1
|
You G, Pan X, Li J, Zhao S. Effects of transcranial direct current stimulation on modulating executive functions in healthy populations: a systematic review and meta-analysis. Front Hum Neurosci 2024; 18:1485037. [PMID: 39734667 PMCID: PMC11671507 DOI: 10.3389/fnhum.2024.1485037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Background Conventional research has asserted that cognitive function, particularly, response inhibition, is closely related to the inferior frontal cortex (IFC), dorsolateral prefrontal cortex (DLPFC), or orbital frontal cortex (OFC), which belong to the prefrontal cortex (PFC). Different targets of anodal or cathodal transcranial direct current stimulation (a-tDCS or c-tDCS) would affect the experimental results, but the stimulation of the same brain target would produce inconsistent findings. Purpose This study aimed to investigate the effects of a-tDCS and c-tDCS applied over the PFC for healthy populations on reactive and proactive control process compared with sham or no tDCS conditions, as assessed using the Stop-signal task (SST) and Go/NoGo (GNG) task performance. Methods This systematic review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Search was conducted on Web of Science, Google Scholar, PubMed, Elsevier, Scopus, and Science Direct until March 2024. Studies that assessed the inhibitory control in SST or/and GNG tasks were included to achieve a homogenous sample. Results Fourteen studies were included for meta-analyses, which were performed for two outcome measures, namely, stop-signal reaction time (SSRT) and commission error (CE) rate. A-tDCS and c-tDCS over the PFC had significant ergogenic effects on SST performance (mean difference = -17.03, 95% CI [-24.62, -9.43], p < 0.0001; mean difference = -15.19, 95% CI [-19.82, -10.55], p < 0.00001), and that of a-tDCS had a positive effect on GNG task performance (mean difference = -1.42, 95% CI [-2.71, -0.14], p = 0.03). Conclusion This review confirmed the engagement of PFC tDCS in reactive and proactive inhibitory processes. Future research should increase sample size and implement personalized stimulus protocols.
Collapse
Affiliation(s)
- Guopeng You
- Department of Physical Education, Xiamen University of Technology, Xiamen, China
| | - Xinliang Pan
- School of Kinesiology, Beijing Sport University, Beijing, China
| | - Jun Li
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Shaocong Zhao
- Department of Physical Education, Xiamen University of Technology, Xiamen, China
| |
Collapse
|
2
|
Seo M, Shin M, Noh G, Yoo SS, Yoon K. Multi-modal networks for real-time monitoring of intracranial acoustic field during transcranial focused ultrasound therapy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108458. [PMID: 39437458 DOI: 10.1016/j.cmpb.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time. METHODS The dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder. RESULTS Evaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation. CONCLUSIONS The results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies.
Collapse
Affiliation(s)
- Minjee Seo
- Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea
| | - Minwoo Shin
- Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea
| | - Gunwoo Noh
- Korea University, School of Mechanical Engineering, Seoul, 02841, Republic of Korea
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Kyungho Yoon
- Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Fehring DJ, Yokoo S, Abe H, Buckley MJ, Miyamoto K, Jaberzadeh S, Yamamori T, Tanaka K, Rosa MGP, Mansouri FA. Direct current stimulation modulates prefrontal cell activity and behaviour without inducing seizure-like firing. Brain 2024; 147:3751-3763. [PMID: 39166526 PMCID: PMC11531852 DOI: 10.1093/brain/awae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has garnered significant interest for its potential to enhance cognitive functions and as a therapeutic intervention in various cognitive disorders. However, the clinical application of tDCS has been hampered by significant variability in its cognitive outcomes. Furthermore, the widespread use of tDCS has raised concerns regarding its safety and efficacy, particularly in light of our limited understanding of its underlying neural mechanisms at the cellular level. We still do not know 'where', 'when' and 'how' tDCS modulates information encoding by neurons, in order to lead to the observed changes in cognitive functions. Without elucidating these fundamental unknowns, the root causes of its outcome variability and long-term safety remain elusive, challenging the effective application of tDCS in clinical settings. Addressing this gap, our study investigates the effects of tDCS, applied over the dorsolateral prefrontal cortex, on cognitive abilities and individual neuron activity in macaque monkeys performing cognitive tasks. Like humans performing a delayed match-to-sample task, monkeys exhibited practice-related slowing in their responses (within-session behavioural adaptation). Concurrently, there were practice-related changes in simultaneously recorded activity of prefrontal neurons (within-session neuronal adaptation). Anodal tDCS attenuated both these behavioural and neuronal adaptations when compared with sham stimulation. Furthermore, tDCS abolished the correlation between response time of monkeys and neuronal firing rate. At a single-cell level, we also found that following tDCS, neuronal firing rate was more likely to exhibit task-specific modulation than after sham stimulation. These tDCS-induced changes in both behaviour and neuronal activity persisted even after the end of tDCS stimulation. Importantly, multiple applications of tDCS did not alter burst-like firing rates of individual neurons when compared with sham stimulation. This suggests that tDCS modulates neural activity without enhancing susceptibility to epileptiform activity, confirming a potential for safe use in clinical settings. Our research contributes unprecedented insights into the 'where', 'when' and 'how' of tDCS effects on neuronal activity and cognitive functions by showing that modulation of the behaviour of monkeys by the tDCS of the prefrontal cortex is accompanied by alterations in prefrontal cortical cell activity ('where') during distinct trial phases ('when'). Importantly, tDCS led to task-specific and state-dependent alterations in prefrontal cell activities ('how'). Our findings suggest a significant shift from the view that the effects of tDCS are merely attributable to polarity-specific shifts in cortical excitability and instead propose a more complex mechanism of action for tDCS that encompasses various aspects of cortical neuronal activity without increasing burst-like epileptiform susceptibility.
Collapse
Affiliation(s)
- Daniel J Fehring
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Seiichirou Yokoo
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Hiroshi Abe
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, UK
| | - Kentaro Miyamoto
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Monash University, Clayton, VIC 3199, Australia
| | - Tetsuo Yamamori
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Keiji Tanaka
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Farshad A Mansouri
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
4
|
Xu T, Zhang Y, Li D, Lai C, Wang S, Zhang S. Mechanosensitive Ion Channels Piezo1 and Piezo2 Mediate Motor Responses In Vivo During Transcranial Focused Ultrasound Stimulation of the Rodent Cerebral Motor Cortex. IEEE Trans Biomed Eng 2024; 71:2900-2910. [PMID: 38748529 DOI: 10.1109/tbme.2024.3401136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) neuromodulation offers a noninvasive, safe, deep brain stimulation with high precision, presenting potential in understanding neural circuits and treating brain disorders. This in vivo study investigated the mechanism of tFUS in activating the opening of the mechanosensitive ion channels Piezo1 and Piezo2 in the mouse motor cortex to induce motor responses. METHODS Piezo1 and Piezo2 were knocked down separately in the mouse motor cortex, followed by EMG and motor cortex immunofluorescence comparisons before and after knockdown under tFUS stimulation. RESULTS The results demonstrated that the stimulation-induced motor response success rates in Piezo knockdown mice were lower compared to the control group (Piezo1 knockdown: 57.63% ± 14.62%, Piezo2 knockdown: 73.71% ± 13.10%, Control mice: 85.69% ± 10.23%). Both Piezo1 and Piezo2 knockdowns showed prolonged motor response times (Piezo1 knockdown: 0.62 ± 0.19 s, Piezo2 knockdown: 0.60 ± 0.13 s, Control mice: 0.44 ± 0.12 s) compared to controls. Additionally, Piezo knockdown animals subjected to tFUS showed reduced immunofluorescent c-Fos expression in the target area when measured in terms of cells per unit area compared to the control group. CONCLUSION This in vivo study confirms the pivotal role of Piezo channels in tFUS-induced neuromodulation, highlighting their influence on motor response efficacy and timing. SIGNIFICANCE This study provides insights into the mechanistic underpinnings of noninvasive brain stimulation techniques and opens avenues for developing targeted therapies for neural disorders.
Collapse
|
5
|
Arabacı G, Cakir BS, Parris BA. The effect of high-frequency rTMS over left DLPFC and fluid abilities on goal neglect. Brain Struct Funct 2024; 229:1073-1086. [PMID: 38519612 PMCID: PMC11147841 DOI: 10.1007/s00429-024-02770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 03/25/2024]
Abstract
Goal neglect refers to when an aspect of task instructions is not utilised due to increased competition between goal representations, an attentional limit theoretically linked to working memory. In an attempt to alleviate goal neglect and to investigate the association between dorsolateral prefrontal cortex (DLPFC)-supported working memory and goal neglect, we used high-frequency repetitive transcranial magnetic stimulation to the left DLPFC whilst participants completed the letter-monitoring task, a measure of goal neglect, and an N3-back task, a working memory task known to be affected by rTMS of the left DLPFC, following 20 min of active and sham stimulation (run on separate days). We found increased accuracy on the N3-back task in addition to decreased goal neglect in the active compared to sham condition when controlling for age and fluid abilities (as assessed by matrix reasoning performance). Furthermore, analysis showed that active stimulation improvements on both the N3-back and letter-monitoring tasks were greater for those with higher fluid abilities. These findings provide support for the link between the DLPFC-support working memory and goal neglect. Increased performance on the N3-back task also supports the literature reporting a link between left DLPFC and verbal working memory. Results are evaluated in the context of potential use to alleviate symptoms of disorders related to goal neglect.
