1
|
Silveira THRE, Pereira DA, Pereira DA, Calmasini FB, Burnett AL, Costa FF, Silva FH. Impact of intravascular hemolysis on functional and molecular alterations in the urinary bladder: implications for an overactive bladder in sickle cell disease. Front Physiol 2024; 15:1369120. [PMID: 39100273 PMCID: PMC11294091 DOI: 10.3389/fphys.2024.1369120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/20/2024] [Indexed: 08/06/2024] Open
Abstract
Patients with sickle cell disease (SCD) display an overactive bladder (OAB). Intravascular hemolysis in SCD is associated with various severe SCD complications. However, no experimental studies have evaluated the effect of intravascular hemolysis on bladder function. This study aimed to assess the effects of intravascular hemolysis on the micturition process and the contractile mechanisms of the detrusor smooth muscle (DSM) in a mouse model with phenylhydrazine (PHZ)-induced hemolysis; furthermore, it aimed to investigate the role of intravascular hemolysis in the dysfunction of nitric oxide (NO) signaling and in increasing oxidative stress in the bladder. Mice underwent a void spot assay, and DSM contractions were evaluated in organ baths. The PHZ group exhibited increased urinary frequency and increased void volumes. DSM contractile responses to carbachol, KCl, α-β-methylene-ATP, and EFS were increased in the PHZ group. Protein expression of phosphorylated endothelial NO synthase (eNOS) (Ser-1177), phosphorylated neuronal NO synthase (nNOS) (Ser-1417), and phosphorylated vasodilator-stimulated phosphoprotein (VASP) (Ser-239) decreased in the bladder of the PHZ group. Protein expression of oxidative stress markers, NOX-2, 3-NT, and 4-HNE, increased in the bladder of the PHZ group. Our study shows that intravascular hemolysis promotes voiding dysfunction correlated with alterations in the NO signaling pathway in the bladder, as evidenced by reduced levels of p-eNOS (Ser-1177), nNOS (Ser-1417), and p-VASP (Ser-239). The study also showed that intravascular hemolysis increases oxidative stress in the bladder. Our study indicates that intravascular hemolysis promotes an OAB phenotype similar to those observed in patients and mice with SCD.
Collapse
Affiliation(s)
| | - Dalila Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Danillo Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arthur L. Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| |
Collapse
|
2
|
Pereira DA, Calmasini FB, Costa FF, Burnett AL, Silva FH. Nitric Oxide Resistance in Priapism Associated with Sickle Cell Disease: Mechanisms, Therapeutic Challenges, and Future Directions. J Pharmacol Exp Ther 2024; 390:203-212. [PMID: 38262744 DOI: 10.1124/jpet.123.001962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Patients with sickle cell disease (SCD) display priapism, a prolonged penile erection in the absence of sexual arousal. The current pharmacological treatments for SCD-associated priapism are limited and focused on acute interventions rather than prevention. Thus, there is an urgent need for new drug targets and preventive pharmacological therapies for this condition. This review focuses on the molecular mechanisms linked to the dysfunction of the NO-cyclic guanosine monophosphate (cGMP)-phosphodiesterase type 5 (PDE5) pathway implicated in SCD-associated priapism. In murine models of SCD, reduced nitric oxide (NO)-cGMP bioavailability in the corpus cavernosum is associated with elevated plasma hemoglobin levels, increased reactive oxygen species levels that inactive NO, and testosterone deficiency that leads to endothelial nitric oxide synthase downregulation. We discuss the consequences of the reduced cGMP-dependent PDE5 activity in response to these molecular changes, highlighting it as the primary pathophysiological mechanism leading to excessive corpus cavernosum relaxation, culminating in priapism. We also further discuss the impact of intravascular hemolysis on therapeutic approaches, present current pharmacological strategies targeting the NO-cGMP-PDE5 pathway in the penis, and identify potential pharmacological targets for future priapism therapies. In men with SCD and priapism, PDE5 inhibitor therapy and testosterone replacement have shown promising results. Recent preclinical research reported the beneficial effect of treatment with haptoglobin and NO donors. SIGNIFICANCE STATEMENT: This review discusses the molecular changes that reduce NO-cGMP bioavailability in the penis in SCD and highlights pharmacological targets and therapeutic strategies for the treatment of priapism, including PDE5 inhibitors, hormonal modulators, NO donors, hydroxyurea, soluble guanylate cyclase stimulators, haptoglobin, hemopexin, and antioxidants.
Collapse
Affiliation(s)
- Dalila Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| | - Fabiano Beraldi Calmasini
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| | - Fernando Ferreira Costa
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| | - Arthur L Burnett
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| |
Collapse
|
3
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
4
|
Ghezzi AC, Passos GR, de Oliveira MG, Oliveira AL, Assis-Mendonça GR, de Mello GC, Antunes E, Monica FZ. A 2-week treatment with 5-azacytidine improved the hypercontractility state in prostate from obese mice: Role of the nitric oxide-cyclic guanosine monophosphate signalling pathway. Clin Exp Pharmacol Physiol 2024; 51:e13851. [PMID: 38452757 DOI: 10.1111/1440-1681.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Benign prostatic hyperplasia (BPH) is characterised by increases in prostate volume and contraction. Downregulation of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling pathway contributes to prostate dysfunctions. Previous studies in cancer cells or vessels have shown that the epigenetic mechanisms control the gene and protein expression of the enzymes involved in the production of NO and cGMP. This study is aimed to evaluate the effect of a 2-week treatment of 5-azacytidine (5-AZA), a DNA-methyltransferase inhibitor, in the prostate function of mice fed with a high-fat diet. Functional, histological, biochemical and molecular assays were carried out. Obese mice presented greater prostate weight, α-actin expression and contractile response induced by the α-1adrenoceptors agonist. The relaxation induced by the NO-donor and the protein expression of endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) were significantly decreased in the prostate of obese mice. The treatment with 5-AZA reverted the higher expression of α-actin, reduced the hypercontractility state of the prostate and increased the expression of eNOS and sGC and intraprostatic levels of cGMP. When prostates from obese mice treated with 5-AZA were incubated in vitro with inhibitors of the NOS or sGC, the inhibitory effect of 5-AZA was reverted, therefore, showing the involvement of NO and cGMP. In conclusion, our study paves the way to develop or repurpose therapies that recover the expression of eNOS and sGC and, hence, to improve prostate function in BPH.
Collapse
Affiliation(s)
- Ana Carolina Ghezzi
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Gabriela Reolon Passos
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Mariana Gonçalves de Oliveira
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Akila Lara Oliveira
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Guilherme Rossi Assis-Mendonça
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
- National Academy of Medicine, Young Leadership Physician Program, Rio de Janeiro, Brazil
| | - Glaucia Coelho de Mello
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Edson Antunes
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Fabiola Zakia Monica
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
5
|
Pereira DA, Silveira THR, Calmasini FB, Silva FH. Soluble guanylate cyclase stimulators and activators: new horizons in the treatment of priapism associated with sickle cell disease. Front Pharmacol 2024; 15:1357176. [PMID: 38384294 PMCID: PMC10879333 DOI: 10.3389/fphar.2024.1357176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
Priapism, defined as a prolonged and often painful penile erection occurring without sexual stimulation or desire, is a common complication in sickle cell disease (SCD), affecting up to 48% of male patients. This condition presents significant clinical challenges and can lead to erectile dysfunction if not properly managed. Current pharmacological treatments for SCD-related priapism are primarily reactive rather than preventative, highlighting a gap in effective medical intervention strategies. A critical factor in developing priapism is the reduced basal bioavailability of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) in erectile tissues. New prevention strategies should ideally target the underlying pathophysiology of the disease. Compounds that stimulate and activate soluble guanylate cyclase (sGC) emerge as potential therapeutic candidates since these compounds have the property of inducing cGMP production by sGC. This review explores the potential of sGC stimulators and activators in treating priapism associated with SCD. We discuss the advantages of these agents in the face of the challenging pathophysiology of SCD. Additionally, the review underscores the impact of intravascular hemolysis and oxidative stress on priapism pathophysiology in SCD, areas in which sGC stimulators and activators may also have beneficial therapeutic effects.
