1
|
Jia X, Schols D, Meier C. Pronucleotides of 2',3'-Dideoxy-2',3'-Didehydrothymidine as Potent Anti-HIV Compounds. J Med Chem 2023; 66:12163-12184. [PMID: 37647547 DOI: 10.1021/acs.jmedchem.3c00755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
We report on the synthesis and evaluation of three different nucleotide prodrug systems: (i) nucleoside triphosphate analogues in which the γ-phosph(on)ate has two different lipophilic nonbioreversible alkyl residues with d4TDP as the released nucleotide analogue; (ii) nucleoside diphosphate analogues bearing a bioreversible and a stable β-alkyl group; or (iii) nucleoside diphosphate analogues bearing two nonhydrolysable lipophilic alkyl moieties. The delivery of d4TDP (for the triphosphate precursor) and d4TMP (for the diphosphate precursor) was demonstrated in CD4+ T-lymphocyte CEM cell extracts as well as in phosphate buffer saline (PBS). In primer extension assay, we found that γ-dialkylated d4TTP derivatives and d4TDP were accepted as substrates by HIV-RT. Several of these compounds were observed to be extremely active against HIV-1/2 replication in HIV-infected cells. A more than 45,000-fold increase in the anti-HIV activity was detected for compound 18a as compared to the parent d4T which results in a selectivity index value of 37,000.
Collapse
Affiliation(s)
- Xiao Jia
- Organic Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, Hamburg D-20146, Germany
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Leuven B-3000, Belgium
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, Hamburg D-20146, Germany
| |
Collapse
|
2
|
Barik K, Arya PK, Singh AK, Kumar A. Potential therapeutic targets for combating Mycoplasma genitalium. 3 Biotech 2023; 13:9. [PMID: 36532859 PMCID: PMC9755450 DOI: 10.1007/s13205-022-03423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mycoplasma genitalium (M. genitalium) has emerged as a sexually transmitted infection (STI) all over the world in the last three decades. It has been identified as a cause of male urethritis, and there is now evidence that it also causes cervicitis and pelvic inflammatory disease in women. However, the precise role of M. genitalium in diseases such as pelvic inflammatory disease, and infertility is unknown, and more research is required. It is a slow-growing organism, and with the advent of the nucleic acid amplification test (NAAT), more studies are being conducted and knowledge about the pathogenicity of this organism is being elucidated. The accumulation of data has improved our understanding of the pathogen and its role in disease transmission. Despite the widespread use of single-dose azithromycin in the sexual health field, M. genitalium is known to rapidly develop antibiotic resistance. As a result, the media frequently refer to this pathogen as the "new STI superbug." Despite their rarity, antibiotics available today have serious side effects. As the cure rates for first-line antimicrobials have decreased, it is now a challenge to determine the effective antimicrobial therapy. In this review, we summarise recent M. genitalium research and investigate potential therapeutic targets for combating this pathogen.
Collapse
Affiliation(s)
- Krishnendu Barik
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| | - Praffulla Kumar Arya
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| | - Anil Kumar
- Department of Bioinformatics, Central University of South Bihar, Gaya, 824236 India
| |
Collapse
|
3
|
Li X, Feng Y, Liu W, Tan L, Sun Y, Song C, Liao Y, Xu C, Ren T, Ding C, Qiu X. A Role for the Chicken Interferon-Stimulated Gene CMPK2 in the Host Response Against Virus Infection. Front Microbiol 2022; 13:874331. [PMID: 35633731 PMCID: PMC9132166 DOI: 10.3389/fmicb.2022.874331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Virus infection can lead to the production of interferon, which activates the JAK/STAT pathway and induces the expression of multiple downstream interferon-stimulated genes (ISGs) to achieve their antiviral function. Cytidine/uridine monophosphate kinase 2 (CMPK2) gene has been identified as an ISG in human and fish, and is also known as a rate-limiting enzyme in mitochondria to maintain intracellular UTP/CTP levels, which is necessary for de novo mitochondrial DNA synthesis. By mining previous microarray data, it was found that both Avian Influenza Virus (AIV) and Newcastle Disease Virus (NDV) infection can lead to the significant upregulation of chicken CMPK2 gene. However, little is known about the function of CMPK2 gene in chickens. In the present study, the open reading frame (ORF) of chicken CMPK2 (chCMPK2) was cloned from DF-1, a chicken embryo fibroblasts cell line, and subjected to further analysis. Sequence analysis showed that chCMPK2 shared high similarity in amino acid with CMPK2 sequences from all the other species, especially reptiles. A thymidylate kinase (TMK) domain was identified in the C-terminus of chCMPK2, which is highly conserved among all species. In vitro, AIV infection induced significant increases in chCMPK2 expression in DF-1, HD11, and the chicken embryonic fibroblasts (CEF), while obvious increase only detected in DF-1 cells and CEF cells after NDV infection. In vivo, the expression levels of chCMPK2 were up-regulated in several tissues from AIV infected chickens, especially the brain, spleen, bursa, kidney, intestine, heart and thymus, and notable increase of chCMPK2 was detected in the bursa, kidney, duodenum, lung, heart, and thymus during NDV infection. Here, using MDA5 and IFN-β knockdown cells, we demonstrated that as a novel ISG, chCMPK2 could be regulated by the MDA5/IFN-β pathway. The high expression level of exogenous chCMPK2 displayed inhibitory effects on AIV and NDV as well as reduced viral RNA in infected cells. We further demonstrated that Asp135, a key site on the TMK catalytic domain, was identified as critical for the antiviral activities of chCMPK2. Taken together, these data demonstrated that chCMPK2 is involved in the chicken immune system and may play important roles in host anti-viral responses.
Collapse
Affiliation(s)
- Xin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiyi Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
4
|
Rudge ES, Chan AHY, Leeper FJ. Prodrugs of pyrophosphates and bisphosphonates: disguising phosphorus oxyanions. RSC Med Chem 2022; 13:375-391. [PMID: 35647550 PMCID: PMC9020613 DOI: 10.1039/d1md00297j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Pyrophosphates have important functions in living systems and thus pyrophosphate-containing molecules and their more stable bisphosphonate analogues have the potential to be used as drugs for treating many diseases including cancer and viral infections. Both pyrophosphates and bisphosphonates are polyanionic at physiological pH and, whilst this is essential for their biological activity, it also limits their use as therapeutic agents. In particular, the high negative charge density of these compounds prohibits cell entry other than by endocytosis, prevents transcellular oral absorption and causes sequestration to bone. Therefore, prodrug strategies have been developed to temporarily disguise the charges of these compounds. This review examines the various systems that have been used to mask the phosphorus-containing moieties of pyrophosphates and bisphosphonates and also illustrates the utility of such prodrugs.
