1
|
Wu S, Yang R, Bao H, Li Y, Chen W, Li H, Xi H, Sun Y, Lu YY, Huang Q, Tian M. The combined effect between environmental exposure and oxidative stress-related susceptible gene polymorphisms on human semen quality. J Assist Reprod Genet 2025:10.1007/s10815-025-03414-8. [PMID: 40032748 DOI: 10.1007/s10815-025-03414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
PURPOSE The aim of the current study was to investigate the relationship between environmental factors and metabolic gene genotypes related to semen quality. METHODS A total of 341 men were recruited and classified into normal or abnormal semen quality groups according to the World Health Organization's 2010 criteria. Alcohol and tobacco use among men was self-reported. Pb (lead), As (arsenic), Ti (titanium), and Zn (zinc) metal elements in seminal plasma were measured using inductively coupled plasma mass spectrometry (ICP-MS). The ALDH2 rs671 and GSTP1 rs1695 polymorphism were detected using high-resolution melting (HRM) PCR. RESULTS Individual environmental factors, including smoking, drinking, and exposure to Pb, As, Ti, or Zn, did not significantly associate with the risk of semen abnormalities. The ALDH2 GA/AA mutation genotype increased the risk of semen abnormalities in smoking males (AOR = 1.27; 95% CI, 1.01-1.62) and in males with high seminal Ti levels (AOR = 1.36; 95% CI, 1.00-1.90). The GSTP1 rs1695 gene (GG/AG) mutation genotype exhibited a protective effect on semen quality in males who did not consume alcohol (AOR = 0.65; 95% CI, 0.51-0.85) or smoke (AOR = 0.79; 95% CI, 0.61-1.00), as well as in those with low Pb (AOR = 0.63; 95% CI, 0.46-0.88) and Ti (AOR = 0.64; 95% CI, 0.47-0.90) exposure. CONCLUSIONS The current study demonstrated that genetic and environmental factors interact with semen quality, and that men with the ALDH2 rs671A or GSTP1 rs1695A allele are susceptible to Ti-, alcohol-, and tobacco-induced semen quality abnormalities.
Collapse
Affiliation(s)
- Shuangshan Wu
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Rui Yang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Huaqiong Bao
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, 400020, China
| | - Youzhu Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, China
| | - Wei Chen
- Department of Reproductive Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, China
| | - Huiru Li
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Hanyan Xi
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China.
| | - Yan-Yang Lu
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Qingyu Huang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Meiping Tian
- State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
2
|
Wu JG, Zhou CP, Gui WW, Liang ZY, Zhang FB, Fu YG, Li R, Wu F, Lin XH. Correlation of IGF2 levels with sperm quality, inflammation, and DNA damage in infertile patients. Asian J Androl 2025; 27:204-210. [PMID: 39468803 DOI: 10.4103/aja202487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 10/30/2024] Open
Abstract
ABSTRACT Insulin-like growth factor 2 (IGF2) is a critical endocrine mediator implicated in male reproductive physiology. To investigate the correlation between IGF2 protein levels and various aspects of male infertility, specifically focusing on sperm quality, inflammation, and DNA damage, a cohort of 320 male participants was recruited from the Women's Hospital, Zhejiang University School of Medicine (Hangzhou, China) between 1 st January 2024 and 1 st March 2024. The relationship between IGF2 protein concentrations and sperm parameters was assessed, and Spearman correlation and linear regression analysis were employed to evaluate the independent associations between IGF2 protein levels and risk factors for infertility. Enzyme-linked immunosorbent assay (ELISA) was used to measure IGF2 protein levels in seminal plasma, alongside markers of inflammation (tumor necrosis factor-alpha [TNF-α] and interleukin-1β [IL-1β]). The relationship between seminal plasma IGF2 protein levels and DNA damage marker phosphorylated histone H2AX (γ-H2AX) was also explored. Our findings reveal that IGF2 protein expression decreased notably in patients with asthenospermia and teratospermia. Correlation analysis revealed nuanced associations between IGF2 protein levels and specific sperm parameters, and low IGF2 protein concentrations correlated with increased inflammation and DNA damage in sperm. The observed correlations between IGF2 protein levels and specific sperm parameters, along with its connection to inflammation and DNA damage, underscore the importance of IGF2 in the broader context of male reproductive health. These findings lay the groundwork for future research and potential therapeutic interventions targeting IGF2-related pathways to enhance male fertility.
Collapse
Affiliation(s)
- Jing-Gen Wu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Cai-Ping Zhou
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Wei-Wei Gui
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zhong-Yan Liang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Feng-Bin Zhang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ying-Ge Fu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Rui Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Fang Wu
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xi-Hua Lin
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
3
|
Yang T, Liu X, Kang C, Hou G, Shen Y, Liu Z. Chronic psychological stress induces testicular oxidative stress affecting reproductive behavior in rats. Reprod Biol 2025; 25:100934. [PMID: 39571501 DOI: 10.1016/j.repbio.2024.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 02/26/2025]
Abstract
The inhibitory effect of chronic psychological stress on reproductive behavior is widely recognized since long. However, the biological mechanisms underlying these effects, especially the cellular biology of the testicular cells, have not been fully investigated. This study aimed to investigate the effects of chronic psychological stress on rat reproductive behavior and its correlation with testicular cell damage and oxidative stress. The results showed that chronic psychological stress led to a decline in the preference scores of male rats for female rats and caused damage to the testicular tissue structure. Subcellular structures were particularly affected in the chronic psychological stress rats. Furthermore, the levels of MDA, NO, and NOS in testicular cells substantially increased under chronic psychological stress conditions. In conclusion, male reproductive behavioral disorders induced by chronic psychological stress are potentially linked to oxidative damage in testicular tissue.
Collapse
Affiliation(s)
- Tianfeng Yang
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinye Liu
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chunyan Kang
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gonglin Hou
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yunyun Shen
- Institute of Cognitive Neuroscience and Department of Psychology, College of Science, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Zheqi Liu
- TCM hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Li X, Zhang J, Chun, Ling X, Luan T. Association between the composite dietary antioxidant index and risk of infertility: Evidence from NHANES 2013-2020 and a Mendelian randomization study. Int J Gynaecol Obstet 2025; 168:1264-1275. [PMID: 39422585 DOI: 10.1002/ijgo.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE The Composite Dietary Antioxidant Index (CDAI) measures the antioxidant capacity of the diet, which is believed to provide protection against various diseases, including depression, osteoporosis, and papillomavirus infection, by neutralizing harmful oxidative stress. However, the relationship between CDAI and infertility is not well understood. This research aims to explore the potential correlations between CDAI and the risk of infertility. METHODS This research harnessed data from the National Health and Nutrition Examination Survey (NHANES) to execute a cross-sectional analysis involving 8263 US women aged 20-45. Each participant was subjected to two distinct 24-h dietary recall interviews. We calculated the CDAI using average daily antioxidant intake. Infertility was assessed using a standardized questionnaire. The association between CDAI and infertility was examined using weighted multiple logistic regression models, while nonlinear correlations were explored through restricted cubic splines. To affirm the robustness of our findings, sensitivity and subgroup analyses were performed using unweighted logistic regression. Additionally, to ascertain the causal influence of circulating antioxidant levels on infertility, a two-sample univariable Mendelian randomization (MR) analysis was conducted, using the inverse variance weighted (IVW) method as the primary analytic approach. RESULTS Participants who were infertile exhibited lower CDAI levels compared to their fertile counterparts. When confounding variables were accounted for in the multivariate weighted logistic regression model, an inverse relationship was observed between CDAI and infertility, with the odds ratio for the highest versus lowest quartile being 0.55 (0.33-0.90, P = 0.02). However, the IVW method indicated that genetically predicted elevated levels of CDAI did not significantly correlate with infertility. CONCLUSION Cross-sectional observational studies indicate that antioxidants from diets might diminish infertility risks. However, findings from MR studies do not confirm a causal connection. Additional prospective research is required to elucidate this association further.
Collapse
Affiliation(s)
- Xin Li
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - JuanJuan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Chun
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Ting Luan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| |
Collapse
|
5
|
Celik Atalay E, Er Demirhan B, Sagdıcoglu Celep AG. Low-Calorie Sweeteners and Reproductive Health: Evidence and Debates. CURRENT NUTRITION & FOOD SCIENCE 2025; 21:309-332. [DOI: 10.2174/0115734013315621240802055207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 01/04/2025]
Abstract
The reduction in sugar consumption has led to increased use of low-calorie artificial
sweeteners. This coincides with an increase in infertility rates, suggesting that low-calorie artificial
sweeteners may negatively affect reproductive health. Low-calorie sweeteners may affect
oxidative stress, glucose regulation, and the microbiota, which are associated with reproductive
health. Therefore, a review was conducted to examine the effects of commonly used low-calorie
sweeteners on reproductive health through potential biological mechanisms. This review addresses
the effects of low-calorie sweeteners in a wide range of areas, such as infertility, pregnancy and
neonatal health, and early menarche. Recent studies have indicated potential adverse effects of artificial
sweeteners on reproductive health. Research has examined the potential impacts of artificial
sweeteners on various parameters, such as hormone levels, sperm quality, sperm motility, ovarian
function, and pregnancy outcomes. However, the findings of current studies are inconsistent, and
these disparate results may stem from metabolic differences among different types of artificial
sweeteners, variations in research methodologies, diversity in sample sizes, and fluctuations in
study populations. Therefore, further research is needed to comprehensively understand the effects
of artificial sweeteners on reproductive health.
Collapse
Affiliation(s)
- Ece Celik Atalay
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Buket Er Demirhan
- Department of
Pharmaceutical Basic Science, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | | |
Collapse
|
6
|
Wang J, Zhang Z, Shi F, Li Y, Shi C, Wang T, Sun L, Ao L, Han F, Chen Q, Cao J, Liu J. WTAP-mediated m 6A modification of Hmgb2 contributes to spermatogenic damage induced by PM 2.5 exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125896. [PMID: 39988248 DOI: 10.1016/j.envpol.2025.125896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
N6-methyladenosine (m6A) is extensively involved in complex spermatogenesis while being extremely sensitive to environmental exposure. Numerous studies have revealed the toxicity of fine particulate matter (PM2.5) to the male reproductive system, but the specific epigenetic mechanisms involved have been underexplored. Here, we investigated the effect of m6A modification on PM2.5-induced male reproductive impairment by establishing a real-time PM2.5-exposed mouse model and a GC-2spd cell model. PM2.5 exposure resulted in damage to the spermatogenic epithelium and mitochondrial abnormalities in spermatocytes and significantly reduced sperm motility in mice. Gene enrichment analyses of testicular tissue differential m6A modified genes were significantly enriched to spermatogenesis in the PM2.5-treated mice compared with the control group, and the expression of the methylase WTAP was markedly decreased after PM2.5 exposure. Moreover, PM2.5 exposure resulted in a significant reduction in the expression of the spermatogenesis-related gene Hmgb2, as well as in the level of the Hmgb2 m6A modification. Transcriptome sequencing and verification experiments suggested that Hmgb2 may regulate spermatocyte ATP levels. In addition, we demonstrated that the m6A methylase WTAP affects Hmgb2 mRNA stability via m6A modification. Our study provides new insights into PM2.5-induced damage to spermatogenesis and reduced sperm motility.
Collapse
Affiliation(s)
- Jiankang Wang
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China; Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Zhonghao Zhang
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China; Frontier Medical Training Brigade, Third Military Medical University, Xinjiang, 831200, China
| | - Fuquan Shi
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Yingqing Li
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Chaofeng Shi
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Tong Wang
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Lei Sun
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, State Key Lab of Trauma and Chemical Poisoning, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
7
|
Hai E, Li B, Song Y, Zhang J, Zhang J. Ferroptosis emerges as the predominant form of regulated cell death in goat sperm cryopreservation. J Anim Sci Biotechnol 2025; 16:26. [PMID: 39966967 PMCID: PMC11834235 DOI: 10.1186/s40104-025-01158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Freezing-induced sperm damage, often associated with oxidative stress, can result in regulated cell death. Given that oxidative stress can trigger various forms of regulated cell death, the prevailing form during sperm cryopreservation remains unknown. Our study aimed to investigate this issue using cashmere goats as a model. RESULTS We found a significant increase in lyso-phospholipids in frozen-thawed sperm suggested ferroptosis. Assessment of cryopreserved sperm, with or without prior treatment with ferroptosis or apoptosis inhibitors, demonstrated the significant efficacy of ferroptosis inhibitors in reducing freezing damage. This implicates ferroptosis as the primary form of regulated cell death induced during sperm cryopreservation. Additionally, the positive rate of transferrin receptor protein 1 was significantly lower in fresh live sperm (47.8%) than in thawed live sperm (71.5%), and the latter rate was lower than that in dead sperm (82.5%). By contrast, cleaved caspase-3 positivity showed no significant difference between fresh live sperm and thawed live sperm but was notably lower in thawed live sperm than in dead sperm. CONCLUSIONS Our findings establish ferroptosis as the dominant regulated cell death form during goat sperm cryopreservation, providing novel insights into freezing-induced sperm damage mechanisms. These findings have significant implications for optimizing cryopreservation protocols and enhancing sperm viability after freezing-thawing.
