reductions in mortality and cardiovascular events, as well as improvements in quality of life. However, the capacity of health systems to deliver kidney transplantation varies worldwide with worse indicators in low-income countries. Consequently, exploring novel and better therapeutic options for CKD is mandatory. Cell-based therapy is a promising strategy for treating CKD in preclinical models, and several clinical trials involving kidney disease exhibit a favorable safety profile. This chapter aims to provide an overview of CKD and the recent results of clinical trials of cell therapy in kidney diseases.
Collapse
Affiliation(s)
- Bruno Freire Botelho
- Department of Nephrology, School of Medicine, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - André Luis Barreira
- Department of Nephrology, School of Medicine, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Maurilo Leite
- Department of Nephrology, School of Medicine, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Marcelo Marcos Morales
- Laboratory of Cellular and Molecular Physiology, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Quaglia M, Fanelli V, Merlotti G, Costamagna A, Deregibus MC, Marengo M, Balzani E, Brazzi L, Camussi G, Cantaluppi V. Dual Role of Extracellular Vesicles in Sepsis-Associated Kidney and Lung Injury. Biomedicines 2022; 10:biomedicines10102448. [PMID: 36289710 PMCID: PMC9598620 DOI: 10.3390/biomedicines10102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles form a complex intercellular communication network, shuttling a variety of proteins, lipids, and nucleic acids, including regulatory RNAs, such as microRNAs. Transfer of these molecules to target cells allows for the modulation of sets of genes and mediates multiple paracrine and endocrine actions. EVs exert broad pro-inflammatory, pro-oxidant, and pro-apoptotic effects in sepsis, mediating microvascular dysfunction and multiple organ damage. This deleterious role is well documented in sepsis-associated acute kidney injury and acute respiratory distress syndrome. On the other hand, protective effects of stem cell-derived extracellular vesicles have been reported in experimental models of sepsis. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, regenerative, and immunomodulatory properties of parental cells and have shown therapeutic effects in experimental models of sepsis with kidney and lung involvement. Extracellular vesicles are also likely to play a role in deranged kidney-lung crosstalk, a hallmark of sepsis, and may be key to a better understanding of shared mechanisms underlying multiple organ dysfunction. In this review, we analyze the state-of-the-art knowledge on the dual role of EVs in sepsis-associated kidney/lung injury and repair. PubMed library was searched from inception to July 2022, using a combination of medical subject headings (MeSH) and keywords related to EVs, sepsis, acute kidney injury (AKI), acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Key findings are summarized into two sections on detrimental and beneficial mechanisms of actions of EVs in kidney and lung injury, respectively. The role of EVs in kidney-lung crosstalk is then outlined. Efforts to expand knowledge on EVs may pave the way to employ them as prognostic biomarkers or therapeutic targets to prevent or reduce organ damage in sepsis.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Vito Fanelli
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Andrea Costamagna
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | | | - Marita Marengo
- Nephrology and Dialysis Unit, ASL CN1, 12038 Savigliano, Italy
| | - Eleonora Balzani
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Luca Brazzi
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
- Correspondence: (G.C.); (V.C.)
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
- Correspondence: (G.C.); (V.C.)
| |
Collapse
|
11
|
The therapeutic potential of Camel Wharton jelly mesenchymal stem cells (CWJ-MSCs) in canine chronic kidney disease model. Stem Cell Res Ther 2022; 13:387. [PMID: 35908006 PMCID: PMC9338563 DOI: 10.1186/s13287-022-03076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic kidney disease (CKD) is a worldwide health problem that its incidence increases nowadays with the increase in the risk of environmental pollution. CKD can progress to end-stage renal disease (ESRD) which usually ends fatally. This study aimed to examine the therapeutic potential of Camel Wharton jelly-mesenchymal stem cells (CWJ-MSCs) in chronic kidney disease model induced in dogs. Methods CWJ-MSCs were injected directed to the kidney with ultrasonographic guidance in dogs with 5/6 nephrectomy to evaluate its therapeutic potency in such cases. Analysis of variance was applied in normally distributed quantitative variables while a non-parametric Mann–Whitney test was used for non-normally distributed quantitative variables. Results The serum urea and creatinine in the treated group were significantly decreased transferring dogs in the treated group from stage 3 to stage 2 CKD according to the IRIS staging system. Histopathology of renal tissue revealed improving CKD lesions by increasing regeneration of degenerated tubules, maintaining the integrity of glomeruli. New vascularization with blood vessels remodeling were common findings. Periodic acid Schiff stain of renal tissue showed the integrity of renal tubules and thickness of the glomerular basement membrane. Fibrosis of cortex and medulla was lower in the treated group than in the CKD model as monitored by Mallory’s trichrome stain (MTC). NGAL and KIM-1 genes expression were decreased while VEGF and EGF genes expression were increased indicating renal tissue repair. Conclusions CWJ-MSCs have a therapeutic potential in the CKD model induced in dogs.
Collapse
|
12
|
Rafiee Z, Orazizadeh M, Nejad Dehbashi F, Neisi N, Babaahmadi-Rezaei H, Mansouri E. Mesenchymal stem cells derived from the kidney can ameliorate diabetic nephropathy through the TGF-β/Smad signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53212-53224. [PMID: 35278177 DOI: 10.1007/s11356-021-17954-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Diabetic nephropathy (DN) has been introduced as one of the main microvascular complications in diabetic patients, the most common cause of end-stage renal disease (ESRD). Based on the therapeutic potential of mesenchymal stem cells in tissue repair, we aimed to test the hypothesis that kidney stem cells (KSCs) might be effective in the kidney regeneration process. Stem cells from rat kidney were separated, and the surface stem cell markers were determined by flow cytometry analysis. Thirty-two Sprague Dawley rats were divided into four groups (control, control that received kidney stem cells, diabetic, diabetic treated with stem cells). To establish diabetic, model STZ (streptozotocin) (60 mg/kg) was used. The KSCs were injected into experimental groups via tail vein (2 × 106 cells/rat). In order to determine the impact of stem cells on the function and structure of the kidney, biochemical and histological parameters were measured. Further, the expression of miRNA-29a, miR-192, IL-1β, and TGF-β was determined through the real-time PCR technique. Phosphorylation of Smad2/3 was evaluated by using the standard western blotting. The KSCs significantly reduced blood nitrogen (BUN), serum creatinine (Scr), and 24-h urinary proteins in DN (P < 0.05). IL-1β and TGF-β significantly increased in the kidney of diabetic rats. In addition, the expression of miR-29a is significantly increased, whereas miR-192 decreased after treatment with KSCs (P < 0.05). Diabetic rats showed an increased level of phosphorylation of both Smad2 and Smad3 (P < 0.05). Periodic acid-Schiff (PAS) staining showed improved histopathological changes in the presence of KSCs. Stem cells derived from adult rat kidney may be an option for treating the early DN to improve the functions and structure of kidneys in rats with DN.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61335, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61335, Ahvaz, Iran
| | - Fereshteh Nejad Dehbashi
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- Alimentary Tract Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Infectious and Tropical Diseases Research Center, Department of Virology, the School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61335, Ahvaz, Iran.
| |
Collapse
|
13
|
Quaglia M, Merlotti G, Colombatto A, Bruno S, Stasi A, Franzin R, Castellano G, Grossini E, Fanelli V, Cantaluppi V. Stem Cell-Derived Extracellular Vesicles as Potential Therapeutic Approach for Acute Kidney Injury. Front Immunol 2022; 13:849891. [PMID: 35359949 PMCID: PMC8960117 DOI: 10.3389/fimmu.2022.849891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury is a frequent complication of hospitalized patients and significantly increases morbidity and mortality, worsening costs and length of hospital stay. Despite this impact on healthcare system, treatment still remains only supportive (dialysis). Stem cell-derived extracellular vesicles are a promising option as they recapitulate stem cells properties, overcoming safety issues related to risks or rejection or aberrant differentiation. A growing body of evidence based on pre-clinical studies suggests that extracellular vesicles may be effective to treat acute kidney injury and to limit fibrosis through direct interference with pathogenic mechanisms of vascular and tubular epithelial cell damage. We herein analyze the state-of-the-art knowledge of therapeutic approaches with stem cell-derived extracellular vesicles for different forms of acute kidney injury (toxic, ischemic or septic) dissecting their cytoprotective, regenerative and immunomodulatory properties. We also analyze the potential impact of extracellular vesicles on the mechanisms of transition from acute kidney injury to chronic kidney disease, with a focus on the pivotal role of the inhibition of complement cascade in this setting. Despite some technical limits, nowadays the development of therapies based on stem cell-derived extracellular vesicles holds promise as a new frontier to limit acute kidney injury onset and progression.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Andrea Colombatto
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Kidney Transplantation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Vito Fanelli
- Department of Anesthesiology and Intensive Care, University of Torino, Torino, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| |
Collapse
|
14
|
Endo T, Kadoya K, Suzuki T, Suzuki Y, Terkawi MA, Kawamura D, Iwasaki N. Mature but not developing Schwann cells promote axon regeneration after peripheral nerve injury. NPJ Regen Med 2022; 7:12. [PMID: 35091563 PMCID: PMC8799715 DOI: 10.1038/s41536-022-00205-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Since Schwann cells (SCs) support axonal growth at development as well as after peripheral nerve injury (PNI), developing SCs might be able to promote axon regeneration after PNI. The purpose of the current study was to elucidate the capability of developing SCs to induce axon regeneration after PNI. SC precursors (SCPs), immature SCs (ISCs), repair SCs (RSCs) from injured nerves, and non-RSCs from intact nerves were tested by grafting into acellular region of rat sciatic nerve with crush injury. Both of developing SCs completely failed to support axon regeneration, whereas both of mature SCs, especially RSCs, induced axon regeneration. Further, RSCs but not SCPs promoted neurite outgrowth of adult dorsal root ganglion neurons. Transcriptome analysis revealed that the gene expression profiles were distinctly different between RSCs and SCPs. These findings indicate that developing SCs are markedly different from mature SCs in terms of functional and molecular aspects and that RSC is a viable candidate for regenerative cell therapy for PNI.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan.
