1
|
Mouhand A, Pissarra J, Barthe P, Roumestand C, Delbecq S. Structural and Functional Characterization of the 28 kDa Structured Core of BmSA1, the Major Surface Antigen of Babesia Microti. Proteins 2025. [PMID: 40345974 DOI: 10.1002/prot.26836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Babesiosis is a tick-borne disease that poses a significant threat to animal health worldwide. In addition, climate change and the risk of human-to-human transmission through blood transfusion have made babesiosis an emerging disease in humans. Babesiosis is caused by the intraerythrocytic development of protozoan parasites from the genus Babesia, which belongs to the apicomplexan phylum that notably includes the more-widely studied causative agent of malaria, Plasmodium falciparum. Of the several hundred Babesia species identified so far, only a few are known to infect humans, with B. microti being the most prevalent and responsible for most of the clinical cases reported to date. There is no licensed vaccine for B. microti, and the development of a reliable serological diagnostic test would contribute to ensuring the safety of blood transfusions. The identification and characterization of parasite surface proteins are important steps in achieving this aim. One such protein is the GPI-anchored Major Surface Antigen BmSA1 (also known as BmGPI12), which is expressed at high levels at the surface of the merozoite. We present here the high-resolution solution structure of the 28 kDa structured core of BmSA1 (∆∆BmSA1) obtained through NMR spectroscopy. The structure of BmSA1 appears unrelated to the previously published structures of the major surface antigens of B. divergens (Bd37) or of B. canis (Bc28.1), which are thought to play a similar role in parasite invasion. We also define the erythrocyte binding function of ∆∆BmSA1, using NMR spectroscopy to map the binding interface. Finally, we used bioinformatic tools to map the potential epitopes of antibodies at the surface of the structured core of BmSA1.
Collapse
Affiliation(s)
- Assia Mouhand
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Joana Pissarra
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Philippe Barthe
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Christian Roumestand
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Stéphane Delbecq
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier, France
| |
Collapse
|
2
|
Bhatnagar S, Sadhukhan D, Sundd M. Backbone assignments of the biotin carboxyl carrier protein domain of Propionyl CoA carboxylase of Leishmania major and its interaction with its cognate Biotin protein ligase. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:309-314. [PMID: 39313636 DOI: 10.1007/s12104-024-10205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Propionyl CoA carboxylase (PCC) is a multimeric enzyme composed of two types of subunits, α and β arranged in α6β6 stoichiometry. The α-subunit consists of an N-terminal carboxylase domain, a carboxyl transferase domains, and a C-terminal biotin carboxyl carrier protein domain (BCCP). The β-subunit is made up of an N- and a C- carboxyl transferase domain. During PCC catalysis, the BCCP domain plays a central role by transporting a carboxyl group from the α-subunit to the β-subunit, and finally to propionyl CoA carboxylase, resulting in the formation of methyl malonyl CoA. A point mutation in any of the subunits interferes with multimer assembly and function. Due to the association of this enzyme with propionic acidemia, a genetic metabolic disorder found in humans, PCC has become an enzyme of wide spread interest. Interestingly, unicellular eukaryotes like Leishmania also possess a PCC in their mitochondria that displays high sequence conservation with the human enzyme. Thus, to understand the function of this enzyme at the molecular level, we have initiated studies on Leishmania major PCC (LmPCC). Here we report chemical shift assignments of LmPCC BCCP domain using NMR. Conformational changes in LmPCC BCCP domain upon biotinylation, as well as upon interaction with its cognate biotinylating enzyme (Biotin protein ligase from L. major) have also been reported. Our studies disclose residues important for LmPCC BCCP interaction and function.
Collapse
Affiliation(s)
- Sonika Bhatnagar
- National Institute of Immunology, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debodyuti Sadhukhan
- National Institute of Immunology, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Monica Sundd
- National Institute of Immunology, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
3
|
Masoumzadeh E, Latham MP. Human CSTF2 RNA Recognition Motif Domain Binds to a U-Rich RNA Sequence through a Multistep Binding Process. Biochemistry 2024; 63:2449-2462. [PMID: 39305233 PMCID: PMC11448763 DOI: 10.1021/acs.biochem.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
The RNA recognition motif (RRM) is a conserved and ubiquitous RNA-binding domain that plays essential roles in mRNA splicing, polyadenylation, transport, and stability. RRM domains exhibit remarkable diversity in binding partners, interacting with various sequences of single- and double-stranded RNA, despite their small size and compact fold. During pre-mRNA cleavage and polyadenylation, the RRM domain from CSTF2 recognizes U- or G/U-rich RNA sequences downstream from the cleavage and polyadenylation site to regulate the process. Given the importance of alternative cleavage and polyadenylation in increasing the diversity of mRNAs, the exact mechanism of binding of RNA to the RRM of CSTF2 remains unclear, particularly in the absence of a structure of this RRM bound to a native RNA substrate. Here, we performed a series of NMR titration and spin relaxation experiments, which were complemented by paramagnetic relaxation enhancement measurements and rigid-body docking, to characterize the interactions of the CSTF2 RRM with a U-rich ligand. Our results reveal a multistep binding process involving differences in ps-ns time scale dynamics and potential structural changes, particularly in the C-terminalα-helix. These results provide insights into how the CSTF2 RRM domain binds to U-rich RNA ligands and offer a greater understanding for the molecular basis of the regulation of pre-mRNA cleavage and polyadenylation.
Collapse
Affiliation(s)
- Elahe Masoumzadeh
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Michael P. Latham
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
- Department
of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Benavides TL, Montelione GT. Integrative Modeling of Protein-Polypeptide Complexes by Bayesian Model Selection using AlphaFold and NMR Chemical Shift Perturbation Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613999. [PMID: 39345459 PMCID: PMC11430059 DOI: 10.1101/2024.09.19.613999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Protein-polypeptide interactions, including those involving intrinsically-disordered peptides and intrinsically-disordered regions of protein binding partners, are crucial for many biological functions. However, experimental structure determination of protein-peptide complexes can be challenging. Computational methods, while promising, generally require experimental data for validation and refinement. Here we present CSP_Rank, an integrated modeling approach to determine the structures of protein-peptide complexes. This method combines AlphaFold2 (AF2) enhanced sampling methods with a Bayesian conformational selection process based on experimental Nuclear Magnetic Resonance (NMR) Chemical Shift Perturbation (CSP) data and AF2 confidence metrics. Using a curated dataset of 108 protein-peptide complexes from the Biological Magnetic Resonance Data Bank (BMRB), we observe that while AF2 typically yields models with excellent consistency with experimental CSP data, applying enhanced sampling followed by data-guided conformational selection routinely results in ensembles of structures with improved agreement with NMR observables. For two systems, we cross-validate the CSP-selected models using independently acquired nuclear Overhauser effect (NOE) NMR data and demonstrate how CSP and NMR can be combined using our Bayesian framework for model selection. CSP_Rank is a novel method for integrative modeling of protein-peptide complexes and has broad implications for studies of protein-peptide interactions and aiding in understanding their biological functions.
Collapse
Affiliation(s)
- Tiburon L. Benavides
- Department of Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Gaetano T. Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
5
|
Dhembla C, Kumar A, Arya R, Kundu S, Sundd M. Mitochondrial Acyl Carrier Protein of Leishmania major Displays Features Distinct from the Canonical Type II ACP. Biochemistry 2023; 62:3347-3359. [PMID: 37967383 DOI: 10.1021/acs.biochem.3c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Prokaryotes synthesize fatty acids using a type II synthesis pathway (FAS). In this process, the central player, i.e., the acyl carrier protein (ACP), sequesters the growing acyl chain in its internal hydrophobic cavity. As the acyl chain length increases, the cavity expands in size, which is reflected in the NMR chemical shift perturbations and crystal structures of the acyl-ACP intermediates. A few eukaryotic organelles, such as plastids and mitochondria, also harbor type II fatty acid synthesis machinery. Plastid FAS from spinach and Plasmodium falciparum has been characterized at the molecular level, but the mitochondrial pathway remains unexplored. Here, we report NMR studies of the mitochondrial acyl-acyl carrier protein intermediates of Leishmania major (acyl-LmACP). Our studies show that LmACP experiences remarkably small conformational changes upon acylation, with perturbations confined to helices II and III only. CastP determined that the cavity size of apo-LmACP (PDB entry 5ZWT) is less than that of Escherichia coli ACP (PDB 1T8K). Thus, the small chemical shift perturbations observed in the LmACP intermediates, coupled with CastP results, suggest an unusually small cavity when fully expanded. The faster rate of C8-LmACP chain hydrolysis compared to E. coli ACP (EcACP) also supports these convictions. Structure comparison of LmACP with other type II ACP disclosed unique differences in the helix I and loop I conformations, as well as several residues present there. Numerous hydrophobic residues in helix I and loop I (conserved in all mitochondrial ACPs) are substituted with hydrophilic residues in the bacterial/plastid type II ACP. For instance, Phe and leucine at positions 14 and 34 in LmACP are substituted with a hydrophilic residue and Ala in bacterial/plastid type II ACP. Mutation of Leu 34 to Ala (corresponding residue in EcACP) resulted in a complete loss of structure, underscoring its importance in maintaining the ACP fold. Thus, our NMR studies, combined with insights from the crystal structure, highlight several unique features of LmACP, distinct from the prokaryote and plastid type II ACP. Given the high sequence identity, the features might be conserved in all mitochondrial ACPs.
Collapse
Affiliation(s)
- Chetna Dhembla
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Ambrish Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
6
|
Guillien M, Mouhand A, Sagar A, Fournet A, Allemand F, Pereira GAN, Thureau A, Bernadó P, Banères JL, Sibille N. Phosphorylation motif dictates GPCR C-terminal domain conformation and arrestin interaction. Structure 2023; 31:1394-1406.e7. [PMID: 37669668 DOI: 10.1016/j.str.2023.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023]
Abstract
Arrestin-dependent G protein-coupled receptor (GPCR) signaling pathway is regulated by the phosphorylation state of GPCR's C-terminal domain, but the molecular bases of arrestin:receptor interaction are to be further illuminated. Here we investigated the impact of phosphorylation on the conformational features of the C-terminal region from three rhodopsin-like GPCRs, the vasopressin V2 receptor (V2R), the growth hormone secretagogue or ghrelin receptor type 1a (GHSR), and the β2-adernergic receptor (β2AR). Using phosphomimetic variants, we identified pre-formed secondary structure elements, or short linear motifs (SLiMs), that undergo specific conformational transitions upon phosphorylation. Of importance, such conformational transitions appear to favor arrestin-2 binding. Hence, our results suggest a model in which the phosphorylation-dependent structuration of the GPCR C-terminal regions would modulate arrestin binding and therefore signaling outcomes in arrestin-dependent pathways.
