1
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Jeong Y, Song J, Lee Y, Choi E, Won Y, Kim B, Jang W. A Transcriptome-Wide Analysis of Psoriasis: Identifying the Potential Causal Genes and Drug Candidates. Int J Mol Sci 2023; 24:11717. [PMID: 37511476 PMCID: PMC10380797 DOI: 10.3390/ijms241411717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by cutaneous eruptions and pruritus. Because the genetic backgrounds of psoriasis are only partially revealed, an integrative and rigorous study is necessary. We conducted a transcriptome-wide association study (TWAS) with the new Genotype-Tissue Expression version 8 reference panels, including some tissue and multi-tissue panels that were not used previously. We performed tissue-specific heritability analyses on genome-wide association study data to prioritize the tissue panels for TWAS analysis. TWAS and colocalization (COLOC) analyses were performed with eight tissues from the single-tissue panels and the multi-tissue panels of context-specific genetics (CONTENT) to increase tissue specificity and statistical power. From TWAS, we identified the significant associations of 101 genes in the single-tissue panels and 64 genes in the multi-tissue panels, of which 26 genes were replicated in the COLOC. Functional annotation and network analyses identified that the genes were associated with psoriasis and/or immune responses. We also suggested drug candidates that interact with jointly significant genes through a conditional and joint analysis. Together, our findings may contribute to revealing the underlying genetic mechanisms and provide new insights into treatments for psoriasis.
Collapse
Affiliation(s)
- Yeonbin Jeong
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Yubin Lee
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Eunyoung Choi
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Youngtae Won
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Byunghyuk Kim
- Department of Life Sciences, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Wang C, Hu J, Shi J. Role of Interleukin-36 in inflammatory joint diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:249-259. [PMID: 37283111 PMCID: PMC10409900 DOI: 10.3724/zdxbyxb-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 06/08/2023]
Abstract
Interleukin (IL)-36 is a family of cytokines that belongs to the larger IL-1 superfamily. IL-36 agonist/antagonist binds to the interleukin-36 receptor involving in physiological inflammation regulation and pathogenesis of many inflammatory diseases. In inflammatory joint diseases, the expression of IL-36 changes, and some studies have initially explored the role of IL-36 in these diseases. In psoriatic arthritis, IL-36 signal mediates plasma cell and fibroblast-like synoviocyte crosstalk presenting IL-36 agonist/antagonist imbalance. In rheumatoid arthritis, IL-36 agonists induce fibroblast-like synoviocyte to produce pro-inflammatory factors, while IL-36 antagonist deficiency leads to lesion progression. In osteoarthritis, IL-36 agonists induce chondrocytes to produce catabolic enzymes and pro-inflammatory factors. This article reviews the expression and function of IL-36 in different inflammatory joint diseases to provide a reference for revealing their pathogenic mechanisms and discovering therapeutic targets.
Collapse
Affiliation(s)
- Cunyi Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Ji'an Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
4
|
Manzanares-Meza LD, Valle-Rios R, Medina-Contreras O. Interleukin-1 Receptor-Like 2: One Receptor, Three Agonists, and Many Implications. J Interferon Cytokine Res 2022; 42:49-61. [PMID: 35171706 DOI: 10.1089/jir.2021.0173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interleukin (IL)-1 superfamily of cytokines comprises 11 pro- and anti-inflammatory cytokines, which play essential roles during the immune response. Several pathogenic pathways are initiated by IL-1RL2 (interleukin 1 receptor-like 2) signaling, also known as IL-36R, in the skin, lungs, and gut. IL-36 cytokines promote the secretion of proinflammatory cytokines and chemokines, upregulation of antimicrobial peptides, proliferation mediators, and adhesion molecules on endothelial cells. In addition, the IL-36-IL-1RL2 axis has an essential role against viral infections, including a potential role in COVID-19 pathology. The evidence presented in this review highlights the importance of the axis IL-36-IL-1RL2 in the development of several inflammation-related diseases and the healing process. It suggests that IL-1RL2 ligands have specific roles depending on the tissue or cell source. However, there is still much to discover about this cytokine family, their functions in other organs, and how they accomplish a dual effect in inflammation and healing.
Collapse
Affiliation(s)
- Laura D Manzanares-Meza
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico.,Molecular Biomedicine Department, CINVESTAV, Mexico City, Mexico
| | - Ricardo Valle-Rios
- Research Division, School of Medicine, UNAM, Mexico City, Mexico.,Immunology and Proteomics Research Unit, Mexico Children's Hospital, Mexico City, Mexico
| | - Oscar Medina-Contreras
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico
| |
Collapse
|
5
|
Peñaloza HF, van der Geest R, Ybe JA, Standiford TJ, Lee JS. Interleukin-36 Cytokines in Infectious and Non-Infectious Lung Diseases. Front Immunol 2021; 12:754702. [PMID: 34887860 PMCID: PMC8651476 DOI: 10.3389/fimmu.2021.754702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
The IL-36 family of cytokines were identified in the early 2000’s as a new subfamily of the IL-1 cytokine family, and since then, the role of IL-36 cytokines during various inflammatory processes has been characterized. While most of the research has focused on the role of these cytokines in autoimmune skin diseases such as psoriasis and dermatitis, recent studies have also shown the importance of IL-36 cytokines in the lung inflammatory response during infectious and non-infectious diseases. In this review, we discuss the biology of IL-36 cytokines in terms of how they are produced and activated, as well as their effects on myeloid and lymphoid cells during inflammation. We also discuss the role of these cytokines during lung infectious diseases caused by bacteria and influenza virus, as well as other inflammatory conditions in the lungs such as allergic asthma, lung fibrosis, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Finally, we discuss the current therapeutic advances that target the IL-36 pathway and the possibility to extend these tools to treat lung inflammatory diseases.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel A Ybe
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Janet S Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Genovese G, Moltrasio C, Cassano N, Maronese CA, Vena GA, Marzano AV. Pustular Psoriasis: From Pathophysiology to Treatment. Biomedicines 2021; 9:biomedicines9121746. [PMID: 34944562 PMCID: PMC8698272 DOI: 10.3390/biomedicines9121746] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
Pustular psoriasis (PP) is a clinicopathological entity encompassing different variants, i.e., acute generalized PP (GPP), PP of pregnancy (impetigo herpetiformis), annular (and circinate) PP, infantile/juvenile PP, palmoplantar PP/palmoplantar pustulosis, and acrodermatitis continua of Hallopeau (ACH), which have in common an eruption of superficial sterile pustules on an erythematous base. Unlike psoriasis vulgaris, in which a key role is played by the adaptive immune system and interleukin (IL)-17/IL-23 axis, PP seems to be characterized by an intense inflammatory response resulting from innate immunity hyperactivation, with prominent involvement of the IL-36 axis. Some nosological aspects of PP are still controversial and debated. Moreover, owing to the rarity and heterogeneity of PP forms, data on prognosis and therapeutic management are limited. Recent progresses in the identification of genetic mutations and immunological mechanisms have promoted a better understanding of PP pathogenesis and might have important consequences on diagnostic refinement and treatment. In this narrative review, current findings in the pathogenesis, classification, clinical features, and therapeutic management of PP are briefly discussed.
Collapse
Affiliation(s)
- Giovanni Genovese
- Dermatology Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.G.); (C.M.); (C.A.M.)
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.G.); (C.M.); (C.A.M.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34137 Trieste, Italy
| | - Nicoletta Cassano
- Dermatology and Venereology Private Practice, 76121 Barletta, Italy; (N.C.); (G.A.V.)
| | - Carlo Alberto Maronese
- Dermatology Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.G.); (C.M.); (C.A.M.)