Collapse
Affiliation(s)
- Erhan Hai
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Boyuan Li
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Yukun Song
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jian Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| |
Collapse
|
8
|
Barbarestani SY, Samadi F, Zaghari M, Khademian S, Pirsaraei ZA, Kastelic JP. A review of antioxidant strategies to improve reproduction in aging male broiler breeders. GeroScience 2025; 47:573-589. [PMID: 39348042 PMCID: PMC11872827 DOI: 10.1007/s11357-024-01363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
As only 10% of the broiler breeder flock is roosters, their fertility is very important. The rooster sperm plasma membrane has high concentrations of polyunsaturated fatty acids that are sensitive to oxidative stress. Lipid peroxidation can change membrane structure, permeability, and fluidity, adversely affecting the acrosome reaction and fertility. Aging roosters have decreases in sexual behavior, serum androgen concentrations, sperm quantity and quality, and fertility. Low fertility in aging roosters is attributed to an imbalanced testicular oxidant-antioxidant system, with increased reactive oxygen species (ROS) damaging spermatogenic epithelium. However, antioxidant components can enhance antioxidant defenses in aging broiler breeder roosters. Protection against oxidative damage, particularly in the testes, improves reproductive hormone concentrations, testicular histology, sperm membrane function, and mitochondrial activity and thereby improves semen volume, sperm concentration, viability, motility, and sperm polyunsaturated fatty acid content, sperm-egg penetration, fertility, and reproductive performance. This review summarizes antioxidants that could improve fertility and reproductive performance and delay or prevent age-related declines in broiler breeder roosters, with benefits for poultry production.
Collapse
Affiliation(s)
- Sarallah Yarmohammadi Barbarestani
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran.
| | - Firooz Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran
| | - Mojtaba Zaghari
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Soroush Khademian
- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zarbakht Ansari Pirsaraei
- Department of Animal Science, Sari Agricultural Science and Natural Resource University, Sari, Mazandaran, Iran
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Hamim FM, Durairajanayagam D, Daud SB, Singh HJ. Physical activity and male reproductive function. Reprod Fertil Dev 2025; 37:RD24196. [PMID: 39903601 DOI: 10.1071/rd24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Fecundity is declining in humans, which is partly due to male infertility. Poor sperm parameters, the main contributors to male infertility, are associated with sedentary, unhealthy lifestyle and poor dietary habits. Long periods of sedentary work lead to visceral adiposity and persistently elevated scrotal temperatures, which adversely affect spermatogenesis. Apart from increasing scrotal temperatures, excessive visceral adiposity exacerbates adipocyte dysfunction with increased pro-inflammatory adipokine release, like leptin. These, together with the increased scrotal temperature, are responsible for the poor sperm quality. The importance of regular physical activity in male fertility remains a matter of debate, as not all forms of exercises have been found to benefit sperm function. Sperm parameters are, nevertheless, somewhat better in active than in sedentary men. It now appears that low-to-moderate intensity exercises are more beneficial for male reproductive health than high-intensity exercises, which have a negative effect on spermatozoa. Low-to-moderate intensity exercises, in general, improve the overall organ-system function in the body, improve the management of body weight and oxidative stress, consequently improving sperm parameters. The detrimental effects of high-intensity exercises on spermatozoa result from disruption in the hypothalamus-pituitary-gonadal-axis, raised testicular temperature and increased oxidative stress. It, therefore, seems that not all types of exercises are beneficial for male reproductive health. Although some low-to-moderate intensity exercises improve male reproductive function, there remains a need to identify the best form of low-to-moderate intensity exercises, particularly those that do not increase testicular temperature or oxidative stress, to help maintain normal body weight and male reproductive health.
Collapse
Affiliation(s)
- Farhanah Mohd Hamim
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, Sg Buloh, Selangor, Malaysia
| | - Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, Sg Buloh, Selangor, Malaysia
| | - Suzanna Binti Daud
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, Sg Buloh, Selangor, Malaysia
| | - Harbindar Jeet Singh
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, Sg Buloh, Selangor, Malaysia
| |
Collapse
|
10
|
Lv J, Wu T, Xue J, Shen C, Gao W, Chen X, Guo Y, Liu M, Yu J, Huang X, Zheng B. ASB1 engages with ELOB to facilitate SQOR ubiquitination and H 2S homeostasis during spermiogenesis. Redox Biol 2025; 79:103484. [PMID: 39733518 PMCID: PMC11743861 DOI: 10.1016/j.redox.2024.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024] Open
Abstract
Male infertility, frequently driven by oxidative stress, impacts half of infertile couples globally. Despite its significance, the precise mechanisms governing this process remain elusive. In this study, we demonstrate that ASB1, the substrate recognition subunit of a ubiquitin ligase, is highly expressed in the mouse testis. Mice lacking the Asb1 gene exhibit severe fertility impairment, characterized by oligoasthenoteratozoospermia. Subsequent investigations unveiled that Asb1 knockout (Asb1-KO) mice encountered excessive oxidative stress and decreased hydrogen sulfide (H2S) levels in their testes, and severe sperm DNA damage. Notably, the compromised fertility and sperm quality in Asb1-KO mice was significantly ameliorated by administering NaHS, a H2S donor. Mechanistically, ASB1 interacts with ELOB to induce the instability of sulfide-quinone oxidoreductase (SQOR) by enhancing its K48-linked ubiquitination on residues K207 and K344, consequently triggering proteasomal degradation. This process is crucial for preserving H2S homeostasis and redox balance. Overall, our findings offer valuable insights into the role of ASB1 during spermiogenesis and propose H2S supplementation as a promising therapeutic approach for oxidative stress-related male infertility.
Collapse
Affiliation(s)
- Jinxing Lv
- Center for Reproduction, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, 215124, China.
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jiajia Xue
- Center for Reproduction, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, 215124, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xia Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China.
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
11
|
Granata S, Morosini C, Valerii MC, Fagiolino I, Sangiorgi S, Ghini S, Spisni E, Vivarelli F, Fairclough LC, Paolini M, Canistro D. Heat-not-burn technology affects plasma testosterone levels and markers of inflammation, oxidative stress in the testes of rats. FRONTIERS IN TOXICOLOGY 2025; 6:1515850. [PMID: 39902465 PMCID: PMC11788375 DOI: 10.3389/ftox.2024.1515850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Heating tobacco products (HTPs) are advanced electronic cigarette models. Classified by the FDA as a modified-risk tobacco product and can be used as part of efforts to quit smoking. Using heat-not-burn (HnB) technology, these devices heat tobacco avoiding complete combustion. Although the levels of toxicants in the mainstream are significantly lower than those observed in tobacco smoke, some recent studies have raised concerns about potential health risks associated with their use, particularly regarding their effects on male gonadal function, which remain largely unexplored. Methods Adult male Sprague-Dawley rats were exposed, whole body, 5 days/week for 4 weeks to HnB mainstream. Results The expression of the cell cycle regulators Bax/Bcl-2 ratio is not affected, along with no changes in p-38. On the other hand, an increase in oxidative stress markers, including those associated with DNA damage, was observed in exposed animals, along with the induction of NF-kB dependent pro-inflammatory mediators: TNF-α, IL-1β, IL-6 and COX-2. Furthermore, inactivation of key androgenic enzymes, such as 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase, together with decreased testosterone synthesis suggest a potential impairment of male gonadal function. Discussion The results indicate that animals exposed to HnB smoke show higher levels of oxidative stress markers, including those associated with DNA damage, as well as higher levels of pro-inflammatory cytokines. The impairment of some androgenic key enzymes and those related to the activity of seminiferous epithelium, together with the decrease in testosterone levels, suggest an impairment of gonadal function through the alteration of some cellular pathways typically associated with tobacco consumption.
Collapse
Affiliation(s)
- Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Stefano Sangiorgi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Severino Ghini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Lucy C. Fairclough
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Kaltsas A, Markou E, Kyrgiafini MA, Zikopoulos A, Symeonidis EN, Dimitriadis F, Zachariou A, Sofikitis N, Chrisofos M. Oxidative-Stress-Mediated Epigenetic Dysregulation in Spermatogenesis: Implications for Male Infertility and Offspring Health. Genes (Basel) 2025; 16:93. [PMID: 39858640 PMCID: PMC11765119 DOI: 10.3390/genes16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility. This disruption extends to epigenetic modifications, resulting in abnormal gene expression and chromatin remodeling that compromise genomic integrity and fertilization potential. Importantly, oxidative-stress-induced epigenetic alterations can be inherited, affecting the health and fertility of offspring and future generations. This review investigates how oxidative stress influences epigenetic regulation in male reproduction by modifying DNA methylation, histone modifications, and non-coding RNAs, ultimately compromising spermatogenesis. Additionally, it discusses the transgenerational implications of these epigenetic disruptions and their potential role in hereditary infertility and disease predisposition. Understanding these mechanisms is vital for developing therapeutic strategies that mitigate oxidative damage and restore epigenetic homeostasis in the male germline. By integrating insights from molecular, clinical, and transgenerational research, this work emphasizes the need for targeted interventions to enhance male reproductive health and prevent adverse outcomes in progeny. Furthermore, elucidating the dose-response relationships between oxidative stress and epigenetic changes remains a critical research priority, informing personalized diagnostics and therapeutic interventions. In this context, future studies should adopt standardized markers of oxidative damage, robust clinical trials, and multi-omic approaches to capture the complexity of epigenetic regulation in spermatogenesis. Such rigorous investigations will ultimately reduce the risk of transgenerational disorders and optimize reproductive health outcomes.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece;
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital, Barrack Rd, Exeter EX2 5DW, UK;
| | | | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
13
|
Wang C, Li X, Ye T, Gu J, Zheng Z, Chen G, Dong J, Zhou W, Shi J, Zhang L. Polydatin, a derivative of resveratrol, ameliorates busulfan-induced oligozoospermia in mice by inhibiting NF-κB pathway activation and suppressing ferroptosis. Bioorg Chem 2025; 156:108170. [PMID: 39848165 DOI: 10.1016/j.bioorg.2025.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Polydatin (PD), a glucoside derivative of resveratrol (RES), is extracted as a monomer compound from the dried rhizome of Polygonum cuspidatum. Our laboratory synthesized PD via the biotransformation of resveratrol. To assess the reproductive protective effects of PD, an oligozoospermia mouse model was induced by administering 30 mg/kg busulfan (BUS) via intraperitoneal injection. Initially, mice were categorized into groups based on PD concentrations of 10, 50, and 100 mg/kg. Subsequently, the optimal concentration of 10 mg/kg was ascertained based on testis weight and spermatological parameters. Additionally, a 10 mg/kg resveratrol group was included as a control. The findings revealed that exposure to BUS resulted in a reduction of testicular weight, diminished spermatogenic cells and epididymal sperm counts, increased sperm deformity, disordered testicular cytoskeleton, compromised blood-testis barrier integrity, and a significant decrease in serum sex hormone levels, notably testosterone. This resulted in decreased expression of androgen receptors and other testosterone-related proteins, increased levels of malondialdehyde and reactive oxygen species, and promoted testicular ferroptosis. However, PD could successfully reverse these injuries. High-throughput sequencing data demonstrated that polydatin significantly downregulated the expression of inflammatory and metabolic genes, including PRKCQ and CARD11. These proteins are pivotal in the activation of the NF-κB pathway during the inflammatory response. Molecular docking studies showed that PD could interact with PRKCQ and CARD11 to reduce the level of inflammation. Additionally, PD was shown to interact with the ferroptosis-promoting gene ACSL4, modulating ferroptosis. In summary, PD facilitates the reversal of BUS-induced oligozoospermia through the mitigation of oxidative stress and inflammation, the inhibition of ferroptosis, and the modulation of hormonal levels.