Collapse
Affiliation(s)
- Myriam Guillien
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France
| | - Assia Mouhand
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France
| | - Amin Sagar
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France
| | - Aurélie Fournet
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France
| | - Glaécia A N Pereira
- Institut des Biomolécules Max Mousseron (IBMM), UMR-5247, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Aurélien Thureau
- HélioBio Section, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91190 Gif-sur-Yvette, France
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), UMR-5247, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France.
| |
Collapse
|
7
|
Cerofolini L, Vasa K, Bianconi E, Salobehaj M, Cappelli G, Bonciani A, Licciardi G, Pérez-Ràfols A, Padilla-Cortés L, Antonacci S, Rizzo D, Ravera E, Viglianisi C, Calderone V, Parigi G, Luchinat C, Macchiarulo A, Menichetti S, Fragai M. Combining Solid-State NMR with Structural and Biophysical Techniques to Design Challenging Protein-Drug Conjugates. Angew Chem Int Ed Engl 2023; 62:e202303202. [PMID: 37276329 DOI: 10.1002/anie.202303202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Several protein-drug conjugates are currently being used in cancer therapy. These conjugates rely on cytotoxic organic compounds that are covalently attached to the carrier proteins or that interact with them via non-covalent interactions. Human transthyretin (TTR), a physiological protein, has already been identified as a possible carrier protein for the delivery of cytotoxic drugs. Here we show the structure-guided development of a new stable cytotoxic molecule based on a known strong binder of TTR and a well-established anticancer drug. This example is used to demonstrate the importance of the integration of multiple biophysical and structural techniques, encompassing microscale thermophoresis, X-ray crystallography and NMR. In particular, we show that solid-state NMR has the ability to reveal effects caused by ligand binding which are more easily relatable to structural and dynamical alterations that impact the stability of macromolecular complexes.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Kristian Vasa
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Elisa Bianconi
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti n.48, 06123, Perugia, Italy
| | - Maria Salobehaj
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giulia Cappelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Alice Bonciani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giulia Licciardi
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Anna Pérez-Ràfols
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Giotto Biotech s.r.l, Sesto Fiorentino, Via della Madonna del Piano 6, 50019, Florence, Italy
| | - Luis Padilla-Cortés
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Sabrina Antonacci
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Domenico Rizzo
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Caterina Viglianisi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Vito Calderone
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
- Giotto Biotech s.r.l, Sesto Fiorentino, Via della Madonna del Piano 6, 50019, Florence, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti n.48, 06123, Perugia, Italy
| | - Stefano Menichetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Nakashima M, Goda N, Tenno T, Kotake A, Inotsume Y, Amaya M, Hiroaki H. Pharmacologic Comparison of High-Dose Hesperetin and Quercetin on MDCK II Cell Viability, Tight Junction Integrity, and Cell Shape. Antioxidants (Basel) 2023; 12:antiox12040952. [PMID: 37107328 PMCID: PMC10135814 DOI: 10.3390/antiox12040952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The modulation of tight junction (TJ) integrity with small molecules is important for drug delivery. High-dose baicalin (BLI), baicalein (BLE), quercetin (QUE), and hesperetin (HST) have been shown to open TJs in Madin-Darby canine kidney (MDCK) II cells, but the mechanisms for HST and QUE remain unclear. In this study, we compared the effects of HST and QUE on cell proliferation, morphological changes, and TJ integrity. HST and QUE were found to have opposing effects on the MDCK II cell viability, promotion, and suppression, respectively. Only QUE, but not HST, induced a morphological change in MDCK II into a slenderer cell shape. Both HST and QUE downregulated the subcellular localization of claudin (CLD)-2. However, only QUE, but not HST, downregulated CLD-2 expression. Conversely, only HST was shown to directly bind to the first PDZ domain of ZO-1, a key molecule to promote TJ biogenesis. The TGFβ pathway partially contributed to the HST-induced cell proliferation, since SB431541 ameliorated the effect. In contrast, the MEK pathway was not involved by both the flavonoids, since U0126 did not revert their TJ-opening effect. The results offer insight for using HST or QUE as naturally occurring absorption enhancers through the paracellular route.
Collapse
Affiliation(s)
- Mio Nakashima
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Natsuko Goda
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC, Business Incubation Building, Nagoya University, Furocho, Chikusa ku, Nagoya 464-8601, Aichi, Japan
| | - Ayaka Kotake
- Cosmetics Research Department, Nicca Chemical Co., Ltd., Fukui 910-8670, Fukui, Japan
| | - Yuko Inotsume
- Cosmetics Research Department, Nicca Chemical Co., Ltd., Fukui 910-8670, Fukui, Japan
| | - Minako Amaya
- Cosmetics Research Department, Nicca Chemical Co., Ltd., Fukui 910-8670, Fukui, Japan
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC, Business Incubation Building, Nagoya University, Furocho, Chikusa ku, Nagoya 464-8601, Aichi, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Yanagito, Gifu 501-1112, Gifu, Japan
| |
Collapse
|
9
|
Cerofolini L, Parigi G, Ravera E, Fragai M, Luchinat C. Solid-state NMR methods for the characterization of bioconjugations and protein-material interactions. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101828. [PMID: 36240720 DOI: 10.1016/j.ssnmr.2022.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Protein solid-state NMR has evolved dramatically over the last two decades, with the development of new hardware and sample preparation methodologies. This technique is now ripe for complex applications, among which one can count bioconjugation, protein chemistry and functional biomaterials. In this review, we provide our account on this aspect of protein solid-state NMR.
Collapse
Affiliation(s)
- Linda Cerofolini
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy; Florence Data Science, Università degli Studi di Firenze, Italy.
| | - Marco Fragai
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
10
|
Hooy RM, Iwamoto Y, Tudorica DA, Ren X, Hurley JH. Self-assembly and structure of a clathrin-independent AP-1:Arf1 tubular membrane coat. SCIENCE ADVANCES 2022; 8:eadd3914. [PMID: 36269825 PMCID: PMC9586487 DOI: 10.1126/sciadv.add3914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 05/28/2023]
Abstract
The adaptor protein (AP) complexes not only form the inner layer of clathrin coats but also have clathrin-independent roles in membrane traffic whose mechanisms are unknown. HIV-1 Nef hijacks AP-1 to sequester major histocompatibility complex class I (MHC-I), evading immune detection. We found that AP-1:Arf1:Nef:MHC-I forms a coat on tubulated membranes without clathrin and determined its structure. The coat assembles via Arf1 dimer interfaces. AP-1-positive tubules are enriched in cells upon clathrin knockdown. Nef localizes preferentially to AP-1 tubules in cells, explaining how Nef sequesters MHC-I. Coat contact residues are conserved across Arf isoforms and the Arf-dependent AP complexes AP-1, AP-3, and AP-4. Thus, AP complexes can self-assemble with Arf1 into tubular coats without clathrin or other scaffolding factors. The AP-1:Arf1 coat defines the structural basis of a broader class of tubulovesicular membrane coats as an intermediate in clathrin vesicle formation from internal membranes and as an MHC-I sequestration mechanism in HIV-1 infection.
Collapse
Affiliation(s)
- Richard M. Hooy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dan A. Tudorica
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xuefeng Ren
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Lipoate protein ligase B primarily recognizes the C 8-phosphopantetheine arm of its donor substrate and weakly binds the acyl carrier protein. J Biol Chem 2022; 298:102203. [PMID: 35764173 PMCID: PMC9307952 DOI: 10.1016/j.jbc.2022.102203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Lipoic acid is a sulfur containing cofactor indispensable for the function of several metabolic enzymes. In microorganisms, lipoic acid can be salvaged from the surroundings by Lipoate protein ligase A (LplA), an ATP-dependent enzyme. Alternatively, it can be synthesized by the sequential actions of Lipoate protein ligase B (LipB) and Lipoyl synthase (LipA). LipB takes up the octanoyl chain from C8-acyl carrier protein (C8-ACP), a byproduct of the type II fatty acid synthesis pathway, and transfers it to a conserved lysine of the lipoyl domain of a dehydrogenase. However, the molecular basis of its substrate recognition is still not fully understood. Using E. coli LipB as a model enzyme, we show here that the octanoyl-transferase mainly recognizes the 4'-phosphopantetheine-tethered acyl-chain of its donor substrate and weakly binds the apo-acyl carrier protein. We demonstrate LipB can accept octanoate from its own ACP and noncognate ACPs, as well as C8-CoA. Furthermore, our 1H STD and 31P NMR studies demonstrate the binding of adenosine, as well as the phosphopantetheine arm of CoA to LipB, akin to binding to LplA. Finally, we show a conserved 71RGG73 loop, analogous to the lipoate binding loop of LplA, is required for full LipB activity. Collectively, our studies highlight commonalities between LipB and LplA in their mechanism of substrate recognition. This knowledge could be of significance in the treatment of mitochondrial fatty acid synthesis related disorders.
Collapse
|
12
|
A GX 2GX 3G motif facilitates acyl chain sequestration by Saccharomyces cerevisiae acyl carrier protein. J Biol Chem 2021; 297:101394. [PMID: 34767798 PMCID: PMC8683515 DOI: 10.1016/j.jbc.2021.101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Saccharomyces cerevisiae acyl carrier protein (ScACP) is a component of the large fungal fatty acid synthase I (FAS I) complex. ScACP comprises two subdomains: a conserved ACP domain that shares extensive structural homology with other ACPs and a unique structural domain. Unlike the metazoan type I ACP that does not sequester the acyl chain, ScACP can partially sequester the growing acyl chain within its hydrophobic core by a mechanism that remains elusive. Our studies on the acyl-ScACP intermediates disclose a unique 188GX2GX3G195 sequence in helix II important for ACP function. Complete loss of sequestration was observed upon mutation of the three glycines in this sequence to valine (G188V/G191V/G195V), while G191V and G188V/G191V double mutants displayed a faster rate of acyl chain hydrolysis. Likewise, mutation of Thr216 to Ala altered the size of the hydrophobic cavity, resulting in loss of C12- chain sequestration. Combining NMR studies with insights from the crystal structure, we show that three glycines in helix II and a threonine in helix IV favor conformational change, which in turn generate space for acyl chain sequestration. Furthermore, we identified the primary hydrophobic cavity of ScACP, present between the carboxyl end of helix II and IV. The opening of the cavity lies between the second and third turns of helix II and loop II. Overall, the study highlights a novel role of the GX2GX3G motif in regulating acyl chain sequestration, vital for ScACP function.