| | - Tomoaki Suzuki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuki Suzuki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan
| | - Daisuke Kawamura
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
15
|
Ji J, Yang L. Amniotic stem cells and their exosomes. REGENERATIVE NEPHROLOGY 2022:169-188. [DOI: 10.1016/b978-0-12-823318-4.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Yuan X, Zhang L, Du J. Tbx18-positive cells-derived myofibroblasts contribute to renal interstitial fibrosis via transforming growth factor-β signaling. Exp Cell Res 2021; 405:112682. [PMID: 34118250 DOI: 10.1016/j.yexcr.2021.112682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
It has been demonstrated that the T-box family transcription factor 18 (Tbx18) -positive cells give rise to renal mesenchymal cells and contribute to the development of the urinary system. However, it is unclear whether Tbx18-positive cells are the origin of the myofibroblasts during renal fibrosis. The present study aimed to determine the contribution of Tbx18-positive cells in kidney fibrosis and their underlying mechanism. We show that Tbx18-positive cells contribute to the development of the urinary system, especially renal fibroblasts. Following unilateral ureteral obstruction (UUO), genetic fate tracing results demonstrated that Tbx18-positive cells not only proliferate but also expand and differentiate into fibroblasts and myofibroblasts, indicating that they may act as profibrotic progenitors. Cell culture results suggest that transforming growth factor (TGF)-β promotes Tbx18-positive cells differentiation into myofibroblasts and assist their contribution to kidney fibrosis. Overall, the present study demonstrated that Tbx18-positive cells may act as profibrotic progenitor cells in a pathological condition of UUO-induced injury. Moreover, TGF-β may play a role in differentiation of Tbx18-positive cells into myofibroblasts in kidney fibrosis. These findings may provide a potential target on Tbx18-positive myofibroblast progenitors in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhang
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Corrêa RR, Juncosa EM, Masereeuw R, Lindoso RS. Extracellular Vesicles as a Therapeutic Tool for Kidney Disease: Current Advances and Perspectives. Int J Mol Sci 2021; 22:ijms22115787. [PMID: 34071399 PMCID: PMC8198688 DOI: 10.3390/ijms22115787] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been described as important mediators of cell communication, regulating several physiological processes, including tissue recovery and regeneration. In the kidneys, EVs derived from stem cells have been shown to support tissue recovery in diverse disease models and have been considered an interesting alternative to cell therapy. For this purpose, however, several challenges remain to be overcome, such as the requirement of a high number of EVs for human therapy and the need for optimization of techniques for their isolation and characterization. Moreover, the kidney’s complexity and the pathological process to be treated require that EVs present a heterogeneous group of molecules to be delivered. In this review, we discuss the recent advances in the use of EVs as a therapeutic tool for kidney diseases. Moreover, we give an overview of the new technologies applied to improve EVs’ efficacy, such as novel methods of EV production and isolation by means of bioreactors and microfluidics, bioengineering the EV content and the use of alternative cell sources, including kidney organoids, to support their transfer to clinical applications.
Collapse
Affiliation(s)
- Raphael Rodrigues Corrêa
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Estela Mancheño Juncosa
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Correspondence: (R.M.); (R.S.L.); Tel.: +31-30-253-3529 (R.M.); Tel.: +55-21-3938-6520 (R.S.L.)
| | - Rafael Soares Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (R.M.); (R.S.L.); Tel.: +31-30-253-3529 (R.M.); Tel.: +55-21-3938-6520 (R.S.L.)
| |
Collapse
|
18
|
Mehta A, Tahhan AS, Liu C, Dhindsa DS, Nayak A, Hooda A, Moazzami K, Islam SJ, Rogers SC, Almuwaqqat Z, Mokhtari A, Hesaroieh I, Ko YA, Waller EK, Quyyumi AA. Circulating Progenitor Cells in Patients With Coronary Artery Disease and Renal Insufficiency. JACC Basic Transl Sci 2020; 5:770-782. [PMID: 32875168 PMCID: PMC7452291 DOI: 10.1016/j.jacbts.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 10/26/2022]
Abstract
Patients with coronary artery disease and renal insufficiency (RI) (estimated glomerular filtration rate <60 ml/min/1.73 m2) are at an increased risk of cardiovascular events. The contribution of regenerative capacity, measured as circulating progenitor cell (CPC) counts, to this increased risk is unclear. CPCs were enumerated as cluster of differentiation (CD) 45med+ mononuclear cells expressing CD34+, CD133+, CXCR4+ (chemokine [C-X-C motif] receptor 4), and VEGF2R+ (vascular endothelial growth factor receptor 2) epitopes in 1,281 subjects with coronary artery disease (35% with RI). Patients with RI and low (<median) hematopoietic CPCs (CD34+, CD34+/CD133+, and CD34+/CXCR4+) were at an increased risk of cardiovascular death or myocardial infarction events (hazard ratios: 1.75 to 1.80) during 3.5-year follow-up, while those with RI and high CPCs (>median) were at a similar risk as those without RI.
Collapse
Key Words
- BNP, B-type natriuretic peptide
- CAD, coronary artery disease
- CD, cluster of differentiation
- CI, confidence interval
- CPC, circulating progenitor cell
- CV, cardiovascular
- CXCR4, chemokine (C-X-C motif) receptor 4
- HR, hazard ratio
- IDI, integrated discrimination index
- MI, myocardial infarction
- VEGF2R, vascular endothelial growth factor receptor 2
- coronary artery disease
- eGFR, estimated glomerular filtration rate
- hsTnI, high-sensitivity troponin I
- outcomes
- progenitor cells
- regenerative capacity
- renal insufficiency
Collapse
Affiliation(s)
- Anurag Mehta
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ayman S Tahhan
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Chang Liu
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Devinder S Dhindsa
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Aditi Nayak
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ananya Hooda
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Kasra Moazzami
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Shabatun J Islam
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Steven C Rogers
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Zakaria Almuwaqqat
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ali Mokhtari
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Iraj Hesaroieh
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yi-An Ko
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
19
|
de Carvalho Ribeiro P, Oliveira LF, Filho MA, Caldas HC. Differentiating Induced Pluripotent Stem Cells into Renal Cells: A New Approach to Treat Kidney Diseases. Stem Cells Int 2020; 2020:8894590. [PMID: 32831854 PMCID: PMC7428838 DOI: 10.1155/2020/8894590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Renal disease is a major issue for global public health. Despite some progress in supportive care, the mortality rates among patients with this condition remain alarmingly high. Studies in pursuit of innovative strategies to treat renal diseases, especially stimulating kidney regeneration, have been developed. In this field, stem cell-based therapy has been a promising area. Induced pluripotent stem cell-derived renal cells (iPSC-RCs) represent an interesting source of cells for treating kidney diseases. Advances in regenerative medicine using iPSC-RCs and their application to the kidney are discussed in this review. Furthermore, the way differentiation protocols of induced pluripotent stem cells into renal cells may also be applied for the generation of kidney organoids is also described, contributing to studies in renal development, kidney diseases, and drug toxicity tests. The translation of the differentiation methodologies into animal model studies and the safety and feasibility of renal differentiated cells as a treatment for kidney injury are also highlighted. Although only few studies were published in this field, the results seem promising and support the use of iPSC-RCs as a potential therapy in the future.
Collapse
Affiliation(s)
- Patrícia de Carvalho Ribeiro
- Laboratory of Immunology and Experimental Transplantation-LITEX, Medical School of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Sao Paulo, Brazil
| | - Lucas Felipe Oliveira
- Physiology Division, Natural and Biological Sciences Institute, Triangulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario Abbud Filho
- Laboratory of Immunology and Experimental Transplantation-LITEX, Medical School of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Sao Paulo, Brazil
- Kidney Transplant Unit, Hospital de Base, FAMERP/FUNFARME, Sao Jose do Rio Preto, Sao Paulo, Brazil
- Urology and Nephrology Institute, Sao Jose Rio Preto, Sao Paulo, Brazil
| | - Heloisa Cristina Caldas
- Laboratory of Immunology and Experimental Transplantation-LITEX, Medical School of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Sao Paulo, Brazil
- Kidney Transplant Unit, Hospital de Base, FAMERP/FUNFARME, Sao Jose do Rio Preto, Sao Paulo, Brazil
| |
Collapse
|
20
|
Bombelli S, Meregalli C, Grasselli C, Bolognesi MM, Bruno A, Eriani S, Torsello B, De Marco S, Bernasconi DP, Zucchini N, Mazzola P, Bianchi C, Grasso M, Albini A, Cattoretti G, Perego RA. PKH high/CD133+/CD24- Renal Stem-Like Cells Isolated from Human Nephrospheres Exhibit In Vitro Multipotency. Cells 2020; 9:cells9081805. [PMID: 32751333 PMCID: PMC7465083 DOI: 10.3390/cells9081805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022] Open
Abstract
The mechanism upon which human kidneys undergo regeneration is debated, though different lineage-tracing mouse models have tried to explain the cellular types and the mechanisms involved. Different sources of human renal progenitors have been proposed, but it is difficult to argue whether these populations have the same capacities that have been described in mice. Using the nephrosphere (NS) model, we isolated the quiescent population of adult human renal stem-like PKHhigh/CD133+/CD24− cells (RSC). The aim of this study was to deepen the RSC in vitro multipotency capacity. RSC, not expressing endothelial markers, generated secondary nephrospheres containing CD31+/vWf+ cells and cytokeratin positive cells, indicating the coexistence of endothelial and epithelial commitment. RSC cultured on decellularized human renal scaffolds generated endothelial structures together with the proximal and distal tubular structures. CD31+ endothelial committed progenitors sorted from nephrospheres generated spheroids with endothelial-like sprouts in Matrigel. We also demonstrated the double commitment toward endothelial and epithelial lineages of single RSC. The ability of the plastic RSC population to recapitulate the development of tubular epithelial and endothelial renal lineages makes these cells a good tool for the creation of organoids with translational relevance for studying the parenchymal and endothelial cell interactions and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Bombelli
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
- Correspondence: (R.A.P.); (S.B.); Tel.: +39-02-6448-8303 (R.A.P.); +39-02-6448-8326 (S.B.)