Collapse
Affiliation(s)
- Emma S Rudge
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
5
|
Hu Frisk J, Pejler G, Eriksson S, Wang L. Structural and functional analysis of human thymidylate kinase isoforms. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:321-332. [PMID: 34994281 DOI: 10.1080/15257770.2021.2023748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Thymidylate kinase (TMPK) phosphorylates deoxythymidine monophosphate (dTMP) and plays an important role in genome stability. Deficiency in TMPK activity due to genetic alterations of DTYMK, i.e., the gene coding for TMPK, causes severe microcephaly in humans. However, no defects were observed in other tissues, suggesting the existence of a compensatory enzyme for dTTP synthesis. In search for this compensatory enzyme we analyzed 6 isoforms of TMPK mRNA deposited in the GenBank. Of these, only isoform 1 has been characterized and represents the known human TMPK. Our results reveal that isoform 2, 3, 4 and 5 lack essential structural elements for substrate binding and, thus, they are considered as nonfunctional isoforms. Isoform 6, however, has intact catalytic centers, i.e., dTMP-binding, DRX motif, ATP-binding p-loop and lid region, which are the key structural elements of an active TMPK, suggesting that isoform 6 may function as TMPK. When isoform 6 was expressed and purified, it showed only minimal activity (<0.1%) as compared with isoform 1. A putative isoform 6 was detected in a cancer cell line, in addition to the dominant isoform 1. However, because of its low activity, isoform 6 is unlikely be able to compensate for the loss of TMPK activity caused by deletions and/or point mutations of the DTYMK gene. Thereby, future studies to identify and characterize the compensatory TMPK enzyme found in patients with DTYMK mutations may contribute to the understanding of dTTP synthesis and of the pathophysiological role of DTYMK mutations in neurodegenerative disorders.
Collapse
Affiliation(s)
- Junmei Hu Frisk
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Song L, Merceron R, Hulpia F, Lucía A, Gracia B, Jian Y, Risseeuw MDP, Verstraelen T, Cos P, Aínsa JA, Boshoff HI, Munier-Lehmann H, Savvides SN, Van Calenbergh S. Structure-aided optimization of non-nucleoside M. tuberculosis thymidylate kinase inhibitors. Eur J Med Chem 2021; 225:113784. [PMID: 34450493 PMCID: PMC10500704 DOI: 10.1016/j.ejmech.2021.113784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Mycobacterium tuberculosis thymidylate kinase (MtTMPK) has emerged as an attractive target for rational drug design. We recently investigated new families of non-nucleoside MtTMPK inhibitors in an effort to diversify MtTMPK inhibitor chemical space. We here report a new series of MtTMPK inhibitors by combining the Topliss scheme with rational drug design approaches, fueled by two co-crystal structures of MtTMPK in complex with developed inhibitors. These efforts furnished the most potent MtTMPK inhibitors in our assay, with two analogues displaying low micromolar MIC values against H37Rv Mtb. Prepared inhibitors address new sub-sites in the MtTMPK nucleotide binding pocket, thereby offering new insights into its druggability. We studied the role of efflux pumps as well as the impact of cell wall permeabilizers for selected compounds to potentially provide an explanation for the lack of correlation between potent enzyme inhibition and whole-cell activity.
Collapse
Affiliation(s)
- Lijun Song
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium; 3M, Zwijndrecht, Belgium
| | - Romain Merceron
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium; Eurofins Group, Poitiers, France
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium; Janssen Pharmaceutica, Beerse, Belgium
| | - Ainhoa Lucía
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Begoña Gracia
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Yanlin Jian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium
| | - Toon Verstraelen
- Center for Melecular Modeling, Ghent University, Zwijnaarde, Ghent, 9052, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610, Antwerpen, Belgium
| | - José A Aínsa
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Hélène Munier-Lehmann
- CNRS UMR3523, Department of Structural Biology and Chemistry, Institut Pasteur, 75724, Paris Cedex 15, France
| | - Savvas N Savvides
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium.
| |
Collapse
|
7
|
Abstract
Nucleotide analogs are the cornerstone of direct acting antivirals used to control infection by RNA viruses. Here we review what is known about existing nucleotide/nucleoside analogs and the kinetics and mechanisms of RNA and DNA replication, with emphasis on the SARS-CoV-2 RNA dependent RNA polymerase (RdRp) in comparison to HIV reverse transcriptase and Hepatitis C RdRp. We demonstrate how accurate kinetic analysis reveals surprising results to explain the effectiveness of antiviral nucleoside analogs providing guidelines for the design of new inhibitors.
Collapse
|
8
|
Pechmann S. Programmed Trade-offs in Protein Folding Networks. Structure 2020; 28:1361-1375.e4. [PMID: 33053320 DOI: 10.1016/j.str.2020.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/25/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
Molecular chaperones as specialized protein quality control enzymes form the core of cellular protein homeostasis. How chaperones selectively interact with their substrate proteins thus allocate their overall limited capacity remains poorly understood. Here, I present an integrated analysis of sequence and structural determinants that define interactions of protein domains as the basic protein folding unit with the Saccharomyces cerevisiae Hsp70 Ssb. Structural homologs of single-domain proteins that differentially interact with Ssb for de novo folding were found to systematically differ in complexity of their folding landscapes, selective use of nonoptimal codons, and presence of short discriminative sequences, thus highlighting pervasive trade-offs in chaperone-assisted protein folding landscapes. However, short discriminative sequences were found to contribute by far the strongest signal toward explaining Ssb interactions. This observation suggested that some chaperone interactions may be directly programmed in the amino acid sequences rather than responding to folding challenges, possibly for regulatory advantages.