Collapse
Affiliation(s)
- Gizem Arabacı
- Department of Psychology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset, UK.
| | - Batuhan S Cakir
- Department of Psychology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset, UK
| | - Benjamin A Parris
- Department of Psychology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset, UK
| |
Collapse
|
6
|
Lee K, Park TY, Lee W, Kim H. A review of functional neuromodulation in humans using low-intensity transcranial focused ultrasound. Biomed Eng Lett 2024; 14:407-438. [PMID: 38645585 PMCID: PMC11026350 DOI: 10.1007/s13534-024-00369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 04/23/2024] Open
Abstract
Transcranial ultrasonic neuromodulation is a rapidly burgeoning field where low-intensity transcranial focused ultrasound (tFUS), with exquisite spatial resolution and deep tissue penetration, is used to non-invasively activate or suppress neural activity in specific brain regions. Over the past decade, there has been a rapid increase of tFUS neuromodulation studies in healthy humans and subjects with central nervous system (CNS) disease conditions, including a recent surge of clinical investigations in patients. This narrative review summarized the findings of human neuromodulation studies using either tFUS or unfocused transcranial ultrasound (TUS) reported from 2013 to 2023. The studies were categorized into two separate sections: healthy human research and clinical studies. A total of 42 healthy human investigations were reviewed as grouped by targeted brain regions, including various cortical, subcortical, and deep brain areas including the thalamus. For clinical research, a total of 22 articles were reviewed for each studied CNS disease condition, including chronic pain, disorder of consciousness, Alzheimer's disease, Parkinson's disease, depression, schizophrenia, anxiety disorders, substance use disorder, drug-resistant epilepsy, and stroke. Detailed information on subjects/cohorts, target brain regions, sonication parameters, outcome readouts, and stimulatory efficacies were tabulated for each study. In later sections, considerations for planning tFUS neuromodulation in humans were also concisely discussed. With an excellent safety profile to date, the rapid growth of human tFUS research underscores the increasing interest and recognition of its significant potential in the field of non-invasive brain stimulation (NIBS), offering theranostic potential for neurological and psychiatric disease conditions and neuroscientific tools for functional brain mapping.
Collapse
Affiliation(s)
- Kyuheon Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Tae Young Park
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Wonhye Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Hyungmin Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| |
Collapse
|
7
|
Bao S, Kim H, Shettigar NB, Li Y, Lei Y. Personalized depth-specific neuromodulation of the human primary motor cortex via ultrasound. J Physiol 2024; 602:933-948. [PMID: 38358314 DOI: 10.1113/jp285613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Non-invasive brain stimulation has the potential to boost neuronal plasticity in the primary motor cortex (M1), but it remains unclear whether the stimulation of both superficial and deep layers of the human motor cortex can effectively promote M1 plasticity. Here, we leveraged transcranial ultrasound stimulation (TUS) to precisely target M1 circuits at depths of approximately 5 mm and 16 mm from the cortical surface. Initially, we generated computed tomography images from each participant's individual anatomical magnetic resonance images (MRI), which allowed for the generation of accurate acoustic simulations. This process ensured that personalized TUS was administered exactly to the targeted depths within M1 for each participant. Using long-term depression and long-term potentiation (LTD/LTP) theta-burst stimulation paradigms, we examined whether TUS over distinct depths of M1 could induce LTD/LTP plasticity. Our findings indicated that continuous theta-burst TUS-induced LTD-like plasticity with both superficial and deep M1 stimulation, persisting for at least 30 min. In comparison, sham TUS did not significantly alter M1 excitability. Moreover, intermittent theta-burst TUS did not result in the induction of LTP- or LTD-like plasticity with either superficial or deep M1 stimulation. These findings suggest that the induction of M1 plasticity can be achieved with ultrasound stimulation targeting distinct depths of M1, which is contingent on the characteristics of TUS. KEY POINTS: The study integrated personalized transcranial ultrasound stimulation (TUS) with electrophysiology to determine whether TUS targeting superficial and deep layers of the human motor cortex (M1) could elicit long-term depression (LTD) or long-term potentiation (LTP) plastic changes. Utilizing acoustic simulations derived from individualized pseudo-computed tomography scans, we ensured the precision of TUS delivery to the intended M1 depths for each participant. Continuous theta-burst TUS targeting both the superficial and deep layers of M1 resulted in the emergence of LTD-like plasticity, lasting for at least 30 min. Administering intermittent theta-burst TUS to both the superficial and deep layers of M1 did not lead to the induction of LTP- or LTD-like plastic changes. We suggest that theta-burst TUS targeting distinct depths of M1 can induce plasticity, but this effect is dependent on specific TUS parameters.
Collapse
Affiliation(s)
- Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, USA
| | - Hakjoo Kim
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, USA
| | - Nandan B Shettigar
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, USA
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA
| | - Yue Li
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University, College Station, Texas, USA
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Lee DH, Chung CK, Kim JS, Ryun S. Unraveling tactile categorization and decision-making in the subregions of supramarginal gyrus via direct cortical stimulation. Clin Neurophysiol 2024; 158:16-26. [PMID: 38134532 DOI: 10.1016/j.clinph.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE This study aims to investigate the potential of direct cortical stimulation (DCS) to modulate tactile categorization and decision-making, as well as to identify the specific locations where these cognitive functions occur. METHODS We analyzed behavioral changes in three epilepsy patients with implanted electrodes using electrocorticography (ECoG) and a vibrotactile discrimination task. DCS was applied to investigate its impact on tactile categorization and decision-making processes. We determined the precise location of the electrodes where each cognitive function was modulated. RESULTS This functional discrimination was related with gamma band activity from ECoG. DCS selectively affected either tactile categorization or decision-making processes. Tactile categorization was modulated by stimulating the rostral part of the supramarginal gyrus, while decision-making was modulated by stimulating the caudal part. CONCLUSIONS DCS can enhance cognitive processes and map brain regions responsible for tactile categorization and decision-making within the supramarginal gyrus. This study also demonstrates that DCS and the gamma activity of ECoG can concordantly identify the detailed brain mapping in a tactile process compared to other functional neuroimaging. SIGNIFICANCE The combination of DCS and ECoG gamma activity provides a more nuanced and detailed understanding of brain function than traditional neuroimaging techniques alone.
Collapse
Affiliation(s)
- Dong Hyeok Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - June Sic Kim
- The Research Institute of Basic Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokyun Ryun
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
9
|
Zhang T, Guo B, Zuo Z, Long X, Hu S, Li S, Su X, Wang Y, Liu C. Excitatory-inhibitory modulation of transcranial focus ultrasound stimulation on human motor cortex. CNS Neurosci Ther 2023; 29:3829-3841. [PMID: 37309308 PMCID: PMC10651987 DOI: 10.1111/cns.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/10/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Transcranial focus ultrasound stimulation (tFUS) is a promising non-invasive neuromodulation technology. This study aimed to evaluate the modulatory effects of tFUS on human motor cortex (M1) excitability and explore the mechanism of neurotransmitter-related intracortical circuitry and plasticity. METHODS Single pulse transcranial magnetic stimulation (TMS)-eliciting motor-evoked potentials (MEPs) were used to assessed M1 excitability in 10 subjects. Paired-pulse TMS was used to measure the effects of tFUS on GABA- and glutamate-related intracortical excitability and 1 H-MRS was used to assess the effects of repetitive tFUS on GABA and Glx (glutamine + glutamate) neurometabolic concentrations in the targeting region in nine subjects. RESULTS The etFUS significantly increased M1 excitability, decreased short interval intracortical inhibition (SICI) and long interval intracortical inhibition (LICI). The itFUS significantly suppressed M1 excitability, increased SICI, LICI, and decreased intracortical facilitation (ICF). Seven times of etFUS decreased the GABA concentration (6.32%), increased the Glx concentration (12.40%), and decreased the GABA/Glx ratio measured by MRS, while itFUS increased the GABA concentration (18.59%), decreased Glx concentration (0.35%), and significantly increased GABA/Glx ratio. CONCLUSION The findings support that tFUS with different parameters can exert excitatory and inhibitory neuromodulatory effects on the human motor cortex. We provide novel insights that tFUS change cortical excitability and plasticity by regulating excitatory-inhibition balance related to the GABAergic and glutamatergic receptor function and neurotransmitter metabolic level.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Bingqi Guo
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- Hefei Comprehensive National Science CenterInstitute of Artificial IntelligenceHefeiChina
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaojing Long
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Shimin Hu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| | - Siran Li
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xin Su
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuping Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
- Institute of Sleep and Consciousness Disorders, Center of Epilepsy, Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
- Hebei Hospital of Xuanwu HospitalCapital Medical UniversityShijiazhuangChina
- Neuromedical Technology Innovation Center of Hebei ProvinceShijiazhuangChina
| | - Chunyan Liu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeuromodulationBeijingChina
| |
Collapse
|
10
|
Grootjans Y, Byczynski G, Vanneste S. The use of non-invasive brain stimulation in auditory perceptual learning: A review. Hear Res 2023; 439:108881. [PMID: 37689034 DOI: 10.1016/j.heares.2023.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
Auditory perceptual learning is an experience-dependent form of auditory learning that can improve substantially throughout adulthood with practice. A key mechanism associated with perceptual learning is synaptic plasticity. In the last decades, an increasingly better understanding has formed about the neural mechanisms related to auditory perceptual learning. Research in animal models found an association between the functional organization of the primary auditory cortex and frequency discrimination ability. Several studies observed an increase in the area of representation to be associated with improved frequency discrimination. Non-invasive brain stimulation techniques have been related to the promotion of plasticity. Despite its popularity in other fields, non-invasive brain stimulation has not been used much in auditory perceptual learning. The present review has discussed the application of non-invasive brain stimulation methods in auditory perceptual learning by discussing the mechanisms, current evidence and challenges, and future directions.