| | - Chiara Meregalli
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Chiara Grasselli
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Maddalena M. Bolognesi
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | | | - Stefano Eriani
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Barbara Torsello
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Sofia De Marco
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Davide P. Bernasconi
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Nicola Zucchini
- Pathology Unit, ASST Monza, San Gerardo Hospital Via G.B. Pergolesi 33, 20900 Monza, Italy;
| | - Paolo Mazzola
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
- Geriatric Unit, ASST Monza, San Gerardo Hospital Via G.B. Pergolesi 33, 20900 Monza, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
| | - Marco Grasso
- Urology Unit, ASST Monza, San Gerardo Hospital Via G.B. Pergolesi 33, 20900 Monza, Italy;
| | - Adriana Albini
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
- IRCCS MultiMedica, 20138 Milan, Italy;
| | - Giorgio Cattoretti
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
- Pathology Unit, ASST Monza, San Gerardo Hospital Via G.B. Pergolesi 33, 20900 Monza, Italy;
| | - Roberto A. Perego
- School of Medicine and Surgery, Milano-Bicocca University, Via Cadore 48, 20900 Monza, Italy; (C.M.); (C.G.); (M.M.B.); (S.E.); (B.T.); (S.D.M.); (D.P.B.); (P.M.); (C.B.); (A.A.); (G.C.)
- Correspondence: (R.A.P.); (S.B.); Tel.: +39-02-6448-8303 (R.A.P.); +39-02-6448-8326 (S.B.)
| |
Collapse
|
21
|
Tsuji K, Kitamura S, Sang Y, Fukushima K, Wada J. Adult kidney stem/progenitor cells contribute to regeneration through the secretion of trophic factors. Stem Cell Res 2020; 46:101865. [PMID: 32505897 DOI: 10.1016/j.scr.2020.101865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Adult kidney stem cells are known to have important roles in renal regeneration after acute kidney injury. Although trophic factors from tissue stem cells have been reported to promote the regeneration of other organs, there is limited number of evidence of this phenomenon in the kidneys. Here, we explored the effects of secreted factors from kidney stem cells. We intraperitoneally administered culture supernatant obtained from adult rat kidney stem/progenitor cells into rat kidney ischemia/reperfusion injury models, and the treatment significantly ameliorated renal tubulointerstitial injury, suppressed tubular cell apoptosis, diminished inflammation and promoted the proliferation of both residual renal cells and immature cells. In vitro, treatment with culture supernatant from kidney stem cells significantly promoted cell proliferation and suppressed cisplatin-induced cell apoptosis in both normal rat kidney cells and kidney stem cells. In addition, treatment with culture supernatant increased the expression of nestin in normal rat kidney cells, suggesting the dedifferentiation of tubular cells into stem-like cells. Analysis of the culture supernatant revealed that it contained a variety of growth factors. Taken together, the results suggest that these factors together lead to renal regeneration. In conclusion, adult kidney stem cells contribute to renal regeneration indirectly through the secretion of regenerative factors.
Collapse
Affiliation(s)
- Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | - Yizhen Sang
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
22
|
Imberti B, Cerullo D, Corna D, Rota C, Locatelli M, Pezzotta A, Introna M, Capelli C, Carminati CE, Rabelink TJ, Leuning DG, Zoja C, Morigi M, Remuzzi G, Benigni A, Luyckx V. Protective Effects of Human Nonrenal and Renal Stromal Cells and Their Conditioned Media in a Rat Model of Chronic Kidney Disease. Cell Transplant 2020; 29:963689720965467. [PMID: 33663249 PMCID: PMC8718166 DOI: 10.1177/0963689720965467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are emerging as a novel therapeutic option for limiting chronic kidney disease progression. Conditioned medium (CM) containing bioactive compounds could convey similar benefits, avoiding the potential risks of cell therapy. This study compared the efficacy of nonrenal and renal cell-based therapy with the corresponding CM in rats with renal mass reduction (RMR). Infusions of human kidney stromal cells (kPSCs) and CM-kPSCs, but not umbilical cord (uc) MSCs or CM-ucMSCs, reduced proteinuria and preserved podocyte number and nephrin expression in RMR rats. Glomerular fibrosis, microvascular rarefaction, and apoptosis were reduced by all treatments, while the peritubular microvascular loss was reduced by kPSCs and CM-kPSCs treatment only. Importantly, kPSCs and CM-kPSCs reduced NG2-positive pericytes, and all therapies reduced α-smooth muscle actin expression, indicating reduced myofibroblast expansion. Treatment with kPSCs also significantly inhibited the accumulation of ED1-positive macrophages in the renal interstitium of RMR rats. These findings demonstrate that the CM of ucMSCs and kPSCs confers similar renoprotection as the cells. kPSCs and CM-kPSCs may be superior in attenuating chronic renal injury as a cell source.
Collapse
Affiliation(s)
- Barbara Imberti
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Both the authors are co-first author
| | - Domenico Cerullo
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Both the authors are co-first author
| | - Daniela Corna
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Cinzia Rota
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Monica Locatelli
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Anna Pezzotta
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Martino Introna
- Laboratory of Cell Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Capelli
- Laboratory of Cell Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Claudia Elisa Carminati
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ton J Rabelink
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, Holland
| | - Danielle G Leuning
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, Holland
| | - Carlamaria Zoja
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marina Morigi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,"L. Sacco" Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Ariela Benigni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Valerie Luyckx
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Andrianova NV, Buyan MI, Zorova LD, Pevzner IB, Popkov VA, Babenko VA, Silachev DN, Plotnikov EY, Zorov DB. Kidney Cells Regeneration: Dedifferentiation of Tubular Epithelium, Resident Stem Cells and Possible Niches for Renal Progenitors. Int J Mol Sci 2019; 20:ijms20246326. [PMID: 31847447 PMCID: PMC6941132 DOI: 10.3390/ijms20246326] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
A kidney is an organ with relatively low basal cellular regenerative potential. However, renal cells have a pronounced ability to proliferate after injury, which undermines that the kidney cells are able to regenerate under induced conditions. The majority of studies explain yielded regeneration either by the dedifferentiation of the mature tubular epithelium or by the presence of a resident pool of progenitor cells in the kidney tissue. Whether cells responsible for the regeneration of the kidney initially have progenitor properties or if they obtain a “progenitor phenotype” during dedifferentiation after an injury, still stays the open question. The major stumbling block in resolving the issue is the lack of specific methods for distinguishing between dedifferentiated cells and resident progenitor cells. Transgenic animals, single-cell transcriptomics, and other recent approaches could be powerful tools to solve this problem. This review examines the main mechanisms of kidney regeneration: dedifferentiation of epithelial cells and activation of progenitor cells with special attention to potential niches of kidney progenitor cells. We attempted to give a detailed description of the most controversial topics in this field and ways to resolve these issues.
Collapse
Affiliation(s)
- Nadezda V. Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina I. Buyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| |
Collapse
|
24
|
Kidney regeneration approaches for translation. World J Urol 2019; 38:2075-2079. [PMID: 31696256 DOI: 10.1007/s00345-019-02999-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/24/2019] [Indexed: 01/11/2023] Open
Abstract
The increase in the incidence of chronic kidney diseases that progress to end-stage renal disease has become a significant health problem worldwide. While dialysis can maintain and prolong survival, the only definitive treatment that can restore renal function is transplantation. Unfortunately, many of these patients die waiting for transplantable kidneys due to the severe shortage of donor organs. Tissue engineering and regenerative medicine approaches have been applied in recent years to develop viable therapies that could provide solutions to these patients. Cell-based and cell-free approaches have been proposed to address the challenges associated with chronic kidney diseases. Strategies and progress toward developing alternative therapeutic options will be reviewed.
Collapse
|
25
|
Renal Artery Stenosis Alters Gene Expression in Swine Scattered Tubular-Like Cells. Int J Mol Sci 2019; 20:ijms20205069. [PMID: 31614781 PMCID: PMC6829501 DOI: 10.3390/ijms20205069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Scattered tubular-like cells (STCs) proliferate and differentiate to support neighboring injured renal tubular cells during recovery from insults. Renal artery stenosis (RAS) induces renal ischemia and hypertension and leads to loss of kidney function, but whether RAS alters renal endogenous repair mechanisms, such as STCs, remains unknown. We hypothesize that RAS in swine modifies the messenger RNA (mRNA) profile of STCs, blunting their in vitro reparative capacity. Methods: CD24+/CD133+ STCs were isolated from pig kidneys after 10-weeks of RAS or sham (n = 3 each) and their gene cargo analyzed using high-throughput mRNAseq. Expression profiles for upregulated and downregulated mRNAs in RAS-STCs were functionally interpreted by gene ontology analysis. STC activation was assessed by counting the total number of STCs in pig kidney sections using flow cytometry, whereas cell proliferation was assessed in vitro. Results: Of all expressed genes, 1430 genes were upregulated and 315 downregulated in RAS- versus Normal-STCs. Expression of selected candidate genes followed the same fold change directions as the mRNAseq findings. Genes upregulated in RAS-STCs were involved in cell adhesion, extracellular matrix remodeling, and kidney development, whereas those downregulated in RAS-STCs are related to cell cycle and cytoskeleton. The percentage of STCs from dissociated kidney cells was higher in RAS versus Normal pigs, but their proliferation rate was blunted. Conclusions: Renal ischemia and hypertension in swine induce changes in the mRNA profile of STCs, associated with increased STC activation and impaired proliferation. These observations suggest that RAS may alter the reparative capacity of STCs.