Collapse
Affiliation(s)
- Sebastian Pechmann
- Département de biochimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
9
|
Chaudhary SK, Iyyappan Y, Elayappan M, Jeyakanthan J, Sekar K. Insights into product release dynamics through structural analyses of thymidylate kinase. Int J Biol Macromol 2018; 123:637-647. [PMID: 30447376 DOI: 10.1016/j.ijbiomac.2018.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023]
Abstract
Several studies on enzyme catalysis have pointed out that the product release event could be a rate limiting step. In this study, we have compared the release event of two products, Adenosine di-phosphate (ADP) and Thymidine di-phosphate (TDP) from the active-site of human and Thermus thermophilus thymidine mono-phosphate kinase (TMPK), referred to as hTMPK and ttTMPK, respectively. TMPK catalyses the conversion of Thymidine mono-phosphate (TMP) to TDP using ATP as phosphoryl donor in the presence of Mg2+ ion. Most of the earlier studies on this enzyme have focused on understanding substrate binding and catalysis, but the critical product release event remains elusive. Competitive binding experiments of the substrates and the products using ttTMPK apo crystals have indicated that the substrate (TMP) can replace the bound product (TDP), even in the presence of an ADP molecule. Further, the existing random accelerated molecular dynamics (RAMD) simulation program was modified to study the release of both the products simultaneously from the active site. The RAMD simulations on product-bound structures of both ttTMPK and hTMPK, revealed that while several exit patterns of the products are permissible, the sequential exit mode is the most preferred pattern for both ttTMPK and hTMPK enzymes. Additionally, the product release from the hTMPK was found to be faster and more directional as compared to ttTMPK. Structural investigation revealed that the critical changes in the residue composition in the LID-region of ttTMPK and hTMPK have an effect on the product release and can be attributed to the observed differences during product release event. Understanding of these dissimilarities is of considerable utility in designing potent inhibitors or prodrugs that can distinguish between eukaryotic and prokaryotic homologues of thymidylate kinase.
Collapse
Affiliation(s)
| | - Yuvaraj Iyyappan
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Mohanapriya Elayappan
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India
| | | | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
10
|
Chaudhary SK, Jeyakanthan J, Sekar K. Structural and functional roles of dynamically correlated residues in thymidylate kinase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:341-354. [PMID: 29652261 DOI: 10.1107/s2059798318002267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/07/2018] [Indexed: 11/10/2022]
Abstract
Thymidylate kinase is an important enzyme in DNA synthesis. It catalyzes the conversion of thymidine monophosphate to thymidine diphosphate, with ATP as the preferred phosphoryl donor, in the presence of Mg2+. In this study, the dynamics of the active site and the communication paths between the substrates, ATP and TMP, are reported for thymidylate kinase from Thermus thermophilus. Conformational changes upon ligand binding and the path for communication between the substrates and the protein are important in understanding the catalytic mechanism of the enzyme. High-resolution X-ray crystal structures of thymidylate kinase in apo and ligand-bound states were solved. This is the first report of structures of binary and ternary complexes of thymidylate kinase with its natural substrates ATP and ATP-TMP, respectively. Distinct conformations of the active-site residues, the P-loop and the LID region observed in the apo and ligand-bound structures revealed that their concerted motion is required for the binding and proper positioning of the substrate TMP. Structural analyses provide an insight into the mode of substrate binding at the active site. The residues involved in communication between the substrates were identified through network analysis using molecular-dynamics simulations. The residues identified showed high sequence conservation across species. Biochemical analyses show that mutations of these residues either resulted in a loss of activity or affected the thermal stability of the protein. Further, molecular-dynamics analyses of mutants suggest that the proper positioning of TMP is important for catalysis. These data also provide an insight into the phosphoryl-transfer mechanism.
Collapse
Affiliation(s)
| | | | - Kanagaraj Sekar
- Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
11
|
Nomura R, Sato T, Sato Y, Medin JA, Kushimoto S, Yanagisawa T. Azidothymidine-triphosphate impairs mitochondrial dynamics by disrupting the quality control system. Redox Biol 2017; 13:407-417. [PMID: 28683400 PMCID: PMC5498287 DOI: 10.1016/j.redox.2017.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/26/2017] [Indexed: 11/30/2022] Open
Abstract
Highly active anti-retrovirus therapy (HAART) has been used to block the progression and symptoms of human immunodeficiency virus infection. Although it decreases morbidity and mortality, clinical use of HAART has also been linked to various adverse effects such as severe cardiomyopathy resulting from compromised mitochondrial functioning. However, the mechanistic basis for these effects remains unclear. Here, we demonstrate that a key component of HAART, 3ꞌ-azido-3ꞌ-deoxythymidine (AZT), particularly, its active metabolite AZT-triphosphate (AZT-TP), caused mitochondrial dysfunction, leading to induction of cell death in H9c2 cells derived from rat embryonic myoblasts, which serve as a model for cardiomyopathy. Specifically, treatment with 100µM AZT for 48h disrupted the mitochondrial tubular network via accumulation of AZT-TP. The mRNA expression of dynamin-related protein (Drp)1 and the Drp1 receptor mitochondrial fission factor (Mff) was upregulated whereas that of optic atrophy 1 (Opa1) was downregulated following AZT treatment. Increased mitochondrial translocation of Drp1, Mff upregulation, and decreased functional Opa1 expression induced by AZT impaired the balance of mitochondrial fission vs. fusion. These data demonstrate that AZT-TP causes cell death by altering mitochondrial dynamics.
Collapse
Affiliation(s)
- Ryosuke Nomura
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ward, Sendai, Miyagi 980-8575, Japan; Department of Emergency and Critical Care, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ward, Sendai, Miyagi 980-8574, Japan.
| | - Takeya Sato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ward, Sendai, Miyagi 980-8575, Japan.
| | - Yuka Sato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ward, Sendai, Miyagi 980-8575, Japan.
| | - Jeffrey A Medin
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, CRI: C4540, Milwaukee, WI 53226, USA.
| | - Shigeki Kushimoto
- Department of Emergency and Critical Care, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ward, Sendai, Miyagi 980-8574, Japan.
| | - Teruyuki Yanagisawa
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ward, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
12
|
Abstract
The need for antiviral drugs is growing rapidly as more viral diseases are recognized. The methods used to discover these drugs have evolved considerably over the past 40 years and the overall process of discovery can be broken down into sub-processes which include lead generation, lead optimization and lead development. Various methods are now employed to ensure these processes are carried out efficiently. For lead generation, screening methodologies have developed to the extent where hundreds of thousands of compounds can be screened against a particular target. An alternative approach is to use the structures of enzyme substrates as a starting point for drug discovery. Much use is now made of X-ray crystallographic data of target–inhibitor complexes for the optimization of lead structures, and methods for preparing libraries of compounds to assist both generation and optimization of leads are welldeveloped. The methods used to predict and improve the pharmacokinetic properties of compounds are also changing rapidly. Finally, novel approaches to antiviral therapy using oligonucleotide-based compounds or modulating the host immune response are also being explored. This review discusses these approaches, provides examples of where their application has been successful and sets them against a historical background.