Collapse
|
13
|
Di Savino A, Foerster JM, Ullmann GM, Ubbink M. Enhancing the population of the encounter complex affects protein complex formation efficiency. FEBS J 2021; 289:535-548. [PMID: 34403572 PMCID: PMC9293183 DOI: 10.1111/febs.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
Optimal charge distribution is considered to be important for efficient formation of protein complexes. Electrostatic interactions guide encounter complex formation that precedes the formation of an active protein complex. However, disturbing the optimized distribution by introduction of extra charged patches on cytochrome c peroxidase does not lead to a reduction in productive encounters with its partner cytochrome c. To test whether a complex with a high population of encounter complex is more easily affected by suboptimal charge distribution, the interactions of cytochrome c mutant R13A with wild‐type cytochrome c peroxidase and a variant with an additional negative patch were studied. The complex of the peroxidase and cytochrome c R13A was reported to have an encounter state population of 80%, compared to 30% for the wild‐type cytochrome c. NMR analysis confirms the dynamic nature of the interaction and demonstrates that the mutant cytochrome c samples the introduced negative patch. Kinetic experiments show that productive complex formation is fivefold to sevenfold slower at moderate and high ionic strength values for cytochrome c R13A but the association rate is not affected by the additional negative patch on cytochrome c peroxidase, showing that the total charge on the protein surface can compensate for less optimal charge distribution. At low ionic strength (44 mm), the association with the mutant cytochrome c reaches the same high rates as found for wild‐type cytochrome c, approaching the diffusion limit.
Collapse
|
14
|
Schrag LG, Liu X, Thevarajan I, Prakash O, Zolkiewski M, Chen J. Cancer-Associated Mutations Perturb the Disordered Ensemble and Interactions of the Intrinsically Disordered p53 Transactivation Domain. J Mol Biol 2021; 433:167048. [PMID: 33984364 PMCID: PMC8286338 DOI: 10.1016/j.jmb.2021.167048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs) are key components of regulatory networks that control crucial aspects of cell decision making. The intrinsically disordered transactivation domain (TAD) of tumor suppressor p53 mediates its interactions with multiple regulatory pathways to control the p53 homeostasis during the cellular response to genotoxic stress. Many cancer-associated mutations have been discovered in p53-TAD, but their structural and functional consequences are poorly understood. Here, by combining atomistic simulations, NMR spectroscopy, and binding assays, we demonstrate that cancer-associated mutations can significantly perturb the balance of p53 interactions with key activation and degradation regulators. Importantly, the four mutations studied in this work do not all directly disrupt the known interaction interfaces. Instead, at least three of these mutations likely modulate the disordered state of p53-TAD to perturb its interactions with regulators. Specifically, NMR and simulation analysis together suggest that these mutations can modulate the level of conformational expansion as well as rigidity of the disordered state. Our work suggests that the disordered conformational ensemble of p53-TAD can serve as a central conduit in regulating the response to various cellular stimuli at the protein-protein interaction level. Understanding how the disordered state of IDPs may be modulated by regulatory signals and/or disease associated perturbations will be essential in the studies on the role of IDPs in biology and diseases.
Collapse
Affiliation(s)
- Lynn G Schrag
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66505, USA
| | - Xiaorong Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Indhujah Thevarajan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66505, USA
| | - Om Prakash
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66505, USA.
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66505, USA.
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
15
|
Ye Y, Tyndall ER, Bui V, Tang Z, Shen Y, Jiang X, Flanagan JM, Wang HG, Tian F. An N-terminal conserved region in human Atg3 couples membrane curvature sensitivity to conjugase activity during autophagy. Nat Commun 2021; 12:374. [PMID: 33446636 PMCID: PMC7809043 DOI: 10.1038/s41467-020-20607-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
During autophagy the enzyme Atg3 catalyzes the covalent conjugation of LC3 to the amino group of phosphatidylethanolamine (PE) lipids, which is one of the key steps in autophagosome formation. Here, we have demonstrated that an N-terminal conserved region of human Atg3 (hAtg3) communicates information from the N-terminal membrane curvature-sensitive amphipathic helix (AH), which presumably targets the enzyme to the tip of phagophore, to the C-terminally located catalytic core for LC3-PE conjugation. Mutations in the putative communication region greatly reduce or abolish the ability of hAtg3 to catalyze this conjugation in vitro and in vivo, and alter the membrane-bound conformation of the wild-type protein, as reported by NMR. Collectively, our results demonstrate that the N-terminal conserved region of hAtg3 works in concert with its geometry-selective AH to promote LC3-PE conjugation only on the target membrane, and substantiate the concept that highly curved membranes drive spatial regulation of the autophagosome biogenesis during autophagy.
Collapse
Affiliation(s)
- Yansheng Ye
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Erin R Tyndall
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Van Bui
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Zhenyuan Tang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Yan Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John M Flanagan
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
| | - Fang Tian
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
16
|
Yarandi SS, Robinson JA, Vakili S, Donadoni M, Burdo TH, Sariyer IK. Characterization of Nef expression in different brain regions of SIV-infected macaques. PLoS One 2020; 15:e0241667. [PMID: 33137166 PMCID: PMC7605674 DOI: 10.1371/journal.pone.0241667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE HIV-associated CNS dysfunction is a significant problem among people with HIV (PWH), who now live longer due to viral suppression from combined anti-retroviral therapy (ART). Over the course of infection, HIV generates toxic viral proteins and induces inflammatory cytokines that have toxic effects on neurons in the CNS. Among these viral proteins, HIV Nef has been found in neurons of postmortem brain specimens from PWH. However, the source of Nef and its impact on neuronal cell homeostasis are still elusive. METHODS AND RESULTS Here, in using a simian immunodeficiency virus (SIV) infected rhesus macaque model of neuroHIV, we find SIV Nef reactivity in the frontal cortex, hippocampus and cerebellum of SIV-infected animals using immunohistochemistry (IHC). Interestingly, SIV-infected macaques treated with ART also showed frequent Nef positive cells in the cerebellum and hippocampus. Using dual quantitative RNAscope and IHC, we observed cells that were positive for Nef, but were not for SIV RNA, suggesting that Nef protein is present in cells that are not actively infected with SIV. Using cell specific markers, we observed Nef protein in microglia/macrophages and astrocytes. Importantly, we also identified a number of NeuN-positive neurons, which are not permissive to SIV infection, but contained Nef protein. Further characterization of Nef-positive neurons showed caspase 3 activation, indicating late stage apoptosis in the CNS neurons. CONCLUSIONS Our results suggest that regardless of ART status, Nef is expressed in the brain of SIV infected macaques and may contribute to neurological complications seen in PWH.
Collapse
Affiliation(s)
- Shadan S. Yarandi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Jake A. Robinson
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Sarah Vakili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Martina Donadoni
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Tricia H. Burdo
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Ilker K. Sariyer
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
17
|
Staudt RP, Alvarado JJ, Emert-Sedlak LA, Shi H, Shu ST, Wales TE, Engen JR, Smithgall TE. Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. J Biol Chem 2020; 295:15158-15171. [PMID: 32862141 DOI: 10.1074/jbc.rev120.012317] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Indexed: 11/06/2022] Open
Abstract
Antiretroviral therapy has revolutionized the treatment of AIDS, turning a deadly disease into a manageable chronic condition. Life-long treatment is required because existing drugs do not eradicate HIV-infected cells. The emergence of drug-resistant viral strains and uncertain vaccine prospects highlight the pressing need for new therapeutic approaches with the potential to clear the virus. The HIV-1 accessory protein Nef is essential for viral pathogenesis, making it a promising target for antiretroviral drug discovery. Nef enhances viral replication and promotes immune escape of HIV-infected cells but lacks intrinsic enzymatic activity. Instead, Nef works through diverse interactions with host cell proteins primarily related to kinase signaling pathways and endosomal trafficking. This review emphasizes the structure, function, and biological relevance of Nef interactions with host cell protein-tyrosine kinases in the broader context of Nef functions related to enhancement of the viral life cycle and immune escape. Drug discovery targeting Nef-mediated kinase activation has allowed identification of promising inhibitors of multiple Nef functions. Pharmacological inhibitors of Nef-induced MHC-I down-regulation restore the adaptive immune response to HIV-infected cells in vitro and have the potential to enhance immune recognition of latent viral reservoirs as part of a strategy for HIV clearance.
Collapse
Affiliation(s)
- Ryan P Staudt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John J Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
18
|
Velazhahan V, Glaza P, Herrera AI, Prakash O, Zolkiewski M, Geisbrecht BV, Schrick K. Dietary flavonoid fisetin binds human SUMO1 and blocks sumoylation of p53. PLoS One 2020; 15:e0234468. [PMID: 32530958 PMCID: PMC7292393 DOI: 10.1371/journal.pone.0234468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Flavonoids are plant-derived compounds that occur abundantly in fruits and vegetables and have been shown to possess potent anti-cancer, antioxidant, and anti-inflammatory properties. However, their direct targets and molecular mechanism of action are not well characterized, hampering exploitation of the beneficial properties of flavonoids for drug development. Small ubiquitin-related modifier 1 (SUMO1) is attached to target proteins as part of a post-translational modification system implicated in a myriad of cellular processes from nuclear trafficking to transcriptional regulation. Using a combination of surface plasmon resonance, differential scanning fluorimetry and fluorescence quenching studies, we provide evidence for direct binding of the dietary flavonoid fisetin to human SUMO1. Our NMR chemical shift perturbation analyses reveal that binding to fisetin involves four conserved amino acid residues (L65, F66, E67, M82) previously shown to be important for conjugation of SUMO1 to target proteins. In vitro sumoylation experiments indicate that fisetin blocks sumoylation of tumor suppressor p53, consistent with fisetin negatively affecting post-translational modification and thus the biological activity of p53. A series of differential scanning fluorimetry experiments suggest that high concentrations of fisetin result in destabilization and unfolding of SUMO1, presenting a molecular mechanism by which flavonoid binding affects its activity. Overall, our data establish a novel direct interaction between fisetin and SUMO1, providing a mechanistic explanation for the ability of fisetin to modulate multiple key signaling pathways inside cells.