Collapse
Affiliation(s)
- Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaoran Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Taowen Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Jiale Gu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Zihan Zheng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Guangtong Chen
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Jin Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Wenbiao Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianwu Shi
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Lei Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China; School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
14
|
Chen L, Bello-Onaghise G, Chen M, Li S, Zhang Y, Wang H, Qu Q, Li Y. Efficacy of Chlorogenic Acid in Treating Tripterygium Glycoside-Induced Asthenozoospermia in Rats and Its Possible Mechanisms. Vet Sci 2025; 12:66. [PMID: 39852941 PMCID: PMC11768533 DOI: 10.3390/vetsci12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Tripterygium glycosides (TGs) are the most common form of traditional Chinese medicine, known as Tripterygium wilfordii Hook F (TWHF) [...].
Collapse
Affiliation(s)
- Long Chen
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| | - God’spower Bello-Onaghise
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
- Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City 300103, Nigeria
| | - Mo Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China;
| | - Shunda Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| | - Yu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| | - Haoran Wang
- Department of Clinical Medicine, School of Clinical Medicine, Southern Medical University, 1023 Shatainan Road, Guangzhou 510515, China;
| | - Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang, Harbin 150030, China; (L.C.); (G.B.-O.); (S.L.); (Y.Z.); (Q.Q.)
| |
Collapse
|
15
|
Lv Y, Yang X, Sun X, Lv L, Zhang Z, Li C, Gao J, Li H, Wen Z, Zhu H. ALDH2 plays a role in spermatogenesis and male fertility by regulating oxidative stress in mice. Exp Cell Res 2025; 444:114397. [PMID: 39732450 DOI: 10.1016/j.yexcr.2024.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Spermatogenesis and sperm maturation are complex biological processes that involve intricate cellular and molecular interactions. The Aldh2 gene is involved in the metabolism of specific aldehydes generated by oxidative stress. Aldh2 is abundantly expressed in the testis and epididymis; however, the specific role of Aldh2 in regulating spermatogenesis and sperm maturation remains unclear. In the present study, we generated Aldh2 knockout (Aldh2-/-) mice by using CRISPR/Cas9 technology. Aldh2 gene knockout decreased the fertility of male mice. Compared to the control group mice, Aldh2-/- mice showed a significant decrease in the thickness of the seminiferous tubules and the number of germ cells. Further investigation revealed that the meiosis of spermatocytes and acrosome formation in sperm were disrupted in Aldh2-/- mice, leading to oligoasthenoteratozoospermia in male mice. However, the caput epididymis and cauda epididymis in Aldh2-/- mice showed identical proportions of morphologically abnormal sperm. Mechanistically, 4-hydroxynonenal, 3-nitro-L-tyrosine, and malondialdehyde levels were significantly elevated in both the testis and epididymis of Aldh2-/- mice, thus indicating increased oxidative stress in the reproductive system. Collectively, our findings demonstrate that Aldh2 plays a critical role in spermatogenesis by regulating oxidative stress in mice.
Collapse
Affiliation(s)
- Ying Lv
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xing Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Xiaoli Sun
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China
| | - Linxiao Lv
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China
| | - Zexin Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China
| | - Chenyang Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China
| | - Huatao Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zongzhuang Wen
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China.
| |
Collapse
|
16
|
Zhang SH, Xie YJ, Qiu WJ, Pan QY, Chen LH, Wu JF, Huang SQ, Wang D, Sun XF. Micronucleus counts correlating with male infertility: a clinical analysis of chromosomal abnormalities and reproductive parameters. Asian J Androl 2025:00129336-990000000-00275. [PMID: 39789711 DOI: 10.4103/aja2024103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/27/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT Investigating the correlation between micronucleus formation and male infertility has the potential to improve clinical diagnosis and deepen our understanding of pathological progression. Our study enrolled 2252 male patients whose semen was analyzed from March 2023 to July 2023. Their clinical data, including semen parameters and age, were also collected. Genetic analysis was used to determine whether the sex chromosome involved in male infertility was abnormal (including the increase, deletion, and translocation of the X and Y chromosomes), and subsequent semen analysis was conducted for clinical grouping purposes. The participants were categorized into five groups: normozoospermia, asthenozoospermia, oligozoospermia, oligoasthenozoospermia, and azoospermia. Patients were randomly selected for further study; 41 patients with normozoospermia were included in the control group and 117 patients with non-normozoospermia were included in the study group according to the proportions of all enrolled patients. Cytokinesis-block micronucleus (CBMN) screening was conducted through peripheral blood. Statistical analysis was used to determine the differences in micronuclei (MNi) among the groups and the relationships between MNi and clinical data. There was a significant increase in MNi in infertile men, including those with azoospermia, compared with normozoospermic patients, but there was no significant difference between the genetic and nongenetic groups in azoospermic men. The presence of MNi was associated with sperm concentration, progressive sperm motility, immotile spermatozoa, malformed spermatozoa, total sperm count, and total sperm motility. This study underscores the potential utility of MNi as a diagnostic tool and highlights the need for further research to elucidate the underlying mechanisms of male infertility.
Collapse
Affiliation(s)
- Shun-Han Zhang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liao TL, He CM, Xiao D, Zhang ZR, He Z, Yang XP. Icariin targets PDE5A to regulate viability, DNA synthesis and DNA damage of spermatogonial stem cells and improves reproductive capacity. Asian J Androl 2025:00129336-990000000-00274. [PMID: 39774071 DOI: 10.4103/aja2024106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT Icariin is a pure compound derived from Epimedium brevicornu Maxim, and it helps the regulation of male reproduction. Nevertheless, the role and underlying mechanisms of Icariin in mediating male germ cell development remain to be clarified. Here, we have demonstrated that Icariin promoted proliferation and DNA synthesis of mouse spermatogonial stem cells (SSCs). Furthermore, surface plasmon resonance iron (SPRi) and molecular docking (MOE) assays revealed that phosphodiesterase 5A (PDE5A) was an important target of Icariin in mouse SSCs. Mechanically, Icariin decreased the expression level of PDE5A. Interestingly, hydrogen peroxides (H2O2) enhanced the expression level of phosphorylation H2A.X (p-H2A.X), whereas Icariin diminished the expression level of p-H2A.X and DNA damage caused by H2O2 in mouse SSCs. Finally, our in vivo animal study indicated that Icariin protected male reproduction. Collectively, these results implicate that Icariin targets PDE5A to regulate mouse SSC viability and DNA damage and improves male reproductive capacity. This study thus sheds new insights into molecular mechanisms underlying the fate decisions of mammalian SSCs and offers a scientific basis for the clinical application of Icariin in male reproduction.
Collapse
Affiliation(s)
- Tian-Long Liao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Department of Cardiology, Zhuzhou Hospital, The Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou 412001, China
| | - Cai-Mei He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Zhi-Rong Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Zuping He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Xiao-Ping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| |
Collapse
|
18
|
Zang S, Zou S, Chen X, Pan B, Ning A, Qin J, Wei Y, Du K, Ye J, Liang Q, Fang Y, Qiongla, Cirenlamu, Song T, Zhou G. Abnormalities in mitochondrial energy metabolism induced by cryopreservation negatively affect goat sperm motility. Front Vet Sci 2025; 11:1514362. [PMID: 39834931 PMCID: PMC11743635 DOI: 10.3389/fvets.2024.1514362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The motility of sperm decreases following cryopreservation, which is closely associated with mitochondrial function. However, the alterations in mitochondrial metabolism after sperm freezing in goats remain unclear. This experiment aimed to investigate the impact of ultra-low temperature freezing on goat sperm's mitochondrial energy metabolism and its potential correlation with sperm motility. The results revealed that goat sperm exhibited mitochondrial vacuolization, reduced matrix density, and significantly decreased levels of high-membrane potential mitochondria and adenosine triphosphate content, accompanied by a substantial increase in reactive oxygen species levels, ultimately leading to a significant decline in sperm viability. Further investigations unveiled that energy-related differential metabolites (capric acid, creatine, and D-glucosamine-6-phosphate) and differential metabolites with antioxidant effects (saikosaponin A, probucol, and cholesterol sulfate) were significantly downregulated. In addition, the activity of key rate-limiting enzymes involved in very long-chain fatty acid biosynthesis and β-oxidation-specifically acetyl-CoA carboxylase, fatty acid synthase, and carnitine palmitoyltransferase I related to capric acid metabolism-was considerably reduced. Furthermore, supplementation of differential metabolite capric acid (500 μM) significantly enhanced the motility of frozen-thawed goat sperm. These findings indicated that the mitochondrial ultrastructure of goat sperm is damaged and energy metabolism becomes abnormal after cryopreservation, potentially affecting sperm viability. The addition of different metabolites such as capric acid to the freezing extender can alleviate the decrease in sperm motility induced by cryopreservation.
Collapse
Affiliation(s)
- Shengqin Zang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuqi Zou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiangyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ao Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jianpeng Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yaozong Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Kunlin Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiangfeng Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiuxia Liang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qiongla
- The Service Station of Agricultural and Animal, Husbandry Technical of Nyalam County, Shigatse, China
| | - Cirenlamu
- The Service Station of Agricultural and Animal, Husbandry Technical of Nyalam County, Shigatse, China
| | - Tianzeng Song
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, China
- Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Li J, Chen X, Mao C, Xiong M, Ma Z, Zhu J, Li X, Chen W, Ma H, Ye X. Epiberberine ameliorates MNNG-induced chronic atrophic gastritis by acting on the EGFR-IL33 axis. Int Immunopharmacol 2025; 145:113718. [PMID: 39642571 DOI: 10.1016/j.intimp.2024.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Chronic atrophic gastritis (CAG) is a prevalent form of chronic gastritis that presents with chronic inflammation of the gastric mucosa, localised gastric mucosal glandular atrophy and intestinal metaplasia. Despite the existence of diagnostic criteria, effective therapeutic strategies for this condition remain to be developed. The objective of this study was to examine the potential therapeutic benefits of epiberberine in mitigating MNNG-induced CAG and to elucidate the underlying mechanisms. MNNG was employed to establish a CAG mouse model and a GES-1 cell model, and EPI was observed to be efficacious in ameliorating the gastric mucosal injury and inflammatory infiltration induced by MNNG in the CAG model mice, a finding that was subsequently validated in the GES-1 model cells. Bioinformatics analysis indicated that EPI may exert a direct effect on EGFR, thereby regulating the expression of IL-33 and thereby achieving the therapeutic effect of CAG. This hypothesis was also validated by molecular docking prediction, CETSA, and overexpression of EGFR in GES-1 model cells, using EGFR agonists and inhibitors to further demonstrate that EPI may act as an antagonist supplement to EGFR for the treatment of CAG.
Collapse
Affiliation(s)
- Juan Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiantao Chen
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Changxia Mao
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mengyuan Xiong
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhengcai Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianyu Zhu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuegang Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Wanqun Chen
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China.
| | - Hang Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Li N, Wang H, Zou S, Yu X, Li J. Perspective in the Mechanisms for Repairing Sperm DNA Damage. Reprod Sci 2025; 32:41-51. [PMID: 39333437 PMCID: PMC11729216 DOI: 10.1007/s43032-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
DNA damage in spermatozoa is a major cause of male infertility. It is also associated with adverse reproductive outcomes (including reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage). The damage to sperm DNA occurs during the production and maturation of spermatozoa, as well as during their transit through the male reproductive tract. DNA damage repair typically occurs during spermatogenesis, oocytes after fertilization, and early embryonic development stages. The known mechanisms of sperm DNA repair mainly include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). The most severe type of sperm DNA damage is double-strand break, and it will be repaired by DSBR, including homologous recombination (HR), classical non-homologous end joining (cNHEJ), alternative end joining (aEJ), and single-strand annealing (SSA). However, the precise mechanisms of DNA repair in spermatozoa remain incompletely understood. DNA repair-associated proteins are of great value in the repair of sperm DNA. Several repair-related proteins have been identified as playing critical roles in condensing chromatin, regulating transcription, repairing DNA damage, and regulating the cell cycle. It is noteworthy that XRCC4-like factor (XLF) and paralog of XRCC4 and XLF (PAXX) -mediated dimerization promote the processing of populated ends for cNHEJ repair, which suggests that XLF and PAXX have potential value in the mechanism of sperm DNA repair. This review summarizes the classic and potential repair mechanisms of sperm DNA damage, aiming to provide a perspective for further research on DNA damage repair mechanisms.
