1
|
Zhong F, Albert T, Moënne-Loccoz P, Pletneva EV. Influence of the Interdomain Interface on Structural and Redox Properties of Multiheme Proteins. Inorg Chem 2022; 61:20949-20963. [PMID: 36493379 PMCID: PMC11034829 DOI: 10.1021/acs.inorgchem.2c03427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiheme proteins are important in energy conversion and biogeochemical cycles of nitrogen and sulfur. A diheme cytochrome c4 (c4) was used as a model to elucidate roles of the interdomain interface on properties of iron centers in its hemes A and B. Isolated monoheme domains c4-A and c4-B, together with the full-length diheme c4 and its Met-to-His ligand variants, were characterized by a variety of spectroscopic and stability measurements. In both isolated domains, the heme iron is Met/His-ligated at pH 5.0, as in the full-length c4, but becomes His/His-ligated in c4-B at higher pH. Intradomain contacts in c4-A are minimally affected by the separation of c4-A and c4-B domains, and isolated c4-A is folded. In contrast, the isolated c4-B is partially unfolded, and the interface with c4-A guides folding of this domain. The c4-A and c4-B domains have the propensity to interact even without the polypeptide linker. Thermodynamic cycles have revealed properties of monomeric folded isolated domains, suggesting that ferrous (FeII), but not ferric (FeIII) c4-A and c4-B, is stabilized by the interface. This study illustrates the effects of the interface on tuning structural and redox properties of multiheme proteins and enriches our understanding of redox-dependent complexation.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | | |
Collapse
|
2
|
Mizukami T, Roder H. Advances in Mixer Design and Detection Methods for Kinetics Studies of Macromolecular Folding and Binding on the Microsecond Time Scale. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113392. [PMID: 35684328 PMCID: PMC9182321 DOI: 10.3390/molecules27113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
Abstract
Many important biological processes such as protein folding and ligand binding are too fast to be fully resolved using conventional stopped-flow techniques. Although advances in mixer design and detection methods have provided access to the microsecond time regime, there is room for improvement in terms of temporal resolution and sensitivity. To address this need, we developed a continuous-flow mixing instrument with a dead time of 12 to 27 µs (depending on solution viscosity) and enhanced sensitivity, sufficient for monitoring tryptophan or tyrosine fluorescence changes at fluorophore concentrations as low as 1 µM. Relying on commercially available laser microfabrication services, we obtained an integrated mixer/flow-cell assembly on a quartz chip, based on a cross-channel configuration with channel dimensions and geometry designed to minimize backpressure. By gradually increasing the width of the observation channel downstream from the mixing region, we are able to monitor a reaction progress time window ranging from ~10 µs out to ~3 ms. By combining a solid-state UV laser with a Galvano-mirror scanning strategy, we achieved highly efficient and uniform fluorescence excitation along the flow channel. Examples of applications, including refolding of acid-denatured cytochrome c triggered by a pH jump and binding of a peptide ligand to a PDZ domain, demonstrate the capability of the technique to resolve fluorescence changes down to the 10 µs time regime on modest amounts of reagents.
Collapse
|
3
|
Redox state changes of mitochondrial cytochromes in brain and breast cancers by Raman spectroscopy and imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
5
|
Bakels S, Gaigeot MP, Rijs AM. Gas-Phase Infrared Spectroscopy of Neutral Peptides: Insights from the Far-IR and THz Domain. Chem Rev 2020; 120:3233-3260. [PMID: 32073261 PMCID: PMC7146864 DOI: 10.1021/acs.chemrev.9b00547] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Gas-phase, double
resonance IR spectroscopy has proven to be an
excellent approach to obtain structural information on peptides ranging
from single amino acids to large peptides and peptide clusters. In
this review, we discuss the state-of-the-art of infrared action spectroscopy
of peptides in the far-IR and THz regime. An introduction to the field
of far-IR spectroscopy is given, thereby highlighting the opportunities
that are provided for gas-phase research on neutral peptides. Current
experimental methods, including spectroscopic schemes, have been reviewed.
Structural information from the experimental far-IR spectra can be
obtained with the help of suitable theoretical approaches such as
dynamical DFT techniques and the recently developed Graph Theory.
The aim of this review is to underline how the synergy between far-IR
spectroscopy and theory can provide an unprecedented picture of the
structure of neutral biomolecules in the gas phase. The far-IR signatures
of the discussed studies are summarized in a far-IR map, in order
to gain insight into the origin of the far-IR localized and delocalized
motions present in peptides and where they can be found in the electromagnetic
spectrum.
Collapse
Affiliation(s)
- Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587, Université d'Evry val d'Essonne, Blvd F. Mitterrand, Bât Maupertuis, 91025 Evry, France
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
6
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
7
|
Röder K, Joseph JA, Husic BE, Wales DJ. Energy Landscapes for Proteins: From Single Funnels to Multifunctional Systems. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800175] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Konstantin Röder
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Jerelle A. Joseph
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Brooke E. Husic
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - David J. Wales
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| |
Collapse
|
8
|
Mizukami T, Xu M, Fazlieva R, Bychkova VE, Roder H. Complex Folding Landscape of Apomyoglobin at Acidic pH Revealed by Ultrafast Kinetic Analysis of Core Mutants. J Phys Chem B 2018; 122:11228-11239. [PMID: 30133301 DOI: 10.1021/acs.jpcb.8b06895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Under mildly acidic conditions (pH 4-4.5) apomyoglobin (apoMb) adopts a partially structured equilibrium state ( M-state) that structurally resembles a kinetic intermediate encountered at a late stage of folding to the native structure at neutral pH. We have previously reported that the M-state is formed rapidly (<1 ms) via a multistate process and thus offers a unique opportunity for exploring early stages of folding by both experimental and computational techniques. In order to gain structural insight into intermediates and barriers at the residue level, we studied the folding/unfolding kinetics of 12 apoMb mutants at pH 4.2 using fluorescence-detected ultrafast mixing techniques. Global analysis of the submillisecond folding/unfolding kinetics vs urea concentration for each variant, based on a sequential four-state mechanism ( U ⇔ I ⇔ L ⇔ M), allowed us to determine elementary rate constants and their dependence on urea concentration for most transitions. Comparison of the free energy diagrams constructed from the kinetic data of the mutants with that of wild-type apoMb yielded quantitative information on the effects of mutations on the free energy (ΔΔ G) of both intermediates and the first two kinetic barriers encountered during folding. Truncation of conserved aliphatic side chains on helices A, G, and H gives rise to a stepwise increase in ΔΔ G as the protein advances from U toward M, consistent with progressive stabilization of native-like contacts within the primary core of apoMb. Helix-helix contacts in the primary core contribute little to the first folding barrier ( U ⇔ I) and thus are not required for folding initiation but are critical for the stability of the late intermediate, L, and the M-state. Alanine substitution of hydrophobic residues at more peripheral helix-helix contact sites of the native structure, which are still absent or unstable in the M-state, shows both positive (destabilizing) and negative (stabilizing) ΔΔ G, indicating that non-native contacts are formed initially and weakened or lost as a result of subsequent structural rearrangement steps.