Collapse
Affiliation(s)
- Vaithish Velazhahan
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Przemyslaw Glaza
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Alvaro I. Herrera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Om Prakash
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Brian V. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
19
|
van Son M, Schilder JT, Di Savino A, Blok A, Ubbink M, Huber M. The Transient Complex of Cytochrome c and Cytochrome c Peroxidase: Insights into the Encounter Complex from Multifrequency EPR and NMR Spectroscopy. Chemphyschem 2020; 21:1060-1069. [PMID: 32301564 PMCID: PMC7317791 DOI: 10.1002/cphc.201901160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Indexed: 12/31/2022]
Abstract
We present a novel approach to study transient protein-protein complexes with standard, 9 GHz, and high-field, 95 GHz, electron paramagnetic resonance (EPR) and paramagnetic NMR at ambient temperatures and in solution. We apply it to the complex of yeast mitochondrial iso-1-cytochrome c (Cc) with cytochrome c peroxidase (CcP) with the spin label [1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate] attached at position 81 of Cc (SL-Cc). A dissociation constant KD of 20±4×10-6 M (EPR and NMR) and an equal amount of stereo-specific and encounter complex (NMR) are found. The EPR spectrum of the fully bound complex reveals that the encounter complex has a significant population (60 %) that shares important features, such as the Cc-interaction surface, with the stereo-specific complex.
Collapse
Affiliation(s)
- Martin van Son
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityNiels Bohrweg 22333 CALeiden (TheNetherlands
| | - Jesika T. Schilder
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Antonella Di Savino
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Anneloes Blok
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Marcellus Ubbink
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Martina Huber
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityNiels Bohrweg 22333 CALeiden (TheNetherlands
| |
Collapse
|
20
|
Rashid S, Lee BL, Wajda B, Spyracopoulos L. Nucleotide Binding and Active Site Gate Dynamics for the Hsp90 Chaperone ATPase Domain from Benchtop and High Field 19F NMR Spectroscopy. J Phys Chem B 2020; 124:2984-2993. [PMID: 32212608 DOI: 10.1021/acs.jpcb.0c00626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein turnover in cells is regulated by the ATP dependent activity of the Hsp90 chaperone. In concert with accessory proteins, ATP hydrolysis drives the obligate Hsp90 dimer through a cycle between open and closed states that is critical for assisting the folding and stability of hundreds of proteins. Cycling is initiated by ATP binding to the ATPase domain, with the chaperone and the active site gates in the dimer in open states. The chaperone then adopts a short-lived, ATP bound closed state with a closed active site gate. The structural and dynamic changes induced in the ATPase domain and active site gate upon nucleotide binding, and their impact on dimer closing are not well understood. We site-specifically 19F-labeled the ATPase domain at the active site gate to enable benchtop and high field 19F NMR spectroscopic studies. Combined with MD simulations, this allowed accurate characterization of pico- to nanosecond time scale motions of the active site gate, as well as slower micro- to millisecond time scale processes resulting from nucleotide binding. ATP binding induces increased flexibility at one of the hinges of the active site gate, a necessary prelude to release of the second hinge and eventual gate closure in the intact chaperone.
Collapse
Affiliation(s)
- Suad Rashid
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Brian L Lee
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Benjamin Wajda
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
21
|
Abstract
The accessory protein Nef of human immunodeficiency virus (HIV) is a primary determinant of viral pathogenesis. Nef is abundantly expressed during infection and reroutes a variety of cell surface proteins to disrupt host immunity and promote the viral replication cycle. Nef counteracts host defenses by sequestering and/or degrading its targets via the endocytic and secretory pathways. Nef does this by physically engaging a number of host trafficking proteins. Substantial progress has been achieved in identifying the targets of Nef, and a structural and mechanistic understanding of Nef's ability to command the protein trafficking machinery has recently started to coalesce. Comparative analysis of HIV and simian immunodeficiency virus (SIV) Nef proteins in the context of recent structural advances sheds further light on both viral evolution and the mechanisms whereby trafficking is hijacked. This review describes how advances in cell and structural biology are uncovering in growing detail how Nef subverts the host immune system, facilitates virus release, and enhances viral infectivity.
Collapse
|
22
|
Curcio MF, Batista WL, Castro ED, Strumillo ST, Ogata FT, Alkmim W, Brunialti MKC, Salomão R, Turcato G, Diaz RS, Monteiro HP, Janini LMR. Nitric oxide stimulates a PKC-Src-Akt signaling axis which increases human immunodeficiency virus type 1 replication in human T lymphocytes. Nitric Oxide 2019; 93:78-89. [PMID: 31539562 DOI: 10.1016/j.niox.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 08/12/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Human immunodeficiency virus (HIV) infections are typically accompanied by high levels of secreted inflammatory cytokines and generation of high levels of reactive oxygen species (ROS). To elucidate how HIV-1 alters the cellular redox environment during viral replication, we used human HIV-1 infected CD4+T lymphocytes and uninfected cells as controls. ROS and nitric oxide (NO) generation, antioxidant enzyme activity, protein phosphorylation, and viral and proviral loads were measured at different times (2-36 h post-infection) in the presence and absence of the NO donor S-nitroso-N-acetylpenicillamine (SNAP). HIV-1 infection increased ROS generation and decreased intracellular NO content. Upon infection, we observed increases in copper/zinc superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities, and a marked decrease in glutathione (GSH) concentration. Exposure of HIV-1 infected CD4+T lymphocytes to SNAP resulted in an increasingly oxidizing intracellular environment, associated with tyrosine nitration and SOD1 inhibition. In addition, SNAP treatment promoted phosphorylation and activation of the host's signaling proteins, PKC, Src kinase and Akt. Inhibition of PKC leads to inhibition of Src kinase strongly suggesting that PKC is the upstream element in this signaling cascade. Changes in the intracellular redox environment after SNAP treatment had an effect on HIV-1 replication as reflected by increases in proviral and viral loads. In the absence or presence of SNAP, we observed a decrease in viral load in infected CD4+T lymphocytes pre-incubated with the PKC inhibitor GF109203X. In conclusion, oxidative/nitrosative stress conditions derived from exposure of HIV-1-infected CD4+T lymphocytes to an exogenous NO source trigger a signaling cascade involving PKC, Src kinase and Akt. Activation of this signaling cascade appears to be critical to the establishment of HIV-1 infection.
Collapse
Affiliation(s)
- Marli F Curcio
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Wagner L Batista
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Eloísa D Castro
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Brazil
| | - Scheilla T Strumillo
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Brazil
| | - Fernando T Ogata
- Structural and Functional Ecology of Ecosystems, Universidade Paulista, Sorocaba, Brazil
| | - Wagner Alkmim
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Milena K C Brunialti
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Reinaldo Salomão
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gilberto Turcato
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo S Diaz
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hugo P Monteiro
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Brazil
| | - Luiz Mário R Janini
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Cerofolini L, Giuntini S, Ravera E, Luchinat C, Berti F, Fragai M. Structural characterization of a protein adsorbed on aluminum hydroxide adjuvant in vaccine formulation. NPJ Vaccines 2019; 4:20. [PMID: 31149351 PMCID: PMC6538755 DOI: 10.1038/s41541-019-0115-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
The heterogeneous composition of vaccine formulations and the relatively low concentration make the characterization of the protein antigens extremely challenging. Aluminum-containing adjuvants have been used to enhance the immune response of several antigens over the last 90 years and still remain the most commonly used. Here, we show that solid-state NMR and isotope labeling methods can be used to characterize the structural features of the protein antigen component of vaccines and to investigate the preservation of the folding state of proteins adsorbed on Alum hydroxide matrix, providing the way to identify the regions of the protein that are mainly affected by the presence of the inorganic matrix. l-Asparaginase from E. coli has been used as a pilot model of protein antigen. This methodology can find application in several steps of the vaccine development pipeline, from the antigen optimization, through the design of vaccine formulation, up to stability studies and manufacturing process.
Collapse
Affiliation(s)
- Linda Cerofolini
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Stefano Giuntini
- 2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Francesco Berti
- Technical R&D, GSK Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| | - Marco Fragai
- 1Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,2Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
24
|
Rai RK, Angelis AD, Greenwood A, Opella SJ, Cotten ML. Metal-ion Binding to Host Defense Peptide Piscidin 3 Observed in Phospholipid Bilayers by Magic Angle Spinning Solid-state NMR. Chemphyschem 2019; 20:295-301. [PMID: 30471190 PMCID: PMC6494093 DOI: 10.1002/cphc.201800855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/21/2018] [Indexed: 12/21/2022]
Abstract
Cationic antimicrobial peptides (AMPs) are essential components of the innate immune system. They have attracted interest as novel compounds with the potential to treat infections associated with multi-drug resistant bacteria. In this study, we investigate piscidin 3 (P3), an AMP that was first discovered in the mast cells of hybrid striped bass. Prior studies showed that P3 is less active than its homolog piscidin 1 (P1) against planktonic bacteria. However, P3 has the advantage of being less toxic to mammalian cells and more active on biofilms and persister cells. Both P1 and P3 cross bacterial membranes and co-localize with intracellular DNA but P3 is more condensing to DNA while P1 is more membrane active. Recently, we showed that both peptides coordinate Cu2+ through an amino-terminal copper and nickel (ATCUN) motif. We also demonstrated that the bactericidal effects of P3 are linked to its ability to form radicals that nick DNA in the presence of Cu2+ . Since metal binding and membrane crossing by P3 is biologically important, we apply in this study solid-state NMR spectroscopy to uniformly 13 C-15 N-labeled peptide samples to structurally characterize the ATCUN motif of P3 bound to bilayers and coordinated to Ni2+ and Cu2+ . These experiments are supplemented with density functional theory calculations. Taken together, these studies refine the arrangement of not only the backbone but also side chain atoms of an AMP simultaneously bound to metal ions and phospholipid bilayers.