Collapse
Affiliation(s)
- PS Jones
- Roche Discovery Welwyn, 40 Broadwater Road, Welwyn Garden City, AL7 3AY, UK
| |
Collapse
|
13
|
Chen YH, Hsu HY, Yeh MT, Chen CC, Huang CY, Chung YH, Chang ZF, Kuo WC, Chan NL, Weng JH, Chung BC, Chen YJ, Jian CB, Shen CC, Tai HC, Sheu SY, Fang JM. Chemical Inhibition of Human Thymidylate Kinase and Structural Insights into the Phosphate Binding Loop and Ligand-Induced Degradation. J Med Chem 2016; 59:9906-9918. [DOI: 10.1021/acs.jmedchem.6b01280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi-Hsuan Chen
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hua-Yi Hsu
- Department
of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Ming-Tyng Yeh
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chen-Cheng Chen
- Graduate
Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Chang-Yu Huang
- Graduate
Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Ying-Hsuan Chung
- Graduate
Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Zee-Fen Chang
- Graduate
Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Wei-Chen Kuo
- Institute
of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Nei-Li Chan
- Institute
of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jui-Hsia Weng
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Bon-chu Chung
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Ju Chen
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
- Institute
of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Cheng-Bang Jian
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ching-Chieh Shen
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hwan-Ching Tai
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Sheh-Yi Sheu
- Department
of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Institute
of Biomedical Informatics, National Yang-Ming University, Taipei 112, Taiwan
| | - Jim-Min Fang
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
- The
Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
14
|
Insights into the structure-function relationship of Brugia malayi thymidylate kinase (BmTMK). Int J Biol Macromol 2016; 88:565-71. [PMID: 27044348 DOI: 10.1016/j.ijbiomac.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/23/2022]
Abstract
Lymphatic filariasis is a debilitating disease caused by lymph dwelling nematodal parasites like Wuchereria bancrofti, Brugia malayi and Brugia timori. Thymidylate kinase of B. malayi is a key enzyme in the de novo and salvage pathways for thymidine 5'-triphosphate (dTTP) synthesis. Therefore, B. malayi thymidylate kinase (BmTMK) is an essential enzyme for DNA biosynthesis and an important drug target to rein in filariasis. In the present study, the structural and functional changes associated with recombinant BmTMK, in the presence of protein denaturant GdnHCl, urea and pH were studied. GdnHCl and urea induced unfolding of BmTMK is non-cooperative and influence the functional property of the enzyme much lower than their Cm values. The study delineate that BmTMK is more prone to ionic perturbation. The dimeric assembly of BmTMK is an absolute requirement for enzymatic acitivity and any subtle change in dimeric conformation due to denaturation leads to loss of enzymatic activity. The pH induced changes on structure and activity suggests that selective modification of active site microenvironment pertains to difference in activity profile. This study also envisages that chemical moieties which acts by modulating oligomeric assembly, could be used for better designing of inhibitors against BmTMK enzyme.
Collapse
|
15
|
Pradere U, Garnier-Amblard E, Coats SJ, Amblard F, Schinazi RF. Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem Rev 2014; 114:9154-218. [PMID: 25144792 PMCID: PMC4173794 DOI: 10.1021/cr5002035] [Citation(s) in RCA: 403] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Ugo Pradere
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | | | | | - Franck Amblard
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| | - Raymond F. Schinazi
- Center
for AIDS Research, Laboratory of Biochemical Pharmacology, Department
of Pediatrics, Emory University School of
Medicine, and Veterans Affairs Medical Center, Atlanta, Georgia 30322, United States
| |
Collapse
|
16
|
Doharey PK, Suthar MK, Verma A, Kumar V, Yadav S, Balaramnavar VM, Rathaur S, Saxena AK, Siddiqi MI, Saxena JK. Molecular cloning and characterization of Brugia malayi thymidylate kinase. Acta Trop 2014; 133:83-92. [PMID: 24556140 DOI: 10.1016/j.actatropica.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 02/03/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Thymidylate kinase (TMK) is a potential chemotherapeutic target because it is directly involved in the synthesis of deoxythymidine triphosphate, which is an essential component for DNA synthesis. The gene encoding thymidylate kinase of Brugia malayi was amplified by PCR and expressed in Escherichia coli. The native molecular weight of recombinant B. malayi thymidylate kinase (rBmTMK) was estimated to be ∼52kDa by gel filtration chromatography, suggesting a homodimeric structure. rBmTMK activity required divalent cation and Mg(2+) was found to be the most effective cation. The enzyme was sensitive to pH and temperature, it showed maximum activity at pH 7.4 and 37°C. The Km values for dTMP and ATP were 17 and 66μM, respectively. The turnover number kcat was found to be 38.09s(-1), a value indicating the higher catalytic efficiency of the filarial enzyme. The nucleoside analogues 5-bromo-2'-deoxyuridine (5-BrdU), 5-chloro-2'-deoxyuridine (5-CldU) and 3'-azido-3'-deoxythymidine (AZT) showed specific inhibitory effect on the enzyme activity and these effects were in good association with binding interactions and the scoring functions as compared to human TMK. Differences in kinetic properties and structural differences in the substrate binding site of BmTMK model with respect to human TMK can serve as basis for designing specific inhibitors against parasitic enzyme.