Collapse
Affiliation(s)
- Takuya Mizukami
- Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , Pennsylvania 19111 , United States
| | - Ming Xu
- Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , Pennsylvania 19111 , United States
| | - Ruzaliya Fazlieva
- Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , Pennsylvania 19111 , United States
| | - Valentina E Bychkova
- Laboratory of Protein Physics , Institute of Protein Science, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| | - Heinrich Roder
- Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , Pennsylvania 19111 , United States
| |
Collapse
|
9
|
Uchida T, Sekine Y, Dojun N, Lewis-Ballester A, Ishigami I, Matsui T, Yeh SR, Ishimori K. Reaction intermediates in the heme degradation reaction by HutZ from Vibrio cholerae. Dalton Trans 2018; 46:8104-8109. [PMID: 28607990 DOI: 10.1039/c7dt01562c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HutZ is a heme-degrading enzyme in Vibrio cholerae. It converts heme to biliverdin via verdoheme, suggesting that it follows the same reaction mechanism as that of mammalian heme oxygenase. However, none of the key intermediates have been identified. In this study, we applied steady-state and time-resolved UV-vis absorption and resonance Raman spectroscopy to study the reaction of the heme-HutZ complex with H2O2 or ascorbic acid. We characterized three intermediates: oxyferrous heme, meso-hydroxyheme, and verdoheme complexes. Our data support the view that HutZ degrades heme in a manner similar to mammalian heme oxygenase, despite their low sequence and structural homology.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Schweitzer-Stenner R. Relating the multi-functionality of cytochrome c to membrane binding and structural conversion. Biophys Rev 2018; 10:1151-1185. [PMID: 29574621 PMCID: PMC6082307 DOI: 10.1007/s12551-018-0409-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Cytochrome c is known as an electron-carrying protein in the respiratory chain of mitochondria. Over the last 20 years, however, alternative functions of this very versatile protein have become the focus of research interests. Upon binding to anionic lipids such as cardiolipin, the protein acquires peroxidase activity. Multiple lines of evidence suggest that this requires a conformational change of the protein which involves partial unfolding of its tertiary structure. This review summarizes the current state of knowledge of how cytochrome c interacts with cardiolipin-containing surfaces and how this affects its structure and function. In this context, we delineate partially conflicting results regarding the affinity of cytochrome c binding to cardiolipin-containing liposomes of different size and its influence on the structure of the protein and the morphology of the membrane.
Collapse
|
11
|
Mondal S, Das B. A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 198:278-282. [PMID: 29554518 DOI: 10.1016/j.saa.2018.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/19/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
The interactions of a protein cytochrome c with some selected conventional and ionic liquid surfactants have been investigated at pH7.4 using ultraviolet-visible and fluorescence spectroscopic techniques. We used four conventional surfactants - cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), sodium N-dodecanoylsarcosinate (SDDS), and N-decanoyl-N-methylglucamine (Mega 10), and a surface active ionic liquid 1-hexadecyl-3-methylimidazolium chloride (C16MeImCl). All the investigated surfactants were found to induce an unfolding of the protein cytochrome c. In presence of CTAB, SDDS and C16MeImCl, the heme iron atom was found to loose methionine from its axial position. Differential binding of the surfactant monomers and their micelles to the protein molecules was inferred. The ionic surfactants were found to be more effective than the nonionic one in unfolding the investigated protein. However, the extent of binding of CTAB/C16MeImCl to cytochrome c reaches a plateau past the critical micellization concentration (cmc) of the surfactant. For each of the cytochrome c-DTAB, cytochrome c-SDDS and cytochrome c-Mega 10 system, although there exists an inflection in the surfactant-binding, saturation point could not be detected. It has been demonstrated from the ultraviolet-visible spectral studies that the oxidation state of iron in cytochrome c does not change when the protein binds with the investigated surfactants.
Collapse
Affiliation(s)
- Satyajit Mondal
- Department of Chemistry, Presidency University, Kolkata 700 073, India
| | - Bijan Das
- Department of Chemistry, Presidency University, Kolkata 700 073, India.
| |
Collapse
|
12
|
Rimmerman D, Leshchev D, Hsu DJ, Hong J, Abraham B, Henning R, Kosheleva I, Chen LX. Probing Cytochrome c Folding Transitions upon Phototriggered Environmental Perturbations Using Time-Resolved X-ray Scattering. J Phys Chem B 2018; 122:5218-5224. [PMID: 29709179 DOI: 10.1021/acs.jpcb.8b03354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Direct tracking of protein structural dynamics during folding-unfolding processes is important for understanding the roles of hierarchic structural factors in the formation of functional proteins. Using cytochrome c (cyt c) as a platform, we investigated its structural dynamics during folding processes triggered by local environmental changes (i.e., pH or heme iron center oxidation/spin/ligation states) with time-resolved X-ray solution scattering measurements. Starting from partially unfolded cyt c, a sudden pH drop initiated by light excitation of a photoacid caused a structural contraction in microseconds, followed by active site restructuring and unfolding in milliseconds. In contrast, the reduction of iron in the heme via photoinduced electron transfer did not affect conformational stability at short timescales (<1 ms), despite active site coordination geometry changes. These results demonstrate how different environmental perturbations can change the nature of interaction between the active site and protein conformation, even within the same metalloprotein, which will subsequently affect the folding structural dynamics.
Collapse
Affiliation(s)
- Dolev Rimmerman
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Denis Leshchev
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Darren J Hsu
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Jiyun Hong
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Baxter Abraham
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Robert Henning
- Center for Advanced Radiation Sources , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Irina Kosheleva
- Center for Advanced Radiation Sources , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Lin X Chen
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
13
|
Arai M. Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins. Biophys Rev 2018; 10:163-181. [PMID: 29307002 PMCID: PMC5899706 DOI: 10.1007/s12551-017-0346-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Extensive experimental and theoretical studies have advanced our understanding of the mechanisms of folding and binding of globular proteins, and coupled folding and binding of intrinsically disordered proteins (IDPs). The forces responsible for conformational changes and binding are common in both proteins; however, these mechanisms have been separately discussed. Here, we attempt to integrate the mechanisms of coupled folding and binding of IDPs, folding of small and multi-subdomain proteins, folding of multimeric proteins, and ligand binding of globular proteins in terms of conformational selection and induced-fit mechanisms as well as the nucleation–condensation mechanism that is intermediate between them. Accumulating evidence has shown that both the rate of conformational change and apparent rate of binding between interacting elements can determine reaction mechanisms. Coupled folding and binding of IDPs occurs mainly by induced-fit because of the slow folding in the free form, while ligand binding of globular proteins occurs mainly by conformational selection because of rapid conformational change. Protein folding can be regarded as the binding of intramolecular segments accompanied by secondary structure formation. Multi-subdomain proteins fold mainly by the induced-fit (hydrophobic collapse) mechanism, as the connection of interacting segments enhances the binding (compaction) rate. Fewer hydrophobic residues in small proteins reduce the intramolecular binding rate, resulting in the nucleation–condensation mechanism. Thus, the folding and binding of globular proteins and IDPs obey the same general principle, suggesting that the coarse-grained, statistical mechanical model of protein folding is promising for a unified theoretical description of all mechanisms.
Collapse
Affiliation(s)
- Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
14
|
Mitić S, Strampraad MJF, Hagen WR, de Vries S. Microsecond time-scale kinetics of transient biochemical reactions. PLoS One 2017; 12:e0185888. [PMID: 28973014 PMCID: PMC5626514 DOI: 10.1371/journal.pone.0185888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
To afford mechanistic studies in enzyme kinetics and protein folding in the microsecond time domain we have developed a continuous-flow microsecond time-scale mixing instrument with an unprecedented dead-time of 3.8 ± 0.3 μs. The instrument employs a micro-mixer with a mixing time of 2.7 μs integrated with a 30 mm long flow-cell of 109 μm optical path length constructed from two parallel sheets of silver foil; it produces ultraviolet-visible spectra that are linear in absorbance up to 3.5 with a spectral resolution of 0.4 nm. Each spectrum corresponds to a different reaction time determined by the distance from the mixer outlet, and by the fluid flow rate. The reaction progress is monitored in steps of 0.35 μs for a total duration of ~600 μs. As a proof of principle the instrument was used to study spontaneous protein refolding of pH-denatured cytochrome c. Three folding intermediates were determined: after a novel, extremely rapid initial phase with τ = 4.7 μs, presumably reflecting histidine re-binding to the iron, refolding proceeds with time constants of 83 μs and 345 μs to a coordinatively saturated low-spin iron form in quasi steady state. The time-resolution specifications of our spectrometer for the first time open up the general possibility for comparison of real data and molecular dynamics calculations of biomacromolecules on overlapping time scales.