Collapse
Affiliation(s)
- Ratan Kumar Rai
- Department of Chemistry and Biochemistry University of California San Diego La Jolla, California 92093-0307 (USA)
| | - Anna De Angelis
- Department of Chemistry and Biochemistry University of California San Diego La Jolla, California 92093-0307 (USA)
| | - Alexander Greenwood
- Department of Applied Science, Department of Physics The College of William and Mary Williamsburg, VA 23185 (USA), Fax: (757)-221-2050,
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry University of California San Diego La Jolla, California 92093-0307 (USA)
| | - Myriam L. Cotten
- Department of Applied Science, Department of Physics The College of William and Mary Williamsburg, VA 23185 (USA), Fax: (757)-221-2050,
| |
Collapse
|
25
|
Merő B, Radnai L, Gógl G, Tőke O, Leveles I, Koprivanacz K, Szeder B, Dülk M, Kudlik G, Vas V, Cserkaszky A, Sipeki S, Nyitray L, Vértessy BG, Buday L. Structural insights into the tyrosine phosphorylation-mediated inhibition of SH3 domain-ligand interactions. J Biol Chem 2019; 294:4608-4620. [PMID: 30659095 DOI: 10.1074/jbc.ra118.004732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/17/2019] [Indexed: 01/01/2023] Open
Abstract
Src homology 3 (SH3) domains bind proline-rich linear motifs in eukaryotes. By mediating inter- and intramolecular interactions, they regulate the functions of many proteins involved in a wide variety of signal transduction pathways. Phosphorylation at different tyrosine residues in SH3 domains has been reported previously. In several cases, the functional consequences have also been investigated. However, a full understanding of the effects of tyrosine phosphorylation on the ligand interactions and cellular functions of SH3 domains requires detailed structural, atomic-resolution studies along with biochemical and biophysical analyses. Here, we present the first crystal structures of tyrosine-phosphorylated human SH3 domains derived from the Abelson-family kinases ABL1 and ABL2 at 1.6 and 1.4 Å resolutions, respectively. The structures revealed that simultaneous phosphorylation of Tyr89 and Tyr134 in ABL1 or the homologous residues Tyr116 and Tyr161 in ABL2 induces only minor structural perturbations. Instead, the phosphate groups sterically blocked the ligand-binding grooves, thereby strongly inhibiting the interaction with proline-rich peptide ligands. Although some crystal contact surfaces involving phosphotyrosines suggested the possibility of tyrosine phosphorylation-induced dimerization, we excluded this possibility by using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and NMR relaxation analyses. Extensive analysis of relevant databases and literature revealed not only that the residues phosphorylated in our model systems are well-conserved in other human SH3 domains, but that the corresponding tyrosines are known phosphorylation sites in vivo in many cases. We conclude that tyrosine phosphorylation might be a mechanism involved in the regulation of the human SH3 interactome.
Collapse
Affiliation(s)
| | | | - Gergő Gógl
- the Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Orsolya Tőke
- Laboratory for NMR Spectroscopy, Research Center for Natural Sciences (RCNS), Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Ibolya Leveles
- From the Institute of Enzymology and.,the Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest H-1111, Hungary, and
| | | | | | | | | | - Virág Vas
- From the Institute of Enzymology and
| | | | - Szabolcs Sipeki
- the Department of Medical Chemistry, Semmelweis University Medical School, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| | - László Nyitray
- the Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Beáta G Vértessy
- From the Institute of Enzymology and.,the Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest H-1111, Hungary, and
| | - László Buday
- From the Institute of Enzymology and .,the Department of Medical Chemistry, Semmelweis University Medical School, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| |
Collapse
|
26
|
Chang C, Young LN, Morris KL, von Bülow S, Schöneberg J, Yamamoto-Imoto H, Oe Y, Yamamoto K, Nakamura S, Stjepanovic G, Hummer G, Yoshimori T, Hurley JH. Bidirectional Control of Autophagy by BECN1 BARA Domain Dynamics. Mol Cell 2019; 73:339-353.e6. [PMID: 30581147 PMCID: PMC6450660 DOI: 10.1016/j.molcel.2018.10.035] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/15/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Membrane targeting of the BECN1-containing class III PI 3-kinase (PI3KC3) complexes is pivotal to the regulation of autophagy. The interaction of PI3KC3 complex II and its ubiquitously expressed inhibitor, Rubicon, was mapped to the first β sheet of the BECN1 BARA domain and the UVRAG BARA2 domain by hydrogen-deuterium exchange and cryo-EM. These data suggest that the BARA β sheet 1 unfolds to directly engage the membrane. This mechanism was confirmed using protein engineering, giant unilamellar vesicle assays, and molecular simulations. Using this mechanism, a BECN1 β sheet-1 derived peptide activates both PI3KC3 complexes I and II, while HIV-1 Nef inhibits complex II. These data reveal how BECN1 switches on and off PI3KC3 binding to membranes. The observations explain how PI3KC3 inhibition by Rubicon, activation by autophagy-inducing BECN1 peptides, and inhibition by HIV-1 Nef are mediated by the switchable ability of the BECN1 BARA domain to partially unfold and insert into membranes.
Collapse
Affiliation(s)
- Chunmei Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lindsey N Young
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kyle L Morris
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt/M, Germany
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hitomi Yamamoto-Imoto
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yukako Oe
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kentaro Yamamoto
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Goran Stjepanovic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt/M, Germany; Institute of Biophysics, Goethe University, 60438 Frankfurt/M, Germany
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
27
|
Ramamourthy G, Arias M, Nguyen LT, Ishida H, Vogel HJ. Expression and Purification of Chemokine MIP-3α (CCL20) through a Calmodulin-Fusion Protein System. Microorganisms 2019; 7:microorganisms7010008. [PMID: 30626048 PMCID: PMC6352211 DOI: 10.3390/microorganisms7010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022] Open
Abstract
Human macrophage inflammatory protein 3α (MIP-3α), also known as CCL20, is a 70 amino acid chemokine that selectively binds and activates chemokine receptor 6 (CCR6). This chemokine is responsible for inducing the migration of immature dendritic cells, effector, or memory T-cells, and B-cells. Moreover, the MIP-3α protein has been shown to display direct antimicrobial, antiviral and antiprotozoal activities. Because of the potential therapeutic uses of this protein, the efficient production of MIP-3α is of great interest. However, bacterial recombinant production of the MIP-3α protein has been limited by the toxicity of this extremely basic protein (pI 9.7) toward prokaryotic cells, and by solubility problems during expression and purification. In an attempt to overcome these issues, we have investigated the bacterial recombinant expression of MIP-3α by using several common expression and fusion tags, including 6× histidine (His), small ubiquitin modifier protein (SUMO), thioredoxin (TRX), ketosteroid isomerase (KSI), and maltose binding protein (MBP). We have also evaluated a recently introduced calmodulin (CaM)-tag that has been used for the effective expression of many basic antimicrobial peptides (AMPs). Here, we show that the CaM fusion tag system effectively expressed soluble MIP-3α in the cytoplasm of Escherichia coli with good yields. Rapid purification was facilitated by the His-tag that was integrated in the CaM-fusion protein system. Multidimensional nuclear magnetic resonance (NMR) studies demonstrated that the recombinant protein was properly folded, with the correct formation of disulfide bonds. In addition, the recombinant MIP-3α had antibacterial activity, and was shown to inhibit the formation of Pseudomonas aeruginosa biofilms.
Collapse
Affiliation(s)
- Gopal Ramamourthy
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Mauricio Arias
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Hiroaki Ishida
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
28
|
Grozdanov PN, Masoumzadeh E, Latham MP, MacDonald CC. The structural basis of CstF-77 modulation of cleavage and polyadenylation through stimulation of CstF-64 activity. Nucleic Acids Res 2018; 46:12022-12039. [PMID: 30257008 PMCID: PMC6294498 DOI: 10.1093/nar/gky862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/31/2018] [Accepted: 09/12/2018] [Indexed: 01/14/2023] Open
Abstract
Cleavage and polyadenylation (C/P) of mRNA is an important cellular process that promotes increased diversity of mRNA isoforms and could change their stability in different cell types. The cleavage stimulation factor (CstF) complex, part of the C/P machinery, binds to U- and GU-rich sequences located downstream from the cleavage site through its RNA-binding subunit, CstF-64. Less is known about the function of the other two subunits of CstF, CstF-77 and CstF-50. Here, we show that the carboxy-terminus of CstF-77 plays a previously unrecognized role in enhancing C/P by altering how the RNA recognition motif (RRM) of CstF-64 binds RNA. In support of this finding, we also show that CstF-64 relies on CstF-77 to be transported to the nucleus; excess CstF-64 localizes to the cytoplasm, possibly via interaction with cytoplasmic RNAs. Reverse genetics and nuclear magnetic resonance studies of recombinant CstF-64 (RRM-Hinge) and CstF-77 (monkeytail-carboxy-terminal domain) indicate that the last 30 amino acids of CstF-77 increases the stability of the RRM, thus altering the affinity of the complex for RNA. These results provide new insights into the mechanism by which CstF regulates the location of the RNA cleavage site during C/P.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| | - Elahe Masoumzadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Michael P Latham
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| |
Collapse
|
29
|
Solution structure of TbCentrin4 from Trypanosoma brucei and its interactions with Ca 2+ and other centrins. Biochem J 2018; 475:3763-3778. [PMID: 30389845 DOI: 10.1042/bcj20180752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
Centrin is a conserved calcium-binding protein that plays an important role in diverse cellular biological processes such as ciliogenesis, gene expression, DNA repair and signal transduction. In Trypanosoma brucei, TbCentrin4 is mainly localized in basal bodies and bi-lobe structure, and is involved in the processes coordinating karyokinesis and cytokinesis. In the present study, we solved the solution structure of TbCentrin4 using NMR (nuclear magnetic resonance) spectroscopy. TbCentrin4 contains four EF-hand motifs consisting of eight α-helices. Isothermal titration calorimetry experiment showed that TbCentrin4 has a strong Ca2+ binding ability. NMR chemical shift perturbation indicated that TbCentrin4 binds to Ca2+ through its C-terminal domain composed of EF-hand 3 and 4. Meanwhile, we revealed that TbCentrin4 undergoes a conformational change and self-assembly induced by high concentration of Ca2+ Intriguingly, localization of TbCentrin4 was dispersed or disappeared from basal bodies and the bi-lobe structure when the cells were treated with Ca2+ in vivo, implying the influence of Ca2+ on the cellular functions of TbCentrin4. Besides, we observed the interactions between TbCentrin4 and other Tbcentrins and revealed that the interactions are Ca2+ dependent. Our findings provide a structural basis for better understanding the biological functions of TbCentrin4 in the relevant cellular processes.