Collapse
Affiliation(s)
- Nihong Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hong Wang
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Siying Zou
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xujun Yu
- College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junjun Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
21
|
Kumar N. Unveiling the Emerging Role of Klotho: A Comprehensive Narrative Review of an Anti-aging Factor in Human Fertility. Curr Protein Pept Sci 2025; 26:105-112. [PMID: 39225223 DOI: 10.2174/0113892037329291240827113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Klotho, an anti-aging protein, plays a vital role in diverse biological functions, such as regulating calcium and vitamin D levels, preventing chronic fibrosis, acting as an antioxidant and anti-inflammatory agent, safeguarding against cardiovascular and neurodegenerative conditions, as well as exerting anti-apoptotic, anti-senescence effects. Additionally, it contributes to metabolic processes associated with diabetes and exhibits anti-cancer properties. This protein is commonly expressed in organs, such as kidneys, brain, pancreas, parathyroid glands, ovaries, and testes. Recent research has highlighted its significance in human fertility. This narrative review provides insight into the involvement of Klotho protein in male and female fertility, as well as its potential role in managing human infertility in the future. In this study, a search was conducted on literature spanning from November 1997 to June 2024 across multiple databases, including PUBMED, SCOPUS, and Google Scholar, focusing on Klotho proteins. The search utilized keywords, such as "discovery of Klotho proteins," "Biological functions of Klotho," "Klotho in female fertility," "Klotho and PCOS," "Klotho and cryopreservation," and "Klotho in male infertility." Inclusion criteria comprised full-length original or review articles, as well as abstracts, discussing the role of Klotho protein in human fertility, published in English in various peer-reviewed journals. Exclusion criteria involved articles published in languages other than English. Hence, due to its anti-aging characteristics, Klotho protein presents potential roles in male and female fertility and holds promising prospects for reproductive medicine. Further, it holds the potential to become a valuable asset in addressing infertility concerns for both males and females.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar 508126, Hyderabad, Telangana, India
| |
Collapse
|
22
|
Liu Z, Pan M, Li J, Li L, Wang T. Progress in the Study of TAp73 and Sperm Apoptosis. Cell Biochem Funct 2025; 43:e70042. [PMID: 39799402 DOI: 10.1002/cbf.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
The study of the mechanism of oligoasthenospermia, which is a major cause of male infertility, has been the focus of research in the field of male reproduction. TAp73, a member of the p53 family of oncogenes, is endowed with tumor-suppressing activity due to its structural and functional homology with p53. It has been found that TAp73, plays a key role in spermatogenesis and maintaining male reproduction. When TAp73 is low-expressed or absent, the process of spermatogenesis is severely impaired, and mice deficient in TAp73 exhibit spermatogonial DNA damage, disturbed apical cytoplasmic specialization, and spermatocyte malformations resulting in reduced male fertility. Nevertheless, when TAp73 is overexpressed, it not only drives exogenous death receptors to regulate germ cell apoptosis, but also interacts with its various substrate proteins to promote the translocation of cytoplasmic Bax proteins to the mitochondria, resulting in the upregulation of the Bax/Bcl-2 ratio on the mitochondrial membrane and triggering a series of mitochondrial apoptotic effects. In this article, we will analyze the mechanism of TAp73 and sperm apoptosis, and elaborate the mechanism of TAp73 upregulation, exogenous apoptosis pathway and mitochondrial apoptosis pathway to systematically explain that the process of apoptosis induced by high expression of TAp73 is not fixed and single, but is interconnected, so as to provide a basis for the treatment of oligoasthenospermia and the research and development of new drugs using TAp73 as a target.
Collapse
Affiliation(s)
- Ziao Liu
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Min Pan
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jingya Li
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Li Li
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Tongsheng Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
23
|
Banihani SA. Role of Lipoic Acid in Testosterone Production in Males. World J Mens Health 2025; 43:41-49. [PMID: 38772537 PMCID: PMC11704161 DOI: 10.5534/wjmh.230291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 02/06/2024] [Indexed: 05/23/2024] Open
Abstract
Testosterone extends its impact beyond sexual function, playing a crucial role in shaping overall male health, including aspects such as muscle mass, bone density, mood regulation, and energy levels. Lipoic acid, a cofactor for specific enzymes, particularly dehydrogenases involved in cellular energy production, has been studied for its impact on testosterone. This comprehensive review systematically scoured PubMed and Scopus databases using the keywords "lipoic acid" and "testosterone." It encompassed all relevant English papers published from November 1971 to the present, including full texts and abstracts, along with research elucidating the biochemical mechanisms linking lipoic acid to testosterone. In summary, lipoic acid consistently restores testosterone levels, offering promise as an intervention in testicular health, especially in cases of testicular toxicity caused by various harmful agents. Its mechanisms encompass nitric oxide enhancement, fortification of testicular antioxidants, elevation of luteinizing hormone, enhancement of steroidogenesis, and the maintenance of energy production. These mechanisms underscore the therapeutic potential of lipoic acid for testicular health.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
24
|
Liu Y, Cheng L, Lin S, Yang Y, He Y, Su C, Chen J, Lin Z, Hong G. Simple and rapid multicolor sensor for seminal plasma ROS detection based on synergistic catalytic etching of gold nanobipyramids dopped agarose composite gel. Talanta 2025; 282:127042. [PMID: 39406092 DOI: 10.1016/j.talanta.2024.127042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Excessive reactive oxygen species (ROS) in seminal plasma can trigger male infertility. Therefore, the development of simple and rapid ROS detection methods is urgently needed, particularly for the early self-screening of preconception couples. Herein, a gold nanobipyramid (Au NBP)-based colorimetric hydrogel for convenient and fast ROS detection is described. In the hydrogel, Au NBP is etched efficiently by ROS under the synergistic effect of Fe2+and I-, which finally causes color variations. Besides, agarose gel with the function of molecular sieve enables the separation of biomacromolecules, improving the interference resistance of the system and the stability of Au NBP. This chemical sensor can complete all the tests within 20 min, covering two detection range of 10-125 μM at relative low H2O2 concentration and 125-1000 μM at relative high H2O2 concentration, with the detection limits of 1.76 μM and 12.10 μM (S/N = 3) respectively. Furthermore, via visual observation of the color variations, it allows the initial interpretation of ROS concentration without any additional equipment. We applied this device to the detection of ROS in clinical seminal plasma samples and obtained promising results, demonstrating its potential for rapid and convenient detection in clinical applications.
Collapse
Affiliation(s)
- Yating Liu
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Lingjun Cheng
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Shaobin Lin
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, People's Republic of China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Yinghao He
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Canping Su
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Jiaming Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, People's Republic of China.
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| |
Collapse
|
25
|
Du J, Xue J, Tian X, Luo J, Ömür AD, Yang J, Li Y. Selenium-Enriched Aspergillus oryzae A02 Enhances Testicular Antioxidant Capacity in Mice by Regulating Intestinal Microbiota and Serum Metabolite. Biol Trace Elem Res 2024:10.1007/s12011-024-04496-8. [PMID: 39707080 DOI: 10.1007/s12011-024-04496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Selenium (Se) is a trace element that is essential for health. Organic Se created by Se-enriched microorganisms has the characteristics of low toxicity, high bioavailability, and regulation of physiological functions. Here, the regulatory effect of Se-enriched Aspergillus oryzae A02 on the reproductive function of male mice and its potential molecular mechanism was studied. Specifically, twenty-four male mice were randomly divided into a control group and a Se-enriched A. oryzae A02 (Nano-Se) (daily gavage of 0.5 mg/kg, dissolved in saline) for an 8-week experiment. The results showed that Nano-Se intervention did not affect body weight and testicular index, but increased sperm concentration and seminiferous epithelium height in experimental mice, indicating that Nano-Se has the potential to improve the reproductive performance of male mice. Mechanistically, Nano-Se intervention increased the levels of antioxidant-related indicators catalase (CAT) and glutathione peroxidase (GSH-Px) in mouse serum, and increased the relative mRNA expression of GSH-Px, heme oxygenase-1 (HO-1), and NADPH quinine oxidoreductase-1 (NQO-1) in testicular tissues. We identified 9,10,13-trihydroxyoctadecenoic acids (TriHOMEs), stearidonic acid and selenomethionine linked with alpha-linolenic acid metabolism, selenocompound metabolism, folate biosynthesis, ubiquinone, and other terpenoid-quinone biosynthesis and biosynthesis of cofactors. In addition, Nano-Se did not influence the fecal bacterial alpha and beta diversity (P > 0.05), but increased the abundance of the Actinobacteriota and Proteobacteria phyla and the Staphylococcus and Corynebacterium genera, and lowered the abundance of the Bacteroidota phylum and the Lactobacillus and norank_f_Muribaculaceae genera. Nano-Se is considered a novel and promising nutritional regulator to improve reproductive function.
Collapse
Affiliation(s)
- Jiajun Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junyu Xue
- College of Clinical Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xutong Tian
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
| | - Juyue Luo
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
| | - Ali Doğan Ömür
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Atatürk University, Erzurum, 25240, Türkiye
| | - Jianying Yang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China.
| |
Collapse
|
26
|
Ma Z, Chen X, Xiong M, Wang H, Sun C, Tang W, Li J, Li X, Ma H, Ye X. Cyberpharmacology uncover the mechanism of the total Rhizoma Coptidis extracts ameliorate chronic atrophic gastritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118644. [PMID: 39094758 DOI: 10.1016/j.jep.2024.118644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Characterized by inflammation of the gastric mucosa, atrophy of gastric gland cells, and intestinal metaplasia, Chronic Atrophic Gastritis (CAG) is a precancerous lesion disease. In traditional Chinese medicine, Rhizoma Coptidis (RC) is extensively used for treating gastrointestinal disorders, mainly because RC alkaloids-based extracts are the main active pharmaceutical ingredients. Total Rhizoma Coptidis extracts (TRCE) is a mixture of Rhizoma Coptidis extracts from Rhizoma Coptidis with alkaloids as the main components. However, the efficacy and mechanism of TRCE on CAG need further study. AIM OF THE STUDY To explore the therapeutic effect and underlying mechanisms of action of TRCE on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced chronic atrophic gastritis (CAG) using network pharmacological analysis. MATERIALS AND METHODS The amelioration effect of TRCE on CAG was evaluated in MNNG-induced CAG mice. The pathological severity of the mice was evaluated through H&E staining. Detection of gastric mucosal parietal cell loss was conducted using immunofluorescence staining, and serum indices were measured using ELISA. Additionally, the active compounds and drug targets of Rhizoma Coptidis were curated from the STP, SEA, and TCMSP databases, alongside disease targets of CAG sourced from PharmGkb, OMIM, and GeneCards databases. By mapping drug targets to disease targets, overlapping targets were identified. A shared protein-protein interaction (PPI) and drug target network were constructed for the overlapping targets and analyzed for KEGG enrichment. RESULTS The results of animal experiments demonstrate that TRCE has the potential to improve the CAG process in mice. In conjunction with disease characteristics, cyberpharmacology analysis has identified nine core compounds, 151 targets, 10 core targets, and five significant inflammatory pathways within the compound-target-pathway network. Furthermore, there is a remarkable coincidence rate of 98% between the core compound targets of TRCE and the targets present in the CAG disease database. The accurate search and calculation of literature reports indicate that the coverage rate for 121 predicted core targets related to CAG reaches 81%. The primary characteristic of CAG lies in its inflammatory process. Both predicted and experimental findings confirm that TRCE can regulate ten key inflammation-associated targets (TP53, STAT3, AKT1, HSP90AA1, TNF, IL-6, MAPK3, SRC, JUN, and HSP90AA1) as well as inflammation-related pathways (MAPK, HIF-1, Toll-Like Receptor, IL-17, TNF, and other signaling pathways). These mechanisms mitigate inflammation and reduce gastric mucosal damage in CAG mice. CONCLUSIONS In conclusion, TRCE was shown to alleviate CAG by modulating TP53, STAT3, AKT1, HSP90AA1, TNF, IL-6, MAPK3, SRC, JUN, and EGFR, as demonstrated by combined network pharmacology and biological experiments. In conclusion, our study provides a robust foundation for future clinical trials evaluating the efficacy of RC in treating CAG.