Collapse
|
26
|
Chen TC, Neupane M, Chien SJ, Chuang FR, Crawford RB, Kaminski NE, Chang CC. Characterization of Adult Canine Kidney Epithelial Stem Cells That Give Rise to Dome-Forming Tubular Cells. Stem Cells Dev 2019; 28:1424-1433. [PMID: 31495275 DOI: 10.1089/scd.2019.0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dome formation can occur in cultured tubular epithelial cells originating from various tissues, including the mammary gland and the kidney. The isolation and characterization of normal kidney epithelial stem cells that give rise to dome-forming tubular cells have never been reported. We attempted to isolate and characterize canine kidney epithelial stem cells using a simple cell culture method that we have previously used to isolate other adult human stem cells. Dome-forming kidney epithelial cells were derived from dissociated adult canine kidney tissues that were cultured in a modified keratinocyte serum-free medium supplemented with N-acetyl-l-cysteine, l-ascorbic acid 2-phosphate, nicotinamide, and fetal bovine serum. These cells exhibited high self-renewal capacity in long-term culture (growth for >13 months and 30 cumulative population doublings) and exhibited characteristics of stem cells, including (1) deficiency in gap junctional intercellular communication, (2) anchorage-independent growth, (3) expression of stem cell markers octamer-binding transcription factor 4 and SRY (sex determining region Y)-box 2, (4) expression of cell surface markers CD24 and CD133, and (5) multipotent differentiation into osteoblasts, adipocytes, chondrocytes, and dome-forming tubular cells. Most of these characteristics are shared by the well-known canine renal tubule-derived immortalized Madin-Darby Canine Kidney cell line. Furthermore, the putative canine kidney stem cells developed in this study formed budding tubule-like organoids on Matrigel and required high cell density (>4,000 cells/cm2) for sustained growth and confluency for dome formation. The signal transducer and activator of transcription-3 (STAT3) phosphorylation inhibitor, AG490, inhibited colony-forming efficiency and dome formation, whereas lipopolysaccharide, an activator of STAT3, increased colony-forming efficiency in a dose-dependent manner. These results are consistent with the hypothesis that high cell density induces STAT3 expression, which promotes both stem cell self-renewal and differentiation into tubular cells. Our novel cell culture method should be useful for the future development of normal human kidney stem cells for clinical applications and for studying mechanisms of nephrotoxicity.
Collapse
Affiliation(s)
- Te-Chuan Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Manish Neupane
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shao-Ju Chien
- Division of Cardiology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Feng-Rong Chuang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Robert B Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Norbert E Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Chia-Cheng Chang
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan
| |
Collapse
|
27
|
Endo T, Kadoya K, Suzuki Y, Kawamura D, Iwasaki N. A Novel Experimental Model to Determine the Axon-Promoting Effects of Grafted Cells After Peripheral Nerve Injury. Front Cell Neurosci 2019; 13:280. [PMID: 31316351 PMCID: PMC6611175 DOI: 10.3389/fncel.2019.00280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/11/2019] [Indexed: 12/30/2022] Open
Abstract
Although peripheral nerves can regenerate, clinical outcomes after peripheral nerve injuries are not always satisfactory, especially in cases of severe or proximal injuries. Further, autologous nerve grafting remains the gold standard for the reconstruction of peripheral nerves, although this method is still accompanied by issues of donor-site morbidity and limited supply. Cell therapy is a potential approach to overcome these issues. However, the optimal cell type for promoting axon regeneration remains unknown. Here, we report a novel experimental model dedicated to elucidation of the axon-promoting effects of candidate cell types using simple and standardized techniques. This model uses rat sciatic nerves and consists of a 25 mm-long acellular region and a crush site at each end. The acellular region was made by repeated freeze/thaw procedures with liquid nitrogen. Importantly, the new model does not require microsurgical procedures, which are technically demanding and greatly affect axon regeneration. To test the actual utility of this model, red fluorescent protein-expressing syngeneic Schwann cells (SCs), marrow stromal cells, or fibroblasts were grafted into the acellular area, followed by perfusion of the rat 2 weeks later. All types of grafted cells survived well. Quantification of regenerating axons demonstrated that SCs, but not the other cell types, promoted axon regeneration with minimum variability. Thus, this model is useful for differentiating the effects of various grafted cell types in axon regeneration. Interestingly, regardless of the grafted cell type, host SCs migrated into the acellular area, and the extent of axon regeneration was strongly correlated with the number of SCs. Moreover, all regenerating axons were closely associated with SCs. These findings suggest a critical role for SCs in peripheral nerve axon regeneration. Collectively, this novel experimental model is useful for elucidating the axon-promoting effects of grafted cells and for analyzing the biology of peripheral nerve axon regeneration.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Suzuki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Kawamura
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
Sallustio F, Stasi A, Curci C, Divella C, Picerno A, Franzin R, De Palma G, Rutigliano M, Lucarelli G, Battaglia M, Staffieri F, Crovace A, Pertosa GB, Castellano G, Gallone A, Gesualdo L. Renal progenitor cells revert LPS-induced endothelial-to-mesenchymal transition by secreting CXCL6, SAA4, and BPIFA2 antiseptic peptides. FASEB J 2019; 33:10753-10766. [PMID: 31268775 DOI: 10.1096/fj.201900351r] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelial dysfunction is a hallmark of LPS-induced acute kidney injury (AKI). Endothelial cells (ECs) acquired a fibroblast-like phenotype and contributed to myofibroblast generation through the endothelial-to-mesenchymal transition (EndMT) process. Of note, human adult renal stem/progenitor cells (ARPCs) enhance the tubular regenerative mechanism during AKI but little is known about their effects on ECs. Following LPS exposure, ECs proliferated, decreased EC markers CD31 and vascular endothelial cadherin, and up-regulated myofibroblast markers, collagen I, and vimentin. The coculture with ARPCs normalized the EC proliferation rate and abrogated the LPS-induced EndMT. The gene expression analysis showed that most of the genes modulated in LPS-stimulated ARPCs belong to cell activation and defense response pathways. We showed that the ARPC-specific antifibrotic effect is exerted by the secretion of CXCL6, SAA4, and BPIFA2 produced after the anaphylatoxin stimulation. Next, we investigated the molecular signaling that underlies the ARPC protective mechanism and found that renal progenitors diverge from differentiated tubular cells and ECs in myeloid differentiation primary response 88-independent pathway activation. Finally, in a swine model of LPS-induced AKI, we observed that activated ARPCs secreted CXCL6, SAA4, and BPIFA2 as a defense response. These data open new perspectives on the treatment of both sepsis- and endotoxemia-induced AKI, suggesting an underestimated role of ARPCs in preventing endothelial dysfunction and novel strategies to protect the endothelial compartment and promote kidney repair.-Sallustio, F., Stasi, A., Curci, C., Divella, C., Picerno, A., Franzin, R., De Palma, G., Rutigliano, M., Lucarelli, G., Battaglia, M., Staffieri, F., Crovace, A., Pertosa, G. B., Castellano, G., Gallone, A., Gesualdo, L. Renal progenitor cells revert LPS-induced endothelial-to-mesenchymal transition by secreting CXCL6, SAA4, and BPIFA2 antiseptic peptides.
Collapse
Affiliation(s)
- Fabio Sallustio
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Curci
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Chiara Divella
- Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Angela Picerno
- Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe De Palma
- Institutional Biobank, Experimental Oncology and Biobank Management Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Bari Giovanni Paolo II, Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology, and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology, and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Michele Battaglia
- Urology, Andrology, and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Staffieri
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Crovace
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Battista Pertosa
- Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Anna Gallone
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
29
|
Constructing an Isogenic 3D Human Nephrogenic Progenitor Cell Model Composed of Endothelial, Mesenchymal, and SIX2-Positive Renal Progenitor Cells. Stem Cells Int 2019; 2019:3298432. [PMID: 31191670 PMCID: PMC6525793 DOI: 10.1155/2019/3298432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Urine has become the source of choice for noninvasive renal epithelial cells and renal stem cells which can be used for generating induced pluripotent stem cells. The aim of this study was to generate a 3D nephrogenic progenitor cell model composed of three distinct cell types—urine-derived SIX2-positive renal progenitor cells, iPSC-derived mesenchymal stem cells, and iPSC-derived endothelial cells originating from the same individual. Characterization of the generated mesenchymal stem cells revealed plastic adherent growth and a trilineage differentiation potential to adipocytes, chondrocytes, and osteoblasts. Furthermore, these cells express the typical MSC markers CD73, CD90, and CD105. The induced endothelial cells express the endothelial cell surface marker CD31. Upon combination of urine-derived renal progenitor cells, induced mesenchymal stem cells, and induced endothelial cells at a set ratio, the cells self-condensed into three-dimensional nephrogenic progenitor cells which we refer to as 3D-NPCs. Immunofluorescence-based stainings of sectioned 3D-NPCs revealed cells expressing the renal progenitor cell markers (SIX2 and PAX8), podocyte markers (Nephrin and Podocin), the endothelial marker (CD31), and mesenchymal markers (Vimentin and PDGFR-β). These 3D-NPCs share kidney progenitor characteristics and thus the potential to differentiate into podocytes and proximal and distal tubules. As urine-derived renal progenitor cells can be easily obtained from cells shed into urine, the generation of 3D-NPCs directly from renal progenitor cells instead of pluripotent stem cells or kidney biopsies holds a great potential for the use in nephrotoxicity tests, drug screening, modelling nephrogenesis and diseases.