Collapse
Affiliation(s)
- Yvette Grootjans
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Ireland.
| |
Collapse
|
11
|
Guo W, He Y, Zhang W, Sun Y, Wang J, Liu S, Ming D. A novel non-invasive brain stimulation technique: "Temporally interfering electrical stimulation". Front Neurosci 2023; 17:1092539. [PMID: 36777641 PMCID: PMC9912300 DOI: 10.3389/fnins.2023.1092539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
For decades, neuromodulation technology has demonstrated tremendous potential in the treatment of neuropsychiatric disorders. However, challenges such as being less intrusive, more concentrated, using less energy, and better public acceptance, must be considered. Several novel and optimized methods are thus urgently desiderated to overcome these barriers. In specific, temporally interfering (TI) electrical stimulation was pioneered in 2017, which used a low-frequency envelope waveform, generated by the superposition of two high-frequency sinusoidal currents of slightly different frequency, to stimulate specific targets inside the brain. TI electrical stimulation holds the advantages of both spatial targeting and non-invasive character. The ability to activate deep pathogenic targets without surgery is intriguing, and it is expected to be employed to treat some neurological or psychiatric disorders. Recently, efforts have been undertaken to investigate the stimulation qualities and translation application of TI electrical stimulation via computational modeling and animal experiments. This review detailed the most recent scientific developments in the field of TI electrical stimulation, with the goal of serving as a reference for future research.
Collapse
Affiliation(s)
- Wanting Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yuchen He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wenquan Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yiwei Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Junling Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,*Correspondence: Shuang Liu,
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China,Tianjin International Joint Research Center for Neural Engineering, Tianjin, China,Dong Ming,
| |
Collapse
|
12
|
Daglas-Georgiou R, Bryce S, Smith G, Kaur M, Cheng N, De Rozario M, Wood SJ, Allott K. Treatments for objective and subjective cognitive functioning in young people with depression: Systematic review of current evidence. Early Interv Psychiatry 2022; 16:1057-1074. [PMID: 34825492 DOI: 10.1111/eip.13248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/31/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
AIM Cognitive deficits are recognized features of depressive disorders in youth aged 12-25. These deficits are distressing, predict functional impairment and limit the effectiveness of psychological therapies. Cognitive enhancement using behavioural, biochemical or physical treatments may be useful in young people with depression, but studies have not been synthesized. The aim was to systematically review the evidence for treatments for objective and subjective cognitive functioning, and their acceptability and functional outcomes in people aged 12-25 with depression. METHOD Three electronic databases were searched for articles using pre-specified criteria. Pharmacological treatments were not eligible. Risk of bias was rated using the Cochrane Collaboration's revised risk-of-bias tool. Dual full-text article screening, data extraction and quality ratings were completed. RESULTS Twelve studies were included for review (median participant age: 20.39 years), five of which were randomized-controlled trials (RCTs). Sample sizes were generally small (median = 23; range: 9-46). Eight studies investigated behavioural treatments including aerobic exercise, cognitive training and education or strategy-based methods. Four studies examined repetitive transcranial magnetic brain stimulation (rTMS). Most behavioural treatments revealed preliminary evidence of improved cognitive function in youth depression. Consent rates were greatest for exercise- and education-based approaches, which may indicate higher acceptability levels. Findings from rTMS trials were mixed, with only half showing cognitive improvement. Functional outcomes were reported by three behavioural treatment trials and one rTMS trial, with functional improvement reported only in the former. Some concern of risk of bias was found in each RCT. CONCLUSION Behavioural treatments, such as exercise, cognitive training and education/strategy-focused techniques, show encouraging results and appear to be acceptable methods of addressing cognitive deficits in youth depression based on participation rates. Brain stimulation and biochemical treatments (e.g., nutrient-based treatment) require further investigation.
Collapse
Affiliation(s)
- Rothanthi Daglas-Georgiou
- Orygen, Parkville, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Shayden Bryce
- Orygen, Parkville, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Gabriel Smith
- Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Manreena Kaur
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia.,School of Psychiatry, University of New South Wales, Kensington, Australia.,Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Melbourne, Australia
| | - Nicholas Cheng
- Orygen, Parkville, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Magdalene De Rozario
- Orygen, Parkville, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen J Wood
- Orygen, Parkville, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,School of Psychology, University of Birmingham, Edgbaston, UK
| | - Kelly Allott
- Orygen, Parkville, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Singh MF, Cole MW, Braver TS, Ching S. Developing control-theoretic objectives for large-scale brain dynamics and cognitive enhancement. ANNUAL REVIEWS IN CONTROL 2022; 54:363-376. [PMID: 38250171 PMCID: PMC10798814 DOI: 10.1016/j.arcontrol.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The development of technologies for brain stimulation provides a means for scientists and clinicians to directly actuate the brain and nervous system. Brain stimulation has shown intriguing potential in terms of modifying particular symptom clusters in patients and behavioral characteristics of subjects. The stage is thus set for optimization of these techniques and the pursuit of more nuanced stimulation objectives, including the modification of complex cognitive functions such as memory and attention. Control theory and engineering will play a key role in the development of these methods, guiding computational and algorithmic strategies for stimulation. In particular, realizing this goal will require new development of frameworks that allow for controlling not only brain activity, but also latent dynamics that underlie neural computation and information processing. In the current opinion, we review recent progress in brain stimulation and outline challenges and potential research pathways associated with exogenous control of cognitive function.
Collapse
Affiliation(s)
- Matthew F Singh
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, 63130, MO, USA
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, 07102, NJ, USA
- Psychological and Brain Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, 07102, NJ, USA
| | - Todd S Braver
- Psychological and Brain Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, 63130, MO, USA
| |
Collapse
|
14
|
Scarpelli A, Stefano M, Cordella F, Zollo L. Multiscale approach for tFUS neurocomputational modelling. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4712-4715. [PMID: 36086564 DOI: 10.1109/embc48229.2022.9871341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Among the non-invasive methods employed for brain stimulation, trans cranial Focused Ultrasound Stimulation (tFUS) is the technique with the best penetration into the tissues and spatial resolution. The development of computational models of US propagation in brain tissue can be useful for estimating the behaviour of neural cells subjected to mechanical stimulus due to US. This paper aims at studying the neural cell response of a cortical Regular Spiking point neuron model, for different values of stimulus Duty Cycle (DC). The main goal is to use a multiscale approach to couple the results obtained from a macroscale simulation on wave propagation in tissue, with neuron model described by Hodgkin-Huxley equations to study latency and firing rate of the RS model. The obtained results showed that latency and firing rate have slight variations along the propagation direction of the US beam, in the focal region under the skull model, for different stimulus DC.
Collapse
|
15
|
Neuromodulation Using Transcranial Focused Ultrasound on the Bilateral Medial Prefrontal Cortex. J Clin Med 2022; 11:jcm11133809. [PMID: 35807094 PMCID: PMC9267901 DOI: 10.3390/jcm11133809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
Transcranial focused ultrasound (tFUS) is a promising technique of non-invasive brain stimulation for modulating neuronal activity with high spatial specificity. The medial prefrontal cortex (mPFC) has been proposed as a potential target for neuromodulation to prove emotional and sleep qualities. We aim to set up an appropriate clinical protocol for investigating the effects of tFUS stimulation of the bilateral mPFC for modulating the function of the brain-wide network using different sonication parameters. Seven participants received 20 min of 250 kHz tFUS to the bilateral mPFC with excitatory (70% duty cycle with sonication interval at 5 s) or suppressive (5% duty cycle with no interval) sonication protocols, which were compared to a sham condition. By placing the cigar-shaped sonication focus on the falx between both mPFCs, it was possible to simultaneously stimulate the bilateral mPFCs. Brain activity was analyzed using continuous electroencephalographic (EEG) recording during, before, and after tFUS. We investigated whether tFUS stimulation under the different conditions could lead to distinctive changes in brain activity in local brain regions where tFUS was directly delivered, and also in adjacent or remote brain areas that were not directly stimulated. This kind of study setting suggests that dynamic changes in brain cortical responses can occur within short periods of time, and that the distribution of these responses may differ depending on local brain states and functional brain architecture at the time of tFUS administration, or perhaps, at least temporarily, beyond the stimulation time. If so, tFUS could be useful for temporarily modifying regional brain activity, modulating functional connectivity, or reorganizing brain functions associated with various neuropsychiatric diseases, such as insomnia and depression.
Collapse
|
16
|
Kang KC, Kim YH, Kim JN, Kabir M, Zhang Y, Ghanouni P, Park KK, Firouzi K, Khuri-Yakub BT. Increasing the transmission efficiency of transcranial ultrasound using a dual-mode conversion technique based on Lamb waves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2159. [PMID: 35364946 PMCID: PMC8957390 DOI: 10.1121/10.0009849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Transcranial focused ultrasound (FUS) is a noninvasive treatment for brain tumors and neuromodulation. Based on normal incidence, conventional FUS techniques use a focused or an array of ultrasonic transducers to overcome the attenuation and absorption of ultrasound in the skull; however, this remains the main limitation of using FUS. A dual-mode conversion technique based on Lamb waves is proposed to achieve high transmission efficiency. This concept was validated using the finite element analysis (FEA) and experiments based on changes in the incident angle. Aluminum, plexiglass, and a human skull were used as materials with different attenuations. The transmission loss was calculated for each material, and the results were compared with the reflectance function of the Lamb waves. Oblique incidence based on dual-mode conversion exhibited a better transmission efficiency than that of a normal incidence for all of the specimens. The total transmission losses for the materials were 13.7, 15.46, and 3.91 dB less than those associated with the normal incidence. A wedge transducer was designed and fabricated to implement the proposed method. The results demonstrated the potential applicability of the dual-mode conversion technique for the human skull.