Collapse
Affiliation(s)
- Zhengcai Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiantao Chen
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Mengyuan Xiong
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Hongmei Wang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Chunyong Sun
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Wanyu Tang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Juan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xiaoduo Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Hang Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
27
|
Taleahmad F, Khalili M, Haddadzadeh-Niri N, Joneidi E, Taleahmad S, Roghani M. Therapeutic potential of diosgenin against methotrexate-induced testicular damage in the rat. Reprod Biol 2024; 24:100966. [PMID: 39500087 DOI: 10.1016/j.repbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 12/10/2024]
Abstract
This study evaluated diosgenin effects on methotrexate-induced testicular injury in the rats. A single dose of methotrexate (MTX) (20 mg/kg, i.p) was administered, followed by two weeks of diosgenin treatment via gavage starting one day before methotrexate injection. Testicular damage was evaluated through histological examination of seminiferous tubules, as well as analysis of serum testosterone level, oxidative stress and inflammation biomarkers, and antioxidant levels. The results of this study showed that in the MTX-exposed group, oxidative stress indices of malondialdehyde (MDA), reactive oxygen species (ROS), nitrite and indices of inflammation consisting of tumor necrosis factor α (TNFα), and interleukin 6 (IL-6) have a significant increase compared to the control group. Additionally, reductions were observed in antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). In addition, testosterone level decreased and signs of testicular damage were observed in the MTX group. Conversely, in the group treated with diosgenin alongside MTX at a dosage of 50 mg/kg, there was a significant decrease in oxidative stress markers (MDA, ROS, nitrite) and inflammatory markers (TNFα and IL-6). Moreover, there was a significant increase in the levels of antioxidant enzymes (SOD, CAT, and GSH). Diosgenin appears to have the potential to protect testicular tissue from damage caused by the toxic effects of MTX through the reduction of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Fatemeh Taleahmad
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Mohsen Khalili
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Ensyie Joneidi
- School of Basic Sciences, Shahed University, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
28
|
Mazza T, Scalise M, Console L, Galluccio M, Giangregorio N, Tonazzi A, Pochini L, Indiveri C. Carnitine traffic and human fertility. Biochem Pharmacol 2024; 230:116565. [PMID: 39368751 DOI: 10.1016/j.bcp.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Carnitine is a vital molecule in human metabolism, prominently involved in fatty acid β-oxidation within mitochondria. Predominantly sourced from dietary intake, carnitine also derives from endogenous synthesis. This review delves into the complex network of carnitine transport and distribution, emphasizing its pivotal role in human fertility. Together with its role in fatty acid oxidation, carnitine modulates the acety-CoA/CoA ratio, influencing carbohydrate metabolism, lipid biosynthesis, and gene expression. The intricate regulation of carnitine homeostasis involves a network of membrane transporters, notably OCTN2, which is central in its absorption, reabsorption, and distribution. OCTN2 dysfunction, results in Primary Carnitine Deficiency (PCD), characterized by systemic carnitine depletion and severe clinical manifestations, including fertility issues. In the male reproductive system, carnitine is crucial for sperm maturation and motility. In the female reproductive system, carnitine supports mitochondrial function necessary for oocyte quality, folliculogenesis, and embryonic development. Indeed, deficiencies in carnitine or its transporters have been linked to asthenozoospermia, reduced sperm quality, and suboptimal fertility outcomes in couples. Moreover, the antioxidant properties of carnitine protect spermatozoa from oxidative stress and help in managing conditions like polycystic ovary syndrome (PCOS) and endometriosis, enhancing sperm viability and fertilization potential of oocytes. This review summarizes the key role of membrane transporters in guaranteeing carnitine homeostasis with a special focus on the implications in fertility and possible treatments of infertility and other related disorders.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|
29
|
Ceretti E, Bonaccio M, Iacoviello L, Di Castelnuovo A, Ruggiero E, Donato F, Lorenzetti S, Zani D, Montano L. Consumption of Ultra-Processed Foods and Semen Quality in Healthy Young Men Living in Italy. Nutrients 2024; 16:4129. [PMID: 39683523 DOI: 10.3390/nu16234129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES The study aim was to evaluate the association between UPF consumption and semen quality in a sample of healthy young men in Italy. METHODS A cross-sectional analysis was carried out using data from 126 participants (mean age ± SD 20.0 ± 1.2 years) enrolled in the FASt randomized controlled trial. Food intake was assessed through the European Prospective Investigation into Cancer and Nutrition (EPIC) FFQ. Food items were categorized according to the Nova classification based on their purpose and extent of processing as follows: (1) unprocessed/minimally processed foods; (2) processed culinary ingredients; (3) processed foods; and (4) UPFs. The weight ratio (%) between each Nova group (g/d) and total food (g/d) was then calculated. For semen analyses, sperm volume, concentration, motility and morphology were measured. The associations between UPF consumption (quarters of) and semen quality parameters were estimated using multivariable-adjusted linear regression models. RESULTS Participants consuming high UPFs (Q4), compared to those in the bottom category of intake (Q1), had a lower sperm concentration (β = -54.16 × 106 cell/mL; 95%CI: -92.91 to -15.40; p for trend = 0.0020 across fourths) and progressive motility (β = -14.17%; 95%CI: -28.25 to -0.09; p for trend = 0.036). The percentage of normal morphology cells had a tendency to decrease amongst subjects consuming more UPFs compared to those with the lowest intake. CONCLUSIONS A large dietary intake of UPFs was inversely associated with sperm concentration and progressive motility in reproductive-age men. These findings suggest that dietary recommendations for improving male fertility and sperm health should also recommend limiting UPFs.
Collapse
Affiliation(s)
- Elisabetta Ceretti
- Unit of Hygiene, Epidemiology and Public Health, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, 86077 Pozzilli, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, 86077 Pozzilli, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Augusto Di Castelnuovo
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, 86077 Pozzilli, Italy
| | - Emilia Ruggiero
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, 86077 Pozzilli, Italy
| | - Francesco Donato
- Unit of Hygiene, Epidemiology and Public Health, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Italian National Institute of Health (ISS), 00161 Rome, Italy
| | - Danilo Zani
- Unit of Urology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, "Oliveto Citra Hospital", 84124 Salerno, Italy
- Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project), "Oliveto Citra Hospital", 84124 Salerno, Italy
| |
Collapse
|
30
|
Li S, Liu W, Chen X, Chen Z, Shi J, Hua J. From Hypoxia to Oxidative Stress: Antioxidants' Role to Reduce Male Reproductive Damage. Reprod Sci 2024:10.1007/s43032-024-01746-x. [PMID: 39557807 DOI: 10.1007/s43032-024-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia is one of the main reasons causing male reproductive damage for people living in high altitude. Pathological evidences have been presented both in humans and animal models. Spermatogenesis disruption, worse sperm parameters, hormone disorder and erectile dysfunction are emblematic of male reproductive impairments brought by hypoxia. Among many mechanisms impairing male reproductive systems, oxidative stress is always a field of interest to explore. Although previous reviews have discussed about hypoxia or oxidative stress and antioxidants on male fertility respectively, no one has elucidated the concrete role of oxidative stress in hypoxia and correlating antioxidants that can ameliorate the negative effects. In this review, we firstly introduce hypoxia etiology and describe specific damage of hypoxia on male reproductive functions. Then, we emphasized interplays between hypoxia and oxidative stress as well as negative influences brought by oxidative stress. Finally, we listed antioxidants for oxidative stress and hypoxia-induced reproductive damage and discussed their controversial experimental effects for male infertility.
Collapse
Affiliation(s)
- Siyao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhaoyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingtian Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
31
|
Yang H, Ding L, Xu B, Zhang Z, Dai W, He T, Liu L, Du X, Fu X. Lycium barbarum polysaccharide alleviates ferroptosis in Sertoli cells through NRF2/SLC7A11/GPX4 pathway and ameliorates DEHP-induced male reproductive damage in mice. Int J Biol Macromol 2024; 282:137241. [PMID: 39515713 DOI: 10.1016/j.ijbiomac.2024.137241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Di-(2-ethylhexyl)phthalate (DEHP) is a common plasticizer that has been shown to significantly negatively affect male reproductive health. On the other hand, Lycium barbarum polysaccharide (LBP) has been shown to improve reproductive function. Therefore, we hypothesized that LBP may ameliorate DEHP-induced male reproductive damage. Herein, we found that LBP could alleviate DEHP-induced testicular damage and sperm abnormalities. Furthermore, histomorphological analysis of mice testis revealed that LBP primarily ameliorated the DEHP-induced male reproductive damage by targeting Sertoli cells. Moreover, the detection of the function-related genes of Sertoli cells confirmed this finding. The serum of mice in the Control, DEHP, and DEHP+LBP groups was analyzed using non-targeted metabolomics to further elucidate the mechanism of action of LBP in improving DEHP-induced male reproductive damage. According to the results, the differential metabolites were mainly enriched in the glutamate metabolism pathway, implying that LBP may alleviate the ferroptosis-related DEHP-induced testicular injury. Related ferroptosis markers were also found in mice testis. These findings collectively suggest that LBP may ameliorate DEHP-induced testicular injury via alleviating ferroptosis in Sertoli cells. To clarify the specific mechanism, we constructed a cell model in vitro by treating TM4 cells (the Sertoli cell line) with LBP and MEHP (the in vivo DEHP metabolite). Our findings revealed that LBP can improve the function of DEHP-affected Sertoli cells. Furthermore, the analysis of lipid peroxidation, Fe2+ content, and ferroptosis-related protein expressions demonstrated that LBP could ameliorate MEHP-induced ferroptosis in TM4 cells. To clarify the specific mechanism, glutamate metabolism-related proteins involved in the ferroptosis pathway were detected. According to the results, there were significant changes in the expression of NRF2, SLC7A11 and GPX4 proteins, which are involved in the ferroptosis glutamate metabolism pathway. Furthermore, supplementation of NRF2, SLC7A11, and GPX4 inhibitors (ML385, Erastin, and RSL3, respectively) blocked the therapeutic effect of LBP in alleviating MEHP-induced ferroptosis in TM4 cells, implying that LBP could also ameliorate MEHP-induced ferroptosis via the NRF2/SLC7A11/GPX4 pathway. In summary, these findings show that LBP can alleviate DEHP/MEHP-induced ferroptosis through the NRF2/SLC7A11/GPX4 pathway, ameliorating Sertoli cell dysfunction and improving the DEHP-induced male reproductive damage. Therefore, the clinical administration of LBP could be an effective strategy for preventing DEHP-induced male reproductive injury.
Collapse
Affiliation(s)
- Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Liyang Ding
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Zhen Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
32
|
Ma Y, Yu X, Liu YF, Song B, Sun Z, Zhao S. Immunoregulation and male reproductive function: Impacts and mechanistic insights into inflammation. Andrology 2024. [PMID: 39428853 DOI: 10.1111/andr.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
This paper investigates the complex relationship between the immune system and male reproductive processes, emphasizing how chronic inflammation can adversely affect male reproductive health. The immune system plays a dual role; it protects and regulates reproductive organs and spermatogenesis while maintaining reproductive health through immune privilege in the testes and the activities of various immune cells and cytokines. However, when chronic inflammation persists or intensifies, it can disrupt this balance, leading to immune attacks on reproductive tissues and resulting in infertility.This study provides a detailed analysis of how chronic inflammation can impair sperm production, sperm quality, and the secretion of gonadal hormones both directly and indirectly. It also delves into the critical roles of testicular immune privilege, various immune cells, and cytokines in sustaining reproductive health and examines the impacts of infections, autoimmune diseases, and environmental factors on male fertility.
Collapse
Affiliation(s)
- Yingjie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinru Yu
- School of PharmacyJinan, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bihan Song
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhengao Sun
- Reproductive and Genetic Center of Integrative Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengtian Zhao
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Binzhou Medical University Hospital, Yantai, Shandong, China
- Institute of Urology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
33
|
Qu SJ, Zhu SY, Wang EY, Yan XL, Cao RF, Li HT, Jiang ZL. Environmental high temperature affects pre-implantation embryo development by impairing the DNA repair ability. J Therm Biol 2024; 125:103968. [PMID: 39312816 DOI: 10.1016/j.jtherbio.2024.103968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Environmental high temperature poses a significant threat to human health, however, limited information is available for understanding the relationship between the hot weather and infertility. This study aims to assess the adverse effect of the hot weather to early embryonic cells. Our results indicated that environmental high temperature exposure could cause the decline of early embryo quality and implantation ability. In detail, it led to early embryonic development retardation, embryo degeneration rate increased, the rate of blastocyst and hatching decreased, and reduced the number of implants. And the finding also the impairment of environmental high temperature on early embryonic cells may be due to oxidative damage of DNA caused by ROS, while BER repair ability is decreased, failing to repair oxidative damage of DNA in time, resulting in a large number of early embryonic apoptosis. The work underscored that pregnant women should stay away from high-temperature environments.