Collapse
Affiliation(s)
- Sandra Mitić
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
- * E-mail:
| | - Simon de Vries
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
15
|
Chertkova RV, Brazhe NA, Bryantseva TV, Nekrasov AN, Dolgikh DA, Yusipovich AI, Sosnovtseva O, Maksimov GV, Rubin AB, Kirpichnikov MP. New insight into the mechanism of mitochondrial cytochrome c function. PLoS One 2017; 12:e0178280. [PMID: 28562658 PMCID: PMC5451065 DOI: 10.1371/journal.pone.0178280] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/10/2017] [Indexed: 11/22/2022] Open
Abstract
We investigate functional role of the P76GTKMIFA83 fragment of the primary structure of cytochrome c. Based on the data obtained by the analysis of informational structure (ANIS), we propose a model of functioning of cytochrome c. According to this model, conformational rearrangements of the P76GTKMIFA83 loop fragment have a significant effect on conformational mobility of the heme. It is suggested that the conformational mobility of cytochrome c heme is responsible for its optimal orientation with respect to electron donor and acceptor within ubiquinol–cytochrome c oxidoreductase (complex III) and cytochrome c oxidase (complex IV), respectively, thus, ensuring electron transfer from complex III to complex IV. To validate the model, we design several mutant variants of horse cytochrome c with multiple substitutions of amino acid residues in the P76GTKMIFA83 sequence that reduce its ability to undergo conformational rearrangements. With this, we study the succinate–cytochrome c reductase and cytochrome c oxidase activities of rat liver mitoplasts in the presence of mutant variants of cytochrome c. The electron transport activity of the mutant variants decreases to different extent. Resonance Raman spectroscopy (RRS) and surface-enhanced Raman spectroscopy (SERS) data demonstrate, that all mutant cytochromes possess heme with the higher degree of ruffling deformation, than that of the wild-type (WT) cytochrome c. The increase in the ruffled deformation of the heme of oxidized cytochromes correlated with the decrease in the electron transport rate of ubiquinol–cytochrome c reductase (complex III). Besides, all mutant cytochromes have lower mobility of the pyrrol rings and methine bridges, than WT cytochrome c. We show that a decrease in electron transport activity in the mutant variants correlates with conformational changes and reduced mobility of heme porphyrin. This points to a significant role of the P76GTKMIFA83 fragment in the electron transport function of cytochrome c.
Collapse
Affiliation(s)
- Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- * E-mail: (RVC); (NAB)
| | - Nadezda A. Brazhe
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- * E-mail: (RVC); (NAB)
| | - Tatiana V. Bryantseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey N. Nekrasov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander I. Yusipovich
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Georgy V. Maksimov
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Andrei B. Rubin
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
- Biophysics Department, Biological faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
16
|
Milorey B, Malyshka D, Schweitzer-Stenner R. pH Dependence of Ferricytochrome c Conformational Transitions during Binding to Cardiolipin Membranes: Evidence for Histidine as the Distal Ligand at Neutral pH. J Phys Chem Lett 2017; 8:1993-1998. [PMID: 28418677 DOI: 10.1021/acs.jpclett.7b00597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The conformational changes of ferricytochrome c upon binding to cardiolipin-containing small unilamellar vesicles were studied at slightly acidic pH using fluorescence, visible circular dichroism, UV-visible absorption, and resonance Raman spectroscopy. The obtained spectroscopic response data suggest a mode of interaction, which is clearly distinct from the binding process observed at neutral pH. Evidence of a reversible and electrostatic binding mechanism under these conditions is provided through binding inhibition in the presence of 150 mM NaCl. Moreover, UV-visible absorption and resonance Raman spectra reveal that the conformational ensemble of membrane bound cytochrome c is dominated by a mixture of conformers with pentacoordinated and hexacoordinated high-spin heme irons, which contrast with the dominance of low-spin species at neutral pH. While our results confirm the L-site binding proposed by Kawai et al., they point to the protonation of a histidine ligand (H33) as conformational trigger.
Collapse
Affiliation(s)
- Bridget Milorey
- Department of Chemistry, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Dmitry Malyshka
- Department of Chemistry, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
17
|
Ghazal A, Lafleur JP, Mortensen K, Kutter JP, Arleth L, Jensen GV. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences. LAB ON A CHIP 2016; 16:4263-4295. [PMID: 27731448 DOI: 10.1039/c6lc00888g] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The increasingly narrow and brilliant beams at X-ray facilities reduce the requirements for both sample volume and data acquisition time. This creates new possibilities for the types and number of sample conditions that can be examined but simultaneously increases the demands in terms of sample preparation. Microfluidic-based sample preparation techniques have emerged as elegant alternatives that can be integrated directly into the experimental X-ray setup remedying several shortcomings of more traditional methods. We review the use of microfluidic devices in conjunction with X-ray measurements at synchrotron facilities in the context of 1) mapping large parameter spaces, 2) performing time resolved studies of mixing-induced kinetics, and 3) manipulating/processing samples in ways which are more demanding or not accessible on the macroscale. The review covers the past 15 years and focuses on applications where synchrotron data collection is performed in situ, i.e. directly on the microfluidic platform or on a sample jet from the microfluidic device. Considerations such as the choice of materials and microfluidic designs are addressed. The combination of microfluidic devices and measurements at large scale X-ray facilities is still emerging and far from mature, but it definitely offers an exciting array of new possibilities.
Collapse
Affiliation(s)
- Aghiad Ghazal
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Josiane P Lafleur
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Jörg P Kutter
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Grethe V Jensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
18
|
Goluguri RR, Udgaonkar JB. Microsecond Rearrangements of Hydrophobic Clusters in an Initially Collapsed Globule Prime Structure Formation during the Folding of a Small Protein. J Mol Biol 2016; 428:3102-17. [PMID: 27370109 DOI: 10.1016/j.jmb.2016.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 12/14/2022]
Abstract
Determining how polypeptide chain collapse initiates structure formation during protein folding is a long standing goal. It has been challenging to characterize experimentally the dynamics of the polypeptide chain, which lead to the formation of a compact kinetic molten globule (MG) in about a millisecond. In this study, the sub-millisecond events that occur early during the folding of monellin from the guanidine hydrochloride-unfolded state have been characterized using multiple fluorescence and fluorescence resonance energy transfer probes. The kinetic MG is shown to form in a noncooperative manner from the unfolded (U) state as a result of at least three different processes happening during the first millisecond of folding. Initial chain compaction completes within the first 37μs, and further compaction occurs only after structure formation commences at a few milliseconds of folding. The transient nonnative and native-like hydrophobic clusters with side chains of certain residues buried form during the initial chain collapse and the nonnative clusters quickly disassemble. Subsequently, partial chain desolvation occurs, leading to the formation of a kinetic MG. The initial chain compaction and subsequent chain rearrangement appear to be barrierless processes. The two structural rearrangements within the collapsed globule appear to prime the protein for the actual folding transition.
Collapse
Affiliation(s)
- Rama Reddy Goluguri
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.