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Gino Antonio Vena
- Dermatology and Venereology Private Practice, 76121 Barletta, Italy; (N.C.); (G.A.V.)
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.G.); (C.M.); (C.A.M.)
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
7
|
Ünsal P, Çerçi P, Açıkgöz ŞA, Keskin G, Ölmez Ü. Serum Levels of Interleukin-36 Alpha and Interleukin-36 Receptor
Antagonist In Behcet’s Syndrome. AKTUEL RHEUMATOL 2021. [DOI: 10.1055/a-1550-2069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Background Behcet’s syndrome (BS) is a systemic vasculitic
disorder. This study aimed to investigate the levels of serum IL-36α and
IL-36Ra in patients with BS.
Material and Methods A total of 80 subjects (60 BS patients and 20 healthy
controls [HC]) were included.
Results The median IL-36α level was 0.11 ng/ml in
the BS group and 0.09 ng/ml in the HC group (p=0.058).
The mean IL-36Ra level was 13.62 pg/ml in the BS group and
13.26 pg/ml in the HC group (p=0.348). Serum IL-36Ra
levels of the active group were significantly higher (p=0.037). Patients
with oral ulcers and central nervous system involvement had higher serum IL36Ra
levels. In the BS group, a positive correlation was found between serum IL-36Ra
and CRP. In a multivariate analysis, the IL-36Ra level (OR=1.067;
95% CI=1.001–1.137; p=0.045) was independently
associated with disease activity.
Conclusion According to these findings, it is not clear whether such a
slight difference is clinically significant, but they suggest that the IL-36
cytokine family may play a role in the course of the disease.
Collapse
Affiliation(s)
- Pelin Ünsal
- Department of Internal Medicine, Ankara University Faculty of Medicine,
Ankara, Turkey
| | - Pamir Çerçi
- Department of Internal Medicine, Division of Immunology and Allergy,
Ankara University Faculty of Medicine, Ankara, Turkey
| | - Şükrü Alper Açıkgöz
- Department of Internal Medicine, Division of Immunology and Allergy,
Ankara University Faculty of Medicine, Ankara, Turkey
| | - Göksal Keskin
- Department of Internal Medicine, Division of Immunology and Allergy,
Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ümit Ölmez
- Department of Internal Medicine, Division of Immunology and Allergy,
Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
8
|
Zhang M, Liu J, Gao R, Hu Y, Lu L, Liu C, Ai L, Pan J, Tian L, Fan J. Interleukin-36γ aggravates macrophage foam cell formation and atherosclerosis progression in ApoE knockout mice. Cytokine 2021; 146:155630. [PMID: 34246054 DOI: 10.1016/j.cyto.2021.155630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Atherosclerosis-related cardiovascular diseases are the leading cause of mortality worldwide. Macrophage-derived foam cell formation is a critical early event in atherogenesis. However, the molecular pathways involved in this disease have not been fully elucidated. Interleukin (IL)-36 plays a crucial role in inflammation, and this study was conducted to investigate the possible role of IL-36γ in the pathogenesis and regulation of atherosclerosis. In this study, we show that IL-36γ regulates inflammatory responses and lipoprotein metabolic processes in macrophages and exerts its atherosclerosis-promoting effects by increasing macrophage foam cell formation and uptake of oxidized low-density lipoproteins. Mechanistically, IL-36γ specifically upregulates expression of the scavenger receptor CD36 through the phosphoinositide 3-kinase pathway in macrophages. These results contribute to our understanding of IL-36γ as a novel regulator of foam cell formation and atherogenesis progression.
Collapse
Affiliation(s)
- Minghua Zhang
- Clinical Pharmacy Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Rong Gao
- Air Force Medical Center, PLA, Beijing 100142, China
| | - Yazhuo Hu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Li Lu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200040, China
| | - Chuanbin Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lunna Ai
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jingkun Pan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Tian
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
9
|
Chakraborty R, Parveen R, Varshney P, Kapur P, Khatoon S, Saha N, Agarwal NB. Elevated urinary IL-36α and IL-18 levels are associated with diabetic nephropathy in patients with type 2 diabetes mellitus. Minerva Endocrinol (Torino) 2021; 46:226-232. [PMID: 34082505 DOI: 10.23736/s2724-6507.20.03196-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Inflammatory cytokines have been reported to be pathogenic factors for the development and progression of diabetic nephropathy (DN). Interleukin (IL)-36α is a newly discovered member of the IL-1 cytokine family that has been implicated in animal models of renal impairment. However, little is known about the role of IL-36α in DN in humans. The purpose of the present study was to assess the levels of IL-36α and IL-18 in type 2 diabetic patients (T2DM) patients with and without DN. METHODS Subjects were divided into 3 groups: Control (N.=20), T2DM without DN (N.=30), and T2DM with DN (N.=30). Urinary IL-36α and IL-18 levels were assessed using ELISA. Correlation analysis was performed to determine the association of the IL levels with clinical markers of T2DM and DN. RESULTS IL-36α and IL-18 levels were significantly elevated in T2DM patients with DN, when compared to T2DM patients without DN (P<0.0001, P=0.0025, respectively) and controls (P<0.0001, for both). IL-36α levels showed a positive correlation with urinary albumin excretion (r=0.754, P<0.0001), HbA1c (r=0.433, P=0.0168), fasting plasma glucose (r=0.433, P=0.0168) and negative correlation with glomerular filtration rate (r=-0.852 P<0.0001). CONCLUSIONS The results highlighted the association of IL-36α with DN. However, further extensive studies are suggested for evaluating the association.
Collapse
Affiliation(s)
- Rohan Chakraborty
- School of Chemical and Life Sciences, Center for Translational and Clinical Research, Jamia Hamdard, New Delhi, India
| | - Rizwana Parveen
- School of Chemical and Life Sciences, Center for Translational and Clinical Research, Jamia Hamdard, New Delhi, India
| | - Prabhat Varshney
- School of Chemical and Life Sciences, Center for Translational and Clinical Research, Jamia Hamdard, New Delhi, India
| | - Prem Kapur
- Department of Medicine, HIMSR and HAHC Hospital, Jamia Hamdard, New Delhi, India
| | - Saima Khatoon
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nilanjan Saha
- School of Chemical and Life Sciences, Center for Translational and Clinical Research, Jamia Hamdard, New Delhi, India
| | - Nidhi B Agarwal
- School of Chemical and Life Sciences, Center for Translational and Clinical Research, Jamia Hamdard, New Delhi, India -
| |
Collapse
|
10
|
Wu PH, Lin YT, Chiu YW, Baldanzi G, Huang JC, Liang SS, Lee SC, Chen SC, Hsu YL, Kuo MC, Hwang SJ. The relationship of indoxyl sulfate and p-cresyl sulfate with target cardiovascular proteins in hemodialysis patients. Sci Rep 2021; 11:3786. [PMID: 33589722 PMCID: PMC7884394 DOI: 10.1038/s41598-021-83383-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Protein-bound uremic toxins (Indoxyl sulfate [IS] and p-cresyl sulfate [PCS]) are both associated with cardiovascular (CV) and all-cause mortality in subjects with chronic kidney disease (CKD). Possible mechanisms have not been elucidated. In hemodialysis patients, we investigated the relationship between the free form of IS and PCS and 181 CV-related proteins. First, IS or PCS concentrations were checked, and high levels were associated with an increased risk of acute coronary syndrome (ACS) in 333 stable HD patients. CV proteins were further quantified by a proximity extension assay. We examined associations between the free form protein-bound uremic toxins and the quantified proteins with correction for multiple testing in the discovery process. In the second step, the independent association was evaluated by multivariable-adjusted models. We rank the CV proteins related to protein-bound uremic toxins by bootstrapped confidence intervals and ascending p-value. Six proteins (signaling lymphocytic activation molecule family member 5, complement component C1q receptor, C–C motif chemokine 15 [CCL15], bleomycin hydrolase, perlecan, and cluster of differentiation 166 antigen) were negatively associated with IS. Fibroblast growth factor 23 [FGF23] was the only CV protein positively associated with IS. Three proteins (complement component C1q receptor, CCL15, and interleukin-1 receptor-like 2) were negatively associated with PCS. Similar findings were obtained after adjusting for classical CV risk factors. However, only higher levels of FGF23 was related to increased risk of ACS. In conclusion, IS and PCS were associated with several CV-related proteins involved in endothelial barrier function, complement system, cell adhesion, phosphate homeostasis, and inflammation. Multiplex proteomics seems to be a promising way to discover novel pathophysiology of the uremic toxin.