Collapse
|
17
|
Schulz T, Balzarini J, Meier C. The DiPPro approach: synthesis, hydrolysis, and antiviral activity of lipophilic d4T diphosphate prodrugs. ChemMedChem 2014; 9:762-75. [PMID: 24616176 DOI: 10.1002/cmdc.201300500] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Indexed: 11/09/2022]
Abstract
Bioreversible protection of the β-phosphate group of nucleoside diphosphates (NDPs) as bis(acyloxybenzyl)phosphate esters is presented. To investigate the structure-activity relationship of these potential NDP prodrugs (DiPPro drugs) a series of DiPPro compounds was synthesized bearing fatty acids of various lengths and d4T as a model nucleoside. For synthesis of the lipophilically modified diphosphate group, preformed phosphoramidites were allowed to react with nucleotides, and the β-P(III) moiety was subsequently oxidized. The chemical and enzymatic stability of these prodrugs was studied in different media such as phosphate buffer (pH 7.3) or CEM cell extracts. In all media, the hydrolysis rate was clearly dependent on the acyl moiety and decreased with increasing alkyl chain length. The compounds showed a markedly lower half-life in cell extracts than in pH 7.3 phosphate buffer due to the presence of enzyme-catalyzed cleavage. In all media, the DiPPro compounds released d4T diphosphate (d4TDP) as the main product beside d4TMP. In antiviral assays, the compounds proved to be at least as potent as d4T against HIV-1 and 2 in wild-type CEM/0 cells. As a proof of concept, compounds with longer acyl residues showed very good anti-HIV activities in thymidine-kinase-deficient cells (CEM/TK(-) ), indicating their ability to penetrate cell membranes and the delivery of phosphorylated metabolites.
Collapse
Affiliation(s)
- Tilmann Schulz
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)
| | | | | |
Collapse
|
18
|
Shmalenyuk ER, Kochetkov SN, Alexandrova LA. Novel inhibitors ofMycobacterium tuberculosisgrowth based on modified pyrimidine nucleosides and their analogues. RUSSIAN CHEMICAL REVIEWS 2013. [DOI: 10.1070/rc2013v082n09abeh004404] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Koseki Y, Kinjo T, Kobayashi M, Aoki S. Identification of novel antimycobacterial chemical agents through the in silico multi-conformational structure-based drug screening of a large-scale chemical library. Eur J Med Chem 2013; 60:333-9. [DOI: 10.1016/j.ejmech.2012.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/03/2012] [Accepted: 12/07/2012] [Indexed: 11/30/2022]
|
20
|
Deville-Bonne D, El Amri C, Meyer P, Chen Y, Agrofoglio LA, Janin J. Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Antiviral Res 2010; 86:101-20. [PMID: 20417378 DOI: 10.1016/j.antiviral.2010.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/11/2022]
Abstract
Antiviral nucleoside and nucleotide analogs, essential for the treatment of viral infections in the absence of efficient vaccines, are prodrug forms of the active compounds that target the viral DNA polymerase or reverse transcriptase. The activation process requires several successive phosphorylation steps catalyzed by different kinases, which are present in the host cell or encoded by some of the viruses. These activation reactions often are rate-limiting steps and are thus open to improvement. We review here the structural and enzymatic properties of the enzymes that carry out the activation of analogs used in therapy against human immunodeficiency virus and against DNA viruses such as hepatitis B, herpes and poxviruses. Four major classes of drugs are considered: thymidine analogs, non-natural L-nucleosides, acyclic nucleoside analogs and acyclic nucleoside phosphonate analogs. Their efficiency as drugs depends both on the low specificity of the viral polymerase that allows their incorporation into DNA, but also on the ability of human/viral kinases to provide the activated triphosphate active forms at a high concentration at the right place. Two distinct modes of action are considered, depending on the origin of the kinase (human or viral). If the human kinases are house-keeping enzymes that belong to the metabolic salvage pathway, herpes and poxviruses encode for related enzymes. The structures, substrate specificities and catalytic properties of each of these kinases are discussed in relation to drug activation.
Collapse
Affiliation(s)
- Dominique Deville-Bonne
- Enzymologie Moléculaire et Fonctionnelle, UR4 Université Pierre et Marie Curie, 7 quai St Bernard, 75252 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
21
|
Koczor C, Kohler J, Lewis W. Transgenic mouse models of mitochondrial toxicity associated with HIV/AIDS and antiretrovirals. Methods 2010; 51:399-404. [DOI: 10.1016/j.ymeth.2009.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/22/2009] [Accepted: 12/30/2009] [Indexed: 12/12/2022] Open
|
22
|
Structural basis for the efficient phosphorylation of AZT-MP (3'-azido-3'-deoxythymidine monophosphate) and dGMP by Plasmodium falciparum type I thymidylate kinase. Biochem J 2010; 428:499-509. [PMID: 20353400 DOI: 10.1042/bj20091880] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasmodium falciparum is the causative agent of malaria, a disease where new drug targets are required due to increasing resistance to current anti-malarials. TMPK (thymidylate kinase) is a good candidate as it is essential for the synthesis of dTTP, a critical precursor of DNA and has been much studied due to its role in prodrug activation and as a drug target. Type I TMPKs, such as the human enzyme, phosphorylate the substrate AZT (3'-azido-3'-deoxythymidine)-MP (monophosphate) inefficiently compared with type II TMPKs (e.g. Escherichia coli TMPK). In the present paper we report that eukaryotic PfTMPK (P. falciparum TMPK) presents sequence features of a type I enzyme yet the kinetic parameters for AZT-MP phosphorylation are similar to those of the highly efficient E. coli enzyme. Structural information shows that this is explained by a different juxtaposition of the P-loop and the azide of AZT-MP. Subsequent formation of the transition state requires no further movement of the PfTMPK P-loop, with no steric conflicts for the azide moiety, allowing efficient phosphate transfer. Likewise, we present results that confirm the ability of the enzyme to uniquely accept dGMP as a substrate and shed light on the basis for its wider substrate specificity. Information resulting from two ternary complexes (dTMP-ADP and AZT-MP-ADP) and a binary complex with the transition state analogue AP5dT [P1-(5'-adenosyl)-P5-(5'-thymidyl) pentaphosphate] all reveal significant differences with the human enzyme, notably in the lid region and in the P-loop which may be exploited in the rational design of Plasmodium-specific TMPK inhibitors with therapeutic potential.