Collapse
|
30
|
Rota C, Morigi M, Imberti B. Stem Cell Therapies in Kidney Diseases: Progress and Challenges. Int J Mol Sci 2019; 20:ijms20112790. [PMID: 31181604 PMCID: PMC6600599 DOI: 10.3390/ijms20112790] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
The prevalence of renal diseases is emerging as a public health problem. Despite major progress in supportive therapy, mortality rates among patients remain high. In an attempt to find innovative treatments to stimulate kidney regeneration, stem cell-based technology has been proposed as a potentially promising strategy. Here, we summarise the renoprotective potential of pluripotent and adult stem cell therapy in experimental models of acute and chronic kidney injury and we explore the different mechanisms at the basis of stem cell-induced kidney regeneration. Specifically, cell engraftment, incorporation into renal structures, or paracrine activities of embryonic or induced pluripotent stem cells as well as mesenchymal stem cells and renal precursors are analysed. We also discuss the relevance of stem cell secretome-derived bioproducts, including soluble factors and extracellular vesicles, and the option of using them as cell-free therapy to induce reparative processes. The translation of the experimental results into clinical trials is also addressed, highlighting the safety and feasibility of stem cell treatments in patients with kidney injury.
Collapse
Affiliation(s)
- Cinzia Rota
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| |
Collapse
|
31
|
Grassi L, Alfonsi R, Francescangeli F, Signore M, De Angelis ML, Addario A, Costantini M, Flex E, Ciolfi A, Pizzi S, Bruselles A, Pallocca M, Simone G, Haoui M, Falchi M, Milella M, Sentinelli S, Di Matteo P, Stellacci E, Gallucci M, Muto G, Tartaglia M, De Maria R, Bonci D. Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death Dis 2019; 10:201. [PMID: 30814510 PMCID: PMC6393468 DOI: 10.1038/s41419-019-1453-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
The pressure towards innovation and creation of new model systems in regenerative medicine and cancer research has fostered the development of novel potential therapeutic applications. Kidney injuries provoke a high request of organ transplants making it the most demanding system in the field of regenerative medicine. Furthermore, renal cancer frequently threaten patients’ life and aggressive forms still remain difficult to treat. Ethical issues related to the use of embryonic stem cells, has fueled research on adult, patient-specific pluripotent stem cells as a model for discovery and therapeutic development, but to date, normal and cancerous renal experimental models are lacking. Several research groups are focusing on the development of organoid cultures. Since organoids mimic the original tissue architecture in vitro, they represent an excellent model for tissue engineering studies and cancer therapy testing. We established normal and tumor renal cell carcinoma organoids previously maintained in a heterogeneous multi-clone stem cell-like enriching medium. Starting from adult normal kidney specimens, we were able to isolate and propagate organoid 3D-structures composed of both differentiated and undifferentiated cells while expressing nephron specific markers. Furthermore, we were capable to establish organoids derived from cancer tissues although with a success rate inferior to that of their normal counterpart. Cancer cultures displayed epithelial and mesenchymal phenotype while retaining tumor specific markers. Of note, tumor organoids recapitulated neoplastic masses when orthotopically injected into immunocompromised mice. Our data suggest an innovative approach of long-term establishment of normal- and cancer-derived renal organoids obtained from cultures of fleshly dissociated adult tissues. Our results pave the way to organ replacement pioneering strategies as well as to new models for studying drug-induced nephrotoxicity and renal diseases. Along similar lines, deriving organoids from renal cancer patients opens unprecedented opportunities for generation of preclinical models aimed at improving therapeutic treatments.
Collapse
Affiliation(s)
- Ludovica Grassi
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy.,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Department of Internal Medicine and Medical Specialties, "La Sapienza" University, Rome, Italy
| | - Romina Alfonsi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy.,Istituto di Patologia Generale Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | | | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Addario
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Costantini
- Oncological Urology Department, Regina Elena National Cancer Institute, Rome, Italy.,Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giuseppe Simone
- Oncological Urology Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Mustapha Haoui
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine, Verona, Italy.,Verona University, Hospital Trust, Verona, Italy
| | | | - Paola Di Matteo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emilia Stellacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Gallucci
- Oncological Urology Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Muto
- Department of Urology, Humanitas University, Turin, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Ruggero De Maria
- Istituto di Patologia Generale Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy. .,Scientific Vice-Direction, Fondazione Policlinico Universitario "A. Gemelli" - I.R.C.C.S. Largo Francesco Vito 1-8, 00168, Rome, Italy.
| | - Désirée Bonci
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy. .,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
32
|
Marcheque J, Bussolati B, Csete M, Perin L. Concise Reviews: Stem Cells and Kidney Regeneration: An Update. Stem Cells Transl Med 2018; 8:82-92. [PMID: 30302937 PMCID: PMC6312445 DOI: 10.1002/sctm.18-0115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Significant progress has been made to advance stem cell products as potential therapies for kidney diseases: various kinds of stem cells can restore renal function in preclinical models of acute and chronic kidney injury. Nonetheless this literature contains contradictory results, and for this reason, we focus this review on reasons for apparent discrepancies in the literature, because they contribute to difficulty in translating renal regenerative therapies. Differences in methodologies used to derive and culture stem cells, even those from the same source, in addition to the lack of standardized renal disease animal models (both acute and chronic), are important considerations underlying contradictory results in the literature. We propose that harmonized rigorous protocols for characterization, handling, and delivery of stem cells in vivo could significantly advance the field, and present details of some suggested approaches to foster translation in the field of renal regeneration. Our goal is to encourage coordination of methodologies (standardization) and long‐lasting collaborations to improve protocols and models to lead to reproducible, interpretable, high‐quality preclinical data. This approach will certainly increase our chance to 1 day offer stem cell therapeutic options for patients with all‐too‐common renal diseases. Stem Cells Translational Medicine2019;8:82–92
Collapse
Affiliation(s)
- Julia Marcheque
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, California
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Marie Csete
- Medical Engineering, California Institute of Technology, Los Angeles, California.,Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, California
| |
Collapse
|
33
|
Burmeister DM, McIntyre MK, Montgomery RK, Gómez BI, Dubick MA. Isolation and Characterization of Multipotent CD24+ Cells From the Renal Papilla of Swine. Front Med (Lausanne) 2018; 5:250. [PMID: 30283781 PMCID: PMC6156461 DOI: 10.3389/fmed.2018.00250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/20/2018] [Indexed: 12/24/2022] Open
Abstract
Over 100,000 patients in the United States are currently waiting for a kidney transplant. With just over 10,000 cadaveric kidneys transplanted annually, it is of the utmost importance to optimize kidney viability upon transplantation. One exciting avenue may be xenotransplantation, which has rejuvenated interest after advanced gene editing techniques have been successfully used in swine. Simultaneously, acute kidney injury (AKI) is associated with high morbidity and mortality and currently lacks effective treatment. Animal models have been used extensively to address both of these issues, with recent emphasis on renal progenitor cells (RPCs). Due to anatomical similarities to humans we aimed to examine progenitor cells from the renal papillae of swine kidneys. To do this, RPCs were dissected from the renal papillae of healthy swine. Cell surface marker expression, proliferation, and differentiation of the RPCs were tested in vitro. Additionally, a mixed lymphocyte reaction was performed to examine immunomodulatory properties. RPCs displayed spindle shaped morphology with limited self-renewing capacity. Isolated RPCs were positive for CD24 and CD133 at early passages, but lost expression with subsequent passaging. Similarly, RPCs displayed myogenic, osteogenic, and adipogenic differentiation capacities at passage 2, but largely lost this by passage 6. Lastly, direct contact of RPCs with human lymphocytes increased release of IL6 and IL8. Taken together, RPCs from the papilla of porcine kidneys display transient stem cell properties that are lost with passaging, and either represent multiple types of progenitor cells, or a multipotent progenitor population. In instances of ischemic insult, augmentation of/with RPCs may potentiate regenerative properties of the kidney. While the use of swine for transplantation and ischemia studies confers obvious advantages, the populations of different progenitor cell populations within pig kidneys warrants further investigation. Ultimately, while gene editing techniques enhance the potential for xenotransplantation of organs or cells, the ultimate success of this strategy may be determined by the (dis)similarities of RPCs from different species.