Collapse
|
30
|
Structures of REV1 UBM2 Domain Complex with Ubiquitin and with a Small-Molecule that Inhibits the REV1 UBM2–Ubiquitin Interaction. J Mol Biol 2018; 430:2857-2872. [DOI: 10.1016/j.jmb.2018.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/25/2023]
|
31
|
Vanarotti M, Evison BJ, Actis ML, Inoue A, McDonald ET, Shao Y, Heath RJ, Fujii N. Small-molecules that bind to the ubiquitin-binding motif of REV1 inhibit REV1 interaction with K164-monoubiquitinated PCNA and suppress DNA damage tolerance. Bioorg Med Chem 2018; 26:2345-2353. [PMID: 29598900 DOI: 10.1016/j.bmc.2018.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 11/27/2022]
Abstract
REV1 protein is a mutagenic DNA damage tolerance (DDT) mediator and encodes two ubiquitin-binding motifs (i.e., UBM1 and UBM2) that are essential for the DDT function. REV1 interacts with K164-monoubiquitinated PCNA (UbPCNA) in cells upon DNA-damaging stress. By using AlphaScreen assays to detect inhibition of REV1 and UbPCNA protein interactions along with an NMR-based strategy, we identified small-molecule compounds that inhibit the REV1/UbPCNA interaction and that directly bind to REV1 UBM2. In cells, one of the compound prevented recruitment of REV1 to PCNA foci on chromatin upon cisplatin treatment, delayed removal of UV-induced cyclopyrimidine dimers from nuclei, prevented UV-induced mutation of HPRT gene, and diminished clonogenic survival of cells that were challenged by cyclophosphamide or cisplatin. This study demonstrates the potential utility of a small-molecule REV1 UBM2 inhibitor for preventing DDT.
Collapse
Affiliation(s)
- Murugendra Vanarotti
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benjamin J Evison
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marcelo L Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Akira Inoue
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ezelle T McDonald
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Youming Shao
- Protein Production Facility, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Heath
- Protein Production Facility, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
32
|
Wu M, Alvarado JJ, Augelli-Szafran CE, Ptak RG, Smithgall TE. A single β-octyl glucoside molecule induces HIV-1 Nef dimer formation in the absence of partner protein binding. PLoS One 2018; 13:e0192512. [PMID: 29415006 PMCID: PMC5802939 DOI: 10.1371/journal.pone.0192512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/24/2018] [Indexed: 01/05/2023] Open
Abstract
The HIV-1 Nef accessory protein is essential for viral pathogenicity and AIDS progression. Nef forms complexes with multiple host cell factors to facilitate viral replication and promote immune escape of HIV-infected cells. Previous X-ray crystal structures demonstrate that Nef forms homodimers, the orientation of which are influenced by host cell binding partners. In cell-based fluorescence complementation assays, Nef forms homodimers at the plasma membrane. However, recombinant Nef proteins often exist as monomers in solution, suggesting that membrane interaction may also trigger monomer to dimer transitions. In this study, we show that monomeric Nef core proteins can be induced to form dimers in the presence of low concentrations of the non-ionic surfactant, β-octyl glucoside (βOG). X-ray crystallography revealed that a single βOG molecule is present in the Nef dimer, with the 8-carbon acyl chain of the ligand binding to a hydrophobic pocket formed by the dimer interface. This Nef-βOG dimer interface involves helix αB, as observed in previous dimer structures, as well as a helix formed by N-terminal residues 54-66. Nef dimer formation is stabilized in solution by the addition of βOG, providing biochemical validation for the crystal structure. These observations together suggest that the interaction with host cell lipid mediators or other hydrophobic ligands may play a role in Nef dimerization, which has been previously linked to multiple Nef functions including host cell protein kinase activation, CD4 downregulation, and enhancement of HIV-1 replication.
Collapse
Affiliation(s)
- Mousheng Wu
- Department of Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, AL, United States of America
| | - John J. Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Corinne E. Augelli-Szafran
- Department of Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, AL, United States of America
| | - Roger G. Ptak
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD, United States of America
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
33
|
Atomic structural details of a protein grafted onto gold nanoparticles. Sci Rep 2017; 7:17934. [PMID: 29263419 PMCID: PMC5738368 DOI: 10.1038/s41598-017-18109-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022] Open
Abstract
The development of a methodology for the structural characterization at atomic detail of proteins conjugated to nanoparticles would be a breakthrough in nanotechnology. Solution and solid-state NMR spectroscopies are currently used to investigate molecules and peptides grafted onto nanoparticles, but the strategies used so far fall short in the application to proteins, which represent a thrilling development in theranostics. We here demonstrate the feasibility of highly-resolved multidimensional heteronuclear spectra of a large protein assembly conjugated to PEGylated gold nanoparticles. The spectra have been obtained by direct proton detection under fast MAS and allow for both a fast fingerprinting for the assessment of the preservation of the native fold and for resonance assignment. We thus demonstrate that the structural characterization and the application of the structure-based methodologies to proteins bound to gold nanoparticles is feasible and potentially extensible to other hybrid protein-nanomaterials.
Collapse
|
34
|
Russo L, Giller K, Pfitzner E, Griesinger C, Becker S. Insight into the molecular recognition mechanism of the coactivator NCoA1 by STAT6. Sci Rep 2017; 7:16845. [PMID: 29203888 PMCID: PMC5714956 DOI: 10.1038/s41598-017-17088-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
Crucial for immune and anti-inflammatory cellular responses, signal transducer and activator of transcription 6 (STAT6) regulates transcriptional activation in response to interleukin-4 and -13 -induced tyrosine phosphorylation by direct interaction with coactivators. The interaction of STAT6 with nuclear coactivator 1 (NCoA1) is mediated by a short region of the STAT6 transactivation domain that includes the motif LXXLL and interacts with the PAS-B domain of NCoA1. Despite the availability of an X-ray structure of the PAS-B domain/ Leu794-Gly814-STAT6 complex, the mechanistic details of this interaction are still poorly understood. Here, we determine the structure of the NCoA1257–385/STAT6783–814 complex using Nuclear Magnetic Resonance (NMR) and X-ray crystallography. The STAT6783–814 peptide binds with additional N-terminal amino acids to NCoA1257–385, compared to the STAT6794–814 peptide, explaining its higher affinity. Secondary and tertiary structures existing in the free peptide are more highly populated in the complex, suggesting binding by conformational selection.
Collapse
Affiliation(s)
- Luigi Russo
- Department for NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Karin Giller
- Department for NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Edith Pfitzner
- Friedrich-Schiller-University Jena, Institute of Biochemistry and Biophysics, Philosophenweg 12, 07743, Jena, Germany.,University of Kassel, Mönchebergstr. 19, 34109, Kassel, Germany
| | - Christian Griesinger
- Department for NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Becker
- Department for NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
35
|
Lamers SL, Fogel GB, Liu ES, Barbier AE, Rodriguez CW, Singer EJ, Nolan DJ, Rose R, McGrath MS. Brain-specific HIV Nef identified in multiple patients with neurological disease. J Neurovirol 2017; 24:1-15. [PMID: 29063512 DOI: 10.1007/s13365-017-0586-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/28/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
HIV-1 Nef is a flexible, multifunctional protein with several cellular targets that is required for pathogenicity of the virus. This protein maintains a high degree of genetic variation among intra- and inter-host isolates. HIV Nef is relevant to HIV-associated neurological diseases (HAND) in patients treated with combined antiretroviral therapy because of the protein's role in promoting survival and migration of infected brain macrophages. In this study, we analyzed 2020 HIV Nef sequences derived from 22 different tissues and 31 subjects using a novel computational approach. This approach combines statistical regression and evolved neural networks (ENNs) to classify brain sequences based on the physical and chemical characteristics of functional Nef domains. Based on training, testing, and validation data, the method successfully classified brain Nef sequences at 84.5% and provided informative features for further examination. These included physicochemical features associated with the Src-homology-3 binding domain, the Nef loop (including the AP-2 Binding region), and a cytokine-binding domain. Non-brain sequences from patients with HIV-associated neurological disease were frequently classified as brain, suggesting that the approach could indicate neurological risk using blood-derived virus or for the development of biomarkers for use in assay systems aimed at drug efficacy studies for the treatment of HIV-associated neurological diseases.
Collapse
|
36
|
Chatzikonstantinou AV, Chatziathanasiadou MV, Ravera E, Fragai M, Parigi G, Gerothanassis IP, Luchinat C, Stamatis H, Tzakos AG. Enriching the biological space of natural products and charting drug metabolites, through real time biotransformation monitoring: The NMR tube bioreactor. Biochim Biophys Acta Gen Subj 2017; 1862:1-8. [PMID: 28974426 DOI: 10.1016/j.bbagen.2017.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Natural products offer a wide range of biological activities, but they are not easily integrated in the drug discovery pipeline, because of their inherent scaffold intricacy and the associated complexity in their synthetic chemistry. Enzymes may be used to perform regioselective and stereoselective incorporation of functional groups in the natural product core, avoiding harsh reaction conditions, several protection/deprotection and purification steps. METHODS Herein, we developed a three step protocol carried out inside an NMR-tube. 1st-step: STD-NMR was used to predict the: i) capacity of natural products as enzyme substrates and ii) possible regioselectivity of the biotransformations. 2nd-step: The real-time formation of multiple-biotransformation products in the NMR-tube bioreactor was monitored in-situ. 3rd-step: STD-NMR was applied in the mixture of the biotransformed products to screen ligands for protein targets. RESULTS Herein, we developed a simple and time-effective process, the "NMR-tube bioreactor", that is able to: (i) predict which component of a mixture of natural products can be enzymatically transformed, (ii) monitor in situ the transformation efficacy and regioselectivity in crude extracts and multiple substrate biotransformations without fractionation and (iii) simultaneously screen for interactions of the biotransformation products with pharmaceutical protein targets. CONCLUSIONS We have developed a green, time-, and cost-effective process that provide a simple route from natural products to lead compounds for drug discovery. GENERAL SIGNIFICANSE This process can speed up the most crucial steps in the early drug discovery process, and reduce the chemical manipulations usually involved in the pipeline, improving the environmental compatibility.