Collapse
Affiliation(s)
- Ki Chang Kang
- Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea
| | - Young Hun Kim
- Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jeong Nyeon Kim
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Minoo Kabir
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Yichi Zhang
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| | - Kwan Kyu Park
- Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea
| | - Kamyar Firouzi
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Burtus T Khuri-Yakub
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
17
|
Potential role for peripheral nerve stimulation on learning and long-term memory: A comparison of alternating and direct current stimulations. Brain Stimul 2022; 15:536-545. [DOI: 10.1016/j.brs.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
|
18
|
Stuchlíková Z, Klírová M. A Literature Mini-Review of Transcranial Direct Current Stimulation in Schizophrenia. Front Psychiatry 2022; 13:874128. [PMID: 35530026 PMCID: PMC9069055 DOI: 10.3389/fpsyt.2022.874128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neurostimulation method that utilizes the effect of low-current on brain tissue. In recent years, the effect of transcranial direct current stimulation has been investigated as a therapeutic modality in various neuropsychiatric indications, one of them being schizophrenia. This article aims to provide an overview of the potential application and effect of tDCS in treating patients with schizophrenia. A literature search was performed using the PubMed, Web of Science, and Google Scholar databases for relevant research published from any date until December 2021. Eligible studies included those that used randomized controlled parallel-group design and focused on the use of transcranial direct current stimulation for the treatment of positive, negative, or cognitive symptoms of schizophrenia. Studies were divided into groups based on the focus of research and an overview is provided in separate sections and tables in the article. The original database search yielded 705 results out of which 27 randomized controlled trials met the eligibility criteria and were selected and used for the purpose of this article. In a review of the selected trials, transcranial direct current stimulation is a safe and well-tolerated method that appears to have the potential as an effective modality for the treatment of positive and negative schizophrenic symptoms and offers promising results in influencing cognition. However, ongoing research is needed to confirm these conclusions and to further specify distinct application parameters.
Collapse
Affiliation(s)
- Zuzana Stuchlíková
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia.,Hospital České Budĕjovice, a.s., České Budĕjovice, Czechia
| | - Monika Klírová
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
19
|
Hoy KE, Emonson MRL, Bailey NW, Humble G, Coyle H, Rogers C, Fitzgerald PB. Investigating Neurophysiological Markers of Symptom Severity in Alzheimer's Disease. J Alzheimers Dis 2021; 85:309-321. [PMID: 34806601 DOI: 10.3233/jad-210401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a progressive decline in cognitive functioning for which there is a stark lack of effective treatments. Investigating the neurophysiological markers of symptom severity in AD may aid in the identification of alternative treatment targets. OBJECTIVE In the current study, we used a multimodal approach to investigate the association between functional connectivity (specifically between scalp electrodes placed over frontal and parietal regions) and symptom severity in AD, and to explore the relationship between connectivity and cortical excitability. METHODS 40 people with AD (25 mild severity, 15 moderate severity) underwent neurobiological assessment (resting state electroencephalography (EEG) and prefrontal transcranial magnetic stimulation (TMS) with EEG) and cognitive assessment. Neurobiological outcomes were resting state functional connectivity and TMS-evoked potentials. Cognitive outcomes were scores on the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental Status Examination, and a measure of episodic verbal learning. RESULTS Greater contralateral functional theta connectivity between frontal scalp electrodes and parietal scalp electrodes was associated with poorer cognitive performance. In addition, significant correlations were seen between the contralateral theta connectivity and the N100 and P60 TMS-evoked potentials measured from electrodes over the left dorsolateral prefrontal cortex. CONCLUSION Together these findings provide initial support for the use of a multimodal neurophysiological approaches to investigate potential therapeutic targets in AD. Suggestions for future research are discussed.
Collapse
Affiliation(s)
- Kate E Hoy
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Melanie R L Emonson
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Neil W Bailey
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Gregory Humble
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Hannah Coyle
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Caitlyn Rogers
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| |
Collapse
|
20
|
Zhang T, Pan N, Wang Y, Liu C, Hu S. Transcranial Focused Ultrasound Neuromodulation: A Review of the Excitatory and Inhibitory Effects on Brain Activity in Human and Animals. Front Hum Neurosci 2021; 15:749162. [PMID: 34650419 PMCID: PMC8507972 DOI: 10.3389/fnhum.2021.749162] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Non-invasive neuromodulation technology is important for the treatment of brain diseases. The effects of focused ultrasound on neuronal activity have been investigated since the 1920s. Low intensity transcranial focused ultrasound (tFUS) can exert non-destructive mechanical pressure effects on cellular membranes and ion channels and has been shown to modulate the activity of peripheral nerves, spinal reflexes, the cortex, and even deep brain nuclei, such as the thalamus. It has obvious advantages in terms of security and spatial selectivity. This technology is considered to have broad application prospects in the treatment of neurodegenerative disorders and neuropsychiatric disorders. This review synthesizes animal and human research outcomes and offers an integrated description of the excitatory and inhibitory effects of tFUS in varying experimental and disease conditions.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Na Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Center of Epilepsy, Institute of Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| |
Collapse
|
21
|
Fehring DJ, Samandra R, Haque ZZ, Jaberzadeh S, Rosa M, Mansouri FA. Investigating the sex-dependent effects of prefrontal cortex stimulation on response execution and inhibition. Biol Sex Differ 2021; 12:47. [PMID: 34404467 PMCID: PMC8369781 DOI: 10.1186/s13293-021-00390-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Context-dependent execution or inhibition of a response is an important aspect of executive control, which is impaired in neuropsychological and addiction disorders. Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) has been considered a remedial approach to address deficits in response control; however, considerable variability has been observed in tDCS effects. These variabilities might be related to contextual differences such as background visual-auditory stimuli or subjects' sex. In this study, we examined the interaction of two contextual factors, participants' sex and background acoustic stimuli, in modulating the effects of tDCS on response inhibition and execution. In a sham-controlled and cross-over (repeated-measure) design, 73 participants (37 females) performed a Stop-Signal Task in different background acoustic conditions before and after tDCS (anodal or sham) was applied over the DLPFC. Participants had to execute a speeded response in Go trials but inhibit their response in Stop trials. Participants' sex was fully counterbalanced across all experimental conditions (acoustic and tDCS). We found significant practice-related learning that appeared as changes in indices of response inhibition (stop-signal reaction time and percentage of successful inhibition) and action execution (response time and percentage correct). The tDCS and acoustic stimuli interactively influenced practice-related changes in response inhibition and these effects were uniformly seen in both males and females. However, the effects of tDCS on response execution (percentage of correct responses) were sex-dependent in that practice-related changes diminished in females but heightened in males. Our findings indicate that participants' sex influenced the effects of tDCS on the execution, but not inhibition, of responses.
Collapse
Affiliation(s)
- Daniel J Fehring
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
- ARC Centre of Excellence in Integrative Brain Function, Monash University, Melbourne, VIC, 3800, Australia
| | - Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Zakia Z Haque
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Non-Invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Melbourne, VIC, 3199, Australia
| | - Marcello Rosa
- ARC Centre of Excellence in Integrative Brain Function, Monash University, Melbourne, VIC, 3800, Australia
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Farshad A Mansouri
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia.
- ARC Centre of Excellence in Integrative Brain Function, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
22
|
Investigating neurophysiological markers of impaired cognition in schizophrenia. Schizophr Res 2021; 233:34-43. [PMID: 34225025 DOI: 10.1016/j.schres.2021.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
Cognitive impairment is highly prevalent in schizophrenia and treatment options are severely limited. A greater understanding of the pathophysiology of impaired cognition would have broad implications, including for the development of effective treatments. In the current study we used a multimodal approach to identify neurophysiological markers of cognitive impairment in schizophrenia. Fifty-seven participants (30 schizophrenia, 27 controls) underwent neurobiological assessment (electroencephalography [EEG] and Transcranial Magnetic Stimulation combined with EEG [TMS-EEG]) and assessment of cognitive functioning using an n-back task and the MATRICS Consensus Cognitive Battery. Neurobiological outcome measures included oscillatory power during a 2-back task, TMS-related oscillations and TMS-evoked potentials (TEPs). Cognitive outcome measures were d prime and accurate reaction time on the 2-back and MATRICS domain scores. Compared to healthy controls, participants with schizophrenia showed significantly reduced theta oscillations in response to TMS, and trend level decreases in task-related theta and cortical reactivity (i.e. reduced N100 and N40 TEPs). Participants with schizophrenia also showed significantly impaired cognitive performance across all measures. Correlational analysis identified significant associations between cortical reactivity and TMS-related oscillations in both groups; and trend level associations between task-related oscillations and impaired cognition in schizophrenia. The current study provides experimental support for possible neurophysiological markers of cognitive impairment in schizophrenia. The potential implications of these findings, including for treatment development, are discussed.
Collapse
|
23
|
Haque ZZ, Samandra R, Mansouri FA. Neural substrate and underlying mechanisms of working memory: insights from brain stimulation studies. J Neurophysiol 2021; 125:2038-2053. [PMID: 33881914 DOI: 10.1152/jn.00041.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The concept of working memory refers to a collection of cognitive abilities and processes involved in the short-term storage of task-relevant information to guide the ongoing and upcoming behavior and therefore describes an important aspect of executive control of behavior for achieving goals. Deficits in working memory and related cognitive abilities have been observed in patients with brain damage or neuropsychological disorders and therefore it is important to better understand neural substrate and underlying mechanisms of working memory. Working memory relies on neural mechanisms that enable encoding, maintenance, and manipulation of stored information as well as integrating them with ongoing and future goals. Recently, a surge in brain stimulation studies have led to development of various noninvasive techniques for localized stimulation of prefrontal and other cortical regions in humans. These brain stimulation techniques can potentially be tailored to influence neural activities in particular brain regions and modulate cognitive functions and behavior. Combined use of brain stimulation with neuroimaging and electrophysiological recording have provided a great opportunity to monitor neural activity in various brain regions and noninvasively intervene and modulate cognitive functions in cognitive tasks. These studies have shed more light on the neural substrate and underlying mechanisms of working memory in humans. Here, we review findings and insight from these brain stimulation studies about the contribution of brain regions, and particularly prefrontal cortex, to working memory.