Collapse
Affiliation(s)
- Si-Jing Qu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - En-Yan Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Lei Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Rong-Feng Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hua-Tao Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhong-Ling Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
34
|
Shao Y, Ma L, Zhou J, Wu K, Tang X. Impact of dietary antioxidants on female infertility risk: evidence from NHANES. Sci Rep 2024; 14:22623. [PMID: 39349955 PMCID: PMC11443145 DOI: 10.1038/s41598-024-72434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
The composite dietary antioxidant index (CDAI) serves as a valuable instrument for evaluating the intake of dietary antioxidants. This research aims to clarify the connection between CDAI and the risk of female infertility by analyzing data from the National Health and Nutrition Examination Survey from 2013 to 2018. Participants underwent two 24-h dietary recall interviews to calculate CDAI. Female infertility was determined through two questionnaires. Logistic regression model, restricted cubic spline and subgroup analysis were employed to examine the association between CDAI and female infertility. The study encompassed 2162 participants. Participants with female infertility had lower CDAI levels compared to those without. Following adjustment for confounding variables, a negative association between CDAI levels and female infertility was observed (Q4 vs. Q1, OR [95% CI] 0.392 [0.193, 0.795], P = 0.016). RCS demonstrated a statistically significant linear negative relationship between CDAI and female infertility. Subgroup analysis showed no significant interaction. This study illustrates a negative link between the CDAI and female infertility, indicating that higher consumption of dietary antioxidants may be associated with a reduced risk of female infertility. Additional rigorously designed prospective studies are necessary to validate these results.
Collapse
Affiliation(s)
- Yifeng Shao
- Department of Obstetrics and GynecologyJiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, 314000, China
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, 314000, China
| | - Lisha Ma
- Department of Obstetrics and GynecologyJiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, 314000, China
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, 314000, China
| | - Jianqing Zhou
- Department of Obstetrics and GynecologyJiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, 314000, China
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, 314000, China
| | - Kang Wu
- Department of Obstetrics and GynecologyJiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, 314000, China.
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, 314000, China.
| | - Xuedong Tang
- Department of Obstetrics and GynecologyJiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, 314000, China.
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, 314000, China.
| |
Collapse
|
35
|
Zhou Y, Wang Q, Tang W, Ma Z, Yang Z, Li X, Chen W, Ma H, Ye X. Palmatine ameliorates N-methyl-N'-nitrosoguanidine-induced chronic atrophic gastritis through the STAT1/CXCL10 axis. FASEB J 2024; 38:e70037. [PMID: 39287361 DOI: 10.1096/fj.202401624r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
Chronic atrophic gastritis (CAG) is a prevalent preneoplastic condition of the stomach. Palmatine (PAL), an isoquinoline alkaloid isolated from Rhizoma Coptidis (RC), has significant anti-inflammatory properties and is often used to treat gastrointestinal disorders. However, the mechanism of PAL on CAG remains unclear. In this study, N-methyl-N'-nitrosoguanidine (MNNG) was used to induce CAG inflammatory disease models in vivo and in vitro. The efficacy of five alkaloids in RC and the dose-dependent effects of the most effective PAL in CAG mice were evaluated in two animal experiments. RNA-seq and western blot revealed that PAL significantly improved IL-17, TNF, and NF-kappa B inflammation-related signaling pathways. Further hub gene prediction and experimental validation revealed that PAL modulated the STAT1/CXCL10 axis, thereby exerting attenuation of CAG through the regulation of IL-17, TNF-α, and p-p65 expression. In conclusion, PAL was proposed to mitigate MNNG-induced CAG, potentially through the inhibition of oxidative stress and inflammatory responses via the STAT1/CXCL10 axis. This approach is an effective complement to the use of PAL in the treatment of CAG.
Collapse
Affiliation(s)
- Yuan Zhou
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Qiaojiao Wang
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Wanyu Tang
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Zhengcai Ma
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Zhipeng Yang
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Xuegang Li
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Wanqun Chen
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Hang Ma
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Mukherjee AG, Valsala Gopalakrishnan A. Rosolic acid as a novel activator of the Nrf2/ARE pathway in arsenic-induced male reproductive toxicity: An in silico study. Biochem Biophys Rep 2024; 39:101801. [PMID: 39175663 PMCID: PMC11340599 DOI: 10.1016/j.bbrep.2024.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Male reproductive toxicity as a result of arsenic exposure is linked with oxidative stress and excessive generation of reactive oxygen species (ROS). It leads to an imbalance between ROS production and antioxidant defense mechanisms ultimately resulting in male infertility. The nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) is a transcription factor that responds to cellular stressors controlling the oxidative state, mitochondrial dysfunction, inflammation, and proteostasis. This study aims to investigate the potential of Rosolic acid (ROA) to act as a novel Nrf2 activator by mitigating oxidative stress to combat arsenic-induced male reproductive toxicity. The protein and ligands were prepared in the BIOVIA Discovery Studio, followed by protein-ligand docking using auto dock vina integrated with the PyRx-Virtual Screening Tool. Then the ADME properties were analyzed using the SwissADME tool to get a clear idea about the physicochemical properties, lipophilicity, water solubility, pharmacokinetics, and drug likeliness of ROA. It was followed by molecular dynamics simulation (MDS) studies using GROMACS. The 3D and 2D interaction maps revealed the interactions of Keap 1 with ROA. Keap1-ROA complex was found to have a binding energy of -7.8 kcal/mol. ROA showed 0 violations for Lipinski and 0 alerts each for PAINS and Brenk and a bioavailability score of 0.55. The BOILED-Egg representation showcases that ROA is predicted as passively crossing the blood-brain barrier (BBB). The MDS described 2FLU-ROA as a stable system. This work portrays that ROA can be a potent Nrf2 activator by exhibiting an inhibitory activity against the Keap1 protein and thus mitigating oxidative stress in arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
37
|
Liu F, Ma M, Li L, Zhang Y, Shang Y, Yuan Q, Ju B, Wang Z. A Study of Sperm DNA Damage Mechanism Based on miRNA Sequencing. Am J Mens Health 2024; 18:15579883241286672. [PMID: 39462893 PMCID: PMC11528732 DOI: 10.1177/15579883241286672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 10/29/2024] Open
Abstract
To analyze the differential expression profiles of microRNAs (miRNAs) in spermatozoa of patients with sperm DNA damage and to investigate the role of miRNAs in sperm DNA damage. Male infertility patients with sperm DNA damage who attended the First Affiliated Hospital of Henan University of Chinese Medicine from October 2023 to December 2023 were selected and included in this study as a case group. Fertile healthy men who were seen at the health check-up center during the same period and diagnosed by examination were also included as a control group. Sperm miRNA expression was detected in patients with sperm DNA damage (case group, n = 5) and healthy medical check-ups (control group, n = 5) using high-throughput sequencing technology. The differentially expressed miRNAs between the two groups were bioinformatically analyzed to explore the main biological functions of the target genes. We found that 63 miRNAs were significantly changed in the spermatozoa of patients with sperm DNA damage,|log2 (foldchange)| ≥ 1, p < .05. Gene Ontology (GO) enrichment analysis indicated that these differential miRNAs might be involved in developmental process, anatomical structure development, cellular macromolecule metabolic process, multicellular organism development, system development, and so on. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that that they mainly affect the PI3K-AKT signaling pathway. The present study suggests that the altered expression of miR-1255a, miR-921, and miR-3156-5p may play an important role in the sperm DNA damage process, and the mechanism may involve the phosphatidylinositol-3'-kinase-AKT (PI3K-AKT) signaling pathway.
Collapse
Affiliation(s)
- Feng Liu
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Miaomiao Ma
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Luyu Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yongtao Zhang
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yihan Shang
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Quan Yuan
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Baojun Ju
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zulong Wang
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
38
|
Zuo N, Wang RT, Bian WM, Liu X, Han BQ, Wang JJ, Shen W, Li L. Vigor King mitigates spermatogenic disorders caused by environmental estrogen zearalenone exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116757. [PMID: 39047363 DOI: 10.1016/j.ecoenv.2024.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Zearalenone (ZEN) has been shown to cause reproductive damage by inducing oxidative stress. Astaxanthin and L-carnitine are widely used to alleviate oxidative stress and promote sperm maturation. However, it remains uncertain whether they are effective in mitigating spermatogenesis disorders induced by ZEN. This study aimed to investigate the therapeutic efficacy and potential mechanisms of Vigor King (Vig), a compound preparation primarily consisting of astaxanthin and L-carnitine, in alleviating ZEN-induced spermatogenesis disorders. In the experiment, mice received continuous oral gavage of ZEN (80 μg/kg) for 35 days, accompanied by a rescue strategy with Vig (200 mg/kg). The results showed that Vig effectively reduced the negative impact on semen quality and improved the structural and functional abnormalities of the seminiferous epithelium caused by ZEN. Additionally, the accumulation of reactive oxygen species (ROS), DNA double-strand breaks, apoptosis, and autophagy abnormalities were all significantly ameliorated. Intriguingly, the GSK3β-dependent BTRC-NRF2 signaling pathway was found to play an important role in this process. Furthermore, testing of offspring indicated that Vig could extend its protective effects to the next generation, effectively combating the transgenerational toxic effects of ZEN. In summary, our research suggests that Vig supplementation holds considerable promise in alleviating spermatogenesis disorders induced by zearalenone.
Collapse
Affiliation(s)
- Ning Zuo
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui Ting Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wen Meng Bian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuan Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Bao Quan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Jun Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
39
|
Shen QZ, Wang YF, Fang YW, Chen YY, He LT, Zhang Y, Liu GT, Zhao K, Liu CY, Fan ZP, Zhang HP. Seminal plasma S100A8/A9 as a potential biomarker of genital tract inflammation. Asian J Androl 2024; 26:464-471. [PMID: 38727211 PMCID: PMC11449414 DOI: 10.4103/aja202389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/16/2024] [Indexed: 09/03/2024] Open
Abstract
ABSTRACT Infections and inflammatory reactions in the male genital tract are the leading causes of male infertility with a prevalence of 6%-10%, primarily affecting testicular and epididymal function and ultimately compromising sperm quality. However, most infertile patients with genital infection/inflammation are asymptomatic and easily overlooked. Traditional indicators, including white blood cells, elastase, and other components in semen, can reflect inflammation of the genital tract, but there is still a lack of a uniform standard method of detection. Therefore, it is necessary to explore reliable markers in semen that reflect the inflammatory status of the genital tract. Using the experimental autoimmune orchitis (EAO) model to simulate noninfectious chronic orchitis, we successfully collected ejaculated seminal fluid from EAO rats using optimized electrical stimulation devices. Proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ). Compared to the control group, 55 upregulated and 105 downregulated proteins were identified in seminal plasma samples from the EAO group. In a preliminary screening, the inflammation-related protein S100A8/A9 was upregulated. We further verified that S100A8/A9 was increased in seminal plasma and highly expressed in testicular macrophages of the EAO model. In patients with oligoasthenospermia and genital tract infections, we also found that S100A8/A9 levels were remarkably increased in seminal plasma and testicular macrophages. S100A8/A9 in semen may be a potential biomarker for chronic genital inflammation. Our study provides a new potential biomarker for early diagnosis and further understanding of male infertility caused by genital inflammation.