Collapse
Affiliation(s)
- Dalila Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | | | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| |
Collapse
|
6
|
Aronsson P, Stenqvist J, Ferizovic E, Danielsson E, Jensen A, Simonsen U, Winder M. Soluble guanylate cyclase mediates the relaxation of healthy and inflamed bladder smooth muscle by aqueous nitric oxide. Front Physiol 2023; 14:1249560. [PMID: 37731544 PMCID: PMC10507315 DOI: 10.3389/fphys.2023.1249560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction: Due to its chemical properties, functional responses to nitric oxide (NO) are often difficult to examine. In the present study, we established a method to produce NO in an aqueous solution and validated its capacity to evoke functional responses in isolated rat bladders. Furthermore, we compared the NO responses to the commonly used NO donor sodium nitroprusside (SNP). We also investigated the impact of ongoing inflammation on the involvement of soluble guanylate cyclase (sGC) dependent signaling in NO relaxation. Methods: A setup to produce an aqueous NO solution was established, allowing the production of an aqueous solution containing a calculated NO concentration of 2 mM. Sixty male Sprague-Dawley rats received either no treatment (controls) or cyclophosphamide (CYP; 100 mg*kg-1 i.p., 60 h prior to the experiment) to induce experimental cystitis. Bladder strip preparations were mounted in organ baths and studied at basal tension or pre-contracted with methacholine (3 μM). Aqueous NO solution (40-400 μL; 2 mM corresponding to 4-40 μM) or SNP (1-1,000 μM) was added cumulatively in increasing concentrations. Relaxation to aqueous NO was also studied in the presence of the sGC inhibitor ODQ (0.25-25 μM). The expression of sGC was investigated by immunohistochemical analysis. Results: The NO solution caused functional relaxations in both controls and inflamed bladder preparations. NO-induced relaxations were significantly greater in inflamed bladder strips at basal tension, whereas no differences were seen in methacholine pre-contracted strips. In the presence of the sGC inhibitor ODQ in a high concentration, the NO-evoked relaxations were abolished in both control and inflamed preparations. At a lower concentration of ODQ, only NO relaxations in inflamed preparations were attenuated. Immunohistochemical analysis showed that sGC was expressed in the detrusor and mucosa, with a significantly lower expression in the inflamed detrusor. Conclusion: In the present study, we found that aqueous NO solution induces relaxation of the rat detrusor by activating soluble guanylate cyclase in both control and inflamed bladder strips. Induction of inflammation conceivably leads to decreased sGC expression in the detrusor, which may explain the different susceptibility towards inhibition of sGC in inflamed versus control tissue. The use of an aqueous NO solution should be further considered as a valuable complement to the pharmacological tools currently used.
Collapse
Affiliation(s)
- Patrik Aronsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Stenqvist
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ena Ferizovic
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emelie Danielsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Jensen
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Simonsen
- Department of Biomedicine, Faculty of Health, University of Aarhus, Aarhus, Denmark
| | - Michael Winder
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Olivencia MA, Gil de Biedma-Elduayen L, Giménez-Gómez P, Barreira B, Fernández A, Angulo J, Colado MI, O'Shea E, Perez-Vizcaino F. Oxidized soluble guanylyl cyclase causes erectile dysfunction in alcoholic mice. Br J Pharmacol 2023; 180:2361-2376. [PMID: 37021655 DOI: 10.1111/bph.16087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Alcohol abuse has been associated with erectile dysfunction (ED), but the implicated molecular mechanisms are unresolved. This study analyses the role of alterations in soluble guanylyl cyclase (sGC) in ED. EXPERIMENTAL APPROACH ED was analysed in adult male C57BL/6J mice subjected to the Chronic Intermittent Ethanol (CIE) paradigm. Erectile function was assessed in anaesthetised mice in vivo by evaluating intracavernosal pressure (ICP) and in vitro in isolated mice corpora cavernosa (CC) mounted in a myograph. Protein expression and reactive oxygen species were analysed by western blot and dihydroethidium staining, respectively. KEY RESULTS In CIE mice, we observed a significant decrease in the relaxant response of the CC to stimulation of NO release from nitrergic nerves by electrical field stimulation, to NO release from endothelial cells by acetylcholine, to the PDE5 inhibitor sildenafil, and to the sGC stimulator riociguat. Conversely, the response to the sGC activator cinaciguat, whose action is independent of the oxidation state of sGC, was significantly enhanced in these CC. The responses to adenylyl cyclase stimulation with forskolin were unchanged. We found an increase in reactive oxygen species in the CC from CIE mice as well as an increase in CYP2E1 and NOX2 protein expression. In vivo pre-treatment with tempol prevented alcohol-induced erectile dysfunction. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that alcoholic mice show ED in vitro and in vivo due to an alteration in the redox state of sGC and suggest that sGC activators may be effective in ED associated with alcoholism.
Collapse
Affiliation(s)
- Miguel A Olivencia
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Leticia Gil de Biedma-Elduayen
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain
- Red de Investigación en Atención Primaria de Adicciones del Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pablo Giménez-Gómez
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain
- Red de Investigación en Atención Primaria de Adicciones del Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Bianca Barreira
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Argentina Fernández
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Maria Isabel Colado
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain
- Red de Investigación en Atención Primaria de Adicciones del Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain
- Red de Investigación en Atención Primaria de Adicciones del Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacologia y Toxicologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- CIBER Enfermedades Respiratorias, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
8
|
Passos GR, de Oliveira MG, Ghezzi AC, Mello GC, Levi D’Ancona CA, Teixeira SA, Muscará MN, Grespan Bottoli CB, Vilela de Melo L, de Oliveira E, Antunes E, Mónica FZ. Periprostatic adipose tissue (PPAT) supernatant from obese mice releases anticontractile substances and increases human prostate epithelial cell proliferation: the role of nitric oxide and adenosine. Front Pharmacol 2023; 14:1145860. [PMID: 37492091 PMCID: PMC10364323 DOI: 10.3389/fphar.2023.1145860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/12/2023] [Indexed: 07/27/2023] Open
Abstract
Background: The prostate gland is surrounded by periprostatic adipose tissue (PPAT) that can release mediators that interfere in prostate function. In this study, we examined the effect of periprostatic adipose tissue supernatant obtained from obese mice on prostate reactivity in vitro and on the viability of human prostatic epithelial cell lines. Methods: Male C57BL/6 mice were fed a standard or high-fat diet after which PPAT was isolated, incubated in Krebs-Henseleit solution for 30 min (without prostate) or 60 min (with prostate), and the supernatant was then collected and screened for biological activity. Total nitrate and nitrite (NOx-) and adenosine were quantified, and the supernatant was then collected and screened for biological activity. NOx- and adenosine were quantified. Concentration-response curves to phenylephrine (PE) were obtained in prostatic tissue from lean and obese mice incubated with or without periprostatic adipose tissue. In some experiments, periprostatic adipose tissue was co-incubated with inhibitors of the nitric oxide (NO)-cyclic guanosine monophosphate pathway (L-NAME, 1400W, ODQ), adenylate cyclase (SQ22536) or with adenosine A2A (ZM241385), and A2B (MRS1754) receptor antagonists. PNT1-A (normal) and BPH-1 (hyperplasic) human epithelial cells were cultured and incubated with supernatant from periprostatic adipose tissue for 24, 48, or 72 h in the absence or presence of these inhibitors/antagonists, after which cell viability and proliferation were assessed. Results: The levels of NOx- and adenosine were significantly higher in the periprostatic adipose tissue supernatant (30 min, without prostate) when compared to the vehicle. A trend toward an increase in the levels of NOX was observed after 60 min. PPAT supernatant from obese mice significantly reduced the PE-induced contractions only in prostate from obese mice. The co-incubation of periprostatic adipose tissue with L-NAME, 1400W, ODQ, or ZM241385 attenuated the anticontractile activity of the periprostatic adipose tissue supernatant. Incubation with the supernatant of periprostatic adipose tissue from obese mice significantly increased the viability of PNT1-A cells and attenuated expression of the apoptosis marker protein caspase-3 when compared to cells incubated with periprostatic adipose tissue from lean mice. Hyperplastic cells (BPH-1) incubated with periprostatic adipose tissue from obese mice showed greater proliferation after 24 h, 48 h, and 72 h compared to cells incubated with culture medium alone. BPH-1 cell proliferation in the presence of PPAT supernatant was attenuated by NO-signaling pathway inhibitors and by adenosine receptor antagonists after 72 h. Conclusion: NO and adenosine are involved in the anticontractile and pro-proliferative activities of periprostatic adipose tissue supernatant from obese mice. More studies are needed to determine whether the blockade of NO and/or adenosine derived from periprostatic adipose tissue can improve prostate function.