Collapse
Affiliation(s)
- Ping-Hsun Wu
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yi-Ting Lin
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yi-Wen Chiu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Gabriel Baldanzi
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jiun-Chi Huang
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Su-Chu Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Szu-Chia Chen
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chuan Kuo
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.
| | - Shang-Jyh Hwang
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| |
Collapse
|
11
|
Ge Y, Huang M, Dong N, Yao YM. Effect of Interleukin-36β on Activating Autophagy of CD4+CD25+ Regulatory T cells and Its Immune Regulation in Sepsis. J Infect Dis 2020; 222:1517-1530. [PMID: 32421784 DOI: 10.1093/infdis/jiaa258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/11/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND CD4+CD25+ regulatory T cells (Tregs) play an essential role in sepsis-induced immunosuppression. How, the effects of interleukin 36 (IL-36) cytokines on CD4+CD25+ Tregs and their underlying mechanism(s) in sepsis remain unknown. METHODS Our study was designed to investigate the impacts of IL-36 cytokines on murine CD4+CD25+ Tregs in presence of lipopolysaccharide (LPS) and in a mouse model of sepsis induced by cecal ligation and puncture (CLP). IL-36-activated autophagy was evaluated by autophagy markers, autophagosome formation, and autophagic flux. RESULTS IL-36α, IL-36β, and IL-36γ were expressed in murine CD4+CD25+ Tregs. Stimulation of CD4+CD25+ Tregs with LPS markedly up-regulated the expression of these cytokines, particularly IL-36β. IL-36β strongly suppressed CD4+CD25+ Tregs under LPS stimulation and in septic mice challenged with CLP, resulting in the amplification of T-helper 1 response and the proliferation of effector T cells. Mechanistic studies revealed that IL-36β triggered autophagy of CD4+CD25+ Tregs. These effects were significantly attenuated in the presence of the autophagy inhibitor 3-methyladenine or Beclin1 knockdown. In addition, early IL-36β administration reduced the mortality rate in mice subjected to CLP. Depletion of CD4+CD25+ Tregs before the onset of sepsis obviously abrogated IL-36β-mediated protection against sepsis. CONCLUSIONS These findings suggest that IL-36β diminishes the immunosuppressive activity of CD4+CD25+ Tregs by activating the autophagic process, thereby contributing to improvement of the host immune response and prognosis in sepsis.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Man Huang
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ning Dong
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yong-Ming Yao
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China.,State Key Laboratory of Kidney Disease, the Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
12
|
Neurath MF. IL-36 in chronic inflammation and cancer. Cytokine Growth Factor Rev 2020; 55:70-79. [DOI: 10.1016/j.cytogfr.2020.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
|
13
|
Hirano Y, Kurosu H, Shiizaki K, Iwazu Y, Tsuruoka S, Kuro-O M. Interleukin-36α as a potential biomarker for renal tubular damage induced by dietary phosphate load. FEBS Open Bio 2020; 10:894-903. [PMID: 32191399 PMCID: PMC7193159 DOI: 10.1002/2211-5463.12845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 01/03/2023] Open
Abstract
Excessive intake of phosphate has been known to induce renal tubular damage and interstitial inflammation, leading to acute kidney injury or chronic kidney disease in rodents and humans. However, sensitive and early biomarkers for phosphate-induced kidney damage remain to be identified. Our previous RNA sequencing analysis of renal gene expression identified interleukin-36α (IL-36α) as a gene significantly upregulated by dietary phosphate load in mice. To determine the time course and dose dependency of renal IL-36α expression induced by dietary phosphate load, we placed mice with or without uninephrectomy on a diet containing either 0.35%, 1.0%, 1.5%, or 2.0% inorganic phosphate for 10 days, 4 weeks, or 8 weeks and evaluated renal expression of IL-36α and other markers of tubular damage and inflammation by quantitative RT-PCR, immunoblot analysis, and immunohistochemistry. We found that IL-36α expression was induced in distal convoluted tubules and correlated with phosphate excretion per nephron. The increase in IL-36α expression was simultaneous with but more robust in amplitude than the increase in tubular damage markers such as Osteopontin and neutrophil gelatinase-associated lipocalin, preceding the increase in expression of other inflammatory cytokines, including transforming growth factor-α, interleukin-1β, and transforming growth factor-β1. We conclude that IL-36α serves as a marker that reflects the degree of phosphate load excreted per nephron and of associated kidney damage.
Collapse
Affiliation(s)
- Yoshitaka Hirano
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan.,Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Kurosu
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kazuhiro Shiizaki
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yoshitaka Iwazu
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan.,Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shuichi Tsuruoka
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
14
|
Boutet MA, Nerviani A, Lliso-Ribera G, Lucchesi D, Prediletto E, Ghirardi GM, Goldmann K, Lewis M, Pitzalis C. Interleukin-36 family dysregulation drives joint inflammation and therapy response in psoriatic arthritis. Rheumatology (Oxford) 2020; 59:828-838. [PMID: 31504934 PMCID: PMC7188345 DOI: 10.1093/rheumatology/kez358] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES IL-36 agonists are pro-inflammatory cytokines involved in the pathogenesis of psoriasis. However, their role in the pathogenesis of arthritis and treatment response to DMARDs in PsA remains uncertain. Therefore, we investigated the IL-36 axis in the synovium of early, treatment-naïve PsA, and for comparison RA patients, pre- and post-DMARDs therapy. METHODS Synovial tissues were collected by US-guided biopsy from patients with early, treatment-naïve PsA and RA at baseline and 6 months after DMARDs therapy. IL-36 family members were investigated in synovium by RNA sequencing and immunohistochemistry, and expression levels correlated with DMARDs treatment response ex vivo. Additionally, DMARDs effects on IL-36 were investigated in vitro in fibroblast-like synoviocytes. RESULTS PsA synovium displayed a reduced expression of IL-36 antagonists, while IL-36 agonists were comparable between PsA and RA. Additionally, neutrophil-related molecules, which drive a higher activation of the IL-36 pathway, were upregulated in PsA compared with RA. At baseline, the synovial expression of IL-36α was significantly higher in PsA non-responders to DMARDs treatment, with the differential expression being sustained at 6 months post-treatment. In vitro, primary PsA-derived fibroblasts were more responsive to IL-36 stimulation compared with RA and, importantly, DMARDs treatment increased IL-36 expression in PsA fibroblasts. CONCLUSION The impaired balance between IL-36 agonists-antagonists described herein for the first time in PsA synovium and the decreased sensitivity to DMARDs in vitro may explain the apparent lower efficacy of DMARDs in PsA compared with RA. Exogenous replacement of IL-36 antagonists may be a novel promising therapeutic target for PsA patients.