Collapse
Affiliation(s)
- Zakia Z Haque
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Yuan D, Tian H, Zhou Y, Wu J, Sun T, Xiao Z, Shang C, Wang J, Chen X, Sun Y, Tang J, Qiu S, Tan LH. Acupoint-brain (acubrain) mapping: Common and distinct cortical language regions activated by focused ultrasound stimulation on two language-relevant acupoints. BRAIN AND LANGUAGE 2021; 215:104920. [PMID: 33561785 DOI: 10.1016/j.bandl.2021.104920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Acupuncture, taking the advantage of modality-specific neural pathways, has shown promising results in the treatment of brain disorders that affect different modalities such as pain and vision. However, the precise underlying mechanisms of within-modality neuromodulation of acupoints on human high-order cognition remain largely unknown. In the present study, we used a non-invasive and easy-operating method, focused ultrasound, to stimulate two language-relevant acupoints, namely GB39 (Xuanzhong) and SJ8 (Sanyangluo), of thirty healthy adults. The effect of focused ultrasound stimulation (FUS) on brain activation was examined by functional magnetic resonance imaging (fMRI). We found that stimulating GB39 and SJ8 by FUS evoked overlapping but distinct brain activation patterns. Our findings provide a major step toward within-modality (in this case, language) acupoint-brain (acubrain) mapping and shed light on to the potential use of FUS as a personalized treatment option for brain disorders that affect high-level cognitive functions.
Collapse
Affiliation(s)
- Di Yuan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China; Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Haoyue Tian
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China; Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Yulong Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China; Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Jinjian Wu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tong Sun
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhuoni Xiao
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China; Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Chunfeng Shang
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Jiaojian Wang
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Xin Chen
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yimin Sun
- Department of Biomedical Engineering, Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing, China
| | - Joey Tang
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Shijun Qiu
- Department of Radiology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Li Hai Tan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China; Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China.
| |
Collapse
|
25
|
Repple J, Meinert S, Bollettini I, Grotegerd D, Redlich R, Zaremba D, Bürger C, Förster K, Dohm K, Stahl F, Opel N, Hahn T, Enneking V, Leehr EJ, Böhnlein J, Leenings R, Kaehler C, Emden D, Winter NR, Heindel W, Kugel H, Bauer J, Arolt V, Benedetti F, Dannlowski U. Influence of electroconvulsive therapy on white matter structure in a diffusion tensor imaging study. Psychol Med 2020; 50:849-856. [PMID: 31010441 DOI: 10.1017/s0033291719000758] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is a fast-acting intervention for major depressive disorder. Previous studies indicated neurotrophic effects following ECT that might contribute to changes in white matter brain structure. We investigated the influence of ECT in a non-randomized prospective study focusing on white matter changes over time. METHODS Twenty-nine severely depressed patients receiving ECT in addition to inpatient treatment, 69 severely depressed patients with inpatient treatment (NON-ECT) and 52 healthy controls (HC) took part in a non-randomized prospective study. Participants were scanned twice, approximately 6 weeks apart, using diffusion tensor imaging, applying tract-based spatial statistics. Additional correlational analyses were conducted in the ECT subsample to investigate the effects of seizure duration and therapeutic response. RESULTS Mean diffusivity (MD) increased after ECT in the right hemisphere, which was an ECT-group-specific effect. Seizure duration was associated with decreased fractional anisotropy (FA) following ECT. Longitudinal changes in ECT were not associated with therapy response. However, within the ECT group only, baseline FA was positively and MD negatively associated with post-ECT symptomatology. CONCLUSION Our data suggest that ECT changes white matter integrity, possibly reflecting increased permeability of the blood-brain barrier, resulting in disturbed communication of fibers. Further, baseline diffusion metrics were associated with therapy response. Coherent fiber structure could be a prerequisite for a generalized seizure and inhibitory brain signaling necessary to successfully inhibit increased seizure activity.
Collapse
Affiliation(s)
| | | | - Irene Bollettini
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | | | - Ronny Redlich
- Department of Psychiatry, University of Muenster, Germany
| | - Dario Zaremba
- Department of Psychiatry, University of Muenster, Germany
| | | | | | - Katharina Dohm
- Department of Psychiatry, University of Muenster, Germany
| | - Felix Stahl
- Department of Psychiatry, University of Muenster, Germany
| | - Nils Opel
- Department of Psychiatry, University of Muenster, Germany
| | - Tim Hahn
- Department of Psychiatry, University of Muenster, Germany
| | | | | | | | | | - Claas Kaehler
- Department of Psychiatry, University of Muenster, Germany
- Institute of Pattern Recognition and Image Analysis, University of Muenster, Germany
| | - Daniel Emden
- Department of Psychiatry, University of Muenster, Germany
| | - Nils R Winter
- Department of Psychiatry, University of Muenster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Muenster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Muenster, Germany
| | - Jochen Bauer
- Department of Clinical Radiology, University of Muenster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Muenster, Germany
| | - Francesco Benedetti
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- University Vita-Salute San Raffaele, Italy
| | - Udo Dannlowski
- Department of Psychiatry, University of Muenster, Germany
| |
Collapse
|
26
|
Yoon K, Lee W, Lee JE, Xu L, Croce P, Foley L, Yoo SS. Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model. PLoS One 2019; 14:e0224311. [PMID: 31648261 PMCID: PMC6812789 DOI: 10.1371/journal.pone.0224311] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Low-intensity focused ultrasound (FUS) has significant potential as a non-invasive brain stimulation modality and novel technique for functional brain mapping, particularly with its advantage of greater spatial selectivity and depth penetration compared to existing non-invasive brain stimulation techniques. As previous studies, primarily carried out in small animals, have demonstrated that sonication parameters affect the stimulation efficiency, further investigation in large animals is necessary to translate this technique into clinical practice. In the present study, we examined the effects of sonication parameters on the transient modification of excitability of cortical and thalamic areas in an ovine model. Guided by anatomical and functional neuroimaging data specific to each animal, 250 kHz FUS was transcranially applied to the primary sensorimotor area associated with the right hind limb and its thalamic projection in sheep (n = 10) across multiple sessions using various combinations of sonication parameters. The degree of effect from FUS was assessed through electrophysiological responses, through analysis of electromyogram and electroencephalographic somatosensory evoked potentials for evaluation of excitatory and suppressive effects, respectively. We found that the modulatory effects were transient and reversible, with specific sonication parameters outperforming others in modulating regional brain activity. Magnetic resonance imaging and histological analysis conducted at different time points after the final sonication session, as well as behavioral observations, showed that repeated exposure to FUS did not damage the underlying brain tissue. Our results suggest that FUS-mediated, non-invasive, region-specific bimodal neuromodulation can be safely achieved in an ovine model, indicating its potential for translation into human studies.
Collapse
Affiliation(s)
- Kyungho Yoon
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wonhye Lee
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ji Eun Lee
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linda Xu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Phillip Croce
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lori Foley
- Translational Discovery Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW This current review summarizes the investigational and therapeutic applications of transcranial magnetic stimulation (TMS) in schizophrenia. RECENT FINDINGS Fairly consistent findings of an impaired cortical excitation-inhibition balance, cortical plasticity, and motor resonance have been reported in schizophrenia. Cortical connectivity impairments have also been demonstrated in motor and prefrontal brain regions. In terms of treatment, the best support is for 1-Hz TMS to the left temporoparietal cortex for the short-term treatment of persistent auditory hallucinations. High-frequency TMS to the left prefrontal cortex improves negative and cognitive symptoms, but with inconsistent and small effects. TMS combined with diverse brain mapping techniques and clinical evaluation can unravel critical brain-behavior relationships relevant to schizophrenia. These provide critical support to the conceptualization of schizophrenia as a connectopathy with anomalous cortical plasticity. Adaptive modulation of these aberrant brain networks in a neuroscience-informed manner drives short-term therapeutic gains in difficult-to-treat symptoms of schizophrenia.
Collapse
|
28
|
Fehring DJ, Illipparampil R, Acevedo N, Jaberzadeh S, Fitzgerald PB, Mansouri FA. Interaction of task-related learning and transcranial direct current stimulation of the prefrontal cortex in modulating executive functions. Neuropsychologia 2019; 131:148-159. [DOI: 10.1016/j.neuropsychologia.2019.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/08/2019] [Accepted: 05/10/2019] [Indexed: 01/24/2023]
|
29
|
A Pilot Investigation of Repetitive Transcranial Magnetic Stimulation for Post-Traumatic Brain Injury Depression: Safety, Tolerability, and Efficacy. J Neurotrauma 2019; 36:2092-2098. [DOI: 10.1089/neu.2018.6097] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Jin X, Chen C, Zhou X, Yang X. Stimulating the Dorsolateral Prefrontal Cortex Decreases the Asset Bubble: A tDCS Study. Front Psychol 2019; 10:1031. [PMID: 31143146 PMCID: PMC6521735 DOI: 10.3389/fpsyg.2019.01031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Many studies have discussed the neural basis of asset bubbles. They found that the dorsolateral prefrontal cortex (DLPFC) played an important role in bubble formation, but whether a causal relationship exists and the mechanism of the effect of the DLPFC on bubbles remains unsettled. Using transcranial direct current stimulation (tDCS), we modulated the activity of the DLPFC and investigated the causal relationship between the DLPFC and the asset bubble in the classical learning-to-forecast experiment. 126 subjects were randomly divided into three groups and received different stimulations (left anodal/right cathodal, right anodal/left cathodal, or sham stimulation), respectively. We also conducted a 2-back task before and after stimulation to measure changes in subjects' cognitive abilities and explore in detail the cognitive mechanism of the effect of DLPFC stimulation on asset bubbles. Based on our results, we found that the bubble of the left anodal/right cathodal stimulation group was significantly smaller than that of the sham stimulation group. In the meantime, subjects performed significantly better in the 2-back task after left anodal/right cathodal stimulation but not right anodal/left cathodal or sham stimulation, which is consistent with their performance in the learning-to-forecast experiment, supporting the cognitive mechanism to some extent. Furthermore, we examined different forecasting rules across individuals and discovered that the left anodal/right cathodal stimulation group preferred the adaptive learning rule, while the sham and right anodal/left cathodal stimulation groups adopted a pure trend-following rule that tended to intensify market volatility aggressively.