| |
Collapse
|
19
|
Mortensen DN, Williams ER. Ultrafast (1 μs) Mixing and Fast Protein Folding in Nanodrops Monitored by Mass Spectrometry. J Am Chem Soc 2016; 138:3453-60. [PMID: 26902747 DOI: 10.1021/jacs.5b13081] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of theta-glass emitters and mass spectrometry to monitor reactions that occur as fast as one μs is demonstrated. Acidified aqueous solutions containing unfolded proteins are mixed with aqueous ammonium acetate solutions to increase the solution pH and induce protein folding during nanoelectrospray ionization. Protein charge-state distributions show the extent to which folding occurs, and reaction times are obtained from known protein folding time constants. Shorter reaction times are obtained by decreasing the solution flow rate, and reaction times between 1.0 and 22 μs are obtained using flow rates between 48 and 2880 pL/s, respectively. Remarkably similar reaction times are obtained for three different proteins (Trp-cage, myoglobin, and cytochrome c) with folding time constants that differ by more than an order of magnitude (4.1, 7, and 57 μs, respectively), indicating that the reaction times obtained using rapid mixing from theta-glass emitters are independent of protein identity. A folding time constant of 2.2 μs is obtained for the formation of a β-hairpin structure of renin substrate tetradecapeptide, which is the fastest folding event measured using a rapid mixing technique. The 1.0 μs reaction time obtained here is about an order of magnitude lower than the shortest reaction time probed using a conventional mixer (8 μs). Moreover, this fast reaction time is obtained with a 48 pL/s flow rate, which is 2000-times less than the flow rate required to obtained the 8 μs reaction time using a conventional mixer. These results indicate that rapid mixing with theta-glass emitters can be used to access significantly faster reaction times while consuming substantially less sample than in conventional mixing apparatus.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| |
Collapse
|
20
|
Hannibal L, Tomasina F, Capdevila DA, Demicheli V, Tórtora V, Alvarez-Paggi D, Jemmerson R, Murgida DH, Radi R. Alternative Conformations of Cytochrome c: Structure, Function, and Detection. Biochemistry 2016; 55:407-28. [DOI: 10.1021/acs.biochem.5b01385] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Luciana Hannibal
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Center
for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Mathildenstrasse 1, Freiburg D-79106, Germany
| | - Florencia Tomasina
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Daiana A. Capdevila
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Verónica Demicheli
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Ronald Jemmerson
- Department
of Microbiology and Immunology, University of Minnesota, MMC 196,
420 Delaware Street, Southeast, Minneapolis, Minnesota 55455, United States
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Rafael Radi
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
21
|
Karunakaran V. Ultrafast Heme Dynamics of Ferric Cytochrome c in Different Environments: Electronic, Vibrational, and Conformational Relaxation. Chemphyschem 2015; 16:3974-83. [DOI: 10.1002/cphc.201500672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/23/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Venugopal Karunakaran
- Photosciences and Photonics Section; Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology; Thiruvananthapuram 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi 110 001 India
| |
Collapse
|
22
|
Azarkh M, Groenen EJJ. Temperature Determination by EPR at 275 GHz and the Detection of Temperature Jumps in Aqueous Samples. J Phys Chem B 2015; 119:13416-21. [DOI: 10.1021/acs.jpcb.5b08353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mykhailo Azarkh
- Huygens-Kamerlingh Onnes
Laboratory, Department of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Edgar J. J. Groenen
- Huygens-Kamerlingh Onnes
Laboratory, Department of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
23
|
Jiang L, Zeng Y, Sun Q, Sun Y, Guo Z, Qu JY, Yao S. Microsecond protein folding events revealed by time-resolved fluorescence resonance energy transfer in a microfluidic mixer. Anal Chem 2015; 87:5589-95. [PMID: 25938953 DOI: 10.1021/acs.analchem.5b00366] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate the combination of the time-resolved fluorescence resonance energy transfer (tr-FRET) measurement and the ultrarapid hydrodynamic focusing microfluidic mixer. The combined technique is capable of probing the intermolecular distance change with temporal resolution at microsecond level and structural resolution at Angstrom level, and the use of two-photon excitation enables a broader exploration of FRET with spectrum from near-ultraviolet to visible wavelength. As a proof of principle, we used the coupled microfluidic laminar flow and time-resolved two-photon excitation microscopy to investigate the early folding states of Cytochrome c (cyt c) by monitoring the distance between the tryptophan (Trp-59)-heme donor-acceptor (D-A) pair. The transformation of folding states of cyt c in the early 500 μs of refolding was revealed on the microsecond time scale. For the first time, we clearly resolved the early transient state of cyt c, which is populated within the dead time of the mixer (<10 μs) and has a characteristic Trp-59-heme distance of ∼31 Å. We believe this tool can find more applications in studying the early stages of biological processes with FRET as the probe.
Collapse
Affiliation(s)
- Liguo Jiang
- †HKUST Jockey Club Institute for Advanced Study, ‡Department of Electronic and Computer Engineering, §Department of Chemistry, ⊥Department of Mechanical and Aerospace Engineering, and ∇Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong
| | - Yan Zeng
- †HKUST Jockey Club Institute for Advanced Study, ‡Department of Electronic and Computer Engineering, §Department of Chemistry, ⊥Department of Mechanical and Aerospace Engineering, and ∇Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong
| | - Qiqi Sun
- †HKUST Jockey Club Institute for Advanced Study, ‡Department of Electronic and Computer Engineering, §Department of Chemistry, ⊥Department of Mechanical and Aerospace Engineering, and ∇Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong
| | - Yueru Sun
- †HKUST Jockey Club Institute for Advanced Study, ‡Department of Electronic and Computer Engineering, §Department of Chemistry, ⊥Department of Mechanical and Aerospace Engineering, and ∇Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong
| | - Zhihong Guo
- †HKUST Jockey Club Institute for Advanced Study, ‡Department of Electronic and Computer Engineering, §Department of Chemistry, ⊥Department of Mechanical and Aerospace Engineering, and ∇Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong
| | - Jianan Y Qu
- †HKUST Jockey Club Institute for Advanced Study, ‡Department of Electronic and Computer Engineering, §Department of Chemistry, ⊥Department of Mechanical and Aerospace Engineering, and ∇Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong
| | - Shuhuai Yao
- †HKUST Jockey Club Institute for Advanced Study, ‡Department of Electronic and Computer Engineering, §Department of Chemistry, ⊥Department of Mechanical and Aerospace Engineering, and ∇Division of Biomedical Engineering, Hong Kong University of Science and Technology, Hong Kong
| |
Collapse
|
24
|
Milán-Garcés EA, Thaore P, Udgaonkar JB, Puranik M. Formation of a CH−π Contact in the Core of Native Barstar during Folding. J Phys Chem B 2015; 119:2928-32. [DOI: 10.1021/jp512036p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erix A. Milán-Garcés
- National
Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Pallavi Thaore
- National
Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Jayant B. Udgaonkar
- National
Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Mrinalini Puranik
- Indian Institute
of Science Education and Research, Pune 411008, India
| |
Collapse
|
25
|
Probing Microsecond Reactions with Microfluidic Mixers and TCSPC. SPRINGER SERIES IN CHEMICAL PHYSICS 2015. [DOI: 10.1007/978-3-319-14929-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Mortensen DN, Williams ER. Investigating protein folding and unfolding in electrospray nanodrops upon rapid mixing using theta-glass emitters. Anal Chem 2014; 87:1281-7. [PMID: 25525976 PMCID: PMC4303338 DOI: 10.1021/ac503981c] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Theta-glass emitters are used to
rapidly mix two solutions to induce
either protein folding or unfolding during nanoelectrospray (nanoESI).
Mixing acid-denatured myoglobin with an aqueous ammonium acetate solution
to increase solution pH results in protein folding during nanoESI.
A reaction time and upper limit to the droplet lifetime of 9 ±
2 μs is obtained from the relative abundance of the folded conformer
in these rapid mixing experiments compared to that obtained from solutions
at equilibrium and a folding time constant of 7 μs. Heme reincorporation
does not occur, consistent with the short droplet lifetime and the
much longer time constant for this process. Similar mixing experiments
with acid-denatured cytochrome c and the resulting
folding during nanoESI indicate a reaction time of between 7 and 25
μs depending on the solution composition. The extent of unfolding
of holo-myoglobin upon rapid mixing with theta-glass emitters is less
than that reported previously (Fisher
et al. 2014, 86, 4581−458824702054), a result
that is attributed to the much smaller, ∼1.5 μm, average
o.d. tips used here. These results indicate that the time frame during
which protein folding or unfolding can occur during nanoESI depends
both on the initial droplet size, which can be varied by changing
the emitter tip diameter, and on the solution composition. This study
demonstrates that protein folding or unfolding processes that occur
on the ∼10 μs time scale can be readily investigated
using rapid mixing with theta-glass emitters combined with mass spectrometry.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | |
Collapse
|
27
|
Choi J, Cho DW, Tojo S, Fujitsuka M, Majima T. Configurational changes of heme followed by cytochrome c folding reaction. MOLECULAR BIOSYSTEMS 2014; 11:218-22. [PMID: 25358103 DOI: 10.1039/c4mb00551a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although the folding kinetics of cytochrome c (Cyt-c), ferric or ferrous Cyt-c, has been extensively investigated as a paradigm for a protein folding reaction using various time-resolved spectroscopic techniques, the configurational change of heme associated with the folding reaction from a ferric Cyt-c to a ferrous Cyt-c induced by one-electron reduction has not been elucidated. To address this issue, we investigated the configurational change of heme in the Cyt-c folding process induced by one-electron reduction using a combination of time-resolved resonance Raman spectroscopy and pulse radiolysis. The results presented herein reveal that the reduction of ferric Cyt-c and the ligation of Met80 occur simultaneously within a timescale of approximately 2 μs, and that the ligand binding and exchange of heme depend on the initial configuration of the heme. The rapid ligation of Met80 observed in this study may be attributed to the intramolecular diffusion of Met80 into ferrous Cyt-c with a 5-coordinated high-spin configuration. Conversely, the ligand exchange of a ferrous Cyt-c with a 6-coordinated low-spin configuration was significantly slower.