Collapse
Affiliation(s)
- Gabriela Reolon Passos
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana G. de Oliveira
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Carolina Ghezzi
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Glaucia C. Mello
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos Arturo Levi D’Ancona
- Division of Urology, Department of Surgery, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Simone Aparecida Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Marcelo Nicolas Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| | | | | | | | - Edson Antunes
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiola Zakia Mónica
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Argiolas A, Argiolas FM, Argiolas G, Melis MR. Erectile Dysfunction: Treatments, Advances and New Therapeutic Strategies. Brain Sci 2023; 13:802. [PMID: 37239274 PMCID: PMC10216368 DOI: 10.3390/brainsci13050802] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Erectile dysfunction (ED) is the inability to get and maintain an adequate penile erection for satisfactory sexual intercourse. Due to its negative impacts on men's life quality and increase during aging (40% of men between 40 and 70 years), ED has always attracted researchers of different disciplines, from urology, andrology and neuropharmacology to regenerative medicine, and vascular and prosthesis implant surgery. Locally and/or centrally acting drugs are used to treat ED, e.g., phosphodiesterase 5 inhibitors (first in the list) given orally, and phentolamine, prostaglandin E1 and papaverine injected intracavernously. Preclinical data also show that dopamine D4 receptor agonists, oxytocin and α-MSH analogues may have a role in ED treatment. However, since pro-erectile drugs are given on demand and are not always efficacious, new strategies are being tested for long lasting cures of ED. These include regenerative therapies, e.g., stem cells, plasma-enriched platelets and extracorporeal shock wave treatments to cure damaged erectile tissues. Although fascinating, these therapies are laborious, expensive and not easily reproducible. This leaves old vacuum erection devices and penile prostheses as the only way to get an artificial erection and sexual intercourse with intractable ED, with penile prosthesis used only by accurately selected patients.
Collapse
Affiliation(s)
- Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| | - Francesco Mario Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| | - Giacomo Argiolas
- General Medicine Unit, Hospital San Michele, ARNAS“G. Brotzu”, Piazzale Ricchi 1, 09100 Cagliari, Italy;
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| |
Collapse
|
10
|
Zhang L, Troccoli CI, Mateo-Victoriano B, Lincheta LM, Jackson E, Shu P, Plastini T, Tao W, Kwon D, Chen X, Sharma J, Jorda M, Gulley JL, Bilusic M, Lockhart AC, Beuve A, Rai P. The soluble guanylyl cyclase pathway is inhibited to evade androgen deprivation-induced senescence and enable progression to castration resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.537252. [PMID: 37205442 PMCID: PMC10187243 DOI: 10.1101/2023.05.03.537252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Castration-resistant prostate cancer (CRPC) is fatal and therapeutically under-served. We describe a novel CRPC-restraining role for the vasodilatory soluble guanylyl cyclase (sGC) pathway. We discovered that sGC subunits are dysregulated during CRPC progression and its catalytic product, cyclic GMP (cGMP), is lowered in CRPC patients. Abrogating sGC heterodimer formation in castration-sensitive prostate cancer (CSPC) cells inhibited androgen deprivation (AD)-induced senescence, and promoted castration-resistant tumor growth. We found sGC is oxidatively inactivated in CRPC. Paradoxically, AD restored sGC activity in CRPC cells through redox-protective responses evoked to protect against AD-induced oxidative stress. sGC stimulation via its FDA-approved agonist, riociguat, inhibited castration-resistant growth, and the anti-tumor response correlated with elevated cGMP, indicating on-target sGC activity. Consistent with known sGC function, riociguat improved tumor oxygenation, decreasing the PC stem cell marker, CD44, and enhancing radiation-induced tumor suppression. Our studies thus provide the first evidence for therapeutically targeting sGC via riociguat to treat CRPC. Statement of significance Prostate cancer is the second highest cancer-related cause of death for American men. Once patients progress to castration-resistant prostate cancer, the incurable and fatal stage, there are few viable treatment options available. Here we identify and characterize a new and clinically actionable target, the soluble guanylyl cyclase complex, in castration-resistant prostate cancer. Notably we find that repurposing the FDA-approved and safely tolerated sGC agonist, riociguat, decreases castration-resistant tumor growth and re-sensitizes these tumors to radiation therapy. Thus our study provides both new biology regarding the origins of castration resistance as well as a new and viable treatment option.
Collapse
|
11
|
Longoni M, Bertini A, Schifano N, Zaffuto E, Maggio P, Piercarlo R, Baldini S, Carcano G, Antonini G, Salonia A, Montorsi F, Dehò F, Capogrosso P. A review on pharmacological options for the treatment of erectile dysfunction: state of the art and new strategies. Expert Opin Pharmacother 2023; 24:1375-1386. [PMID: 37272398 DOI: 10.1080/14656566.2023.2221785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) affects between 12.9% and 28.1% of men worldwide, presenting a strong aged-correlated prevalence. Several pharmacological treatments are currently available for ED, which can be classified into oral, injection, and topical/intraurethral therapies. AREAS COVERED Extensive research on PubMed/MEDLINE until February 2023 was performed. For each of the aforementioned drug classes, available molecules, and formulations, their efficacy and most common adverse events as well as general guidelines on prescription were investigated and extensively described. A glimpse into future directions regarding ED pharmacotherapy is also present. EXPERT OPINION In recent years, there have been significant developments in pharmacological treatments for ED. It is essential for physicians to identify the best treatment option for patients based on their preferences and sexual habits. The treatment approach for ED has shifted from a sequential to a parallel paradigm, where all treatment options are available as first-line therapies. While there are promising regenerative therapies for ED, such as shockwaves and platelet-rich plasma injections, pharmacological treatment is still the most effective option for most patients.
Collapse
Affiliation(s)
- Mattia Longoni
- Department of Urology, IRCCS San Raffaele Hospital; University Vita-Salute San Raffaele, Milan, Italy
| | - Alessandro Bertini
- Department of Urology, IRCCS San Raffaele Hospital; University Vita-Salute San Raffaele, Milan, Italy
| | - Nicolò Schifano
- Department of Urology, ASST Sette Laghi - Circolo & Fondazione Macchi Hospital; University of Insubria, Varese, Italy
| | - Emanuele Zaffuto
- Department of Urology, ASST Sette Laghi - Circolo & Fondazione Macchi Hospital; University of Insubria, Varese, Italy
| | - Paolo Maggio
- Department of Urology, ASST Sette Laghi - Circolo & Fondazione Macchi Hospital; University of Insubria, Varese, Italy
| | - Rossi Piercarlo
- Department of Urology, ASST Sette Laghi - Circolo & Fondazione Macchi Hospital; University of Insubria, Varese, Italy
| | - Sara Baldini
- Department of Urology, ASST Sette Laghi - Circolo & Fondazione Macchi Hospital; University of Insubria, Varese, Italy
| | - Giulio Carcano
- Department of Surgery, ASST Sette Laghi - Circolo & Fondazione Macchi Hospital; University of Insubria, Varese, Italy
| | - Gabriele Antonini
- Department of Urology, ASST Sette Laghi - Circolo & Fondazione Macchi Hospital; University of Insubria, Varese, Italy
| | - Andrea Salonia
- Department of Urology, IRCCS San Raffaele Hospital; University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Department of Urology, IRCCS San Raffaele Hospital; University Vita-Salute San Raffaele, Milan, Italy
| | - Federico Dehò
- Department of Urology, ASST Sette Laghi - Circolo & Fondazione Macchi Hospital; University of Insubria, Varese, Italy
| | - Paolo Capogrosso
- Department of Urology, ASST Sette Laghi - Circolo & Fondazione Macchi Hospital; University of Insubria, Varese, Italy
| |
Collapse
|
12
|
Liao Y, Du X, Fu Y, Liu L, Wei J, An Q, Luo X, Gao F, Jia S, Chang Y, Guo M, Liu H. Mechanism of traditional Chinese medicine in treating overactive bladder. Int Urol Nephrol 2023; 55:489-501. [PMID: 36479677 PMCID: PMC9957912 DOI: 10.1007/s11255-022-03434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Overactive bladder syndrome (OAB) has made increasing progress in mechanism and treatment research. Traditional Chinese medicine (TCM) is a common complementary therapy for OAB, and it has been found to be effective. However, the intervention mechanism of TCM in the treatment of OAB is still unclear. The aim of this review is to consolidate the current knowledge about the mechanism of TCM: acupuncture, moxibustion, herbs in treating OAB, and the animal models of OAB commonly used in TCM. Finally, we put forward the dilemma of TCM treatment of OAB and discussed the insufficiency and future direction of TCM treatment of OAB.