Collapse
Affiliation(s)
- Qiu-Zi Shen
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong-Feng Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi-Wei Fang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan-Yao Chen
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Ting He
- The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang 550018, China
| | - Yuan Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guo-Tao Liu
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
| | - Kai Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun-Yan Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zun-Pan Fan
- Center for Reproductive Medicine, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui-Ping Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
| |
Collapse
|
40
|
Makipour A, Hosseinifar S, Khazaeel K, Tabandeh MR, Jamshidian J. Protective effect of Chlorella vulgaris on testicular damage, sperm parameters, androgen production, apoptosis and oxidative stress index in male rats following doxorubicin administration. Reprod Toxicol 2024; 128:108653. [PMID: 38960208 DOI: 10.1016/j.reprotox.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy agent associated with adverse effects on male reproductive health. Chlorella vulgaris (ChV) is a potent natural antioxidant with promising applications in maintaining health and preventing oxidative stress-related diseases. The present study aimed to investigate the protective effect of ChV on DOX-induced testicular toxicity. Twenty-five Wistar rats (230 ± 20 g) were randomly assigned to five groups (n = 5), including the control group, sham group (received normal saline by oral gavage daily and intraperitoneally (IP) once a week), DOX group (3 mg/kg; once a week; IP), ChV group (300 mg/kg/day; by oral gavage), and DOX (3 mg/kg; once a week; IP) + ChV (300 mg/kg/day; by oral gavage) group. After 8 weeks of treatment, the rats were euthanized and serum testosterone level, testes histomorphometry, gonadosomatic index (GSI), apoptotic gene expression, oxidative stress index, and sperm parameters were assessed. The results showed that DOX led to a significant decrease in histological indexes, testosterone level, GSI, sperm parameters, and Bcl-2 gene expression and increased expression of P-53 and Bax genes, and oxidative stress markers (P<0.05). The administration of ChV in the DOX+ChV group significantly improved testosterone levels, sperm parameters, testicular tissue apoptosis, antioxidant enzymes, and structural integrity of the testes (P<0.05). The findings suggest that the co-administration of ChV can be a promising therapeutic agent to reduce the adverse effects of DOX on male reproductive performance.
Collapse
Affiliation(s)
- Azam Makipour
- Department of Basic Sciences, Division of Histology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Shima Hosseinifar
- Department of Basic Sciences, Division of Histology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Kaveh Khazaeel
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Javad Jamshidian
- Department of Basic Sciences, Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
41
|
Marín de Jesús S, Vigueras-Villaseñor RM, Cortés-Barberena E, Hernández-Rodriguez J, Montes S, Arrieta-Cruz I, Pérez-Aguirre SG, Bonilla-Jaime H, Limón-Morales O, Arteaga-Silva M. Zinc and Its Impact on the Function of the Testicle and Epididymis. Int J Mol Sci 2024; 25:8991. [PMID: 39201677 PMCID: PMC11354358 DOI: 10.3390/ijms25168991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Zinc (Zn) is an essential trace element; it exhibits a plethora of physiological properties and biochemical functions. It plays a pivotal role in regulating the cell cycle, apoptosis, and DNA organization, as well as in protein, lipid, and carbohydrate metabolism. Among other important processes, Zn plays an essential role in reproductive health. The ZIP and ZnT proteins are responsible for the mobilization of Zn within the cell. Zn is an inert antioxidant through its interaction with a variety of proteins and enzymes to regulate the redox system, including metallothioneins (MTs), metalloenzymes, and gene regulatory proteins. The role of Zn in the reproductive system is of great importance; processes, such as spermatogenesis and sperm maturation that occur in the testicle and epididymis, respectively, depend on this element for their development and function. Zn modulates the synthesis of androgens, such as testosterone, for these reproductive processes, so Zn deficiency is related to alterations in sperm parameters that lead to male infertility.
Collapse
Affiliation(s)
- Sergio Marín de Jesús
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de Mexico 09340, Mexico; (S.M.d.J.); (S.G.P.-A.)
| | | | - Edith Cortés-Barberena
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico;
| | - Joel Hernández-Rodriguez
- Cuerpo Académico de Investigación en Quiropráctica, Universidad Estatal del Valle de Ecatepec, Av. Central s/n Valle de Anáhuac, Ecatepec de Morelos 55210, Mexico;
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Chapala, Aztlán, Reynosa 88740, Mexico;
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Secretaria de Salud, Ciudad de Mexico 10200, Mexico;
| | - Sonia Guadalupe Pérez-Aguirre
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de Mexico 09340, Mexico; (S.M.d.J.); (S.G.P.-A.)
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
- Laboratorio de Neuroendocrinología Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico
| |
Collapse
|
42
|
Huang TK, Huang CH, Chen PA, Chen CH, Lu F, Yang WJ, Huang JYJ, Li BR. Development of a thermotaxis and rheotaxis microfluidic device for motile spermatozoa sorting. Biosens Bioelectron 2024; 258:116353. [PMID: 38696966 DOI: 10.1016/j.bios.2024.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Male infertility is a pervasive global reproductive challenge, primarily attributed to a decline in semen quality. Addressing this concern, there has been a growing focus on spermatozoa sorting in assisted reproductive technology. This study introduces a groundbreaking development in the form of a thermotaxis and rheotaxis microfluidic (TRMC) device designed for efficient motile spermatozoa sorting within a short 15-min timeframe. The TRMC device mimics the natural sperm sorting mechanism of the oviduct, selecting spermatozoa with superior motility and DNA integrity. The experimental outcomes demonstrate a remarkable enhancement in the percentage of progressive spermatozoa following sorting, soaring from 3.90% to an impressive 96.11% when subjected to a temperature decrease from 38 °C to 35 °C. Notably, sperm motility exhibited a substantial 69% improvement. The TRMC device exhibited a commendable recovery rate of 60.93%, surpassing current clinical requirements. Furthermore, the sorted spermatozoa displayed a notable reduction in the DNA fragmentation index to 6.94%, signifying a substantial 90% enhancement in DNA integrity. This remarkable advancement positions the TRMC device as highly suitable for applications in in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), offering a promising solution to male infertility challenges.
Collapse
Affiliation(s)
- Teng-Kuan Huang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chung-Hsien Huang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Pei-An Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching Hung Chen
- Taiwan IVF Group, Hsinchu, Taiwan; Ton Yen General Hospital, Hsinchu, Taiwan
| | - Farn Lu
- Taiwan IVF Group, Hsinchu, Taiwan; Ton Yen General Hospital, Hsinchu, Taiwan
| | - Wen-Ju Yang
- Taiwan IVF Group, Hsinchu, Taiwan; Ton Yen General Hospital, Hsinchu, Taiwan
| | - Jack Yu Jen Huang
- Taiwan IVF Group, Hsinchu, Taiwan; Ton Yen General Hospital, Hsinchu, Taiwan; Division of Reproductive Endocrinology & Infertility, The Department of Obstetrics and Gynecology at Stanford University, Stanford, CA, USA
| | - Bor-Ran Li
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Medical Device Innovation and Translation R&D Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
43
|
Lupu A, Fotea S, Jechel E, Starcea IM, Ioniuc I, Knieling A, Salaru DL, Sasaran MO, Cirstea O, Revenco N, Mihai CM, Lupu VV, Nedelcu AH. Is oxidative stress - antioxidants imbalance the physiopathogenic core in pediatric obesity? Front Immunol 2024; 15:1394869. [PMID: 39176098 PMCID: PMC11338799 DOI: 10.3389/fimmu.2024.1394869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Despite the early recognition of obesity as an epidemic with global implications, research on its pathogenesis and therapeutic approach is still on the rise. The literature of the 21st century records an excess weight found in up to 1/3 of children. Both the determining factors and its systemic effects are multiple and variable. Regarding its involvement in the potentiation of cardio-vascular, pulmonary, digestive, metabolic, neuro-psychic or even dermatological diseases, the information is already broadly outlined. The connection between the underlying disease and the associated comorbidities seems to be partially attributable to oxidative stress. In addition to these, and in the light of the recent COVID-19 pandemic, the role played by oxidative stress in the induction, maintenance and potentiation of chronic inflammation among overweight children and adolescents becomes a topic of interest again. Thus, this review's purpose is to update general data on obesity, with an emphasis on the physiopathological mechanisms that underlie it and involve oxidative stress. At the same time, we briefly present the latest principles of pathology diagnosis and management. Among these, we will mainly emphasize the impact played by endogenous and exogenous antioxidants in the evolutionary course of pediatric obesity. In order to achieve our objectives, we will refer to the most recent studies published in the specialized literature.
Collapse
Affiliation(s)
- Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, Romania
| | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Maria Oana Sasaran
- Pediatrics, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Olga Cirstea
- Pediatrics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Ninel Revenco
- Pediatrics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
44
|
Albeitawi S, Hamadneh J, Alnatsheh M, Soudah O, Marar EA, Ayasrah L, Alawneh M, Husban R, Alshraideh R, Qablan H. Effect of dual tobacco smoking of hookah and cigarettes on semen parameters of infertile men. Tob Induc Dis 2024; 22:TID-22-141. [PMID: 39105165 PMCID: PMC11299236 DOI: 10.18332/tid/191405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION The research regarding the effect of hookah smoking on health is still deficient, even though it has been proven to jeopardize human health by raising the hazard of different types of cancers, infections, and cardiovascular disease. We aimed to study the effect of dual tobacco smoking (hookah and cigarettes) on semen parameters of infertile men. METHODS In this cross-sectional study, we studied the effect of different types of smoking patterns on human semen parameters among men who visited IVF laboratories to do a seminal fluid analysis (SFA). A total number of 761 participants were included, divided into the following: 108 dual smokers, 219 hookah smokers, 222 cigarette smokers, and 212 non-smokers. To analyze the effect of dual smoking on normal morphology, an interaction term between the cigarette index and hookah index was used. RESULTS Multivariable regression analysis after adjustment for age, BMI, education level, children, chronic diseases, varicocele, testicular surgery history, infertility duration, and cause revealed no significant difference in the sperm concentration and the percentage of progressive motility between non-smokers, cigarette smokers, or hookah smokers. However, there was a significant difference in the log of normal morphology percentage between the three groups. Cigarette and hookah smoking were significantly associated with having lower percentages of normal morphology. There was a significant difference in the log-normal morphology %, where light and heavy dual smokers had the least exponential beta of log-normal morphology %, 0.43 (95% CI: 0.33-0.55) and 0.36 (95% CI: 0.24-0.53), respectively. CONCLUSIONS Dual tobacco smoking can adversely affect sperm morphology.
Collapse
Affiliation(s)
- Soha Albeitawi
- Clinical Medical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Jehan Hamadneh
- Department of Obstetrics and Gynecology, Jordan University of Science and Technology, Irbid, Jordan
| | - Maha Alnatsheh
- In Vitro Fertilization Unit, Istishari Hospital, Amman, Jordan
| | - Ola Soudah
- Clinical Medical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | | | - Laith Ayasrah
- Clinical Medical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mu’nis Alawneh
- Clinical Medical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Rashed Husban
- Clinical Medical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Raneem Alshraideh
- Clinical Medical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Hussien Qablan
- Irbid Specialty Hospital In Vitro Fertilization Center, Irbid Specialty Hospital, Irbid, Jordan
| |
Collapse
|
45
|
Liu S, Wu J, Zhao X, Yu M, Taniguchi M, Bao H, Kang K. Recent Progress of Induced Spermatogenesis In Vitro. Int J Mol Sci 2024; 25:8524. [PMID: 39126092 PMCID: PMC11313507 DOI: 10.3390/ijms25158524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Sperm, a crucial gamete for reproduction in sexual reproduction, is generated through the proliferation, differentiation, and morphological transformations of spermatogonial stem cells within the specialized microenvironment of the testes. Replicating this environment artificially presents challenges. However, interdisciplinary advancements in physics, materials science, and cell engineering have facilitated the utilization of innovative materials, technologies, and structures for inducing in vitro sperm production. This article offers a comprehensive overview of research progress on inducing in vitro sperm production by categorizing techniques into two major systems based on matrix-based and non-matrix-based approaches, respectively. Detailed discussions are provided for both types of technology systems through comparisons of their similarities and differences, as well as research advancements. The aim is to provide researchers in this field with a comprehensive panoramic view while presenting our own perspectives and prospects.
Collapse
Affiliation(s)
- Siqi Liu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| | - Jiang Wu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Masayasu Taniguchi
- Department of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-0841, Japan
| | - Huimingda Bao
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| | - Kai Kang
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| |
Collapse
|
46
|
Zheng Z, Wang H, Chen Z, Gao H, Gao P, Gao J, Jiang H, Zhang X. Impact of chronic sleep deprivation on male reproductive health: Insights from testicular and epididymal responses in mice. Andrology 2024. [PMID: 39092868 DOI: 10.1111/andr.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Sleep deprivation (SD) can cause damage to the male reproductive system. However, the duration required for such damage and the specific sequence and severity of damage to the testis and epididymis remain unclear. OBJECTIVE To investigate the effects of different durations of SD on different parts of the testis and epididymis caput, corpus, and cauda. METHODS Adult ICR mice were randomly assigned to five groups: the SD group (SD for 18 h/day for 1, 2, 3, or 4 weeks), the SD + Vit E group (supplemented with Vit E 50 mg/kg/d during 4 weeks of SD, the SD+NS group (saline supplementation during 4 weeks of SD), the SD + RS group (5 weeks of recovery sleep after 4 weeks of SD), and a normal sleep control (Ctrl) group. Following the interventions, sperm parameters, testicular and epididymal histopathology, inflammatory response, and oxidative stress markers were compared between the groups. RESULTS Compared to the Ctrl group, the SD group showed a decrease in sperm motility and concentration from SD 2 W and SD 3 W, respectively. Decreases in sperm concentration and motility were more pronounced in the cauda compared to the caput and corpus. Pathological damage was less severe in the epididymis caput than in the corpus and cauda. After 4 weeks of SD, inflammation and oxidative stress increased in both testes and epididymis. Both sleep recovery and vitamin E supplementation showed significant improvements, though they did not fully reach the level of the Ctrl group. CONCLUSION Chronic SD for more than 2 weeks causes varying degrees of damage to the testis, epididymis caput, corpus, and cauda in male mice. This damage is not fully reversible after 5 weeks of sleep recovery and antioxidant stress treatment. These findings help us to identify and prevent SD damage to the male reproduction at an early stage.