Collapse
Affiliation(s)
- Jungkweon Choi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | | | |
Collapse
|
28
|
Investigations of heme distortion, low-frequency vibrational excitations, and electron transfer in cytochrome c. Proc Natl Acad Sci U S A 2014; 111:6570-5. [PMID: 24753591 DOI: 10.1073/pnas.1322274111] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome (cyt) c is an important electron transfer protein. The ruffling deformation of its heme cofactor has been suggested to relate to its electron transfer rate. However, there is no direct experimental evidence demonstrating this correlation. In this work, we studied Pseudomonas aeruginosa cytochrome c551 and its F7A mutant. These two proteins, although similar in their X-ray crystal structure, display a significant difference in their heme out-of-plane deformations, mainly along the ruffling coordinate. Resonance Raman and vibrational coherence measurements also indicate significant differences in ruffling-sensitive modes, particularly the low-frequency γa mode found between ∼50-60 cm(-1). This supports previous assignments of γa as having a large ruffling content. Measurement of the photoreduction kinetics finds an order of magnitude decrease of the photoreduction cross-section in the F7A mutant, which has nearly twice the ruffling deformation as the WT. Additional measurements on cytochrome c demonstrate that heme ruffling is correlated exponentially with the electron transfer rates and suggest that ruffling could play an important role in redox control. A major relaxation of heme ruffling in cytochrome c, upon binding to the mitochondrial membrane, is discussed in this context.
Collapse
|
29
|
Choi J, Tojo S, Fujitsuka M, Majima T. Dynamics in the heme geometry of myoglobin induced by the one-electron reduction. Int J Radiat Biol 2014; 90:459-67. [DOI: 10.3109/09553002.2013.876115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Fazelinia H, Xu M, Cheng H, Roder H. Ultrafast hydrogen exchange reveals specific structural events during the initial stages of folding of cytochrome c. J Am Chem Soc 2013; 136:733-40. [PMID: 24364692 DOI: 10.1021/ja410437d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Many proteins undergo a sharp decrease in chain dimensions during early stages of folding, prior to the rate-limiting step in folding. However, it remains unclear whether compact states are the result of specific folding events or a general hydrophobic collapse of the poly peptide chain driven by the change in solvent conditions. To address this fundamental question, we extended the temporal resolution of NMR-detected H/D exchange labeling experiments into the microsecond regime by adopting a microfluidics approach. By observing the competition between H/D exchange and folding as a function of labeling pH, coupled with direct measurement of exchange rates in the unfolded state, we were able to monitor hydrogen-bond formation for over 50 individual backbone NH groups within the initial 140 microseconds of folding of horse cytochrome c. Clusters of solvent-shielded amide protons were observed in two α-helical segments in the C-terminal half of the protein, while the N-terminal helix remained largely unstructured, suggesting that proximity in the primary structure is a major factor in promoting helix formation and association at early stages of folding, while the entropically more costly long-range contacts between the N- and C-terminal helices are established only during later stages. Our findings clearly indicate that the initial chain condensation in cytochrome c is driven by specific interactions among a subset of α-helical segments rather than a general hydrophobic collapse.
Collapse
Affiliation(s)
- Hossein Fazelinia
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, United States
| | | | | | | |
Collapse
|
31
|
Parui PP, Deshpande MS, Nagao S, Kamikubo H, Komori H, Higuchi Y, Kataoka M, Hirota S. Formation of Oligomeric Cytochrome c during Folding by Intermolecular Hydrophobic Interaction between N- and C-Terminal α-Helices. Biochemistry 2013; 52:8732-44. [DOI: 10.1021/bi400986g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Partha Pratim Parui
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Megha Subhash Deshpande
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hironari Kamikubo
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hirofumi Komori
- Department
of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1
Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiki Higuchi
- Department
of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1
Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mikio Kataoka
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shun Hirota
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
32
|
Kathuria SV, Chan A, Graceffa R, Nobrega RP, Matthews CR, Irving TC, Perot B, Bilsel O. Advances in turbulent mixing techniques to study microsecond protein folding reactions. Biopolymers 2013; 99:888-96. [PMID: 23868289 PMCID: PMC3843316 DOI: 10.1002/bip.22355] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 07/03/2013] [Indexed: 02/01/2023]
Abstract
Recent experimental and computational advances in the protein folding arena have shown that the readout of the one-dimensional sequence information into three-dimensional structure begins within the first few microseconds of folding. The initiation of refolding reactions has been achieved by several means, including temperature jumps, flash photolysis, pressure jumps, and rapid mixing methods. One of the most commonly used means of initiating refolding of chemically denatured proteins is by turbulent flow mixing with refolding dilution buffer, where greater than 99% mixing efficiency has been achieved within 10's of microseconds. Successful interfacing of turbulent flow mixers with complementary detection methods, including time-resolved Fluorescence Spectroscopy (trFL), Förster Resonance Energy Transfer, Circular Dichroism, Small-Angle X-ray Scattering, Hydrogen Exchange followed by Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy, Infrared Spectroscopy (IR), and Fourier Transform IR Spectroscopy, has made this technique very attractive for monitoring various aspects of structure formation during folding. Although continuous-flow (CF) mixing devices interfaced with trFL detection have a dead time of only 30 µs, burst phases have been detected in this time scale during folding of peptides and of large proteins (e.g., CheY and TIM barrels). Furthermore, a major limitation of the CF mixing technique has been the requirement of large quantities of sample. In this brief communication, we will discuss the recent flurry of activity in micromachining and microfluidics, guided by computational simulations, which are likely to lead to dramatic improvements in time resolution and sample consumption for CF mixers over the next few years.
Collapse
Affiliation(s)
- Sagar V. Kathuria
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| | - Alexander Chan
- Department of Mechanical and Industrial Engineering, Engineering Laboratory, University of Massachusetts, Box 32210-219, Amherst, MA, 01003-2210
| | - Rita Graceffa
- BioCAT, Department of Biological and Chemical Science, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616
| | - R. Paul Nobrega
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| | - C. Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| | - Thomas C. Irving
- BioCAT, Department of Biological and Chemical Science, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616
| | - Blair Perot
- Department of Mechanical and Industrial Engineering, Engineering Laboratory, University of Massachusetts, Box 32210-219, Amherst, MA, 01003-2210
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| |
Collapse
|
33
|
Sun Y, Karunakaran V, Champion PM. Investigations of the low-frequency spectral density of cytochrome c upon equilibrium unfolding. J Phys Chem B 2013; 117:9615-25. [PMID: 23863217 DOI: 10.1021/jp404881k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The equilibrium unfolding process of ferric horse heart cytochrome c (cyt c), induced by guanidinium hydrochloride (GdHCl), was studied using UV-vis absorption spectroscopy, resonance Raman spectroscopy, and vibrational coherence spectroscopy (VCS). The unfolding process was successfully fit using a three-state model which included the fully folded (N) and unfolded (U) states, along with an intermediate (I) assigned to a Lys bound heme. The VCS spectra revealed for the first time several low-frequency heme modes that are sensitive to cyt c unfolding: γ(a) (~50 cm(-1)), γ(b) (~80 cm(-1)), γ(c) (~100 cm(-1)), and ν(s)(His-Fe-His) at 205 cm(-1). These out-of-plane modes have potential functional relevance and are activated by protein-induced heme distortions. The free energies for the N-I and the I-U transitions at pH 7.0 and 20 °C were found to be 4.6 kcal/M and 11.6 kcal/M, respectively. Imidazole was also introduced to replace the methionine ligand so the unfolding can be modeled as a two-state system. The intensity of the mode γ(b)~80 cm(-1) remains nearly constant during the unfolding process, while the amplitudes of the other low frequency modes track with spectral changes observed at higher frequency. This confirms that the heme deformation changes are coupled to the protein tertiary structural changes that take place upon unfolding. These studies also reveal that damping of the coherent oscillations depends sensitively on the coupling between heme and the surrounding water solvent.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
34
|
Muenzner J, Toffey JR, Hong Y, Pletneva EV. Becoming a peroxidase: cardiolipin-induced unfolding of cytochrome c. J Phys Chem B 2013; 117:12878-86. [PMID: 23713573 DOI: 10.1021/jp402104r] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interactions of cytochrome c (cyt c) with a unique mitochondrial glycerophospholipid cardiolipin (CL) are relevant for the protein's function in oxidative phosphorylation and apoptosis. Binding to CL-containing membranes promotes cyt c unfolding and dramatically enhances the protein's peroxidase activity, which is critical in early stages of apoptosis. We have employed a collection of seven dansyl variants of horse heart cyt c to probe the sequence of steps in this functional transformation. Kinetic measurements have unraveled four distinct processes during CL-induced cyt c unfolding: rapid protein binding to CL liposomes; rearrangements of protein substructures with small unfolding energies; partial insertion of the protein into the lipid bilayer; and extensive protein restructuring leading to "open" extended structures. While early rearrangements depend on a hierarchy of foldons in the native structure, the later process of large-scale unfolding is influenced by protein interactions with the membrane surface. The opening of the cyt c structure exposes the heme group, which enhances the protein's peroxidase activity and also frees the C-terminal helix to aid in the translocation of the protein through CL membranes.