Collapse
Affiliation(s)
- David M Burmeister
- Damage Control Resuscitation, United States Army Institute of Surgical Research, San Antonio, TX, United States
| | - Matthew K McIntyre
- Damage Control Resuscitation, United States Army Institute of Surgical Research, San Antonio, TX, United States
| | - Robbie K Montgomery
- Damage Control Resuscitation, United States Army Institute of Surgical Research, San Antonio, TX, United States
| | - Belinda I Gómez
- Damage Control Resuscitation, United States Army Institute of Surgical Research, San Antonio, TX, United States
| | - Michael A Dubick
- Damage Control Resuscitation, United States Army Institute of Surgical Research, San Antonio, TX, United States
| |
Collapse
|
34
|
Rahman MS, Spitzhorn LS, Wruck W, Hagenbeck C, Balan P, Graffmann N, Bohndorf M, Ncube A, Guillot PV, Fehm T, Adjaye J. The presence of human mesenchymal stem cells of renal origin in amniotic fluid increases with gestational time. Stem Cell Res Ther 2018; 9:113. [PMID: 29695308 PMCID: PMC5918774 DOI: 10.1186/s13287-018-0864-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Established therapies for managing kidney dysfunction such as kidney dialysis and transplantation are limited due to the shortage of compatible donated organs and high costs. Stem cell-based therapies are currently under investigation as an alternative treatment option. As amniotic fluid is composed of fetal urine harboring mesenchymal stem cells (AF-MSCs), we hypothesized that third-trimester amniotic fluid could be a novel source of renal progenitor and differentiated cells. Methods Human third-trimester amniotic fluid cells (AFCs) were isolated and cultured in distinct media. These cells were characterized as renal progenitor cells with respect to cell morphology, cell surface marker expression, transcriptome and differentiation into chondrocytes, osteoblasts and adipocytes. To test for renal function, a comparative albumin endocytosis assay was performed using AF-MSCs and commercially available renal cells derived from kidney biopsies. Comparative transcriptome analyses of first, second and third trimester-derived AF-MSCs were conducted to monitor expression of renal-related genes. Results Regardless of the media used, AFCs showed expression of pluripotency-associated markers such as SSEA4, TRA-1-60, TRA-1-81 and C-Kit. They also express the mesenchymal marker Vimentin. Immunophenotyping confirmed that third-trimester AFCs are bona fide MSCs. AF-MSCs expressed the master renal progenitor markers SIX2 and CITED1, in addition to typical renal proteins such as PODXL, LHX1, BRN1 and PAX8. Albumin endocytosis assays demonstrated the functionality of AF-MSCs as renal cells. Additionally, upregulated expression of BMP7 and downregulation of WT1, CD133, SIX2 and C-Kit were observed upon activation of WNT signaling by treatment with the GSK-3 inhibitor CHIR99201. Transcriptome analysis and semiquantitative PCR revealed increasing expression levels of renal-specific genes (e.g., SALL1, HNF4B, SIX2) with gestational time. Moreover, AF-MSCs shared more genes with human kidney cells than with native MSCs and gene ontology terms revealed involvement of biological processes associated with kidney morphogenesis. Conclusions Third-trimester amniotic fluid contains AF-MSCs of renal origin and this novel source of kidney progenitors may have enormous future potentials for disease modeling, renal repair and drug screening. Electronic supplementary material The online version of this article (10.1186/s13287-018-0864-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Lucas-Sebastian Spitzhorn
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Carsten Hagenbeck
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Percy Balan
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Audrey Ncube
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Pascale V Guillot
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London, London, WC1E 6HX, UK
| | - Tanja Fehm
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
35
|
Hsieh WC, Ramadesikan S, Fekete D, Aguilar RC. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex. PLoS One 2018; 13:e0192635. [PMID: 29444177 PMCID: PMC5812626 DOI: 10.1371/journal.pone.0192635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Lowe syndrome is an X-linked condition characterized by congenital cataracts, neurological abnormalities and kidney malfunction. This lethal disease is caused by mutations in the OCRL1 gene, which encodes for the phosphatidylinositol 5-phosphatase Ocrl1. While in the past decade we witnessed substantial progress in the identification and characterization of LS patient cellular phenotypes, many of these studies have been performed in knocked-down cell lines or patient's cells from accessible cell types such as skin fibroblasts, and not from the organs affected. This is partially due to the limited accessibility of patient cells from eyes, brain and kidneys. Here we report the preparation of induced pluripotent stem cells (iPSCs) from patient skin fibroblasts and their reprogramming into kidney cells. These reprogrammed kidney cells displayed primary cilia assembly defects similar to those described previously in cell lines. Additionally, the transcription factor and cap mesenchyme marker Six2 was substantially retained in the Golgi complex and the functional nuclear-localized fraction was reduced. These results were confirmed using different batches of differentiated cells from different iPSC colonies and by the use of the human proximal tubule kidney cell line HK2. Indeed, OCRL1 KO led to both ciliogenesis defects and Six2 retention in the Golgi complex. In agreement with Six2's role in the suppression of ductal kidney lineages, cells from this pedigree were over-represented among patient kidney-reprogrammed cells. We speculate that this diminished efficacy to produce cap mesenchyme cells would cause LS patients to have difficulties in replenishing senescent or damaged cells derived from this lineage, particularly proximal tubule cells, leading to pathological scenarios such as tubular atrophy.
Collapse
Affiliation(s)
- Wen-Chieh Hsieh
- Department of Biological Sciences, Purdue University, West Lafayette, IN United States of America
| | - Swetha Ramadesikan
- Department of Biological Sciences, Purdue University, West Lafayette, IN United States of America
| | - Donna Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, IN United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN United States of America
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN United States of America
- Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN United States of America
| | - Ruben Claudio Aguilar
- Department of Biological Sciences, Purdue University, West Lafayette, IN United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN United States of America
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN United States of America
- Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN United States of America
| |
Collapse
|
36
|
Brossa A, Papadimitriou E, Collino F, Incarnato D, Oliviero S, Camussi G, Bussolati B. Role of CD133 Molecule in Wnt Response and Renal Repair. Stem Cells Transl Med 2018; 7:283-294. [PMID: 29431914 PMCID: PMC5827750 DOI: 10.1002/sctm.17-0158] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
Renal repair after injury is dependent on clonal expansion of proliferation-competent cells. In the human kidney, the expression of CD133 characterizes a population of resident scattered cells with resistance to damage and ability to proliferate. However, the biological function of the CD133 molecule is unknown. By RNA sequencing, we found that cells undergoing cisplatin damage lost the CD133 signature and acquired metanephric mesenchymal and regenerative genes such as SNAIL1, KLF4, SOX9, and WNT3. CD133 was reacquired in the recovery phase. In CD133-Kd cells, lack of CD133 limited cell proliferation after injury and was specifically correlated with deregulation of Wnt signaling and E-cadherin pathway. By immunoprecipitation, CD133 appeared to form a complex with E-cadherin and β-catenin. In parallel, CD133-Kd cells showed lower β-catenin levels in basal condition and after Wnt pathway activation and reduced TCF/LEF promoter activation in respect to CD133+ cells. Finally, the lack of CD133 impaired generation of nephrospheres while favoring senescence. These data indicate that CD133 may act as a permissive factor for β-catenin signaling, preventing its degradation in the cytoplasm. Therefore, CD133 itself appears to play a functional role in renal tubular repair through maintenance of proliferative response and control of senescence. Stem Cells Translational Medicine 2018;7:283-294.
Collapse
Affiliation(s)
- Alessia Brossa
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Elli Papadimitriou
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Federica Collino
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danny Incarnato
- Italian Institute for Genomic Medicine (IIGM), Torino, Italy.,Dipartimento di Scienze della Vita e Biologia dei Sistemi, University of Turin, Torino, Italy
| | - Salvatore Oliviero
- Italian Institute for Genomic Medicine (IIGM), Torino, Italy.,Dipartimento di Scienze della Vita e Biologia dei Sistemi, University of Turin, Torino, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Benedetta Bussolati
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy
| |
Collapse
|
37
|
Corrò C, Moch H. Biomarker discovery for renal cancer stem cells. J Pathol Clin Res 2018; 4:3-18. [PMID: 29416873 PMCID: PMC5783955 DOI: 10.1002/cjp2.91] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
Characterised by high intra- and inter-tumor heterogeneity, metastatic renal cell carcinoma (RCC) is resistant to chemo- and radiotherapy. Therefore, the development of new prognostic and diagnostic markers for RCC patients is needed. Cancer stem cells (CSCs) are a small population of neoplastic cells within a tumor which present characteristics reminiscent of normal stem cells. CSCs are characterised by unlimited cell division, maintenance of the stem cell pool (self-renewal), and capability to give rise to all cell types within a tumor; and contribute to metastasis in vivo (tumourigenicity), treatment resistance and recurrence. So far, many studies have tried to establish unique biomarkers to identify CSC populations in RCC. At the same time, different approaches have been developed with the aim to isolate CSCs. Consequently, several markers were found to be specifically expressed in CSCs and cancer stem-like cells derived from RCC such as CD105, ALDH1, OCT4, CD133, and CXCR4. However, the contribution of genetic and epigenetic mechanisms, and tumor microenvironment, to cellular plasticity have made the discovery of unique biomarkers a very difficult task. In fact, contrasting results regarding the applicability of such markers to the isolation of renal CSCs have been reported in the literature. Therefore, a better understanding of the mechanism underlying CSC may help dissecting tumor heterogeneity and drug treatment efficiency.
Collapse
Affiliation(s)
- Claudia Corrò
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| |
Collapse
|
38
|
Urine-Derived Stem Cells: The Present and the Future. Stem Cells Int 2017; 2017:4378947. [PMID: 29250119 PMCID: PMC5698822 DOI: 10.1155/2017/4378947] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/30/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023] Open
Abstract
Stem cell research provides promising strategies in improving healthcare for human beings. As a noninvasively obtained and easy-to-culture cell resource with relatively low expense, urine-derived stem cells have special advantages. They have been extensively studied on its proliferation ability and differentiation potential and were being reprogrammed to model diseases during the last decade. In this review, we intend to summarize the latest progress on the research of urine-derived stem cells for its broad application mainly in regenerative medicine and disease modeling, as well as in what is challenging currently. This minireview will highlight the potential application of urine-derived stem cells and provides possible direction of further research in the future.