Collapse
Affiliation(s)
- Marie-Astrid Boutet
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alessandra Nerviani
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gloria Lliso-Ribera
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Davide Lucchesi
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Edoardo Prediletto
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giulia Maria Ghirardi
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katriona Goldmann
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Myles Lewis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Interleukin-36: Structure, Signaling and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 21:191-210. [PMID: 32026417 DOI: 10.1007/5584_2020_488] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The IL-36 family belongs to a larger IL-1 superfamily and consists of three agonists (IL-36α/β/γ), one antagonist (IL-36Ra), one cognate receptor (IL-36R) and one accessory protein (IL-1RAcP). The receptor activation follows a two-step mechanism in that the agonist first binds to IL-36R and the resulting binary complex recruits IL-1RAcP. Assembled ternary complex brings together intracellular TIR domains of receptors which activate downstream NF-κB and MAPK signaling. Antagonist IL-36Ra inhibits the signaling by binding to IL-36R and preventing recruitment of IL-1RAcP. Members of IL-36 are normally expressed at low levels. Upon stimulation, they are inducted and act on a variety of cells including epithelial and immune cells. Protease mediated N-terminal processing is needed for cytokine activation. In the skin, the functional role of IL-36 is to contribute to host defense through inflammatory response. However, when dysregulated, IL-36 stimulates keratinocyte and immune cells to enhance the Th17/Th23 axis and induces psoriatic-like skin disorder. Genetic mutations of the antagonist IL-36Ra are associated with occurrence of generalized pustular psoriasis, a rare but life-threatening skin disease. Anti-IL-36 antibodies attenuate IMQ or IL-23 induced skin inflammation in mice, illustrating IL-36's involvement in mouse model of psoriasis. Other organs such as the lungs, the intestine, the joints and the brain also express IL-36 family members upon stimulation. The physiological and pathological roles of IL-36 are less well defined in these organs than in the skin. In this chapter, current progress on IL-36 protein and biology is reviewed with a discussion on investigative tools for this novel target.
Collapse
|
16
|
Pashkin AY, Zhukov AS, Khairutdinov VR, Belousova IE, Samtsov AV, Garabagiou AV. Studying of the interleukin-36γ expression level in the skin of patients with plaque psoriasis. VESTNIK DERMATOLOGII I VENEROLOGII 2019. [DOI: 10.25208/0042-4609-2019-95-4-31-39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Currently, it has been established that the cytokines of the IL-36 family occupy a significant place in the initiation and regulation of the inflammatory process in psoriasis.Objective: studying the expression level of IL-36γ cytokines in the skin of patients with plaque psoriasis.Material and methods. Skin biopsy specimens of 31 patients with plaque psoriasis were studied. The comparison group consisted of 20 biopsy samples of the skin of patients with lichen simplex, discoid eczema, lichen planus, mycosis fungoides (plaque stage). As a control group studied the skin bioptates of 10 healthy people. An immunohistochemical study of the skin was carried out using anti-IL-36γ antibodies.Results. An increase in the relative expression area of IL-36γ in the affected skin of patients with plaque psoriasis (7.4 %) was found, compared with the unaffected areas (0.10 %) and the control group (0 %). The expression of IL-36γ in the skin of patients with psoriasis in the progressive period (8.85 %) was 1.42 times higher than in the stationary period of the disease (6.2 %). A strong direct relationship was revealed (r = 0.71) between the level of IL-36γ expression in the affected skin and the value of the PASI index, a moderate direct relationship between the level of IL-36γ expression and epidermal thickness (r = 0.34). In the affected skin of psoriasis patients, expressed expression of IL-36γ was observed in the upper layers of the epidermis, patients of the comparison group (discoid eczema, lichen simplex, lichen planus, mycosis fungoides) were weak or moderate, in the unaffected areas of the skin of patients with psoriasis and healthy people — weak or absent.Findings. It was found that the expression of IL-36γ in the skin of patients with plaque psoriasis is significantly higher than with other skin diseases. The data obtained allow us to consider this cytokine as a possible diagnostic marker and use it in the differential diagnosis.
Collapse
Affiliation(s)
| | - A. S. Zhukov
- S. M. Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - V. R. Khairutdinov
- S. M. Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - I. E. Belousova
- S. M. Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - A. V. Samtsov
- S. M. Kirov Military Medical Academy, Ministry of Defence of the Russian Federation
| | - A. V. Garabagiou
- Saint Petersburg State Institute of Technology (Technical University)
| |
Collapse
|
17
|
Krasavin MY, Gureev MA, Garabadzhiu AV, Pashkin AY, Zhukov AS, Khairutdinov VR, Samtsov AV, Shvets VI. Inhibition of Neutrophil Elastase and Cathepsin G As a New Approach to the Treatment of Psoriasis: From Fundamental Biology to Development of New Target-Specific Drugs. DOKL BIOCHEM BIOPHYS 2019; 487:272-276. [DOI: 10.1134/s1607672919040082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 11/23/2022]
|
18
|
Hernandez-Santana YE, Giannoudaki E, Leon G, Lucitt MB, Walsh PT. Current perspectives on the interleukin-1 family as targets for inflammatory disease. Eur J Immunol 2019; 49:1306-1320. [PMID: 31250428 DOI: 10.1002/eji.201848056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Since the first description of interleukin-1 (IL-1) and the genesis of the field of cytokine biology, the understanding of how IL-1 and related cytokines play central orchestrating roles in the inflammatory response has been an area of intense investigation. As a consequence of these endeavours, specific strategies have been developed to target the function of the IL-1 family in human disease realizing significant impacts for patients. While the most significant advances to date have been associated with inhibition of the prototypical family members IL-1α/β, approaches to target more recently identified family members such as IL-18, IL-33 and the IL-36 subfamily are now beginning to come to fruition. This review summarizes current knowledge surrounding the roles of the IL-1 family in human disease and describes the rationale and strategies which have been developed to target these cytokines to inhibit the pathogenesis of a wide range of diseases in which inflammation plays a centrally important role.
Collapse
Affiliation(s)
- Yasmina E Hernandez-Santana
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Eirini Giannoudaki
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Gemma Leon
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Margaret B Lucitt
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity College, Dublin
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| |
Collapse
|
19
|
IL-36, IL-37, and IL-38 Cytokines in Skin and Joint Inflammation: A Comprehensive Review of Their Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20061257. [PMID: 30871134 PMCID: PMC6470667 DOI: 10.3390/ijms20061257] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The interleukin (IL)-1 family of cytokines is composed of 11 members, including the most recently discovered IL-36α, β, γ, IL-37, and IL-38. Similar to IL-1, IL-36 cytokines are initiators and amplifiers of inflammation, whereas both IL-37 and IL-38 display anti-inflammatory activities. A few studies have outlined the role played by these cytokines in several inflammatory diseases. For instance, IL-36 agonists seem to be relevant for the pathogenesis of skin psoriasis whereas, despite being expressed within the synovial tissue, their silencing or overexpression do not critically influence the course of arthritis in mice. In this review, we will focus on the state of the art of the molecular features and biological roles of IL-36, IL-37, and IL-38 in representative skin- and joint-related inflammatory diseases, namely psoriasis, rheumatoid arthritis, and psoriatic arthritis. We will then offer an overview of the therapeutic potential of targeting the IL-36 axis in these diseases, either by blocking the proinflammatory agonists or enhancing the physiologic inhibitory feedback on the inflammation mediated by the antagonists IL-37 and IL-38.