Collapse
|
23
|
Chien CY, Chen BR, Chou CK, Sclafani RA, Su JY. The yeast Cdc8 exhibits both deoxythymidine monophosphate and diphosphate kinase activities. FEBS Lett 2009; 583:2281-6. [PMID: 19540237 DOI: 10.1016/j.febslet.2009.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 12/01/2022]
Abstract
The existence of multifunctional enzymes in the nucleotide biosynthesis pathways is believed to be one of the important mechanisms to facilitate the synthesis and the efficient supply of deoxyribonucleotides for DNA replication. Here, we used the bacterially expressed yeast thymidylate kinase (encoded by the CDC8 gene) to demonstrate that the purified Cdc8 protein possessed thymidylate-specific nucleoside diphosphate kinase activity in addition to thymidylate kinase activity. The yeast endogenous nucleoside diphosphate kinase is encoded by YNK1, which appears to be non-essential. Our results suggest that Cdc8 has dual enzyme activities and could duplicate the function of Ynk1 in thymidylate synthesis. We also discuss the importance of the coordinated expression of CDC8 during the cell cycle progression in yeast.
Collapse
Affiliation(s)
- Chia-Yi Chien
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Jessen HJ, Schulz T, Balzarini J, Meier C. Bioreversible protection of nucleoside diphosphates. Angew Chem Int Ed Engl 2009; 47:8719-22. [PMID: 18833560 DOI: 10.1002/anie.200803100] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Henning Jacob Jessen
- Organic Chemistry, Department of Chemistry, Faculty of Science, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | | | | | |
Collapse
|
25
|
Effects of zidovudine and stavudine on mitochondrial DNA of differentiating 3T3-F442a cells are not associated with imbalanced deoxynucleotide pools. Antimicrob Agents Chemother 2008; 53:1252-5. [PMID: 19104011 DOI: 10.1128/aac.01115-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To test whether zidovudine (3'-azido-3'-deoxythymidine) (AZT) inhibition of thymidine phosphorylation causes depletion of the TTP pool resulting in mitochondrial DNA depletion, 3T3-F442a cells were differentiated in the presence of AZT and analyzed to determine mitochondrial DNA content and deoxynucleotide levels. These results suggest that AZT toxicity may not be related to deoxynucleotide pool alterations.
Collapse
|
26
|
Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria. Proc Natl Acad Sci U S A 2008; 105:17730-5. [PMID: 19001261 DOI: 10.1073/pnas.0807563105] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of tens or hundreds of phosphate residues linked by high-energy bonds. It is found in all organisms and has been proposed to serve as an energy source in a pre-ATP world. This ubiquitous and abundant biopolymer plays numerous and vital roles in metabolism and regulation in prokaryotes and eukaryotes, but the underlying molecular mechanisms for most activities of polyP remain unknown. In prokaryotes, the synthesis and utilization of polyP are catalyzed by 2 families of polyP kinases, PPK1 and PPK2, and polyphosphatases. Here, we present structural and functional characterization of the PPK2 family. Proteins with a single PPK2 domain catalyze polyP-dependent phosphorylation of ADP to ATP, whereas proteins containing 2 fused PPK2 domains phosphorylate AMP to ADP. Crystal structures of 2 representative proteins, SMc02148 from Sinorhizobium meliloti and PA3455 from Pseudomonas aeruginosa, revealed a 3-layer alpha/beta/alpha sandwich fold with an alpha-helical lid similar to the structures of microbial thymidylate kinases, suggesting that these proteins share a common evolutionary origin and catalytic mechanism. Alanine replacement mutagenesis identified 9 conserved residues, which are required for activity and include the residues from both Walker A and B motifs and the lid. Thus, the PPK2s represent a molecular mechanism, which potentially allow bacteria to use polyP as an intracellular energy reserve for the generation of ATP and survival.
Collapse
|
27
|
Jessen H, Schulz T, Balzarini J, Meier C. Bioreversible Maskierung von Nucleosiddiphosphaten. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Lavie A, Su Y, Ghassemi M, Novak RM, Caffrey M, Sekulic N, Monnerjahn C, Konrad M, Cook JL. Restoration of the antiviral activity of 3'-azido-3'-deoxythymidine (AZT) against AZT-resistant human immunodeficiency virus by delivery of engineered thymidylate kinase to T cells. J Gen Virol 2008; 89:1672-1679. [PMID: 18559937 DOI: 10.1099/vir.0.2008/000273-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Emergence of antiviral drug resistance is a major challenge to human immunodeficiency virus (HIV) therapy. The archetypal example of this problem is loss of antiviral activity of the nucleoside analogue 3'-azido-3'-deoxythymidine (AZT), caused by mutations in reverse transcriptase (RT), the viral polymerase. AZT resistance results from an imbalance between rates of AZT-induced proviral DNA chain termination and RT-induced excision of the chain-terminating nucleotide. Conversion of the AZT prodrug from its monophosphorylated to diphosphorylated form by human thymidylate kinase (TMPK) is inefficient, resulting in accumulation of the monophosphorylated AZT metabolite (AZT-MP) and a low concentration of the active triphosphorylated metabolite (AZT-TP). We reasoned that introduction of an engineered, highly active TMPK into T cells would overcome this functional bottleneck in AZT activation and thereby shift the balance of AZT activity sufficiently to block replication of formerly AZT-resistant HIV. Molecular engineering was used to link highly active, engineered TMPKs to the protein transduction domain of Tat for direct cell delivery. Combined treatment of HIV-infected T cells with AZT and these cell-permeable, engineered TMPKs restored AZT-induced repression of viral production. These results provide an experimental basis for the development of new strategies to therapeutically increase the intracellular concentrations of active nucleoside analogue metabolites as a means to overcome emerging drug resistance.