Collapse
|
39
|
Minuth W. Reading First Coordinates from the Nephrogenic Zone in Human Fetal Kidney. Nephron Clin Pract 2017; 138:137-146. [DOI: 10.1159/000481441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/11/2017] [Indexed: 01/15/2023] Open
|
40
|
Bombelli S, Meregalli C, Scalia C, Bovo G, Torsello B, De Marco S, Cadamuro M, Viganò P, Strada G, Cattoretti G, Bianchi C, Perego RA. Nephrosphere-Derived Cells Are Induced to Multilineage Differentiation when Cultured on Human Decellularized Kidney Scaffolds. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:184-195. [PMID: 29037855 DOI: 10.1016/j.ajpath.2017.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023]
Abstract
In end-stage chronic kidney disease, the option of organ transplantation is limited because of the scarce availability of kidneys. The combination of stem cell research, regenerative medicine, and tissue engineering seems a promising approach to produce new transplantable kidneys. Currently, the possibility to repopulate naturally obtained scaffolds with cells of different sources is advancing. Our aim was to test, for the first time, whether the nephrosphere (NS) cells, composed by renal stem/progenitor-like cells, were able to repopulate different nephron portions of renal extracellular matrix scaffolds obtained after decellularization of human renal tissue slices. Our decellularization protocol enabled us to obtain a completely acellular renal scaffold while maintaining the extracellular matrix structure and composition in terms of collagen IV, laminin, and fibronectin. NS cells, cultured on decellularized renal scaffolds with basal medium, differentiated into proximal and distal tubules as well as endothelium, as highlighted by histology and by the specific expression of epithelial cytokeratin 8.18, proximal tubular CD10, distal tubular cytokeratin 7, and endothelial von Willebrand factor markers. Endothelial medium promoted the differentiation toward the endothelium, whereas epithelial medium promoted the differentiation toward the epithelium. NS cells seem to be a good tool for scaffold repopulation, paving the way for experimental investigations focused on whole-kidney reconstruction.
Collapse
Affiliation(s)
- Silvia Bombelli
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Chiara Meregalli
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Carla Scalia
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Giorgio Bovo
- Urology Unit, Bassini Hospital, Cinisello Balsamo, Italy
| | - Barbara Torsello
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Sofia De Marco
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | | | - Paolo Viganò
- Urology Unit, Bassini Hospital, Cinisello Balsamo, Italy
| | - Guido Strada
- Urology Unit, Bassini Hospital, Cinisello Balsamo, Italy
| | - Giorgio Cattoretti
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy; Anatomo-Pathology Unit, San Gerardo Hospital, Monza, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Roberto A Perego
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy.
| |
Collapse
|
41
|
Mandrycky C, Phong K, Zheng Y. Tissue engineering toward organ-specific regeneration and disease modeling. MRS COMMUNICATIONS 2017; 7:332-347. [PMID: 29750131 PMCID: PMC5939579 DOI: 10.1557/mrc.2017.58] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/17/2017] [Indexed: 05/17/2023]
Abstract
Tissue engineering has been recognized as a translational approach to replace damaged tissue or whole organs. Engineering tissue, however, faces an outstanding knowledge gap in the challenge to fully recapitulate complex organ-specific features. Major components, such as cells, matrix, and architecture, must each be carefully controlled to engineer tissue-specific structure and function that mimics what is found in vivo. Here we review different methods to engineer tissue, and discuss critical challenges in recapitulating the unique features and functional units in four major organs-the kidney, liver, heart, and lung, which are also the top four candidates for organ transplantation in the USA. We highlight advances in tissue engineering approaches to enable the regeneration of complex tissue and organ substitutes, and provide tissue-specific models for drug testing and disease modeling. We discuss the current challenges and future perspectives toward engineering human tissue models.
Collapse
Affiliation(s)
- Christian Mandrycky
- Departments of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kiet Phong
- Departments of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ying Zheng
- Departments of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
Progenitor Cells for Arterial Repair: Incremental Advancements towards Therapeutic Reality. Stem Cells Int 2017; 2017:8270498. [PMID: 28232850 PMCID: PMC5292398 DOI: 10.1155/2017/8270498] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/18/2016] [Indexed: 02/08/2023] Open
Abstract
Coronary revascularization remains the standard treatment for obstructive coronary artery disease and can be accomplished by either percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery. Considerable advances have rendered PCI the most common form of revascularization and improved clinical outcomes. However, numerous challenges to modern PCI remain, namely, in-stent restenosis and stent thrombosis, underscoring the importance of understanding the vessel wall response to injury to identify targets for intervention. Among recent promising discoveries, endothelial progenitor cells (EPCs) have garnered considerable interest given an increasing appreciation of their role in vascular homeostasis and their ability to promote vascular repair after stent placement. Circulating EPC numbers have been inversely correlated with cardiovascular risk, while administration of EPCs in humans has demonstrated improved clinical outcomes. Despite these encouraging results, however, advancing EPCs as a therapeutic modality has been hampered by a fundamental roadblock: what constitutes an EPC? We review current definitions and sources of EPCs as well as the proposed mechanisms of EPC-mediated vascular repair. Additionally, we discuss the current state of EPCs as therapeutic agents, focusing on endogenous augmentation and transplantation.
Collapse
|
43
|
Jansen K, Schuurmans CCL, Jansen J, Masereeuw R, Vermonden T. Hydrogel-Based Cell Therapies for Kidney Regeneration: Current Trends in Biofabrication and In Vivo Repair. Curr Pharm Des 2017; 23:3845-3857. [PMID: 28699526 PMCID: PMC6302346 DOI: 10.2174/1381612823666170710155726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
Abstract
Facing the problems of limited renal regeneration capacity and the persistent shortage of donor kidneys, dialysis remains the only treatment option for many end-stage renal disease patients. Unfortunately, dialysis is only a medium-term solution because large and protein-bound uremic solutes are not efficiently cleared from the body and lead to disease progression over time. Current strategies for improved renal replacement therapies (RRTs) range from whole organ engineering to biofabrication of renal assist devices and biological injectables for in vivo regeneration. Notably, all approaches coincide with the incorporation of cellular components and biomimetic micro-environments. Concerning the latter, hydrogels form promising materials as scaffolds and cell carrier systems due to the demonstrated biocompatibility of most natural hydrogels, tunable biochemical and mechanical properties, and various application possibilities. In this review, the potential of hydrogel-based cell therapies for kidney regeneration is discussed. First, we provide an overview of current trends in the development of RRTs and in vivo regeneration options, before examining the possible roles of hydrogels within these fields. We discuss major application-specific hydrogel design criteria and, subsequently, assess the potential of emergent biofabrication technologies, such as micromolding, microfluidics and electrodeposition for the development of new RRTs and injectable stem cell therapies.
Collapse
Affiliation(s)
- Katja Jansen
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Carl C L Schuurmans
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Jitske Jansen
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Rosalinde Masereeuw
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Tina Vermonden
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| |
Collapse
|
44
|
Paulini J, Higuti E, Bastos RMC, Gomes SA, Rangel ÉB. Mesenchymal Stem Cells as Therapeutic Candidates for Halting the Progression of Diabetic Nephropathy. Stem Cells Int 2016; 2016:9521629. [PMID: 28058051 PMCID: PMC5187468 DOI: 10.1155/2016/9521629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess pleiotropic properties that include immunomodulation, inhibition of apoptosis, fibrosis and oxidative stress, secretion of trophic factors, and enhancement of angiogenesis. These properties provide a broad spectrum for their potential in a wide range of injuries and diseases, including diabetic nephropathy (DN). MSCs are characterized by adherence to plastic, expression of the surface molecules CD73, CD90, and CD105 in the absence of CD34, CD45, HLA-DR, and CD14 or CD11b and CD79a or CD19 surface molecules, and multidifferentiation capacity in vitro. MSCs can be derived from many tissue sources, consistent with their broad, possibly ubiquitous distribution. This article reviews the existing literature and knowledge of MSC therapy in DN, as well as the most appropriate rodent models to verify the therapeutic potential of MSCs in DN setting. Some preclinical relevant studies are highlighted and new perspectives of combined therapies for decreasing DN progression are discussed. Hence, improved comprehension and interpretation of experimental data will accelerate the progress towards clinical trials that should assess the feasibility and safety of this therapeutic approach in humans. Therefore, MSC-based therapies may bring substantial benefit for patients suffering from DN.
Collapse
Affiliation(s)
- Janaina Paulini
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Eliza Higuti
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Rosana M. C. Bastos
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Samirah A. Gomes
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- University of São Paulo, 01246 São Paulo, SP, Brazil
| | - Érika B. Rangel
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- Federal University of São Paulo, 04023 São Paulo, SP, Brazil
| |
Collapse
|
45
|
Aggarwal S, Grange C, Iampietro C, Camussi G, Bussolati B. Human CD133 + Renal Progenitor Cells Induce Erythropoietin Production and Limit Fibrosis After Acute Tubular Injury. Sci Rep 2016; 6:37270. [PMID: 27853265 PMCID: PMC5112528 DOI: 10.1038/srep37270] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Persistent alterations of the renal tissue due to maladaptive repair characterize the outcome of acute kidney injury (AKI), despite a clinical recovery. Acute damage may also limit the renal production of erythropoietin, with impairment of the hemopoietic response to ischemia and possible lack of its reno-protective action. We aimed to evaluate the effect of a cell therapy using human CD133+ renal progenitor cells on maladaptive repair and fibrosis following AKI in a model of glycerol-induced rhabdomyolysis. In parallel, we evaluated the effect of CD133+ cells on erythropoietin production. Administration of CD133+ cells promoted the restoration of the renal tissue, limiting the presence of markers of injury and pro-inflammatory molecules. In addition, it promoted angiogenesis and protected against fibrosis up to day 60. No effect of dermal fibroblasts was observed. Treatment with CD133+ cells, but not with PBS or fibroblasts, limited anemia and increased erythropoietin levels both in renal tissue and in circulation. Finally, CD133+ cells contributed to the local production of erythropoietin, as observed by detection of circulating human erythropoietin. CD133+ cells appear therefore an effective source for cell repair, able to restore renal functions, including erythropoietin release, and to limit long term maldifferentiation and fibrosis.