Collapse
|
20
|
Gao N, Me R, Dai C, Seyoum B, Yu FSX. Opposing Effects of IL-1Ra and IL-36Ra on Innate Immune Response to Pseudomonas aeruginosa Infection in C57BL/6 Mouse Corneas. THE JOURNAL OF IMMUNOLOGY 2018; 201:688-699. [PMID: 29891552 DOI: 10.4049/jimmunol.1800046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
Abstract
Pseudomonas aeruginosa keratitis is characterized by severe corneal ulceration and may lead to blindness if not treated properly in a timely manner. Although the roles of the IL-1 subfamily of cytokines are well established, as a newly discovered subfamily, IL-36 cytokine regulation, immunological relevance, and relation with IL-1 cytokines in host defense remain largely unknown. In this study, we showed that P. aeruginosa infection induces the expression of IL-36α and IL-36γ, as well as IL-1β and secreted IL-1Ra (sIL-1Ra), but not IL-36Ra. Downregulation of IL-1Ra increases, whereas downregulation of IL-36Ra decreases the severity of P. aeruginosa keratitis. IL-1R and IL-36Ra downregulation have opposing effects on the expression of IL-1β, sIL-1Ra, IL-36γ, S100A8, and CXCL10 and on the infiltration of innate immune cells. Administration of recombinant IL-1Ra improved, whereas IL-36Ra worsened the outcome of P. aeruginosa keratitis. Local application of IL-36γ stimulated the expression of innate defense molecules S100A9, mouse β-defensin 3, but suppressed IL-1β expression in B6 mouse corneas. IL-36γ diminished the severity of P. aeruginosa keratitis, and its protective effects were abolished in the presence of S100A9 neutralizing Ab and partially affected by CXCL10 and CXCR3 neutralizations. Thus, our data reveal that IL-1Ra and IL-36Ra have opposing effects on the outcome of P. aeruginosa keratitis and suggest that IL-36 agonists may be used as an alternative therapeutic to IL-1β-neutralizing reagents in controlling microbial keratitis and other mucosal infections.
Collapse
Affiliation(s)
- Nan Gao
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Rao Me
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Chenyang Dai
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250014, China; and
| | - Berhane Seyoum
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201
| | - Fu-Shin X Yu
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201; .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
21
|
A cytokine network involving IL-36γ, IL-23, and IL-22 promotes antimicrobial defense and recovery from intestinal barrier damage. Proc Natl Acad Sci U S A 2018; 115:E5076-E5085. [PMID: 29760082 DOI: 10.1073/pnas.1718902115] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut epithelium acts to separate host immune cells from unrestricted interactions with the microbiota and other environmental stimuli. In response to epithelial damage or dysfunction, immune cells are activated to produce interleukin (IL)-22, which is involved in repair and protection of barrier surfaces. However, the specific pathways leading to IL-22 and associated antimicrobial peptide (AMP) production in response to intestinal tissue damage remain incompletely understood. Here, we define a critical IL-36/IL-23/IL-22 cytokine network that is instrumental for AMP production and host defense. Using a murine model of intestinal damage and repair, we show that IL-36γ is a potent inducer of IL-23 both in vitro and in vivo. IL-36γ-induced IL-23 required Notch2-dependent (CD11b+CD103+) dendritic cells (DCs), but not Batf3-dependent (CD11b-CD103+) DCs or CSF1R-dependent macrophages. The intracellular signaling cascade linking IL-36 receptor (IL-36R) to IL-23 production by DCs involved MyD88 and the NF-κB subunits c-Rel and p50. Consistent with in vitro observations, IL-36R- and IL-36γ-deficient mice exhibited dramatically reduced IL-23, IL-22, and AMP levels, and consequently failed to recover from acute intestinal damage. Interestingly, impaired recovery of mice deficient in IL-36R or IL-36γ could be rescued by treatment with exogenous IL-23. This recovery was accompanied by a restoration of IL-22 and AMP expression in the colon. Collectively, these data define a cytokine network involving IL-36γ, IL-23, and IL-22 that is activated in response to intestinal barrier damage and involved in providing critical host defense.
Collapse
|
22
|
Nishikawa H, Taniguchi Y, Matsumoto T, Arima N, Masaki M, Shimamura Y, Inoue K, Horino T, Fujimoto S, Ohko K, Komatsu T, Udaka K, Sano S, Terada Y. Knockout of the interleukin-36 receptor protects against renal ischemia-reperfusion injury by reduction of proinflammatory cytokines. Kidney Int 2018; 93:599-614. [DOI: 10.1016/j.kint.2017.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/23/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
|
23
|
Zhou L, Todorovic V, Kakavas S, Sielaff B, Medina L, Wang L, Sadhukhan R, Stockmann H, Richardson PL, DiGiammarino E, Sun C, Scott V. Quantitative ligand and receptor binding studies reveal the mechanism of interleukin-36 (IL-36) pathway activation. J Biol Chem 2017; 293:403-411. [PMID: 29180446 DOI: 10.1074/jbc.m117.805739] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/15/2017] [Indexed: 12/25/2022] Open
Abstract
IL-36 cytokines signal through the IL-36 receptor (IL-36R) and a shared subunit, IL-1RAcP (IL-1 receptor accessory protein). The activation mechanism for the IL-36 pathway is proposed to be similar to that of IL-1 in that an IL-36R agonist (IL-36α, IL-36β, or IL-36γ) forms a binary complex with IL-36R, which then recruits IL-1RAcP. Recent studies have shown that IL-36R interacts with IL-1RAcP even in the absence of an agonist. To elucidate the IL-36 activation mechanism, we considered all possible binding events for IL-36 ligands/receptors and examined these events in direct binding assays. Our results indicated that the agonists bind the IL-36R extracellular domain with micromolar affinity but do not detectably bind IL-1RAcP. Using surface plasmon resonance (SPR), we found that IL-1RAcP also does not bind IL-36R when no agonist is present. In the presence of IL-36α, however, IL-1RAcP bound IL-36R strongly. These results suggested that the main pathway to the IL-36R·IL-36α·IL-1RAcP ternary complex is through the IL-36R·IL-36α binary complex, which recruits IL-1RAcP. We could not measure the binding affinity of IL-36R to IL-1RAcP directly, so we engineered a fragment crystallizable-linked construct to induce IL-36R·IL-1RAcP heterodimerization and predicted the binding affinity during a complete thermodynamic cycle to be 74 μm The SPR analysis also indicated that the IL-36R antagonist IL-36Ra binds IL-36R with higher affinity and a much slower off rate than the IL-36R agonists, shedding light on IL-36 pathway inhibition. Our results reveal the landscape of IL-36 ligand and receptor interactions, improving our understanding of IL-36 pathway activation and inhibition.