Collapse
Affiliation(s)
- Yuxiang Liao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Xin Du
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Yuanbo Fu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Jiangyan Wei
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Qi An
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xuanzhi Luo
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Fan Gao
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shuhan Jia
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Chang
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mengxi Guo
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Huilin Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Low-energy shock wave therapy ameliorates ischemic-induced overactive bladder in a rat model. Sci Rep 2022; 12:21960. [PMID: 36536004 PMCID: PMC9763424 DOI: 10.1038/s41598-022-26292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study was to evaluate whether Low-energy shock wave therapy (LESW) improves ischemic-induced overactive bladder in rats and investigate its therapeutic mechanisms. Sixteen-week-old male Sprague-Dawley rats were divided into three groups: arterial injury (AI), AI with LESW (AI-SW), and control groups. LESW was irradiated in AI-SW during 20-23 weeks of age. At 24 weeks of age, conscious cystometry was performed (each n = 8). The voiding interval was shortened in AI (mean ± SEM: 5.1 ± 0.8 min) than in control (17.3 ± 3.0 min), whereas significant improvements were observed in AI-SW (14.9 ± 3.3 min). The bladder blood flow was significantly increased in AI-SW than in AI. Microarray analysis revealed higher gene expression of soluble guanylate cyclase (sGC) α1 and β1 in the bladder of AI-SW compared to AI. Protein expression of sGCα1 and sGCβ1 was higher in AI-SW and control groups than in AI. Cyclic guanosine monophosphate (cGMP) was elevated in AI-SW. As an early genetic response, vascular endothelial growth factor and CD31 were highly expressed 24 h after the first LESW. Suburothelial thinning observed in AI was restored in AI-SW. Activation of sGC-cGMP may play a therapeutic role of LESW in the functional recovery of the bladder.
Collapse
|
14
|
Andersson KE. Oxidative Stress and Its Relation to Lower Urinary Tract Symptoms. Int Neurourol J 2022; 26:261-267. [PMID: 36599334 PMCID: PMC9816449 DOI: 10.5213/inj.2244190.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 12/30/2022] Open
Abstract
The aim of this review is to discuss how to link lower urinary tract symptoms (LUTS) and oxidative stress (OS) and to define relevant targets for therapeutic intervention. Narrative review based on published literature. Many of the multifactorial pathophysiological mechanisms behind LUTS can initiate reactive oxygen species (ROS) generation. Assuming that OS is a consequence rather than a primary cause of LUTS it seems reasonable to identify both the disease mechanism initiating LUTS, and the source of ROS involved. There are many possible sources of ROS overproduction, but the NADPH oxidase (NOX) family of enzymes is the primary source; NOX activation in turn, may result in the activation of secondary ROS sources, i.e., ROS-dependent ROS production. Selective NOX inhibition therefore seems an attractive therapeutic strategy in LUTS treatment. The finding of NOX2 localization to centers in the brain associated with micturition control, opens up for further studies of NOX involvement in the central control of micturition, normally and in disease. Further information on the localization of the different isoforms of NOX in the LUT e.g., the bladder wall and its components and the prostate, is desirable. To optimize treatment, the pathophysiological mechanism initiating LUTS, and the activated isoform of NOX, should be identified. Unfortunately, in most cases of LUTS this is currently not possible. Even if selective NOX inhibitors have entered the clinical trial stage for treatment of disorders other than LUT dysfunction, their efficacy for LUTS treatment has to be demonstrated. If this can be achieved, an attractive approach would be combination of selective NOX inhibition with established drug therapies.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Saikia Q, Hazarika A, Mishra R. A Review on the Pharmacological Importance of PDE5 and Its Inhibition to Manage Biomedical Conditions. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221129008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phosphodiesterase type 5 (PDE5) is a cyclic GMP (cGMP) specific protein. It hydrolyzes the phosphodiesterase linkage and catalyzes the conversion of cGMP to 5’ GMP, which controls different physiological activities of the body. PDE5 is associated with biomedical conditions like neurological disorders, pulmonary arterial hypertension, cardiomyopathy, cancer, erectile dysfunction, and lower urinary tract syndrome. Inhibition of PDE5 has now been proven pharmaceutically effective in a variety of therapeutic conditions. Avanafil, tadalafil, sildenafil, and vardenafil are the most commonly used PDE5 inhibitors (PDE5i) today which are often used for the management of erectile dysfunction, lower urinary tract syndromes, malignancy, and pulmonary arterial hypertension. However, these synthetic PDE5i come with a slew of negative effects. Some of the most common side effects include mild headaches, flushing, dyspepsia, altered color vision, back discomfort, priapism, melanoma, hypotension and dizziness, non-arteritic anterior ischemic optic neuropathy (NAION), and hearing loss. In light of the potential negative effects of this class of medications, there is a lot of room for new, selective PDE5 inhibitors to be discovered. We have found 25 plant botanical compounds effectively inhibiting PDE5 which might be useful in treating a variety of disorders with minimal or no adverse effects.
Collapse
Affiliation(s)
- Queen Saikia
- Department of Zoology, Gauhati University, Guwahati, Assam, India
| | - Ajit Hazarika
- Tyagbir Hem Baruah College, Jamugurihat, Sonitpur, Assam, India
| | - Ritu Mishra
- Department of Zoology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
16
|
Gotoh D, Saito T, Karnup S, Morizawa Y, Hori S, Nakai Y, Miyake M, Torimoto K, Fujimoto K, Yoshimura N. Therapeutic effects of a soluble guanylate cyclase activator, BAY 60-2770, on lower urinary tract dysfunction in mice with spinal cord injury. Am J Physiol Renal Physiol 2022; 323:F447-F454. [PMID: 35952343 PMCID: PMC9485004 DOI: 10.1152/ajprenal.00105.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
We aimed to evaluate the effects of a soluble guanylate cyclase (sGC) activator, BAY 60-2770, on neurogenic lower urinary tract dysfunction in mice with spinal cord injury (SCI). Mice were divided into the following three groups: spinal cord intact (group A), SCI + vehicle (group B), and SCI + BAY 60-2770 (group C). SCI mice underwent Th8-Th9 spinal cord transection and treatment with BAY 60-2770 (10 mg/kg/day) once daily for 2-4 wk after SCI. We evaluated urodynamic parameters using awake cystometry and external urethral sphincter electromyograms (EMG); mRNA levels of mechanosensory channels, nitric oxide (NO)-, ischemia-, and inflammation-related markers in L6-S1 dorsal root ganglia, the urethra, and bladder tissues; and protein levels of cGMP in the urethra at 4 wk after SCI. With awake cystometry, nonvoiding contractions, postvoid residual, and bladder capacity were significantly larger in group B than in group C. Voiding efficiency (VE) was significantly higher in group C than in group B. In external urethral sphincter EMGs, the duration of notch-like reductions in intravesical pressure and reduced EMG activity time were significantly longer in group C than in group B. mRNA expression levels of transient receptor potential ankyrin 1, transient receptor potential vanilloid 1, acid-sensing ion channel (ASIC)1, ASIC2, ASIC3, and Piezo2 in the dorsal root ganglia, and hypoxia-inducible factor-1α, VEGF, and transforming growth factor-β1 in the bladder were significantly higher in group B than in groups A and C. mRNA levels of neuronal NO synthase, endothelial NO synthase, and sGCα1 and protein levels of cGMP in the urethra were significantly lower in group B than in groups A and C. sGC modulation might be useful for the treatment of SCI-related neurogenic lower urinary tract dysfunction.NEW & NOTEWORTHY This is the first report to evaluate the effects of a soluble guanylate cyclase activator, BAY 60-2770, on neurogenic lower urinary tract dysfunction in mice with spinal cord injury.