Collapse
Affiliation(s)
- Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ying Su
- Section of Infectious Diseases, Immunology and International Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mahmood Ghassemi
- Section of Infectious Diseases, Immunology and International Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Richard M Novak
- Section of Infectious Diseases, Immunology and International Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nikolina Sekulic
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Christian Monnerjahn
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Manfred Konrad
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - James L Cook
- Section of Infectious Diseases, Immunology and International Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
29
|
Kandeel M, Kitade Y. Molecular Characterization, Heterologous Expression and Kinetic Analysis of Recombinant Plasmodium falciparum Thymidylate Kinase. ACTA ACUST UNITED AC 2008; 144:245-50. [DOI: 10.1093/jb/mvn062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
El Safadi Y, Vivet-Boudou V, Marquet R. HIV-1 reverse transcriptase inhibitors. Appl Microbiol Biotechnol 2007; 75:723-37. [PMID: 17370068 DOI: 10.1007/s00253-007-0919-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Reverse transcriptase (RT) is one of the three enzymes encoded by the human immunodeficiency virus type 1 (HIV-1), the etiological agent of AIDS. Together with protease inhibitors, drugs inhibiting the RNA- and DNA-dependant DNA polymerase activity of RT are the major components of highly active antiretroviral therapy (HAART), which has dramatically reduced mortality and morbidity of people living with HIV-1/AIDS in developed countries. In this study, we focus on RT inhibitors approved by the US Food and Drugs Administration (FDA) or in phases II and III clinical trials. RT inhibitors belong to two main classes acting by distinct mechanisms. Nucleoside RT inhibitors (NRTIs) lack a 3' hydroxyl group on their ribose or ribose mimic moiety and thus act as chain terminators. Non-NRTIs bind into a hydrophobic pocket close to the polymerase active site and inhibit the chemical step of the polymerization reaction. For each class of inhibitors, we review the mechanism of action, the resistance mechanisms selected by the virus, and the side effects of the drugs. We also discuss the main perspectives for the development of new RT inhibitors.
Collapse
Affiliation(s)
- Yazan El Safadi
- Architecture et Réactivité de l'ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg cedex, France
| | | | | |
Collapse
|
31
|
Lynx MD, McKee EE. 3'-Azido-3'-deoxythymidine (AZT) is a competitive inhibitor of thymidine phosphorylation in isolated rat heart and liver mitochondria. Biochem Pharmacol 2006; 72:239-43. [PMID: 16720018 PMCID: PMC1482733 DOI: 10.1016/j.bcp.2006.04.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/06/2006] [Accepted: 04/06/2006] [Indexed: 11/25/2022]
Abstract
Long-term use of 3'-azido-3'-deoxythymidine (AZT) is associated with various tissue toxicities, including hepatotoxicity and cardiomyopathy, and with mitochondrial DNA depletion. AZT-5'-triphosphate (AZTTP) is a known inhibitor of the mitochondrial DNA polymerase gamma and has been targeted as the source of the mitochondrial DNA depletion. However, in previous work from this laboratory with isolated rat heart and liver mitochondria, AZT itself was shown to be a more potent inhibitor of thymidine phosphorylation (IC50 of 7.0+/-1.0 microM AZT in heart mitochondria and of 14.4+/-2.6 microM AZT in liver mitochondria) than AZTTP is of polymerase gamma (IC50 of >100 microM AZTTP), suggesting that depletion of mitochondrial stores of TTP may limit replication and could be the cause of the mitochondrial DNA depletion observed in tissues affected by AZT toxicity. The purpose of this work is to characterize the nature of AZT inhibition of thymidine phosphorylation in isolated rat heart and rat liver mitochondria. In both of these tissues, AZT was found to be a competitive inhibitor of the phosphorylation of thymidine to TMP, catalyzed by thymidine kinase 2. The inhibition constant (Ki) for heart mitochondria is 10.6+/-4.5 microM AZT, and for liver mitochondria Ki is 14.0+/-2.5 microM AZT. Since AZT is functioning as a competitive inhibitor, increasing thymidine concentrations may be one mechanism to overcome the inhibition and decrease AZT-related toxicity in these tissues.
Collapse
Affiliation(s)
| | - Edward E. McKee
- Address correspondence to: Edward E. McKee, 1234 Notre Dame Ave., South Bend, IN 46617, Tel: 574-631-7193; Fax: 574-631-7821; E-mail:
| |
Collapse
|
32
|
Kotaka M, Dhaliwal B, Ren J, Nichols CE, Angell R, Lockyer M, Hawkins AR, Stammers DK. Structures of S. aureus thymidylate kinase reveal an atypical active site configuration and an intermediate conformational state upon substrate binding. Protein Sci 2006; 15:774-84. [PMID: 16522804 PMCID: PMC2242479 DOI: 10.1110/ps.052002406] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a major threat to human health, particularly through hospital acquired infection. The spread of MRSA means that novel targets are required to develop potential inhibitors to combat infections caused by such drug-resistant bacteria. Thymidylate kinase (TMK) is attractive as an antibacterial target as it is essential for providing components for DNA synthesis. Here, we report crystal structures of unliganded and thymidylate-bound forms of S. aureus thymidylate kinase (SaTMK). His-tagged and untagged SaTMK crystallize with differing lattice packing and show variations in conformational states for unliganded and thymidylate (TMP) bound forms. In addition to open and closed forms of SaTMK, an intermediate conformation in TMP binding is observed, in which the site is partially closed. Analysis of these structures indicates a sequence of events upon TMP binding, with helix alpha3 shifting position initially, followed by movement of alpha2 to close the substrate site. In addition, we observe significant conformational differences in the TMP-binding site in SaTMK as compared to available TMK structures from other bacterial species, Escherichia coli and Mycobacterium tuberculosis as well as human TMK. In SaTMK, Arg 48 is situated at the base of the TMP-binding site, close to the thymine ring, whereas a cis-proline occupies the equivalent position in other TMKs. The observed TMK structural differences mean that design of compounds highly specific for the S. aureus enzyme looks possible; such inhibitors could minimize the transfer of drug resistance between different bacterial species.