Collapse
Affiliation(s)
- Zhenming Zheng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Hui Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Zhimin Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Hui Gao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Pan Gao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Jingjing Gao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Hui Jiang
- Andrology Center, Peking University First Hospital, Beijing, China
| | - Xiansheng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| |
Collapse
|
47
|
Utigalieva E, Morozov A, Shoshany O, Suvorov A, Taratkin M, Manfredi C, Falcone M, Bezrukov E, Fajkovic H, Russo GI, Enikeev D. A systematic review and meta-analysis of the placebo effect on both semen quality and male infertility. Minerva Urol Nephrol 2024; 76:423-435. [PMID: 39051890 DOI: 10.23736/s2724-6051.24.05559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Placebo influence on such objective indicators, as sperm quality and infertility, has not been studied previously, but some studies report that placebo may distort even objective outcomes. The aim of current study is to assess the placebo effect on fertility in patients suffering from sperm abnormalities and/or infertility. EVIDENCE ACQUISITION We conducted a search of two databases (Scopus and MEDLINE) and identified placebo-controlled clinical trials which focused on sperm abnormalities and/or male infertility treatment. Primary outcomes included changes in semen parameters (volume, total count, sperm concentration in semen, progressive motility, morphology (normal cells)). Secondary outcomes included DNA fragmentation and change in pregnancy rate. EVIDENCE SYNTHESIS Seventy-seven articles published from 1983 to 2022 were included. Statistically significant changes were observed for the following values: total sperm count, mean change 0.16 (95% CI 0.05, 0.26); P=0.004, I2=75.1%; and progressive motility, mean change 0.13 (95% CI 0.02, 0.24); P=0.026, I2=84.9%. In contrast, placebo did not affect sperm concentration, sperm volume, sperm morphology or DNA fragmentation index. The publication bias for all the values measured with Egger's test and funnel plots was low. CONCLUSIONS The current meta-analysis indicated a statistically significant increase of total sperm count and progressive motility in the placebo group. In contrast, placebo did not affect sperm concentration, sperm volume, sperm morphology and DNA fragmentation index. These findings should be considered while planning or analyzing placebo-controlled clinical trials.
Collapse
Affiliation(s)
- Elvira Utigalieva
- Institute for Clinical Medicine, Sechenov University, Moscow, Russia
| | - Andrey Morozov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Ohad Shoshany
- Urology Section, Beilinson Hospital, Rabin Medical Center, Petah Tiqva, Israel
| | - Aleksandr Suvorov
- Digital Biodesign and Personalized Healthcare World-Class Research Center, Sechenov University, Moscow, Russia
| | - Mark Taratkin
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Celeste Manfredi
- Department of Woman, Child and General and Specialized Surgery, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Marco Falcone
- Section of Urology U, Molinette Hospital, Turin, Italy
- Section of Neurourology, USU/CTO Hospital, Turin, Italy
- AOU Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Evgeny Bezrukov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Harun Fajkovic
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| | | | - Dmitry Enikeev
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia -
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
- Department of Urology, Rabin Medical Center, Petach Tiqwa, Israel
| |
Collapse
|
48
|
Li W, Li H, Zha C, Che B, Yu Y, Yang J, Li T. Lipids, lipid-modified drug target genes, and the risk of male infertility: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1392533. [PMID: 39114294 PMCID: PMC11303150 DOI: 10.3389/fendo.2024.1392533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Background Previous observational studies have reported a possible association between circulating lipids and lipid-lowering drugs and male infertility (MIF), as well as the mediating role of circulating vitamin D. Then, due to issues such as bias, reverse causality, and residual confounding, inferring causal relationships from these studies may be challenging. Therefore, this study aims to explore the effects of circulating lipids and lipid-lowering drugs on MIF through Mendelian randomization (MR) analysis and evaluate the mediating role of vitamin D. Method Genetic variations related to lipid traits and the lipid-lowering effect of lipid modification targets are extracted from the Global Alliance for Lipid Genetics Genome-Wide Association Study. The summary statistics for MIF are from the FinnGen 9th edition. Using quantitative expression feature loci data from relevant organizations to obtain genetic variations related to gene expression level, further to explore the relationship between these target gene expression levels and MIF risk. Two-step MR analysis is used to explore the mediating role of vitamin D. Multiple sensitivity analysis methods (co-localization analysis, Egger intercept test, Cochrane's Q test, pleiotropy residuals and outliers (MR-PRESSO), and the leave-one-out method) are used to demonstrate the reliability of our results. Result In our study, we observed that lipid modification of four lipid-lowering drug targets was associated with MIF risk, the LDLR activator (equivalent to a 1-SD decrease in LDL-C) (OR=1.94, 95% CI 1.14-3.28, FDR=0.040), LPL activator (equivalent to a 1-SD decrease in TG) (OR=1.86, 95% CI 1.25-2.76, FDR=0.022), and CETP inhibitor (equivalent to a 1-SD increase in HDL-C) (OR=1.28, 95% CI 1.07-1.53, FDR=0.035) were associated with a higher risk of MIF. The HMGCR inhibitor (equivalent to a 1-SD decrease in LDL-C) was associated with a lower risk of MIF (OR=0.38, 95% CI 0.17-0.83, FDR=0.39). Lipid-modifying effects of three targets were partially mediated by serum vitamin D levels. Mediation was 0.035 (LDLR activator), 0.012 (LPL activator), and 0.030 (CETP inhibitor), with mediation ratios of 5.34% (LDLR activator), 1.94% (LPL activator), and 12.2% (CETP inhibitor), respectively. In addition, there was no evidence that lipid properties and lipid modification effects of six other lipid-lowering drug targets were associated with MIF risk. Multiple sensitivity analysis methods revealed insignificant evidence of bias arising from pleiotropy or genetic confounding. Conclusion This study did not support lipid traits (LDL-C, HDL-C, TG, Apo-A1, and Apo-B) as pathogenic risk factors for MIF. It emphasized that LPL, LDLR, CETP, and HMGCR were promising drug targets for improving male fertility.
Collapse
Affiliation(s)
- Wei Li
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hu Li
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Cheng Zha
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ying Yu
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianjun Yang
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Li
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
49
|
Cheng J, Yang L, Zhang Z, Xu D, Hua R, Chen H, Li X, Duan J, Li Q. Diquat causes mouse testis injury through inducing heme oxygenase-1-mediated ferroptosis in spermatogonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116562. [PMID: 38850704 DOI: 10.1016/j.ecoenv.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Diquat dibromide (DQ) is a globally used herbicide in agriculture, and its overuse poses an important public health issue, including male reproductive toxicity in mammals. However, the effects and molecular mechanisms of DQ on testes are limited. In vivo experiments, mice were intraperitoneally injected with 8 or 10 mg/kg/ day of DQ for 28 days. It has been found that heme oxygenase-1 (HO-1) mediates DQ-induced ferroptosis in mouse spermatogonia, thereby damaging testicular development and spermatogenesis. Histopathologically, we found that DQ exposure caused seminiferous tubule disorders, reduced germ cells, and increased sperm malformation, in mice. Reactive oxygen species (ROS) staining of frozen section and transmission electron microscopy (TEM) displayed DQ promoted ROS generation and mitochondrial morphology alterations in mouse testes, suggesting that DQ treatment induced testicular oxidative stress. Subsequent RNA-sequencing further showed that DQ treatment might trigger ferroptosis pathway, attributed to disturbed glutathione metabolism and iron homeostasis in spermatogonia cells in vitro. Consistently, results of western blotting, measurements of MDA and ferrous iron, and ROS staining confirmed that DQ increased oxidative stress and lipid peroxidation, and accelerated ferrous iron accumulation both in vitro and in vivo. Moreover, inhibition of ferroptosis by deferoxamine (DFO) markedly ameliorated DQ-induced cell death and dysfunction. By RNA-sequencing, we found that the expression of HO-1 was significantly upregulated in DQ-treated spermatogonia, while ZnPP (a specific inhibitor of HO-1) blocked spermatogonia ferroptosis by balancing intracellular iron homeostasis. In mice, administration of the ferroptosis inhibitor ferrostatin-1 effectively restored the increase of HO-1 levels in the spermatogonia, prevented spermatogonia death, and alleviated the spermatogenesis disorders induced by DQ. Overall, these findings suggest that HO-1 mediates DQ-induced spermatogonia ferroptosis in mouse testes, and targeting HO-1 may be an effective protective strategy against male reproductive disorders induced by pesticides in agriculture.
Collapse
Affiliation(s)
- Jianyong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Li Yang
- Health Management Center, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Zelin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Dejun Xu
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Rongmao Hua
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518000, China
| | - Huali Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
| | - Xiaoya Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiaxin Duan
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030801, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
50
|
Yi X, Qiu Y, Tang X, Lei Y, Pan Y, Raza SHA, Althobaiti NA, Albalawi AE, Al Abdulmonem W, Makhlof RTM, Alsaad MA, Zhang Y, Sun X. Effect of Five Different Antioxidants on the Effectiveness of Goat Semen Cryopreservation. Reprod Sci 2024; 31:1958-1972. [PMID: 38267808 DOI: 10.1007/s43032-024-01452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
The effective combination of semen cryopreservation and artificial insemination has a positive effect on the conservation of germplasm resources, production and breeding, etc. However, during the process of semen cryopreservation, the sperm cells are very susceptible to different degrees of physical, chemical, and oxidative stress damage. Oxidative damage is the most important factor that reduces semen quality, which is affected by factors such as dilution equilibrium, change of osmotic pressure, cold shock, and enzyme action during the freezing-thawing process, which results in the aggregation of a large amount of reactive oxygen species (ROS) in sperm cells and affects the quality of semen after thawing. Therefore, the method of adding antioxidants to semen cryoprotective diluent is usually used to improve the effect of semen cryopreservation. The aim of this experiment was to investigate the effects of adding five antioxidants (GLP, Mito Q, NAC, SLS, and SDS) to semen cryoprotection diluent on the cryopreservation effect of semen from Saanen dairy goats. The optimal preservation concentrations were screened by detecting sperm viability, plasma membrane integrity, antioxidant capacity, and acrosomal enzyme activities after thawing, and the experimental results were as follows: the optimal concentrations of GLP, Mito Q, NAC, SLS, and SDS added to semen cryopreservation diluent at different concentrations were 0.8 mg/mL, 150 nmol/L, 0.6 mg/mL, 0.15 mg/ mL, 0.6 mg/mL, and 0.15 mg/mL. The optimal concentrations of the five antioxidants were added to the diluent and analyzed after 1 week of cryopreservation, and it was found that sperm viability, plasma membrane integrity, and mitochondrial activity were significantly enhanced after thawing compared with the control group (P < 0.05), and their antioxidant capacity was significantly enhanced (P < 0.05). Therefore, the addition of the above five antioxidants to goat sperm cryodilution solution had a better enhancement of sperm cryopreservation. This study provides a useful reference for exploring the improvement of goat semen cryoprotection effect.
Collapse
Affiliation(s)
- Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanbo Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yichen Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yun Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Al Quwaiiyah, 19257, Al Quwaiiyah, Saudi Arabia
| | - Aishah E Albalawi
- Faculty of Science, Department of Biology, University of Tabuk, 47913, Tabuk, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Raafat T M Makhlof
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, P.O. Box 715, 21955, Makkah, Saudi Arabia
| | - Mohammad A Alsaad
- College of Medicine, Umm AL Qura University, 21955, Makkah, Saudi Arabia
| | - Yu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- College of Grassland Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|