Collapse
Affiliation(s)
- Shikhar Aggarwal
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Italy
| | - Cristina Grange
- Department of Medical Sciences, Molecular Biotechnology Center, University of Turin, Italy
| | - Corinne Iampietro
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, Molecular Biotechnology Center, University of Turin, Italy
| | - Benedetta Bussolati
- Department of Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Italy
| |
Collapse
|
46
|
Stenvinkel P, Wadström J, Bertram T, Detwiler R, Gerber D, Brismar TB, Blomberg P, Lundgren T. Implantation of Autologous Selected Renal Cells in Diabetic Chronic Kidney Disease Stages 3 and 4-Clinical Experience of a "First in Human" Study. Kidney Int Rep 2016; 1:105-113. [PMID: 29142919 PMCID: PMC5678666 DOI: 10.1016/j.ekir.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 02/08/2023] Open
Abstract
Introduction Animal models of chronic kidney disease demonstrate that a redundant population of therapeutically bioactive selected renal cells (SRCs) can be delivered to the kidney through intraparenchymal injection and arrest disease progression. Direct injection of SRCs has been shown to attenuate nuclear factor-κB, which is known to drive tissue inflammation, as well as the transforming growth factor-β-mediated plasminogen activator inhibitor-1 response that drives tissue fibrosis. Methods We present experience from the first-in-human clinical study with SRCs. Seven male type 2 diabetic patients (63 ± 2 years of age) with chronic kidney disease stage 3 to 4 (estimated glomerular filtration rate 25 ± 2 ml/min) were recruited. After blood and urine sampling, iohexol clearance, magnetic resonance imaging, and renal scintigraphy, patients underwent ultrasound-guided renal biopsy. Two cores of renal tissue were shipped to the manufacturing plant for cell isolation, culture, and product preparation. Formulated SRCs were transported back to study sites (range 59-87 days after biopsy) for intracortical injection using a retroperitoneoscopic technique. Results Laparoscopically assisted implantation of SRCs was uneventful in all patients. However, postoperative complications were common and suggest that other techniques of SRC delivery should be used. Kidney volume, split function, and glomerular filtration rate did not change during 12 months of follow-up. An extended 24-month follow-up in 5 of the patients showed a decline in estimated glomerular filtration rate (cystatin C). Discussion Postoperative complications following retroperitoneoscopic implantation of SRC in the kidney cortex seem to be related to the surgical procedure rather than to injection of the cell product. No changes in renal function were observed during the original 12-month protocol. Beyond the first 12 months after cell implantation, individual renal function began to deteriorate during further follow-up.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Wadström
- Division of Transplantation Surgery, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Tim Bertram
- RegenMed (Cayman) Ltd., Grand Cayman, Cayman Islands
| | - Randal Detwiler
- Division of Nephrology and Hypertension, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - David Gerber
- Division of Abdominal Transplantation, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Torkel B Brismar
- Division of Radiology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Pontus Blomberg
- Vecura at Clinical Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Torbjörn Lundgren
- Division of Transplantation Surgery, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Sharkey J, Scarfe L, Santeramo I, Garcia-Finana M, Park BK, Poptani H, Wilm B, Taylor A, Murray P. Imaging technologies for monitoring the safety, efficacy and mechanisms of action of cell-based regenerative medicine therapies in models of kidney disease. Eur J Pharmacol 2016; 790:74-82. [PMID: 27375077 PMCID: PMC5063540 DOI: 10.1016/j.ejphar.2016.06.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022]
Abstract
The incidence of end stage kidney disease is rising annually and it is now a global public health problem. Current treatment options are dialysis or renal transplantation, which apart from their significant drawbacks in terms of increased morbidity and mortality, are placing an increasing economic burden on society. Cell-based Regenerative Medicine Therapies (RMTs) have shown great promise in rodent models of kidney disease, but clinical translation is hampered due to the lack of adequate safety and efficacy data. Furthermore, the mechanisms whereby the cell-based RMTs ameliorate injury are ill-defined. For instance, it is not always clear if the cells directly replace damaged renal tissue, or whether paracrine effects are more important. Knowledge of the mechanisms responsible for the beneficial effects of cell therapies is crucial because it could lead to the development of safer and more effective RMTs in the future. To address these questions, novel in vivo imaging strategies are needed to monitor the biodistribution of cell-based RMTs and evaluate their beneficial effects on host tissues and organs, as well as any potential adverse effects. In this review we will discuss how state-of-the-art imaging modalities, including bioluminescence, magnetic resonance, nuclear imaging, ultrasound and an emerging imaging technology called multispectral optoacoustic tomography, can be used in combination with various imaging probes to track the fate and biodistribution of cell-based RMTs in rodent models of kidney disease, and evaluate their effect on renal function.
Collapse
Affiliation(s)
- Jack Sharkey
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Lauren Scarfe
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Ilaria Santeramo
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Marta Garcia-Finana
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Brian K Park
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Arthur Taylor
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK.
| |
Collapse
|
48
|
Grenier N, Merville P, Combe C. Radiologic imaging of the renal parenchyma structure and function. Nat Rev Nephrol 2016; 12:348-59. [DOI: 10.1038/nrneph.2016.44] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Regenerative pharmacology for the treatment of acute kidney injury: Skeletal muscle stem/progenitor cells for renal regeneration? Pharmacol Res 2016; 113:802-807. [PMID: 27001227 DOI: 10.1016/j.phrs.2016.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/25/2016] [Accepted: 03/13/2016] [Indexed: 01/01/2023]
Abstract
Regenerative pharmacology and advanced therapy medicinal products is a relatively new and challenging field in drug development. Acute kidney injury (AKI) is a common clinical condition in nephrology with increasing incidence and high mortality rate. During the last few decades, researchers have been eagerly trying to find novel therapeutic strategies for AKI treatment, including advanced pharmacological therapies using mesenchymal stem cells (MSCs). Several types of MSCs have been thoroughly investigated, including bone marrow, adipose derived and umbilical cord blood MSCs and shown promising results in kidney repair. Research has demonstrated, that MSCs exert their effect through reduction of apoptosis, increased production of growth factors, suppression of oxidative stress and inflammatory processes, promotion of renal tubular cell proliferation, as well as by migration and direct incorporation into the renal tissue. Skeletal muscle-derived stem/progenitor cells (MDSPCs) are mesenchymal stem cell lineage of multipotent cells, demonstrating long-term proliferation, high self-renewal capacities, and ability to enhance endogenous tissue repair. The capacity of MDSPCs to regenerate a variety of different tissues following acute injury or destructive tissue diseases have been demonstrated in preclinical and clinical studies. MDSPCs were also reported to promote endogenous tissue repair via paracrine pathway. Considering advantageous properties of MDSPCs, the administration of these cells might be considered as a potential strategy for the treatment of AKI. However, to date, the therapeutic effect of MDSPCs for renal regeneration has not been investigated. This review reflects the current development in AKI treatment using different types of MSCs and the pilot results of the experimental study in vivo using a novel type of stem cells - MDSPCs for the treatment of gentamicin-induced AKI.
Collapse
|
50
|
Arcolino FO, Zia S, Held K, Papadimitriou E, Theunis K, Bussolati B, Raaijmakers A, Allegaert K, Voet T, Deprest J, Vriens J, Toelen J, van den Heuvel L, Levtchenko E. Urine of Preterm Neonates as a Novel Source of Kidney Progenitor Cells. J Am Soc Nephrol 2016; 27:2762-70. [PMID: 26940093 DOI: 10.1681/asn.2015060664] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
In humans, nephrogenesis is completed prenatally, with nephrons formed until 34 weeks of gestational age. We hypothesized that urine of preterm neonates born before the completion of nephrogenesis is a noninvasive source of highly potent stem/progenitor cells. To test this hypothesis, we collected freshly voided urine at day 1 after birth from neonates born at 31-36 weeks of gestational age and characterized isolated cells using a single-cell RT-PCR strategy for gene expression analysis and flow cytometry and immunofluorescence for protein expression analysis. Neonatal stem/progenitor cells expressed markers of nephron progenitors but also, stromal progenitors, with many single cells coexpressing these markers. Furthermore, these cells presented mesenchymal stem cell features and protected cocultured tubule cells from cisplatin-induced apoptosis. Podocytes differentiated from the neonatal stem/progenitor cells showed upregulation of podocyte-specific genes and proteins, albumin endocytosis, and calcium influx via podocyte-specific transient receptor potential cation channel, subfamily C, member 6. Differentiated proximal tubule cells showed upregulation of specific genes and significantly elevated p-glycoprotein activity. We conclude that urine of preterm neonates is a novel noninvasive source of kidney progenitors that are capable of differentiation into mature kidney cells and have high potential for regenerative kidney repair.
Collapse
Affiliation(s)
- Fanny Oliveira Arcolino
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Silvia Zia
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Katharina Held
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Elli Papadimitriou
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Koen Theunis
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Anke Raaijmakers
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Karel Allegaert
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Neonatal Intensive Care Unit, Universitaire Ziekenhuizen Leuven, Leuven, Belgium; and
| | - Thierry Voet
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Joris Vriens
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Lambertus van den Heuvel
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| |
Collapse
|