Collapse
Affiliation(s)
- Daisuke Gotoh
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Tetsuichi Saito
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Japan
| | | | | | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Andersson KE. Emerging drugs for the treatment of bladder storage dysfunction. Expert Opin Emerg Drugs 2022; 27:277-287. [PMID: 35975727 DOI: 10.1080/14728214.2022.2113057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Current drug treatment of lower urinary tract disorders, for example, overactive bladder syndrome and lower urinary tract symptoms associated with benign prostatic hyperplasia, is moderately effective, has a low treatment persistence and some short- and long-term adverse events. Even if combination therapy with approved drugs may offer advantages in some patients, there is still a need for new agents. AREAS COVERED New b3-adrenoceptor agonists, antimuscarinics, the naked Maxi-K channel gene, a novel 5HT/NA reuptake inhibitor and soluble guanylate cyclase activators are discussed. Focus is given to P2X3 receptor antagonists, small molecule blockers of TRP channels, the roles of cannabis on incontinence in patients with multiple sclerosis, and of drugs acting directly on CB1 and CB2 receptor or indirectly via endocannabinoids by inhibition of fatty acid aminohydrolase. EXPERT OPINION New potential alternatives to currently used drugs/drug principles are emerging, but further clinical testing is required before they can be evaluated as therapeutic alternatives. It seems that for the near future individualized treatment with approved drugs and their combinations will be the prevailing therapeutic approach.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA.,Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Treatment with the soluble guanylate cyclase activator BAY 60–2770 normalizes bladder function in an in vivo rat model of chronic prostatitis. Eur J Pharmacol 2022; 927:175052. [DOI: 10.1016/j.ejphar.2022.175052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022]
|
19
|
Nik-Ahd F, Shindel AW. Pharmacotherapy for Erectile Dysfunction in 2021 and Beyond. Urol Clin North Am 2022; 49:209-217. [DOI: 10.1016/j.ucl.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Zabbarova IV, Ikeda Y, Kozlowski MG, Tyagi P, Birder L, Chakrabarty B, Perera S, Dhir R, Straub AC, Sandner P, Andersson KE, Drake M, Fry CH, Kanai A. Benign prostatic hyperplasia/obstruction ameliorated using a soluble guanylate cyclase activator. J Pathol 2022; 256:442-454. [PMID: 34936088 PMCID: PMC8930559 DOI: 10.1002/path.5859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 09/22/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a feature of ageing males. Up to half demonstrate bladder outlet obstruction (BOO) with associated lower urinary tract symptoms (LUTS) including bladder overactivity. Current therapies to reduce obstruction, such as α1-adrenoceptor antagonists and 5α-reductase inhibitors, are not effective in all patients. The phosphodiesterase-5 inhibitor (PDE5I) tadalafil is also approved to treat BPH and LUTS, suggesting a role for nitric oxide (NO• ), soluble guanylate cyclase (sGC), and cGMP signalling pathways. However, PDE5I refractoriness can develop for reasons including nitrergic nerve damage and decreased NO• production, or inflammation-related oxidation of the sGC haem group, normally maintained in a reduced state by the cofactor cytochrome-b5-reductase 3 (CYB5R3). sGC activators, such as cinaciguat (BAY 58-2667), have been developed to enhance sGC activity in the absence of NO• or when sGC is oxidised. Accordingly, their effects on the prostate and LUT function of aged mice were evaluated. Aged mice (≥24 months) demonstrated a functional BPH/BOO phenotype, compared with adult animals (2-12 months), with low, delayed voiding responses and elevated intravesical pressures as measured by telemetric cystometry. This was consistent with outflow tract histological and molecular data that showed urethral constriction, increased prostate weight, greater collagen deposition, and cellular hyperplasia. All changes in aged animals were attenuated by daily oral treatment with cinaciguat for 2 weeks, without effect on serum testosterone levels. Cinaciguat had only transient (1 h) cardiovascular effects with oral gavage, suggesting a positive safety profile. The benefit of cinaciguat was suggested by its reversal of an overactive cystometric profile in CYB5R3 smooth muscle knockout mice that mirrors a profile of oxidative dysfunction where PDE5I may not be effective. Thus, the aged male mouse is a suitable model for BPH-induced BOO and cinaciguat has a demonstrated ability to reduce prostate-induced obstruction and consequent effects on bladder function. © 2021 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Irina V. Zabbarova
- University of Pittsburgh, Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, USA
| | - Youko Ikeda
- University of Pittsburgh, Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, USA
| | - Mark G. Kozlowski
- University of Pittsburgh, Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- University of Pittsburgh, Department of Urology, Pittsburgh, PA, USA
| | - Lori Birder
- University of Pittsburgh, Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Basu Chakrabarty
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol, UK
| | - Subashan Perera
- University of Pittsburgh, Department of Medicine, Geriatrics Division, Pittsburgh, PA, USA
| | - Rajiv Dhir
- University of Pittsburgh, Department of Pathology, Pittsburgh, PA, USA
| | - Adam C. Straub
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
- Heart, Lung, Blood and Vascular Medicine Institute, Pittsburgh, PA, USA
| | | | - Karl-Erik Andersson
- Lund University, Division of Clinical Chemistry and Pharmacology, Lund, Sweden
| | - Marcus Drake
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol, UK
| | - Christopher H. Fry
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol, UK
| | - Anthony Kanai
- University of Pittsburgh, Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Pros and Cons of Pharmacological Manipulation of cGMP-PDEs in the Prevention and Treatment of Breast Cancer. Int J Mol Sci 2021; 23:ijms23010262. [PMID: 35008687 PMCID: PMC8745278 DOI: 10.3390/ijms23010262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
The cyclic nucleotides, cAMP and cGMP, are ubiquitous second messengers responsible for translating extracellular signals to intracellular biological responses in both normal and tumor cells. When these signals are aberrant or missing, cells may undergo neoplastic transformation or become resistant to chemotherapy. cGMP-hydrolyzing phosphodiesterases (PDEs) are attracting tremendous interest as drug targets for many diseases, including cancer, where they regulate cell growth, apoptosis and sensitization to radio- and chemotherapy. In breast cancer, PDE5 inhibition is associated with increased intracellular cGMP levels, which is responsible for the phosphorylation of PKG and other downstream molecules involved in cell proliferation or apoptosis. In this review, we provide an overview of the most relevant studies regarding the controversial role of PDE inhibitors as off-label adjuvants in cancer therapy.
Collapse
|
22
|
Pereira TA, D'ancona CAL, Cândido EC, Achermann APP, Chaim EA. Prevalence of LUTS and urodynamics results in obese women. Neurourol Urodyn 2021; 41:468-474. [PMID: 34888922 DOI: 10.1002/nau.24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Obesity is a well-known risk factor for lower urinary tract disorders. Lifestyle plays an essential role in the etiology of the symptoms, negatively affecting self-esteem and quality of social, professional, and sexual life. OBJECTIVES To assess the prevalence of lower urinary tract symptoms and urodynamic patterns in obese women and to compare to nonobese volunteers. METHODS Overactive bladder (OAB) questionaries (International Consultation on Incontinence Questionnaire [ICIQ]-OAB) and stress urinary incontinence (SUI) (ICIQ-short form) were applied to the participants. They underwent a physical exam and urodynamics except for the control group. RESULTS A total of 109 women completed the protocol and 20 were in the control group. The average age was 43.0 years, and the average body mass index was 45.12 ± 7.64 kg/m2 and control was 44.5 years, and 29.95 ± 5.08 kg/m2 . The OAB symptoms in the obese group were 31.20%, 55.95% higher than the control group (20.0%). The prevalence of SUI in the obese group was 20.20%, an increase of 34.53% compared with the control group (15.00%). The urodynamic study (UDS) showed that the morbidly obese women have a first sensation earlier than the obese or severely obese, as well as the first desire to void. The Valsalva leak point pressure of morbidly obese women was significantly higher than the others. CONCLUSION Among obese women, either the prevalence of SUI or OAB is significantly higher than the nonobese female population. Regarding UDS, the pattern is similar to the clinic diagnostic. The grade of obesity is directly associated with an impairment of the patient's cystometric capacity.
Collapse
Affiliation(s)
- Thairo A Pereira
- Department of Surgery, Division of Urology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos A L D'ancona
- Department of Surgery, Division of Urology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Elaine C Cândido
- Department of Surgery, Division of Urology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Arnold P P Achermann
- Department of Surgery, Division of Urology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Elinton A Chaim
- Department of Surgery, Division of Urology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
23
|
Gotoh D, Cao N, Alexandre EC, Saito T, Morizawa Y, Hori S, Miyake M, Torimoto K, Fujimoto K, Yoshimura N. Effects of low-dose insulin or a soluble guanylate cyclase activator on lower urinary tract dysfunction in streptozotocin-induced diabetic rats. Life Sci 2021; 286:120001. [PMID: 34614417 DOI: 10.1016/j.lfs.2021.120001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/28/2022]
Abstract
AIMS To examine the effects of low-dose insulin or a soluble guanylate cyclase activator (sGC) on lower urinary tract dysfunction (LUTD) in rats with diabetes mellitus (DM). MAIN METHODS Female Sprague-Dawley rats were divided into non-DM control (N), DM induced by streptozotocin (65 mg/kg), with low-dose insulin (DI), DM with vehicle (D), and DM with sGC (GC) groups. In GC group, BAY 60-2770 (1 mg/kg/day) was orally administered in 6-8 weeks after DM. Voiding assay at 2, 4, and 8 weeks after DM, cystometry, and urethral pressure recordings at 8 weeks of DM were performed. mRNA levels of NO-related markers and cGMP protein levels in the urethra, and ischemia and inflammation markers in the bladder were evaluated by RT-PCR. KEY FINDINGS Moderate levels of high blood glucose were maintained in Group DI versus Group D. The 24-h voided volume was significantly higher in Group D versus Groups N and DI. Non-voiding contractions were significantly greater, and voiding efficiency and urethral pressure reduction were significantly lower in Group D versus Groups N, DI, and GC. Urethral cGMP levels were significantly lower in Group D versus Groups N and GC. mRNA levels of PDE5 in the urethra and ischemia and inflammation markers in the bladder increased in Group D versus Group N or DI was reduced after sGC treatment. SIGNIFICANCE DI rats with a lesser degree of bladder and urethral dysfunction might be useful as a slow-progressive DM model. sGC activation could be an effective treatment of LUTD in DM.