Collapse
Affiliation(s)
- Li Zhou
- From the AbbVie Bioresearch Center, Worcester, Illinois 01605 and
| | | | | | - Bernhard Sielaff
- From the AbbVie Bioresearch Center, Worcester, Illinois 01605 and
| | - Limary Medina
- From the AbbVie Bioresearch Center, Worcester, Illinois 01605 and
| | - Leyu Wang
- From the AbbVie Bioresearch Center, Worcester, Illinois 01605 and
| | | | | | | | | | | | | |
Collapse
|
24
|
Shibata A, Sugiura K, Furuta Y, Mukumoto Y, Kaminuma O, Akiyama M. Toll-like receptor 4 antagonist TAK-242 inhibits autoinflammatory symptoms in DITRA. J Autoimmun 2017; 80:28-38. [DOI: 10.1016/j.jaut.2017.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 11/27/2022]
|
25
|
Kim S, Williams DW, Lee C, Kim T, Arai A, Shi S, Li X, Shin KH, Kang MK, Park NH, Kim RH. IL-36 Induces Bisphosphonate-Related Osteonecrosis of the Jaw-Like Lesions in Mice by Inhibiting TGF-β-Mediated Collagen Expression. J Bone Miner Res 2017; 32:309-318. [PMID: 27567012 PMCID: PMC5642919 DOI: 10.1002/jbmr.2985] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 01/30/2023]
Abstract
Long-term administration of nitrogen-containing bisphosphonates can induce detrimental side effects such as bisphosphonate-related osteonecrosis of the jaw (BRONJ) in human. Although inflammation is known to be associated with BRONJ development, the detailed underlying mechanism remains unknown. Here, we report that the pro-inflammatory cytokine IL-36α is, in part, responsible for the BRONJ development. We found a notably higher level of IL-36α and lower level of collagen in the BRONJ lesions in mice. We also found that IL-36α remarkably suppressed TGF-β-mediated expression of Collα1 and α-Sma via the activation of Erk signaling pathway in mouse gingival mesenchymal stem cells. When IL-36 signaling was abrogated in vivo, development of BRONJ lesions was ameliorated in mice. Taken together, we showed the pathologic role of IL-36α in BRONJ development by inhibiting collagen expression and demonstrated that IL-36α could be a potential marker and a therapeutic target for the prevention and treatment of BRONJ. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sol Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Drake W Williams
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Cindy Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Terresa Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Atsushi Arai
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Xinmin Li
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Mo K Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
26
|
Sharma J, Bhar S, Devi CS. A review on interleukins: The key manipulators in rheumatoid arthritis. Mod Rheumatol 2017; 27:723-746. [DOI: 10.1080/14397595.2016.1266071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jatin Sharma
- School of Biosciences and Technology, VIT University, Vellore, India
| | - Sutonuka Bhar
- School of Biosciences and Technology, VIT University, Vellore, India
| | - C. Subathra Devi
- School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
27
|
Fujimura T, Kakizaki A, Furudate S, Aiba S. A possible interaction between periostin and CD163+
skin-resident macrophages in pemphigus vulgaris and bullous pemphigoid. Exp Dermatol 2017; 26:1193-1198. [DOI: 10.1111/exd.13157] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Taku Fujimura
- Department of Dermatology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Aya Kakizaki
- Department of Dermatology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Sadanori Furudate
- Department of Dermatology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Setsuya Aiba
- Department of Dermatology; Tohoku University Graduate School of Medicine; Sendai Japan
| |
Collapse
|
28
|
Mutations in IL36RN are associated with geographic tongue. Hum Genet 2016; 136:241-252. [PMID: 27900482 PMCID: PMC5258799 DOI: 10.1007/s00439-016-1750-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/16/2016] [Indexed: 01/05/2023]
Abstract
Geographic tongue (GT) is a benign inflammatory disorder of unknown etiology. Epidemiology and histopathology in previous studies found that generalized pustular psoriasis (GPP) is a factor associated with GT, but the molecular mechanism remains obscure. To investigate the mechanism of GT, with and without GPP, three cohorts were recruited to conduct genotyping of IL36RN, which is the causative gene of GPP. In a family spanning three generations and diagnosed with only GT (“GT alone”), GT was caused by the c.115+6T>C/p.Arg10ArgfsX1 mutation in the IL36RN gene. An autosomal dominant inheritance pattern with incomplete penetrance was observed. In the cohort consisting of sporadic cases of “GT alone” (n = 48), significant associations between GT and three IL36RN variants (c.115+6T>C/p.Arg10ArgfsX1, c.169G>A/p.Val57Ile and c.29G>A/p.Arg10Gln) were shown. In the GPP patient cohort (n = 56) and GPP family member cohort (n = 67), a significant association between the c.115+6T>C mutation and the simultaneous presence of GPP and GT was observed when compared to the presence of GPP without GT (P < 0.05). Biopsies revealed similarities among GT patients with different genotypes (AA, Aa and aa), with the neutrophils prominently infiltrating the epidermis. Western-blot analysis showed that the expression ratio of IL-36Ra/IL-36γ in lesioned tongues with individuals harboring different genotypes (AA, Aa and aa, n = 3, respectively) decreased significantly compared to controls (n = 3). We describe the mechanism of GT for the first time: some cases of GT are caused by IL36RN mutations, while those lacking mutations are associated with an imbalance in expression between IL-36Ra and IL-36γ proteins in tongue tissue.
Collapse
|
29
|
Kim J, Bissonnette R, Lee J, Correa da Rosa J, Suárez-Fariñas M, Lowes MA, Krueger JG. The Spectrum of Mild to Severe Psoriasis Vulgaris Is Defined by a Common Activation of IL-17 Pathway Genes, but with Key Differences in Immune Regulatory Genes. J Invest Dermatol 2016; 136:2173-2182. [DOI: 10.1016/j.jid.2016.04.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 01/07/2023]
|
30
|
Walsh PT, Fallon PG. The emergence of the IL-36 cytokine family as novel targets for inflammatory diseases. Ann N Y Acad Sci 2016; 1417:23-34. [PMID: 27783881 DOI: 10.1111/nyas.13280] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022]
Abstract
The recently discovered interleukin (IL)-36 family of cytokines form part of the broader IL-1 family and are emerging as important mediators of inflammatory disease. The IL-36 subfamily consists of three ligands-IL-36α, IL-36β, and IL-36γ-and the natural antagonist IL-36Ra. The cytokines exert their effects through a specific IL-36 receptor consisting of IL-36R and IL-1RAcP chains. IL-36 cytokines can direct both innate and adaptive immune responses by acting on parenchymal, stromal, and specific immune cell subsets. In humans, inactivating mutations in the gene encoding the IL-36R antagonist, which lead to unregulated IL-36R signaling, lead to an autoinflammatory condition termed deficiency of the IL-36R antagonist, which primarily manifests as a severe form of pustular psoriasis. While such discoveries have prompted deeper mechanistic studies highlighting the important role of IL-36 cytokines in psoriatic skin inflammation, it is now evident that IL-36 cytokines can also play important roles in inflammatory disorders in other organs, such as the gastrointestinal tract and the lungs. Given these emerging roles, strategies to specifically target the expression and activity of the IL-36 family have the potential to uncover novel therapeutic approaches aimed at treating inflammatory diseases in humans.
Collapse
Affiliation(s)
- Patrick T Walsh
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Padraic G Fallon
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Benjegerdes KE, Hyde K, Kivelevitch D, Mansouri B. Pustular psoriasis: pathophysiology and current treatment perspectives. PSORIASIS (AUCKLAND, N.Z.) 2016; 6:131-144. [PMID: 29387600 PMCID: PMC5683122 DOI: 10.2147/ptt.s98954] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Psoriasis vulgaris is a chronic inflammatory disease that classically affects skin and joints and is associated with numerous comorbidities. There are several clinical subtypes of psoriasis including the uncommon pustular variants, which are subdivided into generalized and localized forms. Generalized forms of pustular psoriasis include acute generalized pustular psoriasis, pustular psoriasis of pregnancy, and infantile and juvenile pustular psoriasis. Localized forms include acrodermatitis continua of Hallopeau and palmoplantar pustular psoriasis. These subtypes vary in their presentations, but all have similar histopathologic characteristics. The immunopathogenesis of each entity remains to be fully elucidated and some debate exists as to whether these inflammatory pustular dermatoses should be classified as entities distinct from psoriasis vulgaris. Due to the rarity of these conditions and the questionable link to the common, plaque-type psoriasis, numerous therapies have shown variable results and most entities remain difficult to treat. With increasing knowledge of the pathogenesis of these variants of pustular psoriasis, the development and use of biologic and other immunomodulatory therapies holds promise for the future of successfully treating pustular variants of psoriasis.