Collapse
Affiliation(s)
- Julia Muenzner
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| | | | | | | |
Collapse
|
35
|
Kaufmann R, Yadid I, Goldfarb D. A novel microfluidic rapid freeze-quench device for trapping reactions intermediates for high field EPR analysis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 230:220-226. [PMID: 23481860 DOI: 10.1016/j.jmr.2013.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 06/01/2023]
Abstract
Rapid freeze quench electron paramagnetic resonance (RFQ)-EPR is a method for trapping short lived intermediates in chemical reactions and subjecting them to EPR spectroscopy investigation for their characterization. Two (or more) reacting components are mixed at room temperature and after some delay the mixture is sprayed into a cold trap and transferred into the EPR tube. A major caveat in using commercial RFQ-EPR for high field EPR applications is the relatively large amount of sample needed for each time point, a major part of which is wasted as the dead volume of the instrument. The small sample volume (∼2μl) needed for high field EPR spectrometers, such as W-band (∼3.5T, 95GHz), that use cavities calls for the development of a microfluidic based RFQ-EPR apparatus. This is particularly important for biological applications because of the difficulties often encountered in producing large amounts of intrinsically paramagnetic proteins and spin labeled nucleic acid and proteins. Here we describe a dedicated microfluidic based RFQ-EPR apparatus suitable for small volume samples in the range of a few μl. The device is based on a previously published microfluidic mixer and features a new ejection mechanism and a novel cold trap that allows collection of a series of different time points in one continuous experiment. The reduction of a nitroxide radical with dithionite, employing the signal of Mn(2+) as an internal standard was used to demonstrate the performance of the microfluidic RFQ apparatus.
Collapse
Affiliation(s)
- Royi Kaufmann
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
36
|
Sabat J, Egawa T, Lu C, Stuehr DJ, Gerfen GJ, Rousseau DL, Yeh SR. Catalytic intermediates of inducible nitric-oxide synthase stabilized by the W188H mutation. J Biol Chem 2013; 288:6095-106. [PMID: 23269673 PMCID: PMC3816742 DOI: 10.1074/jbc.m112.403238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/12/2012] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthase (NOS) catalyzes nitric oxide (NO) synthesis via a two-step process: L-arginine (L-Arg) → N-hydroxy-L-arginine → citrulline + NO. In the active site the heme is coordinated by a thiolate ligand, which accepts a H-bond from a nearby tryptophan residue, Trp-188. Mutation of Trp-188 to histidine in murine inducible NOS was shown to retard NO synthesis and allow for transient accumulation of a new intermediate with a Soret maximum at 420 nm during the L-Arg hydroxylation reaction (Tejero, J., Biswas, A., Wang, Z. Q., Page, R. C., Haque, M. M., Hemann, C., Zweier, J. L., Misra, S., and Stuehr, D. J. (2008) J. Biol. Chem. 283, 33498-33507). However, crystallographic data showed that the mutation did not perturb the overall structure of the enzyme. To understand how the proximal mutation affects the oxygen chemistry, we carried out biophysical studies of the W188H mutant. Our stopped-flow data showed that the 420-nm intermediate was not only populated during the L-Arg reaction but also during the N-hydroxy-L-arginine reaction. Spectroscopic data and structural analysis demonstrated that the 420-nm intermediate is a hydroxide-bound ferric heme species that is stabilized by an out-of-plane distortion of the heme macrocycle and a cation radical centered on the tetrahydrobiopterin cofactor. The current data add important new insights into the previously proposed catalytic mechanism of NOS (Li, D., Kabir, M., Stuehr, D. J., Rousseau, D. L., and Yeh, S. R. (2007) J. Am. Chem. Soc. 129, 6943-6951).
Collapse
Affiliation(s)
- Joseph Sabat
- From the Department of Physiology and Biophysics, Albert
Einstein College of Medicine, Bronx, New York 10461 and
| | - Tsuyoshi Egawa
- From the Department of Physiology and Biophysics, Albert
Einstein College of Medicine, Bronx, New York 10461 and
| | - Changyuan Lu
- From the Department of Physiology and Biophysics, Albert
Einstein College of Medicine, Bronx, New York 10461 and
| | - Dennis J. Stuehr
- the Department of Immunology, Lerner Research Institute,
Cleveland Clinic, Cleveland, Ohio 44195
| | - Gary J. Gerfen
- From the Department of Physiology and Biophysics, Albert
Einstein College of Medicine, Bronx, New York 10461 and
| | - Denis L. Rousseau
- From the Department of Physiology and Biophysics, Albert
Einstein College of Medicine, Bronx, New York 10461 and
| | - Syun-Ru Yeh
- From the Department of Physiology and Biophysics, Albert
Einstein College of Medicine, Bronx, New York 10461 and
| |
Collapse
|
37
|
Nugraheni AD, Nagao S, Yanagisawa S, Ogura T, Hirota S. Interaction of dimeric horse cytochrome c with cyanide ion. J Biol Inorg Chem 2013; 18:383-90. [DOI: 10.1007/s00775-013-0982-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/29/2013] [Indexed: 01/19/2023]
|
38
|
Battistuzzi G, Bortolotti CA, Bellei M, Di Rocco G, Salewski J, Hildebrandt P, Sola M. Role of Met80 and Tyr67 in the Low-pH Conformational Equilibria of Cytochrome c. Biochemistry 2012; 51:5967-78. [DOI: 10.1021/bi3007302] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gianantonio Battistuzzi
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Carlo Augusto Bortolotti
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Marzia Bellei
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Giulia Di Rocco
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Johannes Salewski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Marco Sola
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| |
Collapse
|
39
|
Xu M, Beresneva O, Rosario R, Roder H. Microsecond folding dynamics of apomyoglobin at acidic pH. J Phys Chem B 2012; 116:7014-25. [PMID: 22475221 DOI: 10.1021/jp3012365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Apomyolgobin (apoMb) is an important model for understanding the folding mechanism of helical proteins. This study focuses on a partially structured state of sperm whale apoMb populated at pH 4.2 (M-state), which structurally resembles a late kinetic intermediate in the formation of the native state (N) at higher pH. The thermodynamics and cooperativity of apoMb folding at pH 4.2 and 6.2 were studied by global analysis of the urea-induced unfolding transitions monitored by tryptophan fluorescence and circular dichroism. The kinetics of folding and unfolding of apoMb at pH 4.2 was measured over a time window from 40 to 850 μs, using fluorescence-detected continuous-flow measurements. Our observation of biphasic kinetics provides clear evidence for rapid (<100 μs) accumulation of previously unresolved intermediate states in both refolding and unfolding experiments. Quantitative kinetic modeling of the results, using a four-state mechanism with two intermediates on a direct route between the unfolded and folded states (U↔I↔L↔M), gave new insight into the conformational states and barriers that precede the rate-limiting step in the formation of the N-state of apoMb.