Collapse
Affiliation(s)
- Xuejun Jin
- College of Economics, Zhejiang University, Hangzhou, China
| | - Cheng Chen
- College of Economics, Zhejiang University, Hangzhou, China
| | - Xue Zhou
- College of Economics, Zhejiang University, Hangzhou, China
| | - Xiaolan Yang
- School of Business and Management, Shanghai International Studies University, Shanghai, China.,Academy of Financial Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Herzog DP, Wegener G, Lieb K, Müller MB, Treccani G. Decoding the Mechanism of Action of Rapid-Acting Antidepressant Treatment Strategies: Does Gender Matter? Int J Mol Sci 2019; 20:ijms20040949. [PMID: 30813226 PMCID: PMC6412361 DOI: 10.3390/ijms20040949] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Gender differences play a pivotal role in the pathophysiology and treatment of major depressive disorder. This is strongly supported by a mean 2:1 female-male ratio of depression consistently observed throughout studies in developed nations. Considering the urgent need to tailor individualized treatment strategies to fight depression more efficiently, a more precise understanding of gender-specific aspects in the pathophysiology and treatment of depressive disorders is fundamental. However, current treatment guidelines almost entirely neglect gender as a potentially relevant factor. Similarly, the vast majority of animal experiments analysing antidepressant treatment in rodent models exclusively uses male animals and does not consider gender-specific effects. Based on the growing interest in innovative and rapid-acting treatment approaches in depression, such as the administration of ketamine, its metabolites or electroconvulsive therapy, this review article summarizes the evidence supporting the importance of gender in modulating response to rapid acting antidepressant treatment. We provide an overview on the current state of knowledge and propose a framework for rodent experiments to ultimately decode gender-dependent differences in molecular and behavioural mechanisms involved in shaping treatment response.
Collapse
Affiliation(s)
- David P Herzog
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Untere Zahlbacher Straße 8, 55131 Mainz, Germany.
- Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark.
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Untere Zahlbacher Straße 8, 55131 Mainz, Germany.
- Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Marianne B Müller
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Untere Zahlbacher Straße 8, 55131 Mainz, Germany.
- Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Giulia Treccani
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Untere Zahlbacher Straße 8, 55131 Mainz, Germany.
- Focus Program Translational Neurosciences, Johannes Gutenberg University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark.
| |
Collapse
|
32
|
Zhang S, Yuan S, Huang L, Zheng X, Wu Z, Xu K, Pan G. Human Mind Control of Rat Cyborg's Continuous Locomotion with Wireless Brain-to-Brain Interface. Sci Rep 2019; 9:1321. [PMID: 30718518 PMCID: PMC6361987 DOI: 10.1038/s41598-018-36885-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/16/2018] [Indexed: 11/09/2022] Open
Abstract
Brain-machine interfaces (BMIs) provide a promising information channel between the biological brain and external devices and are applied in building brain-to-device control. Prior studies have explored the feasibility of establishing a brain-brain interface (BBI) across various brains via the combination of BMIs. However, using BBI to realize the efficient multidegree control of a living creature, such as a rat, to complete a navigation task in a complex environment has yet to be shown. In this study, we developed a BBI from the human brain to a rat implanted with microelectrodes (i.e., rat cyborg), which integrated electroencephalogram-based motor imagery and brain stimulation to realize human mind control of the rat’s continuous locomotion. Control instructions were transferred from continuous motor imagery decoding results with the proposed control models and were wirelessly sent to the rat cyborg through brain micro-electrical stimulation. The results showed that rat cyborgs could be smoothly and successfully navigated by the human mind to complete a navigation task in a complex maze. Our experiments indicated that the cooperation through transmitting multidimensional information between two brains by computer-assisted BBI is promising.
Collapse
Affiliation(s)
- Shaomin Zhang
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Sheng Yuan
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Lipeng Huang
- Department of Computer Science, Zhejiang University, Hangzhou, China
| | - Xiaoxiang Zheng
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Zhaohui Wu
- Department of Computer Science, Zhejiang University, Hangzhou, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China. .,Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China. .,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.
| | - Gang Pan
- Department of Computer Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
33
|
Sleep-wake, cognitive and clinical correlates of treatment outcome with repetitive transcranial magnetic stimulation for young adults with depression. Psychiatry Res 2019; 271:335-342. [PMID: 30529316 DOI: 10.1016/j.psychres.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/31/2018] [Accepted: 12/01/2018] [Indexed: 01/29/2023]
Abstract
The utility of key phenotypes of depression in predicting response to repetitive transcranial magnetic stimulation (rTMS), namely sleep-wake behaviour, cognition and illness chronicity, has been understudied and not been extended to young samples. This study aimed to determine whether sleep-wake disturbance, cognition or depression chronicity are associated with rTMS outcome in young depressed adults. Sixteen depressed young adults diagnosed with mood disorders (aged 18-29 years) completed this open-label study. Neuronavigationally targeted high-frequency rTMS was administered at 110% of motor threshold on the left dorsolateral prefrontal cortex for 20 sessions over 4 weeks. Clinical, sleep-wake and cognitive assessments were undertaken pre- and post-treatment. Repeated-measures and correlational analyses determined pre- and post-treatment changes and predictors of treatment outcome. rTMS significantly reduced depression and anxiety. Better cognitive flexibility, verbal learning, later age of onset and greater number of depressive episodes were associated with better treatment outcome. There were no other significant/trend-level associations. rTMS had no effect on sleep-wake or cognitive measures. We provide the first evidence for the utility of cognitive flexibility and verbal learning in predicting rTMS outcome in depressed young adults. This research provides preliminary support for rTMS as an early intervention for depression and supports the need for sham-controlled trials.
Collapse
|
34
|
Park TY, Pahk KJ, Kim H. A novel numerical approach to stimulation of a specific brain region using transcranial focused ultrasound. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:3697-3700. [PMID: 30441175 DOI: 10.1109/embc.2018.8513331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the biggest challenges associated with transcranial application of focused ultrasound is the presence of skull in wave propagation resulting in the attenuation and diffraction of sound waves, which leads to disruption and shifting of the acoustic focus in the brain. In this study, we were motivated to find an optimal transducer position to effectively deliver sufficient acoustic energy to the target in the brain whilst minimizing the effects of skull on wave propagation in a computationally inexpensive way. We hypothesized that the placement of a single-element focused ultrasound transducer which gives the lowest reflection coefficient would be the optimal position. We tested our hypothesis by conducting numerical investigations of wave propagation through the skull targeting the primary motor hand representation (M1) and the supplementary motor area (SMA). The optimal transducer positions were determined using our method (reflection coefficients were lowest), whereby the simulated magnitudes of the acoustic pressure values at the M1 and the SMA were respectively 91% and 92% greater than those when the reflection coefficients were greatest.
Collapse
|
35
|
Lee W, Croce P, Margolin RW, Cammalleri A, Yoon K, Yoo SS. Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats. BMC Neurosci 2018; 19:57. [PMID: 30231861 PMCID: PMC6146769 DOI: 10.1186/s12868-018-0459-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/15/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Low-intensity transcranial focused ultrasound (tFUS) has emerged as a new non-invasive modality of brain stimulation with the potential for high spatial selectivity and penetration depth. Anesthesia is typically applied in animal-based tFUS brain stimulation models; however, the type and depth of anesthesia are known to introduce variability in responsiveness to the stimulation. Therefore, the ability to conduct sonication experiments on awake small animals, such as rats, is warranted to avoid confounding effects of anesthesia. RESULTS We developed a miniature tFUS headgear, operating at 600 kHz, which can be attached to the skull of Sprague-Dawley rats through an implanted pedestal, allowing the ultrasound to be transcranially delivered to motor cortical areas of unanesthetized freely-moving rats. Video recordings were obtained to monitor physical responses from the rat during acoustic brain stimulation. The stimulation elicited body movements from various areas, such as the tail, limbs, and whiskers. Movement of the head, including chewing behavior, was also observed. When compared to the light ketamine/xylazine and isoflurane anesthetic conditions, the response rate increased while the latency to stimulation decreased in the awake condition. The individual variability in response rates was smaller during the awake condition compared to the anesthetic conditions. Our analysis of latency distribution of responses also suggested possible presence of acoustic startle responses mixed with stimulation-related physical movement. Post-tFUS monitoring of animal behaviors and histological analysis performed on the brain did not reveal any abnormalities after the repeated tFUS sessions. CONCLUSIONS The wearable miniature tFUS configuration allowed for the stimulation of motor cortical areas in rats and elicited sonication-related movements under both awake and anesthetized conditions. The awake condition yielded diverse physical responses compared to those reported in existing literatures. The ability to conduct an experiment in freely-moving awake animals can be gainfully used to investigate the effects of acoustic neuromodulation free from the confounding effects of anesthesia, thus, may serve as a translational platform to large animals and humans.
Collapse
Affiliation(s)
- Wonhye Lee
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Phillip Croce
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Ryan W. Margolin
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Amanda Cammalleri
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Kyungho Yoon
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| |
Collapse
|
36
|
Mercante B, Ginatempo F, Manca A, Melis F, Enrico P, Deriu F. Anatomo-Physiologic Basis for Auricular Stimulation. Med Acupunct 2018; 30:141-150. [PMID: 29937968 DOI: 10.1089/acu.2017.1254] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction: Stimulation of cranial nerves modulates central nervous system (CNS) activity via the extensive connections of their brainstem nuclei to higher-order structures. Clinical experience with vagus-nerve stimulation (VNS) demonstrates that it produces robust therapeutic effects, however, posing concerns related to its invasiveness and side-effects. Discussion: Trigeminal nerve stimulation (TNS) has been recently proposed as a valid alternative to VNS. The ear presents afferent vagus and trigeminal-nerve distribution; its innervation is the theoretical basis of different reflex therapies, including auriculotherapy. An increasing number of studies have shown that several therapeutic effects induced by invasive VNS and TNS, can be reproduced by noninvasive auricular-nerve stimulation. However, the sites and neurobiologic mechanisms by which VNS and TNS produce their therapeutic effects are not clear yet. Conclusions: Accumulating evidence suggests that VNS and TNS share multiple levels and mechanisms of action in the CNS.