Collapse
Affiliation(s)
| | - Kimberly Hyde
- Texas A&M Health Science Center College of Medicine, Round Rock
| | | | - Bobbak Mansouri
- Texas A&M Health Science Center College of Medicine, Temple
- Department of Dermatology, Scott and White Hospital, Texas A&M Health Science Center College of Medicine, Temple, TX, USA
| |
Collapse
|
32
|
Interleukin-36 potently stimulates human M2 macrophages, Langerhans cells and keratinocytes to produce pro-inflammatory cytokines. Cytokine 2016; 84:88-98. [DOI: 10.1016/j.cyto.2016.05.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
|
33
|
Rodosthenous RS, Coull BA, Lu Q, Vokonas PS, Schwartz JD, Baccarelli AA. Ambient particulate matter and microRNAs in extracellular vesicles: a pilot study of older individuals. Part Fibre Toxicol 2016; 13:13. [PMID: 26956024 PMCID: PMC4782360 DOI: 10.1186/s12989-016-0121-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/10/2016] [Indexed: 12/11/2022] Open
Abstract
Background Air pollution from particulate matter (PM) has been linked to cardiovascular morbidity and mortality; however the underlying biological mechanisms remain to be uncovered. Gene regulation by microRNAs (miRNAs) that are transferred between cells by extracellular vesicles (EVs) may play an important role in PM-induced cardiovascular risk. This study sought to determine if ambient PM2.5 levels are associated with expression of EV-encapsulated miRNAs (evmiRNAs), and to investigate the participation of such evmiRNAs in pathways related to cardiovascular disease (CVD). Methods We estimated the short- (1-day), intermediate- (1-week and 1-month) and long-term (3-month, 6-month, and 1-year) moving averages of ambient PM2.5 levels at participants’ addresses using a validated hybrid spatio-temporal land-use regression model. We collected 42 serum samples from 22 randomly selected participants in the Normative Aging Study cohort and screened for 800 miRNAs using the NanoString nCounter® platform. Mixed effects regression models, adjusted for potential confounders were used to assess the association between ambient PM2.5 levels and evmiRNAs. All p-values were adjusted for multiple comparisons. In-silico Ingenuity Pathway Analysis (IPA) was performed to identify biological pathways that are regulated by PM-associated evmiRNAs. Results We found a significant association between long-term ambient PM2.5 exposures and levels of multiple evmiRNAs circulating in serum. In the 6-month window, ambient PM2.5 exposures were associated with increased levels of miR-126-3p (0.74 ± 0.21; p = 0.02), miR-19b-3p (0.52 ± 0.15; p = 0.02), miR-93-5p (0.78 ± 0.22; p = 0.02), miR-223-3p (0.74 ± 0.22; p = 0.02), and miR-142-3p (0.81 ± 0.21; p = 0.03). Similarly, in the 1-year window, ambient PM2.5 levels were associated with increased levels of miR-23a-3p (0.83 ± 0.23; p = 0.02), miR-150-5p (0.90 ± 0.24; p = 0.02), miR-15a-5p (0.70 ± 0.21; p = 0.02), miR-191-5p (1.20 ± 0.35; p = 0.02), and let-7a-5p (1.42 ± 0.39; p = 0.02). In silico pathway analysis on PM2.5-associated evmiRNAs identified several key CVD-related pathways including oxidative stress, inflammation, and atherosclerosis. Conclusions We found an association between long-term ambient PM2.5 levels and increased levels of evmiRNAs circulating in serum. Further observational studies are warranted to confirm and extend these important findings in larger and more diverse populations, and experimental studies are needed to elucidate the exact roles of evmiRNAs in PM-induced CVD. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0121-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
34
|
Increased Expression of Interleukin-36, a Member of the Interleukin-1 Cytokine Family, in Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:303-14. [PMID: 26752465 DOI: 10.1097/mib.0000000000000654] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Interleukin (IL)-36 (IL-36α, IL-36β, and IL-36γ) is a recently reported member of the IL-1 cytokine family. In this study, we investigated IL-36 expression in the inflamed mucosa of patients with inflammatory bowel disease and characterized the proinflammatory actions of IL-36 cytokines in human colonic epithelial cells. METHODS IL-36 mRNA expression was evaluated using real-time PCR. IL-36 protein expression was analyzed using immunoblotting and immunohistochemical technique. Intracellular signaling pathways were evaluated by immunoblotting and by specific siRNA-transfected cells. RESULTS The mRNA expression of IL-36α and IL-36γ, but not of IL-36β, was enhanced in the inflamed mucosa of patients with inflammatory bowel disease, in particular, in ulcerative colitis. Immunohistochemical analysis showed that T cells, monocytes, and plasma cells are the source of IL-36α and IL-36γ in colonic mucosa. DNA microarray analysis indicated that IL-36α induces the mRNA expression of CXC chemokines and acute phase proteins in intestinal epithelial cell line, HT-29 cells. IL-36α and IL-36γ dose-dependently and time-dependently induced the mRNA and protein expression of CXC chemokines (CXCL1, CXCL2, CXCL3 etc.) in HT-29 and Widr cells. Stimulation with IL-36α and IL-36γ assembled MyD88 adaptor proteins (MyD88, TRAF6, IRAK1, and TAK1) into a complex and induced the activation of NF-κB and AP-1 and also the phosphorylation of MAPKs. MAPK inhibitors and siRNAs specific for NF-κB and c-Jun AP-1 significantly reduced IL-36-induced CXC chemokine expression. CONCLUSIONS IL-36α and IL-36γ may play a proinflammatory role in the pathophysiology of inflammatory bowel disease through induction of CXC chemokines and acute phase proteins.
Collapse
|
35
|
Chu M, Wong CK, Cai Z, Dong J, Jiao D, Kam NW, Lam CWK, Tam LS. Elevated Expression and Pro-Inflammatory Activity of IL-36 in Patients with Systemic Lupus Erythematosus. Molecules 2015; 20:19588-604. [PMID: 26516833 PMCID: PMC6332178 DOI: 10.3390/molecules201019588] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 12/22/2022] Open
Abstract
We investigated the expression and proinflammatory activity of interleukin (IL)-36 in patients with systemic lupus erythematosus (SLE). The expression level of IL-36, its putative receptors and the frequency of CD19+CD24highCD27+ regulatory B (Breg) lymphocytes of peripheral blood from 43 SLE patients and 16 normal control (NC) subjects were studied using ELISA and flow cytometry. Plasma cytokines/chemokines and ex vivo productions of cytokine/chemokine from peripheral blood mononuclear cells (PBMC) stimulated with recombinant IL-36 were determined by Luminex multiplex assay. Plasma concentrations of IL-36α, IL-36γ and the proportions of circulating IL-36R-positive CD19+ B lymphocytes in total B lymphocytes and PBMC were significantly increased in active SLE patients compared with NC (all p < 0.05). Plasma IL-36α and IL-36γ correlated positively with SLE disease activity and elevated plasma IL-10 concentration (all p < 0.05). The frequencies of circulating Breg lymphocytes in total B lymphocytes and PBMC were significantly decreased in both inactive and active SLE patients compared with NC (all p < 0.01). The frequency of Breg lymphocytes in total B lymphocytes correlated negatively with the proportion of IL-36R-positive B lymphocytes (p < 0.05). IL-36α exerted substantial proinflammatory effect in PBMC from SLE patients by inducing the production of IL-6 and CXCL8. Upon stimulation with IL-36α and IL-36γ, ex vivo productions of IL-6 and CXCL8 were significantly increased in SLE patients compared with NC (all p < 0.05). This cross-sectional study demonstrated that over expression of circulating IL-36α may exert a proinflammatory effect as observed in human SLE.