Collapse
Affiliation(s)
- Ming Xu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
40
|
Waldauer SA, Wu L, Yao S, Bakajin O, Lapidus LJ. Microfluidic mixers for studying protein folding. J Vis Exp 2012:3976. [PMID: 22525257 PMCID: PMC3466640 DOI: 10.3791/3976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The process by which a protein folds into its native conformation is highly relevant to biology and human health yet still poorly understood. One reason for this is that folding takes place over a wide range of timescales, from nanoseconds to seconds or longer, depending on the protein. Conventional stopped-flow mixers have allowed measurement of folding kinetics starting at about 1 ms. We have recently developed a microfluidic mixer that dilutes denaturant ~100-fold in ~8 μs. Unlike a stopped-flow mixer, this mixer operates in the laminar flow regime in which turbulence does not occur. The absence of turbulence allows precise numeric simulation of all flows within the mixer with excellent agreement to experiment. Laminar flow is achieved for Reynolds numbers Re ≤100. For aqueous solutions, this requires micron scale geometries. We use a hard substrate, such as silicon or fused silica, to make channels 5-10 μm wide and 10 μm deep (See Figure 1). The smallest dimensions, at the entrance to the mixing region, are on the order of 1 μm in size. The chip is sealed with a thin glass or fused silica coverslip for optical access. Typical total linear flow rates are ~1 m/s, yielding Re~10, but the protein consumption is only ~0.5 nL/s or 1.8 μL/hr. Protein concentration depends on the detection method: For tryptophan fluorescence the typical concentration is 100 μM (for 1 Trp/protein) and for FRET the typical concentration is ~100 nM. The folding process is initiated by rapid dilution of denaturant from 6 M to 0.06 M guanidine hydrochloride. The protein in high denaturant flows down a central channel and is met on either side at the mixing region by buffer without denaturant moving ~100 times faster (see Figure 2). This geometry causes rapid constriction of the protein flow into a narrow jet ~100 nm wide. Diffusion of the light denaturant molecules is very rapid, while diffusion of the heavy protein molecules is much slower, diffusing less than 1 μm in 1 ms. The difference in diffusion constant of the denaturant and the protein results in rapid dilution of the denaturant from the protein stream, reducing the effective concentration of the denaturant around the protein. The protein jet flows at a constant rate down the observation channel and fluorescence of the protein during folding can be observed using a scanning confocal microscope.
Collapse
Affiliation(s)
- Steven A Waldauer
- Department of Physics and Astronomy, Michigan State University, MI, USA
| | | | | | | | | |
Collapse
|
41
|
Haldar S, Chattopadhyay K. Interconnection of salt-induced hydrophobic compaction and secondary structure formation depends on solution conditions: revisiting early events of protein folding at single molecule resolution. J Biol Chem 2012; 287:11546-55. [PMID: 22303014 DOI: 10.1074/jbc.m111.315648] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
What happens in the early stage of protein folding remains an interesting unsolved problem. Rapid kinetics measurements with cytochrome c using submillisecond continuous flow mixing devices suggest simultaneous formation of a compact collapsed state and secondary structure. These data seem to indicate that collapse formation is guided by specific short and long range interactions (heteropolymer collapse). A contrasting interpretation also has been proposed, which suggests that the collapse formation is rapid, nonspecific, and a trivial solvent related compaction, which could as well be observed by a homopolymer (homopolymer collapse). We address this controversy using fluorescence correlation spectroscopy (FCS), which enables us to monitor the salt-induced compaction accompanying collapse formation and the associated time constant directly at single molecule resolution. In addition, we follow the formation of secondary structure using far UV CD. The data presented here suggest that both these models (homopolymer and heteropolymer) could be applicable depending on the solution conditions. For example, the formation of secondary structure and compact state is not simultaneous in aqueous buffer. In aqueous buffer, formation of the compact state occurs through a two-state co-operative transition following heteropolymer formalism, whereas secondary structure formation takes place gradually. In contrast, in the presence of urea, a compaction of the protein radius occurs gradually over an extended range of salt concentration following homopolymer formalism. The salt-induced compaction and the formation of secondary structure take place simultaneously in the presence of urea.
Collapse
Affiliation(s)
- Shubhasis Haldar
- Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council for Scientific and Industrial Research, 4 Raja S.C. Mullick Rd., Kolkata 700032, India
| | | |
Collapse
|
42
|
Abstract
Recent NMR structural and dynamical data on partially folded forms of mono-heme cytochrome c provide a unifying picture of the behavior of the protein far from the native conditions and suggest useful hints to explain the redox dependent stability of the protein. A fragile hinge in the structure of mitochondrial cytochrome c is identified, which may not have correspondents in smaller type-1 cytochromes. Former spectroscopic and kinetic data are here discussed in terms of this new view.
Collapse
Affiliation(s)
- Ivano Bertini
- Department of Chemistry and CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Antonio Rosato
- Department of Chemistry and CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Paola Turano
- Department of Chemistry and CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
43
|
Egawa T, Chen Y, Fee JA, Yeh SR, Rousseau DL. The rate-limiting step in O(2) reduction by cytochrome ba(3) from Thermus thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:666-71. [PMID: 22138627 DOI: 10.1016/j.bbabio.2011.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/15/2022]
Abstract
Cytochrome ba(3) (ba(3)) of Thermus thermophilus (T. thermophilus) is a member of the heme-copper oxidase family, which has a binuclear catalytic center comprised of a heme (heme a(3)) and a copper (Cu(B)). The heme-copper oxidases generally catalyze the four electron reduction of molecular oxygen in a sequence involving several intermediates. We have investigated the reaction of the fully reduced ba(3) with O(2) using stopped-flow techniques. Transient visible absorption spectra indicated that a fraction of the enzyme decayed to the oxidized state within the dead time (~1ms) of the stopped-flow instrument, while the remaining amount was in a reduced state that decayed slowly (k=400s(-1)) to the oxidized state without accumulation of detectable intermediates. Furthermore, no accumulation of intermediate species at 1ms was detected in time resolved resonance Raman measurements of the reaction. These findings suggest that O(2) binds rapidly to heme a(3) in one fraction of the enzyme and progresses to the oxidized state. In the other fraction of the enzyme, O(2) binds transiently to a trap, likely Cu(B), prior to its migration to heme a(3) for the oxidative reaction, highlighting the critical role of Cu(B) in regulating the oxygen reaction kinetics in the oxidase superfamily.
Collapse
Affiliation(s)
- Tsuyoshi Egawa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
44
|
Lan W, Wang Z, Yang Z, Zhu J, Ying T, Jiang X, Zhang X, Wu H, Liu M, Tan X, Cao C, Huang ZX. Conformational toggling of yeast iso-1-cytochrome C in the oxidized and reduced states. PLoS One 2011; 6:e27219. [PMID: 22087268 PMCID: PMC3210782 DOI: 10.1371/journal.pone.0027219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022] Open
Abstract
To convert cyt c into a peroxidase-like metalloenzyme, the P71H mutant was designed to introduce a distal histidine. Unexpectedly, its peroxidase activity was found even lower than that of the native, and that the axial ligation of heme iron was changed to His71/His18 in the oxidized state, while to Met80/His18 in the reduced state, characterized by UV-visible, circular dichroism, and resonance Raman spectroscopy. To further probe the functional importance of Pro71 in oxidation state dependent conformational changes occurred in cyt c, the solution structures of P71H mutant in both oxidation states were determined. The structures indicate that the half molecule of cyt c (aa 50-102) presents a kind of "zigzag riveting ruler" structure, residues at certain positions of this region such as Pro71, Lys73 can move a big distance by altering the tertiary structure while maintaining the secondary structures. This finding provides a molecular insight into conformational toggling in different oxidation states of cyt c that is principle significance to its biological functions in electron transfer and apoptosis. Structural analysis also reveals that Pro71 functions as a key hydrophobic patch in the folding of the polypeptide of the region (aa 50-102), to prevent heme pocket from the solvent.