Collapse
Affiliation(s)
- Daisuke Gotoh
- Department of Urology, University of Pittsburgh, Pittsburgh, School of Medicine, PA, United States of America; Department of Urology, Nara Medical University, Kashihara, Japan
| | - Nailong Cao
- Department of Urology, University of Pittsburgh, Pittsburgh, School of Medicine, PA, United States of America
| | - Eduardo C Alexandre
- Department of Urology, University of Pittsburgh, Pittsburgh, School of Medicine, PA, United States of America
| | - Tetsuichi Saito
- Department of Urology, University of Pittsburgh, Pittsburgh, School of Medicine, PA, United States of America
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Japan
| | | | | | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, Pittsburgh, School of Medicine, PA, United States of America.
| |
Collapse
|
24
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Shimizu T, Shimizu S, Higashi Y, Saito M. Psychological/mental stress-induced effects on urinary function: Possible brain molecules related to psychological/mental stress-induced effects on urinary function. Int J Urol 2021; 28:1093-1104. [PMID: 34387005 DOI: 10.1111/iju.14663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Exposure to psychological/mental stress can affect urinary function, and lead to and exacerbate lower urinary tract dysfunctions. There is increasing evidence showing stress-induced changes not only at phenomenological levels in micturition, but also at multiple levels, lower urinary tract tissues, and peripheral and central nervous systems. The brain plays crucial roles in the regulation of the body's responses to stress; however, it is still unclear how the brain integrates stress-related information to induce changes at these multiple levels, thereby affecting urinary function and lower urinary tract dysfunctions. In this review, we introduce recent urological studies investigating the effects of stress exposure on urinary function and lower urinary tract dysfunctions, and our recent studies exploring "pro-micturition" and "anti-micturition" brain molecules related to stress responses. Based on evidence from these studies, we discuss the future directions of central neurourological research investigating how stress exposure-induced changes at peripheral and central levels affect urinary function and lower urinary tract dysfunctions. Brain molecules that we explored might be entry points into dissecting the stress-mediated process for modulating micturition.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
26
|
Justo AFO, de Oliveira MG, Calmasini FB, Alexandre EC, Bertollotto GM, Jacintho FF, Antunes E, Mónica FZ. Preserved activity of soluble guanylate cyclase (sGC) in iliac artery from middle-aged rats: Role of sGC modulators. Nitric Oxide 2021; 106:9-16. [PMID: 33122152 DOI: 10.1016/j.niox.2020.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Vascular aging leads to structural and functional changes. Iliac arteries (IA) provide blood flow to lower urinary tract and pelvic ischemia has been reported as an important factor for bladder remodeling and overactivity. Dysfunction of the nitric oxide (NO)-cyclic guanosine monophosphate pathway (cGMP) is one factor involved in the development of lower urinary tract (LUT) disorders. Therefore, we hypothesized that ageing-associated LUT disorders is a consequence of lower cGMP productions due to an oxidation of soluble guanylate cylase (sGC) that results in local ischemia. In the present study IA from middle-aged and young rats were isolated and the levels of NO, reactive oxygen species (ROS), the gene expression of the enzymes involved in the NO-pathway and concentration-response curves to the soluble guanylate (sGC) stimulator (BAY 41-2272), sGC activator (BAY 58-2667), tadalafil, acetylcholine (ACh) and sodium nitroprusside (SNP) were determined. In IA from middle-aged rats the gene expression for endothelial nitric oxide synthase and the ROS were lower and higher, respectively than the young group. The relaxations induced by ACh and SNP were significantly lower in IA from middle-aged rats. In IA from middle-aged rats the mRNA expression of PDE5 was 55% higher, accompanied by lower relaxation induced by tadalafil. On the other hand, the gene expression for sGCα1 were similar in IA from both groups. Both BAY 41-2272 and BAY 58-2667 produced concentration-dependent relaxations in IA from both groups, however, the latter was 9-times more potent than BAY 41-2272 and produced similar relaxations in IA in both middle-aged and young groups. Yet, the sGC oxidant, ODQ increased the relaxation and the cGMP levels induced by BAY 58-2667. On the other hand, in tissues stimulated with SNP, tadalafil and BAY-2272, the intracellular levels of cGMP were lower in IA from middle-aged than young rats. In conclusion, our results clearly showed that the relaxations induced by the endothelium-dependent and -independent agents, by the PDE5 inhibitor and by sGC stimulator were impaired in IA from aged rats, while that induced by sGC activator was preserved. It suggests that sGC activator may be advantageous in treating ischemia-related functional changes in the lower urinary tract organs in situations where the NO levels are reduced.
Collapse
Affiliation(s)
- Alberto Fernando O Justo
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | | | | | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Brazil.
| |
Collapse
|
27
|
Lee JE, Park CH, Kang H, Ko J, Cho S, Woo J, Chae MR, Lee SW, Kim SJ, Kim J, So I. The agonistic action of URO-K10 on Kv7.4 and 7.5 channels is attenuated by co-expression of KCNE4 ancillary subunit. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:503-516. [PMID: 33093272 PMCID: PMC7585595 DOI: 10.4196/kjpp.2020.24.6.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022]
Abstract
KCNQ family constitutes slowly-activating potassium channels among voltage-gated potassium channel superfamily. Recent studies suggested that KCNQ4 and 5 channels are abundantly expressed in smooth muscle cells, especially in lower urinary tract including corpus cavernosum and that both channels can exert membrane stabilizing effect in the tissues. In this article, we examined the electrophysiological characteristics of overexpressed KCNQ4, 5 channels in HEK293 cells with recently developed KCNQ-specific agonist. With submicromolar EC50, the drug not only increased the open probability of KCNQ4 channel but also increased slope conductance of the channel. The overall effect of the drug in whole-cell configuration was to increase maximal whole-cell conductance, to prolongate the activation process, and left-shift of the activation curve. The agonistic action of the drug, however, was highly attenuated by the co-expression of one of the β ancillary subunits of KCNQ family, KCNE4. Strong in vitro interactions between KCNQ4, 5 and KCNE4 were found through Foster Resonance Energy Transfer and co-immunoprecipitation. Although the expression levels of both KCNQ4 and KCNE4 are high in mesenteric arterial smooth muscle cells, we found that 1 μM of the agonist was sufficient to almost completely relax phenylephrine-induced contraction of the muscle strip. Significant expression of KCNQ4 and KCNE4 in corpus cavernosum together with high tonic contractility of the tissue grants highly promising relaxational effect of the KCNQ-specific agonist in the tissue.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Christine Haewon Park
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hana Kang
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Suhan Cho
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - JooHan Woo
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Mee Ree Chae
- Department of Urology, Samsung Medical Center, Seoul 06351, Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Seoul 06351, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jinsung Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
28
|
Ono H, Shimizu T, Zou S, Yamamoto M, Shimizu Y, Aratake T, Hamada T, Nagao Y, Shimizu S, Higashi Y, Saito M. Brain nitric oxide induces facilitation of the micturition reflex through brain glutamatergic receptors in rats. Neurourol Urodyn 2020; 39:1687-1699. [DOI: 10.1002/nau.24440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Hideaki Ono
- Department of PharmacologyKochi Medical School, Kochi University Nankoku Kochi Japan
- Innovative Medicine Group, Center for Innovative and Translational Medicine, Kochi Medical SchoolKochi University Nankoku Kochi Japan
| | - Takahiro Shimizu
- Department of PharmacologyKochi Medical School, Kochi University Nankoku Kochi Japan
| | - Suo Zou
- Department of PharmacologyKochi Medical School, Kochi University Nankoku Kochi Japan
| | - Masaki Yamamoto
- Department of PharmacologyKochi Medical School, Kochi University Nankoku Kochi Japan
| | - Yohei Shimizu
- Department of PharmacologyKochi Medical School, Kochi University Nankoku Kochi Japan
- Innovative Medicine Group, Center for Innovative and Translational Medicine, Kochi Medical SchoolKochi University Nankoku Kochi Japan
| | - Takaaki Aratake
- Department of PharmacologyKochi Medical School, Kochi University Nankoku Kochi Japan
- Research Fellow of Japan Society for the Promotion of Science Japan
| | - Tomoya Hamada
- Department of PharmacologyKochi Medical School, Kochi University Nankoku Kochi Japan
| | - Yoshiki Nagao
- Department of PharmacologyKochi Medical School, Kochi University Nankoku Kochi Japan
| | - Shogo Shimizu
- Department of PharmacologyKochi Medical School, Kochi University Nankoku Kochi Japan
| | - Youichirou Higashi
- Department of PharmacologyKochi Medical School, Kochi University Nankoku Kochi Japan
| | - Motoaki Saito
- Department of PharmacologyKochi Medical School, Kochi University Nankoku Kochi Japan
| |
Collapse
|
29
|
Zhang D, Wang YL, Gong DX, Zhang ZX, Yu XT, Ma YW. Radial Extracorporeal Shock Wave Therapy as a Novel Agent for Benign Prostatic Hyperplasia Refractory to Current Medical Therapy. Am J Mens Health 2020; 13:1557988319831899. [PMID: 30767611 PMCID: PMC6440046 DOI: 10.1177/1557988319831899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study aimed to assess efficacy and safety data from pilot trials of the radial extracorporeal shock wave therapy (rESWT) to treat benign prostatic hyperplasia (BPH) refractory to current medical therapy. A total of 29 men with lower urinary tract symptoms (LUTS) suggestive of BPH who had responded poorly to medical therapy for at least 6 months and were poor surgical candidates were enrolled. Each participant was treated with rESWT once a week for 8 weeks, each by 2000 impulses at 2.0 bar and 10 hertz of frequency. International Prostate Symptom Score (IPSS), quality of life (QoL), and International Index of Erectile Function-5 (IIEF-5) were evaluated before treatment, after the fourth and eighth rESWT, and 3 months after the end of treatment. Peak urinary flow ( Qmax) and postvoid residual (PVR) were assessed. Safety was also documented. Statistically significant clinical improvements were reported for IPSS, QoL, and IIEF-5 after treatment, and those were sustained until 3 months follow-up. Qmax and PVR improved evidently at 8 weeks with a 63% and 70% improvement, respectively. The only adverse event was the occasional perineum pain or discomfort, which usually disappeared within 3 days. The rESWT may be an effective, safe, and noninvasive treatment for symptomatic BPH in selected patients whose medical treatment has faced failure and are poor surgical candidates.