Collapse
Affiliation(s)
- Alexandra V Chatzikonstantinou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Maria V Chatziathanasiadou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance in MetalloProteins (CIRMMP), 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance in MetalloProteins (CIRMMP), 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance in MetalloProteins (CIRMMP), 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Ioannis P Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance in MetalloProteins (CIRMMP), 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Haralambos Stamatis
- Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
37
|
Cerofolini L, Giuntini S, Louka A, Ravera E, Fragai M, Luchinat C. High-Resolution Solid-State NMR Characterization of Ligand Binding to a Protein Immobilized in a Silica Matrix. J Phys Chem B 2017; 121:8094-8101. [PMID: 28762736 DOI: 10.1021/acs.jpcb.7b05679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solid-state NMR is becoming a powerful tool to detect atomic-level structural features of biomolecules even when they are bound to (or trapped in) solid systems that lack long-range three-dimensional order. We here demonstrate that it is possible to probe protein-ligand interactions from a protein-based perspective also when the protein is entrapped in silica, thus translating into biomolecular solid-state NMR all of the considerations that are usually made to understand the chemical nature of the interaction of a protein with its ligands. This work provides a proof of concept that also immobilized enzymes can be used for protein-based NMR protein-ligand interactions for drug discovery.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Alexandra Louka
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.,GiottoBiotech S.R.L. , Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
38
|
Volpon L, Culjkovic-Kraljacic B, Sohn HS, Blanchet-Cohen A, Osborne MJ, Borden KLB. A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery. RNA (NEW YORK, N.Y.) 2017; 23:927-937. [PMID: 28325843 PMCID: PMC5435865 DOI: 10.1261/rna.060137.116] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/09/2017] [Indexed: 05/26/2023]
Abstract
The eukaryotic translation initiation factor eIF4E acts in the nuclear export and translation of a subset of mRNAs. Both of these functions contribute to its oncogenic potential. While the biochemical mechanisms that underlie translation are relatively well understood, the molecular basis for eIF4E's role in mRNA export remains largely unexplored. To date, over 3000 transcripts, many encoding oncoproteins, were identified as potential nuclear eIF4E export targets. These target RNAs typically contain a ∼50-nucleotide eIF4E sensitivity element (4ESE) in the 3' UTR and a 7-methylguanosine cap on the 5' end. While eIF4E associates with the cap, an unknown factor recognizes the 4ESE element. We previously identified cofactors that functionally interacted with eIF4E in mammalian cell nuclei including the leucine-rich pentatricopeptide repeat protein LRPPRC and the export receptor CRM1/XPO1. LRPPRC simultaneously interacts with both eIF4E bound to the 5' mRNA cap and the 4ESE element in the 3' UTR. In this way, LRPPRC serves as a specificity factor to recruit 4ESE-containing RNAs within the nucleus. Further, we show that CRM1 directly binds LRPPRC likely acting as the export receptor for the LRPPRC-eIF4E-4ESE RNA complex. We also found that Importin 8, the nuclear importer for cap-free eIF4E, imports RNA-free LRPPRC, potentially providing both coordinated nuclear recycling of the export machinery and an important surveillance mechanism to prevent futile export cycles. Our studies provide the first biochemical framework for the eIF4E-dependent mRNA export pathway.
Collapse
Affiliation(s)
- Laurent Volpon
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavillon Marcelle-Coutu, Chemin de Polytechnique, Montreal, Québec, H3T 1J4, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavillon Marcelle-Coutu, Chemin de Polytechnique, Montreal, Québec, H3T 1J4, Canada
| | - Hye Seon Sohn
- Cancer Science Institute of Singapore and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Alexis Blanchet-Cohen
- Department of Human Genetics, Segal Cancer Centre and Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Michael J Osborne
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavillon Marcelle-Coutu, Chemin de Polytechnique, Montreal, Québec, H3T 1J4, Canada
| | - Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavillon Marcelle-Coutu, Chemin de Polytechnique, Montreal, Québec, H3T 1J4, Canada
| |
Collapse
|
39
|
Natarajan K, McShan AC, Jiang J, Kumirov VK, Wang R, Zhao H, Schuck P, Tilahun ME, Boyd LF, Ying J, Bax A, Margulies DH, Sgourakis NG. An allosteric site in the T-cell receptor Cβ domain plays a critical signalling role. Nat Commun 2017; 8:15260. [PMID: 28508865 PMCID: PMC5440810 DOI: 10.1038/ncomms15260] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanism through which the interaction of a clonotypic αβ T-cell receptor (TCR) with a peptide-loaded major histocompatibility complex (p/MHC) leads to T-cell activation is not yet fully understood. Here we exploit a high-affinity TCR (B4.2.3) to examine the structural changes that accompany binding to its p/MHC ligand (P18-I10/H2-Dd). In addition to conformational changes in complementarity-determining regions (CDRs) of the TCR seen in comparison of unliganded and bound X-ray structures, NMR characterization of the TCR β-chain dynamics reveals significant chemical shift effects in sites removed from the MHC-binding site. Remodelling of electrostatic interactions near the Cβ H3 helix at the membrane-proximal face of the TCR, a region implicated in interactions with the CD3 co-receptor, suggests a possible role for an allosteric mechanism in TCR signalling. The contribution of these TCR residues to signal transduction is supported by mutagenesis and T-cell functional assays.
Collapse
MESH Headings
- Allosteric Site/immunology
- Animals
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/metabolism
- Crystallography, X-Ray
- Major Histocompatibility Complex/immunology
- Mice
- Molecular Dynamics Simulation
- Mutagenesis
- Peptides/metabolism
- Protein Binding/immunology
- Protein Domains/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrew C. McShan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Rui Wang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mulualem E. Tilahun
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nikolaos G. Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
40
|
Kaur K, Park H, Pandey N, Azuma Y, De Guzman RN. Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy. J Biol Chem 2017; 292:10230-10238. [PMID: 28455449 DOI: 10.1074/jbc.m117.789982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 11/06/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) conjugation is a reversible post-translational modification process implicated in the regulation of gene transcription, DNA repair, and cell cycle. SUMOylation depends on the sequential activities of E1 activating, E2 conjugating, and E3 ligating enzymes. SUMO E3 ligases enhance transfer of SUMO from the charged E2 enzyme to the substrate. We have previously identified PIASy, a member of the Siz/protein inhibitor of activated STAT (PIAS) RING family of SUMO E3 ligases, as essential for mitotic chromosomal SUMOylation in frog egg extracts and demonstrated that it can mediate effective SUMOylation. To address how PIASy catalyzes SUMOylation, we examined various truncations of PIASy for their ability to mediate SUMOylation. Using NMR chemical shift mapping and mutagenesis, we identified a new SUMO-interacting motif (SIM) in PIASy. The new SIM and the currently known SIM are both located at the C terminus of PIASy, and both are required for the full ligase activity of PIASy. Our results provide novel insights into the mechanism of PIASy-mediated SUMOylation. PIASy adds to the growing list of SUMO E3 ligases containing multiple SIMs that play important roles in the E3 ligase activity.
Collapse
Affiliation(s)
- Kawaljit Kaur
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Hyewon Park
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Nootan Pandey
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Yoshiaki Azuma
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Roberto N De Guzman
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
41
|
Hunegnaw R, Vassylyeva M, Dubrovsky L, Pushkarsky T, Sviridov D, Anashkina AA, Üren A, Brichacek B, Vassylyev DG, Adzhubei AA, Bukrinsky M. Interaction Between HIV-1 Nef and Calnexin: From Modeling to Small Molecule Inhibitors Reversing HIV-Induced Lipid Accumulation. Arterioscler Thromb Vasc Biol 2016; 36:1758-71. [PMID: 27470515 DOI: 10.1161/atvbaha.116.307997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE HIV-infected patients are at an increased risk of developing atherosclerosis, in part because of downmodulation and functional impairment of ATP-binding cassette A1 (ABCA1) cholesterol transporter by the HIV-1 protein Nef. The mechanism of this effect involves Nef interacting with an ER chaperone calnexin and disrupting calnexin binding to ABCA1, leading to ABCA1 retention in ER, its degradation and resulting suppression of cholesterol efflux. However, molecular details of Nef-calnexin interaction remained unknown, limiting the translational impact of this finding. APPROACH AND RESULTS Here, we used molecular modeling and mutagenesis to characterize Nef-calnexin interaction and to identify small molecule compounds that could block it. We demonstrated that the interaction between Nef and calnexin is direct and can be reconstituted using recombinant proteins in vitro with a binding affinity of 89.1 nmol/L measured by surface plasmon resonance. The cytoplasmic tail of calnexin is essential and sufficient for interaction with Nef, and binds Nef with an affinity of 9.4 nmol/L. Replacing lysine residues in positions 4 and 7 of Nef with alanines abrogates Nef-calnexin interaction, prevents ABCA1 downregulation by Nef, and preserves cholesterol efflux from HIV-infected cells. Through virtual screening of the National Cancer Institute library of compounds, we identified a compound, 1[(7-oxo-7H-benz[de]anthracene-3-yl)amino]anthraquinone, which blocked Nef-calnexin interaction, partially restored ABCA1 activity in HIV-infected cells, and reduced foam cell formation in a culture of HIV-infected macrophages. CONCLUSION This study identifies potential targets that can be exploited to block the pathogenic effect of HIV infection on cholesterol metabolism and prevent atherosclerosis in HIV-infected subjects.
Collapse
Affiliation(s)
- Ruth Hunegnaw
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Marina Vassylyeva
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Larisa Dubrovsky
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Tatiana Pushkarsky
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Dmitri Sviridov
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Anastasia A Anashkina
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Aykut Üren
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Beda Brichacek
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Dmitry G Vassylyev
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü)
| | - Alexei A Adzhubei
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü).
| | - Michael Bukrinsky
- From the George Washington University School of Medicine and Health Sciences, Washington, DC (R.H., L.D., T.P., B.B., A.A.A., M.B.); University of Alabama School of Medicine and Dentistry, Birmingham, (M.V., D.V.); Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); Engelhardt Institute of Molecular Biology RAS, Moscow, Russia (A.A. Anashkina, A.A. Adzhubei); and Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC (A.Ü).
| |
Collapse
|
42
|
Wales TE, Poe JA, Emert-Sedlak L, Morgan CR, Smithgall TE, Engen JR. Hydrogen Exchange Mass Spectrometry of Related Proteins with Divergent Sequences: A Comparative Study of HIV-1 Nef Allelic Variants. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1048-61. [PMID: 27032648 PMCID: PMC4865444 DOI: 10.1007/s13361-016-1365-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 05/16/2023]
Abstract
Hydrogen exchange mass spectrometry can be used to compare the conformation and dynamics of proteins that are similar in tertiary structure. If relative deuterium levels are measured, differences in sequence, deuterium forward- and back-exchange, peptide retention time, and protease digestion patterns all complicate the data analysis. We illustrate what can be learned from such data sets by analyzing five variants (Consensus G2E, SF2, NL4-3, ELI, and LTNP4) of the HIV-1 Nef protein, both alone and when bound to the human Hck SH3 domain. Regions with similar sequence could be compared between variants. Although much of the hydrogen exchange features were preserved across the five proteins, the kinetics of Nef binding to Hck SH3 were not the same. These observations may be related to biological function, particularly for ELI Nef where we also observed an impaired ability to downregulate CD4 surface presentation. The data illustrate some of the caveats that must be considered for comparison experiments and provide a framework for investigations of other protein relatives, families, and superfamilies with HX MS. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Jerrod A Poe
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Lori Emert-Sedlak
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Christopher R Morgan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
- Genzyme Corporation, Framingham, MA, 01701-9322, USA
| | - Thomas E Smithgall
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
D'Abrosca G, Russo L, Palmieri M, Baglivo I, Netti F, de Paola I, Zaccaro L, Farina B, Iacovino R, Pedone PV, Isernia C, Fattorusso R, Malgieri G. The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain. J Inorg Biochem 2016; 161:91-8. [PMID: 27238756 DOI: 10.1016/j.jinorgbio.2016.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 11/29/2022]
Abstract
The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties.