Collapse
Affiliation(s)
- Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari Italy
| | - Francesca Ginatempo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari Italy
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari Italy
| | - Francesco Melis
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari Italy
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari Italy
| |
Collapse
|
37
|
Structural-functional brain changes in depressed patients during and after electroconvulsive therapy. Acta Neuropsychiatr 2018; 30:17-28. [PMID: 27876102 DOI: 10.1017/neu.2016.62] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Electroconvulsive therapy (ECT) is a non-pharmacological treatment that is effective in treating severe and treatment-resistant depression. Although the efficacy of ECT has been demonstrated to treat major depressive disorder (MDD), the brain mechanisms underlying this process remain unclear. Structural-functional changes occur with the use of ECT as a treatment for depression based on magnetic resonance imaging (MRI). For this reason, we have tried to identify the changes that were identified by MRI to try to clarify some operating mechanisms of ECT. We focus to brain changes on MRI [structural MRI (sMRI), functional MRI (fMRI) and diffusion tensor imging (DTI)] after ECT. METHODS A systematic search of the international literature was performed using the bibliographic search engines PubMed and Embase. The research focused on papers published up to 30 September 2015. The following Medical Subject Headings (MESH) terms were used: electroconvulsive therapy AND (MRI OR fMRI OR DTI). Papers published in English were included. Four authors searched the database using a predefined strategy to identify potentially eligible studies. RESULTS There were structural changes according to the sMRI performed before and after ECT treatment. These changes do not seem to be entirely due to oedema. This investigation assessed the functional network connectivity associated with the ECT response in MDD. ECT response reverses the relationship from negative to positive between the two pairs of networks. CONCLUSION We found structural-functional changes in MRI post-ECT. Because of the currently limited MRI data on ECT in the literature, it is necessary to conduct further investigations using other MRI technology.
Collapse
|
38
|
Mansouri FA, Acevedo N, Illipparampil R, Fehring DJ, Fitzgerald PB, Jaberzadeh S. Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition. Sci Rep 2017; 7:18096. [PMID: 29273796 PMCID: PMC5741740 DOI: 10.1038/s41598-017-18119-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/06/2017] [Indexed: 12/30/2022] Open
Abstract
Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-tempo music, but not low-tempo music or low-level noise, significantly influenced learning and implementation of inhibitory control. In addition, a brief period of tDCS over prefrontal cortex specifically interacted with high-tempo music and altered its effects on executive functions. Measuring event-related autonomic and arousal response of participants indicated that exposure to task demands and practice led to a decline in arousal response to the decision outcome and high-tempo music enhanced such practice-related processes. However, tDCS specifically moderated the high-tempo music effect on the arousal response to errors and concomitantly restored learning and improvement in executive functions. Here, we show that tDCS and music interactively influence the learning and implementation of inhibitory control. Our findings indicate that alterations in the arousal-emotional response to the decision outcome might underlie these interactive effects.
Collapse
Affiliation(s)
- Farshad Alizadeh Mansouri
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia. .,ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia.
| | - Nicola Acevedo
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Rosin Illipparampil
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Daniel J Fehring
- Department of Physiology, Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.,ARC Centre of Excellence in Integrative Brain Function, Monash University, Victoria, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital, Victoria, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Victoria, 3199, Australia
| |
Collapse
|
39
|
Yrondi A, Sporer M, Péran P, Schmitt L, Arbus C, Sauvaget A. Electroconvulsive therapy, depression, the immune system and inflammation: A systematic review. Brain Stimul 2017; 11:29-51. [PMID: 29111078 DOI: 10.1016/j.brs.2017.10.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The management and treatment of major depressive disorder are major public health challenges, the lifetime prevalence of this illness being 4.4%-20% in the general population. Major depressive disorder and treatment resistant depression appear to be, in part, related to a dysfunction of the immune response. Among the treatments for depression ECT occupies an important place. The underlying cerebral mechanisms of ECT remain unclear. OBJECTIVES/HYPOTHESIS The aim of this review is to survey the potential actions of ECT on the immuno-inflammatory cascade activated during depression. METHODS A systematic search of the literature was carried out, using the bibliographic search engines PubMed and Embase. The search covered articles published up until october 2017. The following MESH terms were used: Electroconvulsive therapy AND (inflammation OR immune OR immunology). RESULTS Our review shows that there is an acute immuno-inflammatory response immediately following an ECT session. There is an acute stress reaction. Studies show an increase in the plasma levels of cortisol and of interleukins 1 and 6. However, at the end of the course of treatment, ECT produces, in the long term, a fall in the plasma level of cortisol, a reduction in the levels of TNF alpha and interleukin 6. LIMITATIONS One of the limitations of this review is that a large number of studies are relatively old, with small sample sizes and methodological bias. CONCLUSION Advances in knowledge of the immuno-inflammatory component of depression seem to be paving the way towards models to explain the mechanism of action of ECT.
Collapse
Affiliation(s)
- Antoine Yrondi
- Psychiatric Department, CHU Toulouse-Purpan, 330 Avenue de Grande Bretagne, 31059 Toulouse, France; Toulouse NeuroImaging Center, ToNIC, University of Toulouse, Inserm, UPS, France.
| | - Marie Sporer
- Psychiatric Department, CHU Toulouse-Purpan, 330 Avenue de Grande Bretagne, 31059 Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, ToNIC, University of Toulouse, Inserm, UPS, France
| | - Laurent Schmitt
- Psychiatric Department, CHU Toulouse-Purpan, 330 Avenue de Grande Bretagne, 31059 Toulouse, France
| | - Christophe Arbus
- Psychiatric Department, CHU Toulouse-Purpan, 330 Avenue de Grande Bretagne, 31059 Toulouse, France; Toulouse NeuroImaging Center, ToNIC, University of Toulouse, Inserm, UPS, France
| | - Anne Sauvaget
- CHU Nantes, Addictology and Liaison Psychiatry Department, Neuromodulation Unit in Psychiatry, Nantes, France
| |
Collapse
|
40
|
Park SE. Localization of ultrasound waveform for low intensity ultrasound-induced neuromodulation in a mouse model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1122-1125. [PMID: 29060072 DOI: 10.1109/embc.2017.8037026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A collimator design was investigated to localize ultrasound stimulation using a flat ultrasound transducer for ultrasound-induced neuromodulation in a mouse model. In brain stimulation, the specific location of stimulation must be specified, as the region responsible for motor or sensory function is clustered in a narrow brain area. To localize ultrasound stimulation, three types of collimator design were simulated to determine the optimal collimator design. The performance of the simulated optimal collimator was compared to that of an unmounted collimator in a transducer in both in vivo and in vitro experiments. Throughout the experiments, the localized ultrasound waveform was shaped using the optimized collimator, which elicited neural spike activity in the targeted motor cortex. The optimized collimator shows potential for controlling a localized ultrasound waveform for ultrasound-induced neuromodulation in a small animal model.
Collapse
|
41
|
Thomann PA, Wolf RC, Nolte HM, Hirjak D, Hofer S, Seidl U, Depping MS, Stieltjes B, Maier-Hein K, Sambataro F, Wüstenberg T. Neuromodulation in response to electroconvulsive therapy in schizophrenia and major depression. Brain Stimul 2017; 10:637-644. [DOI: 10.1016/j.brs.2017.01.578] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 01/18/2023] Open
|
42
|
Orlov ND, Tracy DK, Joyce D, Patel S, Rodzinka-Pasko J, Dolan H, Hodsoll J, Collier T, Rothwell J, Shergill SS. Stimulating cognition in schizophrenia: A controlled pilot study of the effects of prefrontal transcranial direct current stimulation upon memory and learning. Brain Stimul 2017; 10:560-566. [DOI: 10.1016/j.brs.2016.12.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/07/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
|
43
|
Gögler N, Papazova I, Oviedo-Salcedo T, Filipova N, Strube W, Funk J, Müller HJ, Finke K, Hasan A. Parameter-Based Evaluation of Attentional Impairments in Schizophrenia and Their Modulation by Prefrontal Transcranial Direct Current Stimulation. Front Psychiatry 2017; 8:259. [PMID: 29238310 PMCID: PMC5712554 DOI: 10.3389/fpsyt.2017.00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/14/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Attentional dysfunctions constitute core cognitive symptoms in schizophrenia, but the precise underlying neurocognitive mechanisms remain to be elucidated. METHODS In this randomized, double-blind, sham-controlled study, we applied, for the first time, a theoretically grounded modeling approach based on Bundesen's Theory of Visual Attention (TVA) to (i) identify specific visual attentional parameters affected in schizophrenia and (ii) assess, as a proof of concept, the potential of single-dose anodal transcranial direct current stimulation (tDCS; 20 min, 2 mA) to the left dorsolateral prefrontal cortex to modulate these attentional parameters. To that end, attentional parameters were measured before (baseline), immediately after, and 24 h after the tDCS intervention in 20 schizophrenia patients and 20 healthy controls. RESULTS At baseline, analyses revealed significantly reduced visual processing speed and visual short-term memory storage capacity in schizophrenia. A significant stimulation condition × time point interaction in the schizophrenia patient group indicated improved processing speed at the follow-up session only in the sham condition (a practice effect), whereas performance remained stable across the three time points in patients receiving verum stimulation. In healthy controls, anodal tDCS did not result in a significant change in attentional performance. CONCLUSION With regard to question (i) above, these findings are indicative of a processing speed and short-term memory deficit as primary sources of attentional deficits in schizophrenia. With regard to question (ii), the efficacy of single-dose anodal tDCS for improving (speed aspects of visual) cognition, it appears that prefrontal tDCS (at the settings used in the present study), rather than ameliorating the processing speed deficit in schizophrenia, actually may interfere with practice-dependent improvements in the rate of visual information uptake. Such potentially unexpected effects of tDCS ought to be taken into consideration when discussing its applicability in psychiatric populations. The study was registered at http://apps.who.int/trialsearch/Trial2.aspx?TrialID=DRKS00011665.