Collapse
Affiliation(s)
- Dai Zhang
- 1 Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yun-Lei Wang
- 1 Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Da-Xin Gong
- 2 Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhao-Xuan Zhang
- 1 Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Tong Yu
- 3 Institute of Meta-Synthesis Medicine, Beijing, China
| | - Yue-Wen Ma
- 1 Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Pharmacology and perspectives in erectile dysfunction in man. Pharmacol Ther 2020; 208:107493. [PMID: 31991196 DOI: 10.1016/j.pharmthera.2020.107493] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
Penile erection is a perfect example of microcirculation modulated by psychological factors and hormonal status. It is the result of a complex neurovascular process that involves the integrative synchronized action of vascular endothelium; smooth muscle; and psychological, neuronal, and hormonal systems. Therefore, the fine coordination of these events is essential to maintain penile flaccidity or allow erection; an alteration of these events leads to erectile dysfunction (ED). ED is defined as the consistent or recurrent inability of a man to attain and/or maintain a penile erection sufficient for sexual activity. A great boost to this research field was given by commercialization of phosphodiesterase-5 (PDE5) inhibitors. Indeed, following the discovery of sildenafil, research on the mechanisms underlying penile erection has had an enormous boost, and many preclinical and clinical papers have been published in the last 10 years. This review is structured to provide an overview of the mediators and peripheral mechanism(s) involved in penile function in men, the drugs used in therapy, and the future prospective in the management of ED. Indeed, 30% of patients affected by ED are classified as "nonresponders," and there is still an unmet need for therapeutic alternatives. A flowchart suggesting the guidelines for ED evaluation and the ED pharmacological treatment is also provided.
Collapse
|
31
|
Ruviaro AR, Barbosa PDPM, Alexandre EC, Justo AFO, Antunes E, Macedo GA. Aglycone-rich extracts from citrus by-products induced endothelium-independent relaxation in isolated arteries. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Two Birds with One Stone: Regular Use of PDE5 Inhibitors for Treating Male Patients with Erectile Dysfunction and Cardiovascular Diseases. Cardiovasc Drugs Ther 2019; 33:119-128. [PMID: 30675707 DOI: 10.1007/s10557-019-06851-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Patients with cardiovascular disease (CVD) frequently have erectile dysfunction (ED) because the two conditions have similar risk factors and potential mechanisms. The therapeutic effect of CVD is strongly dependent upon long-term management of the condition. Patients with CVD tend to have poor medication compliance, and the coexistence of ED often discourages patients with CVD from continuing their long-term CVD management, thus worsening CVD treatment compliance. The two major reasons for poor compliance are that (i) the adverse effects of cardiovascular medications on erectile function drive people to reduce the prescribed dosage or even stop taking the medications to obtain satisfactory sexual arousal and (ii) a worsening mental state due to ED reduces medication compliance. The regular administration of phosphodiesterase-5 inhibitors (PDE5is) guarantees that the prescribed medication dosages are easy to comply with and that they improve the mental status of patients by enhancing their erectile function, resulting in improved long-term management of CVD through medication compliance. PDE5is themselves also play a role in reducing cardiovascular events and improving the prognosis. We recommend prescribing PDE5is for ED and suggest that PDE5i administration is a promising strategy to improve the long-term management of patients with both ED and CVD.
Collapse
|
33
|
Tawa M, Shimosato T, Sakonjo H, Masuoka T, Nishio M, Ishibashi T, Okamura T. Chronological Change of Vascular Reactivity to cGMP Generators in the Balloon-Injured Rat Carotid Artery. J Vasc Res 2019; 56:109-116. [PMID: 31085923 DOI: 10.1159/000498896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/13/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Soluble guanylate cyclase (sGC) exists as reduced, oxidized, and heme-free forms. Currently, it is unclear whether endovascular mechanical stenosis has an impact on vascular tone control by drugs targeting sGC, namely cGMP generators. METHODS Pharmacological responses to acidified sodium nitrite (reduced sGC stimulant) and BAY 60-2770 (oxidized/heme-free sGC stimulant) were studied in balloon-injured rat carotid arteries at several time points. In addition, sGC expression was detected by immunohistochemistry. RESULTS At 1 day after injury, acidified sodium nitrite-induced relaxation was attenuated in the injured artery, whereas BAY 60-2770-induced relaxation was augmented. Similar attenuation of response to acidified sodium nitrite was seen at 7 and 14 days after injury. On the other hand, the augmentation of response to BAY 60-2770 disappeared at 7 and 14 days after injury. At 1 day after injury, the immunohistochemical expression pattern of sGC in the smooth muscle layer of the injured artery was not different from that of the uninjured artery. However, in the injured artery, the intensity of sGC staining was weak at 7 and 14 days after injury. CONCLUSION Balloon injury alters vascular responsiveness to cGMP generators, which seems to be associated with the form and/or expression of sGC.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan, .,Department of Pharmacology, Kanazawa Medical University, Kahoku, Japan,
| | | | | | - Takayoshi Masuoka
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Japan
| | - Matomo Nishio
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Japan
| | | | - Tomio Okamura
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
34
|
de Oliveira MG, Alexandre EC, Bonilla-Becerra SM, Bertollotto GM, Justo AFO, Mónica FZ, Antunes E. Autonomic dysregulation at multiple sites is implicated in age-associated underactive bladder in female mice. Neurourol Urodyn 2019; 38:1212-1221. [PMID: 30932250 DOI: 10.1002/nau.23990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023]
Abstract
AIMS To evaluate the functional and molecular alterations of contractile and relaxant machinery in the bladder and urethra that lead to the underactive bladder (UAB) in old female mice. METHODS Female young (3-months) and old (18-months) C57BL/6 mice were used. Urodynamic was assessed in awake and anaesthetized mice. Electrical-field stimulation (EFS) and concentration-response curves to contractile and relaxing agents in isolated bladders and urethras were performed. Messenger RNA (mRNA) expressions of muscarinic, adrenergic, and transient receptor potential vanilloid-4 (TRPV4), and of the enzymes tyrosine hydroxylase and neuronal nitric oxide synthase (nNOS) were determined. Bladder cyclic adenosine monophosphate (cAMP) levels were measured. RESULTS Cystometry in old mice showed incapacity to produce bladder emptying. On filter paper, old mice showed reduced urinary spots. Compared to the young group, bladder contractions induced by EFS and carbachol were lower in old mice. The β3 -adrenoceptor agonist mirabegron promoted higher bladder relaxation and elevation of cAMP levels in old mice. In old mice urethras, the α1a -adrenoceptor agonist phenylephrine produced higher contractions, but no differences were found for the NO donor sodium nitroprusside-induced relaxations. In old mice, increased mRNA expressions of β3 - and α1a -adrenoceptors in bladder and urethra were found, respectively, whereas the muscarinic M2 and M3 receptors and β2 -adrenoceptors did not change between groups. Reduced mRNA expressions of tyrosine hydroxylase and nNOS were found in old mouse urethras. Additionally, TRPV4 expression was reduced in bladder urothelium from old mice. CONCLUSION Age-associated mouse UAB is the result of autonomic dysfunction at multiple levels leading to the less sensitive and overrelaxed bladder, along with urethral hypercontractility.