Collapse
Affiliation(s)
- Man Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Zhe Cai
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Jie Dong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Delong Jiao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Ngar Woon Kam
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau.
| | - Lai Shan Tam
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.
| |
Collapse
|
36
|
Kanda T, Nishida A, Takahashi K, Hidaka K, Imaeda H, Inatomi O, Bamba S, Sugimoto M, Andoh A. Interleukin(IL)-36α and IL-36γ Induce Proinflammatory Mediators from Human Colonic Subepithelial Myofibroblasts. Front Med (Lausanne) 2015; 2:69. [PMID: 26442271 PMCID: PMC4585048 DOI: 10.3389/fmed.2015.00069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/04/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Interleukin (IL)-36 cytokines are recently reported member of the IL-1 cytokine family. However, there is little information regarding the association between IL-36 cytokines and gut inflammation. In the present study, we investigated the biological activity of IL-36α and IL-36γ using human colonic subepithelial myofibroblasts (SEMFs). METHODS The mRNA expression and the protein expression of target molecules in SEMFs were evaluated using real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The intracellular signaling of IL-36 cytokines was analyzed using Western blot analysis and small interfering RNAs (siRNAs) specific for MyD88 adaptor proteins (MyD88 and IRAK1) and NF-κB p65. RESULTS IL-36α and IL-36γ significantly enhanced the secretion of IL-6 and CXC chemokines (CXCL1, CXCL2, and CXCL8) by SEMFs. The combination of IL-36α/γ and IL-17A or of IL-36α/γ and tumor necrosis factor-α showed a synergistic effect on the induction of IL-6 and CXC chemokines. The mRNA expression of proinflammatory mediators induced by IL-36α and/or IL-36γ was significantly suppressed by transfection of siRNA for MyD88 or IRAK1. Both inhibitors of mitogen activated protein kinases and siRNAs specific for NF-κBp65 significantly reduced the expression of IL-6 and CXC chemokines induced by IL-36α and/or IL-36γ. CONCLUSION These results suggest that IL-36α and IL-36γ contribute to gut inflammation through the induction of proinflammatory mediators.
Collapse
Affiliation(s)
- Toshihiro Kanda
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| | | | - Kentaro Hidaka
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| | - Hirotsugu Imaeda
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| | - Shigeki Bamba
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| | | | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science , Otsu , Japan
| |
Collapse
|
37
|
Segueni N, Vigne S, Palmer G, Bourigault ML, Olleros ML, Vesin D, Garcia I, Ryffel B, Quesniaux VFJ, Gabay C. Limited Contribution of IL-36 versus IL-1 and TNF Pathways in Host Response to Mycobacterial Infection. PLoS One 2015; 10:e0126058. [PMID: 25950182 PMCID: PMC4423901 DOI: 10.1371/journal.pone.0126058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/28/2015] [Indexed: 11/18/2022] Open
Abstract
IL-36 cytokines are members of the IL-1 family of cytokines that stimulate dendritic cells and T cells leading to enhanced T helper 1 responses in vitro and in vivo; however, their role in host defense has not been fully addressed thus far. The objective of this study was to examine the role of IL-36R signaling in the control of mycobacterial infection, using models of systemic attenuated M. bovis BCG infection and virulent aerogenic M. tuberculosis infection. IL-36γ expression was increased in the lung of M. bovis BCG infected mice. However, IL-36R deficient mice infected with M. bovis BCG showed similar survival and control of the infection as compared to wild-type mice, although their lung pathology and CXCL1 response were transiently different. While highly susceptible TNF-α deficient mice succumbed with overwhelming M. tuberculosis infection, and IL-1RI deficient mice showed intermediate susceptibility, IL-36R-deficient mice controlled the infection, with bacterial burden, lung inflammation and pathology, similar to wild-type controls. Therefore, IL-36R signaling has only limited influence in the control of mycobacterial infection.
Collapse
Affiliation(s)
- Noria Segueni
- CNRS, UMR7355, Orleans, France
- University of Orleans, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Solenne Vigne
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Marie-Laure Bourigault
- CNRS, UMR7355, Orleans, France
- University of Orleans, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Maria L. Olleros
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Dominique Vesin
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Irene Garcia
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France
- University of Orleans, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Cape Town, South Africa
| | - Valérie F. J. Quesniaux
- CNRS, UMR7355, Orleans, France
- University of Orleans, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Cem Gabay
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
38
|
Moghaddas F, Masters SL. Monogenic autoinflammatory diseases: Cytokinopathies. Cytokine 2015; 74:237-46. [PMID: 25814341 DOI: 10.1016/j.cyto.2015.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/17/2022]
Abstract
Rapid advances in genetics are providing unprecedented insight into functions of the innate immune system with identification of the mutations that cause monogenic autoinflammatory disease. Cytokine antagonism is profoundly effective in a subset of these conditions, particularly those associated with increased interleukin-1 (IL-1) activity, the inflammasomopathies. These include syndromes where the production of IL-1 is increased by mutation of innate immune sensors such as NLRP3, upstream signalling molecules such as PSTPIP1 and receptors or downstream signalling molecules, such as IL-1Ra. Another example of this is interferon (IFN) and the interferonopathies, with mutations in the sensors STING and MDA5, the upstream signalling regulator AP1S3, and a downstream inhibitor of IFN signalling, ISG15. We propose that this can be extended to cytokines such as IL-36, with mutations in IL-36Ra, and IL-10, with mutations in IL-10RA and IL-10RB, however mutations in sensors or upstream signalling molecules are yet to be described in these instances. Additionally, autoinflammatory diseases can be caused by multiple cytokines, for example with the activation of NF-κB/Rel, for which we propose the term Relopathies. This nosology is limited in that some cytokine pathways may be degenerate in their generation or execution, however provides insight into likely autoinflammatory disease candidates and the cytokines with which newly identified mutations may be associated, and therefore targeted.
Collapse
Affiliation(s)
- Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
39
|
Hussain S, Berki DM, Choon SE, Burden AD, Allen MH, Arostegui JI, Chaves A, Duckworth M, Irvine AD, Mockenhaupt M, Navarini AA, Seyger MMB, Soler-Palacin P, Prins C, Valeyrie-Allanore L, Vicente MA, Trembath RC, Smith CH, Barker JN, Capon F. IL36RN mutations define a severe autoinflammatory phenotype of generalized pustular psoriasis. J Allergy Clin Immunol 2014; 135:1067-1070.e9. [PMID: 25458002 DOI: 10.1016/j.jaci.2014.09.043] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Safia Hussain
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - Dorottya M Berki
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - Siew-Eng Choon
- Department of Dermatology, Hospital Sultanah Aminah, Johor Bahru, Malaysia
| | - A David Burden
- Department of Dermatology, University of Glasgow, Glasgow, United Kingdom
| | - Michael H Allen
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | | | - Antonio Chaves
- Department of Dermatology, Hospital Infanta Cristina, Badajoz, Spain
| | - Michael Duckworth
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - Alan D Irvine
- Paediatric Dermatology, Our Lady's Children's Hospital, Dublin, Ireland; Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Maja Mockenhaupt
- Department of Dermatology, Dokumentationszentrum Schwerer Hautreaktionen (dZh), Universitäts-Hautklinik, Freiburg, Germany
| | - Alexander A Navarini
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom; Department of Dermatology, Zurich University Hospital, Zurich, Switzerland
| | - Marieke M B Seyger
- Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Christa Prins
- Dermatology Service, Geneva University Hospital, Geneva, Switzerland
| | | | | | - Richard C Trembath
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Catherine H Smith
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - Jonathan N Barker
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom.
| | - Francesca Capon
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom.
| |
Collapse
|