Collapse
Affiliation(s)
- Nadine Gögler
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany
| | - Irina Papazova
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, München, Germany
| | - Tatiana Oviedo-Salcedo
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, München, Germany
| | - Nina Filipova
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, München, Germany
| | - Wolfgang Strube
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, München, Germany
| | - Johanna Funk
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany
| | - Hermann J Müller
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany
| | - Kathrin Finke
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany.,Hans-Berger-Department of Neurology, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
44
|
Kar SK, Sarkar S. Neuro-stimulation Techniques for the Management of Anxiety Disorders: An Update. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2016; 14:330-337. [PMID: 27776384 PMCID: PMC5083940 DOI: 10.9758/cpn.2016.14.4.330] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/30/2016] [Accepted: 06/08/2016] [Indexed: 12/23/2022]
Abstract
Neuro-stimulation techniques have gradually evolved over the decades and have emerged potential therapeutic modalities for the treatment of psychiatric disorders, especially treatment refractory cases. The neuro-stimulation techniques involves modalities like electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS) and others. This review discusses the role of neuro-stimulation techniques in the treatment of anxiety disorders. The various modalities of neuro-stimulation techniques are briefly discussed. The evidence base relating to use of these techniques in the treatment of anxiety disorders is discussed further. The review then highlights the challenges in conducting research in relation to the use of neuro-stimulation techniques with reference to patients with anxiety disorders. The review provides the future directions of research and aimed at expanding the evidence base of treatment of anxiety disorders and providing neuro-stimulation techniques as promising effective and acceptable alternative in select cases.
Collapse
Affiliation(s)
- Sujita Kumar Kar
- Department of Psychiatry, King George's Medical University, Lucknow, India
| | - Siddharth Sarkar
- Department of Psychiatry and National Drug Dependence Treatment Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
45
|
Lee W, Chung YA, Jung Y, Song IU, Yoo SS. Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound. BMC Neurosci 2016; 17:68. [PMID: 27784293 PMCID: PMC5081675 DOI: 10.1186/s12868-016-0303-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/19/2016] [Indexed: 01/10/2023] Open
Abstract
Background Transcranial focused ultrasound (FUS) is gaining momentum as a novel non-invasive brain stimulation method, with promising potential for superior spatial resolution and depth penetration compared to transcranial magnetic stimulation or transcranial direct current stimulation. We examined the presence of tactile sensations elicited by FUS stimulation of two separate brain regions in humans—the primary (SI) and secondary (SII) somatosensory areas of the hand, as guided by individual-specific functional magnetic resonance imaging data. Results Under image-guidance, acoustic stimulations were delivered to the SI and SII areas either separately or simultaneously. The SII areas were divided into sub-regions that are activated by four types of external tactile sensations to the palmar side of the right hand—vibrotactile, pressure, warmth, and coolness. Across the stimulation conditions (SI only, SII only, SI and SII simultaneously), participants reported various types of tactile sensations that arose from the hand contralateral to the stimulation, such as the palm/back of the hand or as single/neighboring fingers. The type of tactile sensations did not match the sensations that are associated with specific sub-regions in the SII. The neuro-stimulatory effects of FUS were transient and reversible, and the procedure did not cause any adverse changes or discomforts in the subject’s mental/physical status. Conclusions The use of multiple FUS transducers allowed for simultaneous stimulation of the SI/SII in the same hemisphere and elicited various tactile sensations in the absence of any external sensory stimuli. Stimulation of the SII area alone could also induce perception of tactile sensations. The ability to stimulate multiple brain areas in a spatially restricted fashion can be used to study causal relationships between regional brain activities and their cognitive/behavioral outcomes. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0303-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wonhye Lee
- Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Republic of Korea.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yong An Chung
- Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Republic of Korea
| | - Yujin Jung
- Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Republic of Korea
| | - In-Uk Song
- Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Republic of Korea
| | - Seung-Schik Yoo
- Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Republic of Korea. .,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Assessing the Effects of Repetitive Transcranial Magnetic Stimulation on Cognition in Major Depressive Disorder Using Computerized Cognitive Testing. J ECT 2016; 32:169-73. [PMID: 26934275 DOI: 10.1097/yct.0000000000000308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES A range of different treatment approaches are available for depression; however, there is an ongoing concern about the cognitive impairment associated with many treatments. This study investigated the effect of treatment with repetitive transcranial magnetic stimulation (rTMS) on cognition in patients with major depressive disorder. Cognition before and after treatment was assessed using a computerized cognitive testing battery, which provided comprehensive assessment across a range of cognitive domains. This was a naturalistic study involving patients attending an outpatient clinical rTMS service. METHODS A total of 63 patients with treatment-resistant depression completed the IntegNeuro cognitive test battery, a well-validated comprehensive computerized assessment tool before and after receiving 18 or 20 treatments of sequential bilateral rTMS. Change in the various cognitive domains was assessed, and analyses were undertaken to determine whether any change in cognition was associated with a change in rating of depression severity. RESULTS There was a significant decrease in Hamilton Depression Rating Scale scores from baseline to posttreatment. There was no decline in performance on any of the cognitive tests. There were significant improvements in maze completion time and the number of errors in the maze task. However, these were accounted for by improvement in mood when change in depressive symptoms was included as a covariate. CONCLUSIONS This open-label study provides further support for the efficacy and safety of rTMS as a treatment option for people with major depressive disorder in a naturalistic clinical setting. Using a comprehensive, robust computerized battery of cognitive tests, the current study indicated that there was no significant cognitive impairment associated with rTMS and that any improvements in cognitive functioning were associated with a reduction in depressive symptoms.
Collapse
|
47
|
Mansouri FA, Fehring DJ, Feizpour A, Gaillard A, Rosa MG, Rajan R, Jaberzadeh S. Direct current stimulation of prefrontal cortex modulates error-induced behavioral adjustments. Eur J Neurosci 2016; 44:1856-69. [DOI: 10.1111/ejn.13281] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Farshad A. Mansouri
- Department of Physiology and Biomedicine Discovery Institute; Monash University; Clayton Melbourne Vic. 3800 Australia
- ARC Centre of Excellence in Integrative Brain Function; Monash University; Clayton, Melbourne Vic. Australia
| | - Daniel J. Fehring
- Department of Physiology and Biomedicine Discovery Institute; Monash University; Clayton Melbourne Vic. 3800 Australia
| | - Azadeh Feizpour
- Department of Physiology and Biomedicine Discovery Institute; Monash University; Clayton Melbourne Vic. 3800 Australia
| | - Alexandra Gaillard
- Department of Physiology and Biomedicine Discovery Institute; Monash University; Clayton Melbourne Vic. 3800 Australia
| | - Marcello G.P. Rosa
- Department of Physiology and Biomedicine Discovery Institute; Monash University; Clayton Melbourne Vic. 3800 Australia
- ARC Centre of Excellence in Integrative Brain Function; Monash University; Clayton, Melbourne Vic. Australia
| | - Ramesh Rajan
- Department of Physiology and Biomedicine Discovery Institute; Monash University; Clayton Melbourne Vic. 3800 Australia
- ARC Centre of Excellence in Integrative Brain Function; Monash University; Clayton, Melbourne Vic. Australia
| | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory; Department of Physiotherapy; Monash University; Clayton, Melbourne Vic. Australia
| |
Collapse
|
48
|
Livingston R, Anandan S, Moukaddam N. Electroconvulsive Therapy, Transcranial Magnetic Stimulation, and Deep Brain Stimulation in Treatment-Resistant Depression. Psychiatr Ann 2016. [DOI: 10.3928/00485713-20160219-01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory. Exp Brain Res 2016; 234:1807-1818. [DOI: 10.1007/s00221-016-4580-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/30/2016] [Indexed: 11/26/2022]
|
50
|
Lee W, Lee SD, Park MY, Foley L, Purcell-Estabrook E, Kim H, Fischer K, Maeng LS, Yoo SS. Image-Guided Focused Ultrasound-Mediated Regional Brain Stimulation in Sheep. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:459-470. [PMID: 26525652 DOI: 10.1016/j.ultrasmedbio.2015.10.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/17/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Non-invasive brain stimulation using focused ultrasound has largely been carried out in small animals. In the present study, we applied stimulatory focused ultrasound transcranially to the primary sensorimotor (SM1) and visual (V1) brain areas in sheep (Dorset, all female, n = 8), under the guidance of magnetic resonance imaging, and examined the electrophysiologic responses. By use of a 250-kHz focused ultrasound transducer, the area was sonicated in pulsed mode (tone-burst duration of 1 ms, duty cycle of 50%) for 300 ms. The acoustic intensity at the focal target was varied up to a spatial peak pulse-average intensity (Isppa) of 14.3 W/cm(2). Sonication of SM1 elicited electromyographic responses from the contralateral hind leg, whereas stimulation of V1 generated electroencephalographic potentials. These responses were detected only above a certain acoustic intensity, and the threshold intensity, as well as the degree of responses, varied among sheep. Post-sonication animal behavior was normal, but minor microhemorrhages were observed from the V1 areas exposed to highly repetitive sonication (every second for ≥500 times for electroencephalographic measurements, Isppa = 6.6-10.5 W/cm(2), mechanical index = 0.9-1.2). Our results suggest the potential translational utility of focused ultrasound as a new brain stimulation modality, yet also call for caution in the use of an excessive number of sonications.
Collapse
Affiliation(s)
- Wonhye Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie D Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Y Park
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lori Foley
- Invasive Cardiovascular Experimental Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Erin Purcell-Estabrook
- Invasive Cardiovascular Experimental Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hyungmin Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Bionics, Korea Institute of Science and Technology, Seoul, Korea
| | - Krisztina Fischer
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lee-So Maeng
- Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|