Collapse
Affiliation(s)
- Mariana Gonçalves de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Sandra Milena Bonilla-Becerra
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Gabriela Maria Bertollotto
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Alberto Fernando Oliveira Justo
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabiola Zakia Mónica
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
35
|
Abstract
INTRODUCTION In men, lower urinary tract symptoms (LUTS) are primarily attributed to benign prostatic hyperplasia (BPH). Therapeutic options are targeted to relax prostate smooth muscle and/or reduce prostate enlargement. Areas covered: This article reviews the major preclinical and clinical data on PDE5 inhibitors with a specific focus on tadalafil. It includes details of the role of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) - PDE5 pathway in the LUT organs (bladder and prostate) in addition to the available data on tadalafil in patients with LUTS secondary to BPH with or without erectile dysfunction (ED). Expert opinion: Preclinical and clinical data have clearly demonstrated that PDE5 inhibitors induce bladder and prostate relaxation, which contributes to the improvement seen in storage symptoms in both animal models of bladder and prostate hypercontractility. Tadalafil is effective both as a monotherapy and add-on therapy in patients with LUTS secondary to BPH. Furthermore, as LUTS-BPH and ED are urological disorders that commonly coexist in aging men, tadalafil is more advantageous than α1-adrenoceptors and should be used as the first option. Tadalafil is a safe and tolerable therapy and unlike α1- adrenoceptors and 5-alpha reductase inhibitors, which can cause sexual dysfunctions, tadalafil improves sexual function.
Collapse
Affiliation(s)
- Fabiola Zakia Mónica
- a Department of Pharmacology, Faculty of Medical Sciences , University of Campinas , Campinas , Sao Paulo , Brazil
| | - Gilberto De Nucci
- a Department of Pharmacology, Faculty of Medical Sciences , University of Campinas , Campinas , Sao Paulo , Brazil
| |
Collapse
|
36
|
Hayashi M, Nakashima T, Yoshimura N, Okamoto K, Tanaka S, Takayanagi H. Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging. Cell Metab 2019; 29:627-637.e5. [PMID: 30661929 DOI: 10.1016/j.cmet.2018.12.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/30/2018] [Accepted: 12/21/2018] [Indexed: 01/12/2023]
Abstract
Osteocyte survival is key to bone homeostasis and is perturbed in menopause and aging. However, it remains unknown how osteocyte-mediated maintenance of the skeleton is regulated by the osteoprotective factor semaphorin 3A (Sema3A), a secreted protein that is known to reduce bone resorption and enhance bone formation. Here, we show that estrogen induces osteocyte expression of Sema3A, which acts on its receptor on osteocytes to promote their survival and maintain bone homeostasis. Postnatal global and conditional deletion of Sema3a in osteoblastic cells resulted in a severe osteoporotic phenotype marked by fewer osteocytes. This phenotype was recapitulated by osteocyte-specific deficiency of either Sema3A or its receptor component neuropilin-1 (Nrp1). A stimulator of soluble guanylate cyclase-cGMP signaling mimicked Sema3A action and ameliorated bone loss after ovariectomy. We further show that serum levels of SEMA3A decreased with age or after menopause in humans. Thus, we provide a mechanistic insight into the estrogen action and a promising therapeutic approach to protect against bone-related aging.
Collapse
Affiliation(s)
- Mikihito Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo 113-8549, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo 113-8549, Japan.
| | - Noriko Yoshimura
- Department of Joint Disease Research, 22nd Century Medical and Research Center, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sakae Tanaka
- Department of Orthopedic Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
37
|
TMPRSS2-ERG activates NO-cGMP signaling in prostate cancer cells. Oncogene 2019; 38:4397-4411. [PMID: 30718921 PMCID: PMC6542710 DOI: 10.1038/s41388-019-0730-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/16/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
The aberrant activation of the ERG oncogenic pathway due to the TMPRSS2-ERG gene fusion is the major event that contributes to prostate cancer (PCa) development. However, the critical downstream effectors that can be therapeutically targeted remain to be identified. In this study, we have found that the expression of the α1 and β1 subunits of soluble guanylyl cyclase (sGC) was directly and specifically regulated by ERG in vitro and in vivo and was significantly associated with TMPRSS2-ERG fusion in clinical PCa cohorts. sGC is the major mediator of nitric oxide (NO)-cGMP signaling in cells that, upon NO binding, catalyzes the synthesis of cGMP and subsequently activates protein kinase G (PKG). We showed that cGMP synthesis was significantly elevated by ERG in PCa cells, leading to increased PKG activity and cell proliferation. Importantly, we also demonstrated that sGC inhibitor treatment repressed tumor growth in TMPRSS2-ERG-positive PCa xenograft models and can act in synergy with a potent AR antagonist, enzalutamide. This study strongly suggests that targeting NO-cGMP signaling pathways may be a novel therapeutic strategy to treat PCa with TMPRSS2-ERG gene fusion.
Collapse
|
38
|
Bertollotto GM, de Oliveira MG, Alexandre EC, Calmasini FB, Passos GR, Antunes E, Mónica FZ. Inhibition of Multidrug Resistance Proteins by MK 571 Enhances Bladder, Prostate, and Urethra Relaxation through cAMP or cGMP Accumulation. J Pharmacol Exp Ther 2018; 367:138-146. [PMID: 30108158 DOI: 10.1124/jpet.118.250076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
Abstract
The biologic effect of cAMP and cGMP is terminated by phosphodiesterases and multidrug resistance proteins MRP4 and MRP5, which pump cyclic nucleotides out of the cell. Therefore, this study aimed to characterize the role of MRP inhibitor, MK 571 (3-[[[3-[(1E)-2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]propanoic acid), in the bladder, prostate, and urethra of male mice by means of functional assays, protein expression, and cyclic nucleotide quantification. The cumulative addition of MK 571 (1-30 µM) produced only small relaxation responses (approximately 25%) in all studied tissues. In the bladder, isoprenaline/fenoterol and forskolin concentration-dependently relaxed and MK 571 (20 µM) increased the maximal response values by 37% and 24%, respectively. When MK 571 was coincubated with fenoterol or forskolin, intracellular levels of cAMP and protein expression of phospho-vasodilator-stimulated phosphoprotein (p-VASP) Ser157 were significantly greater compared with bladders stimulated with fenoterol or forskolin alone. In the prostate and urethra, sodium nitroprusside concentration-dependently relaxed and MK 571 (20 µM) significantly increased relaxation responses by 70% and 56%, respectively, accompanied by greater intracellular levels of cGMP and protein expression of p-VASP Ser239 in the prostate. Tadalafil and BAY 41-2272 (5-cyclopropyl-2-[1-[(2-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridin-3-yl]-4-pyrimidinamine) also relaxed the prostate and urethra, respectively, and MK 571 markedly enhanced this response. The stable analog of cGMP (8-Br-cGMP) induced concentration-dependent relaxation responses in the prostate and urethra, and MK 571 significantly increased the relaxation response. In conclusion, to our knowledge, this is the first study to show that efflux transporters are physiologically active in the bladder, prostate, and urethra to control intracellular levels of cAMP or cGMP.
Collapse
Affiliation(s)
- Gabriela Maria Bertollotto
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gabriela Reolon Passos
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fabiola Zakia Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
39
|
Andersson KE. PDE5 inhibitors - pharmacology and clinical applications 20 years after sildenafil discovery. Br J Pharmacol 2018; 175:2554-2565. [PMID: 29667180 DOI: 10.1111/bph.14205] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 11/28/2022] Open
Abstract
The discovery of the nitric oxide/cGMP pathway was the basis for our understanding of many normal physiological functions and the pathophysiology of several diseases. Since the discovery and introduction of sildenafil, inhibitors of PDE5 have been the first-line therapy for erectile dysfunction (ED). The success of sildenafil in the treatment of ED stimulated research in the field of PDE5 inhibition and led to many new applications, such as treatment of lower urinary symptoms, and pulmonary arterial hypertension, which are now approved indications. However, PDE5 inhibitors have also been used in several other disorders not discussed in this review, and the fields of clinical use are increasing. In the present review, the pharmacological basis of the NO/cGMP pathway and the rationale and clinical use of PDE5 inhibitors in different diseases are discussed.
Collapse
Affiliation(s)
- K-E Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA.,Institute of Laboratory Medicine, Lund University, 223 62, Lund, Sweden
| |
Collapse
|