Collapse
Affiliation(s)
- Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhonghua Wang
- Chemical Biology Laboratory, Department of Chemistry, Fudan University, Shanghai, China
| | - Zhongzheng Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jing Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Tianlei Ying
- Chemical Biology Laboratory, Department of Chemistry, Fudan University, Shanghai, China
| | - Xianwang Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Houming Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xiangshi Tan
- Chemical Biology Laboratory, Department of Chemistry, Fudan University, Shanghai, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (CC); (Z-XH)
| | - Zhong-Xian Huang
- Chemical Biology Laboratory, Department of Chemistry, Fudan University, Shanghai, China
- * E-mail: (CC); (Z-XH)
| |
Collapse
|
45
|
Kathuria SV, Guo L, Graceffa R, Barrea R, Nobrega RP, Matthews CR, Irving TC, Bilsel O. Minireview: structural insights into early folding events using continuous-flow time-resolved small-angle X-ray scattering. Biopolymers 2011; 95:550-8. [PMID: 21442608 DOI: 10.1002/bip.21628] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 11/08/2022]
Abstract
Small-angle X-ray scattering (SAXS) is a powerful method for obtaining quantitative structural information on the size and shape of proteins, and it is increasingly used in kinetic studies of folding and association reactions. In this minireview, we discuss recent developments in using SAXS to obtain structural information on the unfolded ensemble and early folding intermediates of proteins using continuous-flow mixing devices. Interfacing of these micromachined devices to SAXS beamlines has allowed access to the microsecond time regime. The experimental constraints in implementation of turbulence and laminar flow-based mixers with SAXS detection and a comparison of the two approaches are presented. Current improvements and future prospects of microsecond time-resolved SAXS and the synergy with ab initio structure prediction and molecular dynamics simulations are discussed.
Collapse
Affiliation(s)
- Sagar V Kathuria
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
A biosensor is a sensing device that incorporates a biological sensing element and a transducer to produce electrochemical, optical, mass, or other signals in proportion to quantitative information about the analytes in the given samples. The microfluidic chip is an attractive miniaturized platform with valuable advantages, e.g., low cost analysis requiring low reagent consumption, reduced sample volume, and shortened processing time. Combination of biosensors and microfluidic chips enhances analytical capability so as to widen the scope of possible applications. This review provides an overview of recent research activities in the field of biosensors integrated on microfluidic chips, focusing on the working principles, characteristics, and applicability of the biosensors. Theoretical background and applications in chemical, biological, and clinical analysis are summarized and discussed.
Collapse
|
47
|
Chen E, Goldbeck RA, Kliger DS. Probing early events in ferrous cytochrome c folding with time-resolved natural and magnetic circular dichroism spectroscopies. Curr Protein Pept Sci 2010; 10:464-75. [PMID: 19538147 DOI: 10.2174/138920309789352001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/14/2009] [Indexed: 11/22/2022]
Abstract
In a 1998 collaboration with Tony Fink, we coupled nanosecond circular dichroism methods (TRCD) with a CO-photolysis system for quickly triggering folding in cytochrome c (cyt c) in order to make the first time-resolved far-UV CD measurement of early secondary structure formation in a protein. The small signal observed in that initial study, approximately 10% of native helicity, became the seed for increasingly robust results from subsequent studies bringing additional natural and magnetic circular polarization dichroism and optical rotatory dispersion detection methods (e.g., TRORD, TRMCD, and TRMORD), coupled to fast photolysis and photoreduction triggers, to the study of early folding events. Nanosecond polarization methods are reviewed here in the context of the range of initiation methods and structure-sensitive probes currently available for fast folding studies. We also review the impact of experimental results from fast polarization studies on questions in folding dynamics such as the possibility of multiple folding pathways implied by energy landscape models, the sequence dependence of ultrafast helix formation, and the simultaneity of chain collapse and secondary structure formation implicit in molten globule models for kinetic folding intermediates.
Collapse
Affiliation(s)
- Eefei Chen
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064, USA.
| | | | | |
Collapse
|
48
|
Kane AS, Hoffmann A, Baumgärtel P, Seckler R, Reichardt G, Horsley DA, Schuler B, Bakajin O. Microfluidic mixers for the investigation of rapid protein folding kinetics using synchrotron radiation circular dichroism spectroscopy. Anal Chem 2009; 80:9534-41. [PMID: 19072266 DOI: 10.1021/ac801764r] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a microfluidic mixer optimized for rapid measurements of protein folding kinetics using synchrotron radiation circular dichroism (SRCD) spectroscopy. The combination of fabrication in fused silica and synchrotron radiation allows measurements at wavelengths below 220 nm, the typical limit of commercial instrumentation. At these wavelengths, the discrimination between the different types of protein secondary structure increases sharply. The device was optimized for rapid mixing at moderate sample consumption by employing a serpentine channel design, resulting in a dead time of less than 200 micros. Here, we discuss the design and fabrication of the mixer and quantify the mixing efficiency using wide-field and confocal epi-fluorescence microscopy. We demonstrate the performance of the device in SRCD measurements of the folding kinetics of cytochrome c, a small, fast-folding protein. Our results show that the combination of SRCD with microfluidic mixing opens new possibilities for investigating rapid conformational changes in biological macromolecules that have previously been inaccessible.
Collapse
Affiliation(s)
- Avinash S Kane
- Chemistry, Materials, Life and Earth Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, L-233, Livermore, California 94550, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
In contrast to the wide spectrum of cytochrome P450 monooxygenases, there are only 2 heme-based dioxygenases in humans: tryptophan dioxygenase (hTDO) and indoleamine 2,3-dioxygenase (hIDO). hTDO and hIDO catalyze the same oxidative ring cleavage reaction of L-tryptophan to N-formyl kynurenine, the initial and rate-limiting step of the kynurenine pathway. Despite immense interest, the mechanism by which the 2 enzymes execute the dioxygenase reaction remains elusive. Here, we report experimental evidence for a key ferryl intermediate of hIDO that supports a mechanism in which the 2 atoms of dioxygen are inserted into the substrate via a consecutive 2-step reaction. This finding introduces a paradigm shift in our understanding of the heme-based dioxygenase chemistry, which was previously believed to proceed via simultaneous incorporation of both atoms of dioxygen into the substrate. The ferryl intermediate is not observable during the hTDO reaction, highlighting the structural differences between the 2 dioxygenases, as well as the importance of stereoelectronic factors in modulating the reactions.
Collapse
|
50
|
Leu BM, Ching TH, Zhao J, Sturhahn W, Alp EE, Sage JT. Vibrational dynamics of iron in cytochrome C. J Phys Chem B 2009; 113:2193-200. [PMID: 19173569 DOI: 10.1021/jp806574t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear resonance vibrational spectroscopy (NRVS) and Raman spectroscopy on (54)Fe- and (57)Fe-enriched cytochrome c (cyt c) identify multiple bands involving vibrations of the heme Fe. Comparison with predictions from Fe isotope shifts reveals that 70% of the NRVS signal in the 300-450 cm(-1) frequency range corresponds to vibrations resolved in Soret-enhanced Raman spectra. This frequency range dominates the "stiffness", an effective force constant determined by the Fe vibrational density of states (VDOS), which measures the strength of nearest-neighbor interactions with Fe. The stiffness of the low-spin Fe environment in both oxidation states of cyt c significantly exceeds that for the high-spin Fe in deoxymyoglobin, where the 200-300 cm(-1) frequency range dominates the VDOS. This situation is reflected in the shorter Fe-ligand bond lengths in the former with respect to the latter. The longer Fe-S(Met80) in oxidized cyt c with respect to reduced cyt c leads to a decrease in the stiffness of the iron environment upon oxidation. Comparison with NRVS measurements allows us to assess assignments for vibrational modes resolved in this region of the heme Raman spectrum. We consider the possibility that the 372 cm(-1) band in reduced cyt c involves the Fe-S(Met80) bond.
Collapse
Affiliation(s)
- Bogdan M Leu
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|