Collapse
Affiliation(s)
- Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fortuna Netti
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ivan de Paola
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Laura Zaccaro
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Biancamaria Farina
- Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy; Interuniversity Centre for Research on Bioactive Peptides (CIRPEB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
44
|
Vanarotti MS, Finkelstein DB, Guibao CD, Nourse A, Miller DJ, Zheng JJ. Structural Basis for the Interaction between Pyk2-FAT Domain and Leupaxin LD Repeats. Biochemistry 2016; 55:1332-45. [PMID: 26866573 PMCID: PMC4843776 DOI: 10.1021/acs.biochem.5b01274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Proline-rich
tyrosine kinase 2 (Pyk2) is a nonreceptor tyrosine
kinase and belongs to the focal adhesion kinase (FAK) family. Like
FAK, the C-terminal focal adhesion-targeting (FAT) domain of Pyk2
binds to paxillin, a scaffold protein in focal adhesions; however,
the interaction between the FAT domain of Pyk2 and paxillin is dynamic
and unstable. Leupaxin is another member in the paxillin family and
was suggested to be the native binding partner of Pyk2; Pyk2 gene
expression is strongly correlated with that of leupaxin in many tissues
including primary breast cancer. Here, we report that leupaxin interacts
with Pyk2-FAT. Leupaxin has four leucine–aspartate (LD) motifs.
The first and third LD motifs of leupaxin preferably target the two
LD-binding sites on the Pyk2-FAT domain, respectively. Moreover, the
full-length leupaxin binds to Pyk2-FAT as a stable one-to-one complex.
Together, we propose that there is an underlying selectivity between
leupaxin and paxillin for Pyk2, which may influence the differing
behavior of the two proteins at focal adhesion sites.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie J Zheng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA , Los Angeles, California 90095, United States
| |
Collapse
|
45
|
Ravera E, Ciambellotti S, Cerofolini L, Martelli T, Kozyreva T, Bernacchioni C, Giuntini S, Fragai M, Turano P, Luchinat C. Solid-State NMR of PEGylated Proteins. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Silvia Ciambellotti
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Tommaso Martelli
- Giotto Biotech S.r.l. Via Madonna del Piano 6; 50019 Sesto Fiorentino FI Italy
| | - Tatiana Kozyreva
- Giotto Biotech S.r.l. Via Madonna del Piano 6; 50019 Sesto Fiorentino FI Italy
| | - Caterina Bernacchioni
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
- Giotto Biotech S.r.l. Via Madonna del Piano 6; 50019 Sesto Fiorentino FI Italy
| |
Collapse
|
46
|
Ravera E, Ciambellotti S, Cerofolini L, Martelli T, Kozyreva T, Bernacchioni C, Giuntini S, Fragai M, Turano P, Luchinat C. Solid-State NMR of PEGylated Proteins. Angew Chem Int Ed Engl 2016; 55:2446-9. [PMID: 26756539 DOI: 10.1002/anie.201510148] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Indexed: 11/10/2022]
Abstract
PEGylated proteins are widely used in biomedicine but, in spite of their importance, no atomic-level information is available since they are generally resistant to structural characterization approaches. PEGylated proteins are shown here to yield highly resolved solid-state NMR spectra, which allows assessment of the structural integrity of proteins when PEGylated for therapeutic or diagnostic use.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Silvia Ciambellotti
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Tommaso Martelli
- Giotto Biotech S.r.l. Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Tatiana Kozyreva
- Giotto Biotech S.r.l. Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Caterina Bernacchioni
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy. .,Giotto Biotech S.r.l. Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
47
|
Martelli T, Ravera E, Louka A, Cerofolini L, Hafner M, Fragai M, Becker CFW, Luchinat C. Atomic-Level Quality Assessment of Enzymes Encapsulated in Bioinspired Silica. Chemistry 2015; 22:425-32. [DOI: 10.1002/chem.201503613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 12/23/2022]
|
48
|
Rodriguez MC, Yegorova S, Pitteloud JP, Chavaroche AE, André S, Ardá A, Minond D, Jiménez-Barbero J, Gabius HJ, Cudic M. Thermodynamic Switch in Binding of Adhesion/Growth Regulatory Human Galectin-3 to Tumor-Associated TF Antigen (CD176) and MUC1 Glycopeptides. Biochemistry 2015; 54:4462-74. [PMID: 26129647 PMCID: PMC4520625 DOI: 10.1021/acs.biochem.5b00555] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
A shift
to short-chain glycans is an observed change in mucin-type
O-glycosylation in premalignant and malignant epithelia. Given the
evidence that human galectin-3 can interact with mucins and also weakly
with free tumor-associated Thomsen-Friedenreich (TF) antigen (CD176),
the study of its interaction with MUC1 (glyco)peptides is of biomedical
relevance. Glycosylated MUC1 fragments that carry the TF antigen attached
through either Thr or Ser side chains were synthesized using standard
Fmoc-based automated solid-phase peptide chemistry. The dissociation
constants (Kd) for interaction of galectin-3
and the glycosylated MUC1 fragments measured by isothermal titration
calorimetry decreased up to 10 times in comparison to that of the
free TF disaccharide. No binding was observed for the nonglycosylated
control version of the MUC1 peptide. The most notable feature of the
binding of MUC1 glycopeptides to galectin-3 was a shift from a favorable
enthalpy to an entropy-driven binding process. The comparatively diminished
enthalpy contribution to the free energy (ΔG) was compensated by a considerable gain in the entropic term. 1H–15N heteronuclear single-quantum coherence
spectroscopy nuclear magnetic resonance data reveal contact at the
canonical site mainly by the glycan moiety of the MUC1 glycopeptide.
Ligand-dependent differences in binding affinities were also confirmed
by a novel assay for screening of low-affinity glycan–lectin
interactions based on AlphaScreen technology. Another key finding
is that the glycosylated MUC1 peptides exhibited activity in a concentration-dependent
manner in cell-based assays revealing selectivity among human galectins.
Thus, the presentation of this tumor-associated carbohydrate ligand
by the natural peptide scaffold enhances its affinity, highlighting
the significance of model studies of human lectins with synthetic
glycopeptides.
Collapse
Affiliation(s)
- Maria C Rodriguez
- †Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States.,‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Svetlana Yegorova
- ‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Jean-Philippe Pitteloud
- ‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Anais E Chavaroche
- ‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Sabine André
- §Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Ana Ardá
- ∥CIC bioGUNE, Bizkaia Technological Park, Building 801 A, 48160 Derio, Spain
| | - Dimitriy Minond
- ‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Jesús Jiménez-Barbero
- ∥CIC bioGUNE, Bizkaia Technological Park, Building 801 A, 48160 Derio, Spain.,⊥Ikerbasque, Basque Foundation for Science, Maria Lopez de Haro 3, 48013 Bilbao, Spain
| | - Hans-Joachim Gabius
- §Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Mare Cudic
- †Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| |
Collapse
|
49
|
Zhuo Y, Cano KE, Wang L, Ilangovan U, Hinck AP, Sousa R, Lafer EM. Nuclear Magnetic Resonance Structural Mapping Reveals Promiscuous Interactions between Clathrin-Box Motif Sequences and the N-Terminal Domain of the Clathrin Heavy Chain. Biochemistry 2015; 54:2571-80. [PMID: 25844500 PMCID: PMC4429812 DOI: 10.1021/acs.biochem.5b00065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The recruitment and organization
of clathrin at endocytic sites
first to form coated pits and then clathrin-coated vesicles depend
on interactions between the clathrin N-terminal domain (TD) and multiple
clathrin binding sequences on the cargo adaptor and accessory proteins
that are concentrated at such sites. Up to four distinct protein binding
sites have been proposed to be present on the clathrin TD, with each
site proposed to interact with a distinct clathrin binding motif.
However, an understanding of how such interactions contribute to clathrin
coat assembly must take into account observations that any three of
these four sites on clathrin TD can be mutationally ablated without
causing loss of clathrin-mediated endocytosis. To take an unbiased
approach to mapping binding sites for clathrin-box motifs on clathrin
TD, we used isothermal titration calorimetry (ITC) and nuclear magnetic
resonance spectroscopy. Our ITC experiments revealed that a canonical
clathrin-box motif peptide from the AP-2 adaptor binds to clathrin
TD with a stoichiometry of 3:1. Assignment of 90% of the total visible
amide resonances in the TROSY-HSQC spectrum of 13C-, 2H-, and 15N-labeled TD40 allowed us to map these
three binding sites by analyzing the chemical shift changes as clathrin-box
motif peptides were titrated into clathrin TD. We found that three
different clathrin-box motif peptides can each simultaneously bind
not only to the previously characterized clathrin-box site but also
to the W-box site and the β-arrestin splice loop site on a single
TD. The promiscuity of these binding sites can help explain why their
mutation does not lead to larger effects on clathrin function and
suggests a mechanism by which clathrin may be transferred between
different proteins during the course of an endocytic event.
Collapse
Affiliation(s)
- Yue Zhuo
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Kristin E Cano
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Liping Wang
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Udayar Ilangovan
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Andrew P Hinck
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Rui Sousa
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Eileen M Lafer
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|
50
|
Abstract
When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same.
Collapse
Affiliation(s)
- Paul T. Wingfield
- Protein Expression Laboratory, NIAMS - NIH, Building 6B, Room 1B130, 6 Center Drive, Bethesda, MD 20814, Tel: 301-594-1313,
| |
Collapse
|