Collapse
Affiliation(s)
- Masayo Kotaka
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lynx MD, Bentley AT, McKee EE. 3'-Azido-3'-deoxythymidine (AZT) inhibits thymidine phosphorylation in isolated rat liver mitochondria: a possible mechanism of AZT hepatotoxicity. Biochem Pharmacol 2006; 71:1342-8. [PMID: 16472780 PMCID: PMC1472706 DOI: 10.1016/j.bcp.2006.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 11/23/2022]
Abstract
3'-azido-3'-deoxythymidine (AZT) is a staple of highly active antiretroviral therapy (HAART). Prior to HAART, long-term use of high-dosage AZT caused myopathy, cardiomyopathy, and hepatotoxicity, associated with mitochondrial DNA depletion. As a component of HARRT, AZT causes cytopenias and lipodystrophy. AZT-5'-triphosphate (AZTTP) is a known inhibitor of the mitochondrial polymerase gamma and has been targeted as the source of the mitochondrial DNA depletion. However, in previous work from this laboratory with isolated rat heart mitochondria, AZT phosphorylation beyond AZT-5'-monophosphate (AZTMP) was not detected. Rather, AZT was shown to be a more potent inhibitor of thymidine phosphorylation (50% inhibitory concentration (IC50) of 7.0+/-1.0 microM) than AZTTP is of polymerase gamma (IC50 of >100 microM), suggesting that depletion of mitochondrial stores of TTP may limit replication. This work has investigated whether an identical mechanism might account for the hepatotoxicity seen with long-term use of AZT. Isolated rat liver mitochondria were incubated with labeled thymidine or AZT, and the rate and extent of phosphorylation were determined by HPLC analysis of acid-soluble extracts of the incubated mitochondria. The results showed that in the phosphorylation of thymidine to TMP, liver mitochondria exhibit a higher Vmax and Km than heart mitochondria, but otherwise heart and liver mitochondria display similar kinetics. AZT is phosphorylated to AZTMP, but no further phosphorylated forms were detected. In addition, AZT inhibited the production of TTP, with an IC50 of 14.4+/-2.6 microM AZT. This is higher, but comparable to, the results seen in isolated rat heart mitochondria.
Collapse
Affiliation(s)
- Matthew D. Lynx
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
- Indiana University School of Medicine-South Bend, Biochemistry and Molecular Biology, 1234 Notre Dame Avenue, Room 147, Raclin-Carmichael Hall, South Bend, IN 46617, United States
| | - Alice T. Bentley
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
- Indiana University School of Medicine-South Bend, Biochemistry and Molecular Biology, 1234 Notre Dame Avenue, Room 147, Raclin-Carmichael Hall, South Bend, IN 46617, United States
| | - Edward E. McKee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
- Indiana University School of Medicine-South Bend, Biochemistry and Molecular Biology, 1234 Notre Dame Avenue, Room 147, Raclin-Carmichael Hall, South Bend, IN 46617, United States
- * Corresponding author. Tel.: +1 574 631 7193; fax: +1 574 631 7821. E-mail address: (E.E. McKee)
| |
Collapse
|
34
|
Hible G, Renault L, Schaeffer F, Christova P, Zoe Radulescu A, Evrin C, Gilles AM, Cherfils J. Calorimetric and crystallographic analysis of the oligomeric structure of Escherichia coli GMP kinase. J Mol Biol 2005; 352:1044-59. [PMID: 16140325 DOI: 10.1016/j.jmb.2005.07.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/11/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
Guanosine monophosphate kinases (GMPKs), which catalyze the phosphorylation of GMP and dGMP to their diphosphate form, have been characterized as monomeric enzymes in eukaryotes and prokaryotes. Here, we report that GMPK from Escherichia coli (ecGMPK) assembles in solution and in the crystal as several different oligomers. Thermodynamic analysis of ecGMPK using differential scanning calorimetry shows that the enzyme is in equilibrium between a dimer and higher order oligomers, whose relative amounts depend on protein concentration, ionic strength, and the presence of ATP. Crystallographic structures of ecGMPK in the apo, GMP and GDP-bound forms were solved at 3.2A, 2.9A and 2.4A resolution, respectively. ecGMPK forms a hexamer with D3 symmetry in all crystal forms, in which the two nucleotide-binding domains are able to undergo closure comparable to that of monomeric GMPKs. The 2-fold and 3-fold interfaces involve a 20-residue C-terminal extension and a sequence signature, respectively, that are missing from monomeric eukaryotic GMPKs, explaining why ecGMPK forms oligomers. These signatures are found in GMPKs from proteobacteria, some of which are human pathogens. GMPKs from these bacteria are thus likely to form the same quaternary structures. The shift of the thermodynamic equilibrium towards the dimer at low ecGMPK concentration together with the observation that inter-subunit interactions partially occlude the ATP-binding site in the hexameric structure suggest that the dimer may be the active species at physiological enzyme concentration.
Collapse
Affiliation(s)
- Guillaume Hible
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif sur Yvette 91198, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Elling L, Rupprath C, Günther N, Römer U, Verseck S, Weingarten P, Dräger G, Kirschning A, Piepersberg W. An enzyme module system for the synthesis of dTDP-activated deoxysugars from dTMP and sucrose. Chembiochem 2005; 6:1423-30. [PMID: 15977277 DOI: 10.1002/cbic.200500037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A flexible enzyme module system is presented that allows preparative access to important dTDP-activated deoxyhexoses from dTMP and sucrose. The strategic combination of the recombinant enzymes dTMP-kinase and sucrose synthase (SuSy), and the enzymes RmlB (4,6-dehydratase), RmlC (3,5-epimerase) and RmlD (4-ketoreductase) from the biosynthetic pathway of dTDP-beta-L-rhamnose was optimized. The SuSy module (dTMP-kinase, SuSy, +/-RmlB) yielded the precursor dTDP-alpha-D-glucose (2) or the biosynthetic intermediate dTDP-6-deoxy-4-keto-alpha-D-glucose (3) on a 0.2-0.6 g scale with overall yields of 62 % and 72 %, respectively. A two-step strategy in which the SuSy module was followed by the deoxysugar module (RmlC and RmlD) resulted in the synthesis of dTDP-beta-L-rhamnose (4; 24.1 micromol, overall yield: 35.9 %). Substitution of RmlC by DnmU from the dTDP-beta-L-daunosamine pathway of Streptomyces peucetius in this module demonstrated that DnmU acts in vitro as a 3,5-epimerase with 3 as substrate to yield 4 (32.2 mumol, overall yield: 44.7 %). Chemical reduction of 3 with NaBH4 gave a mixture of the C-4 epimers dTDP-alpha-D-quinovose (6) and dTDP-alpha-D-fucose (7) in a ratio of 2:1. In summary, the modular character of the presented enzyme system provides valuable compounds for the biochemical characterization of deoxysugar pathways playing a major role in microbial producers of antibiotic and antitumour agents.
Collapse
Affiliation(s)
- Lothar Elling
- Department of Biotechnology/Biomaterial Sciences and Helmholtz Institute for Biomedical Engineering, RWTH Aachen, Worringerweg 1, 52056 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sandrini MPB, Piskur J. Deoxyribonucleoside kinases: two enzyme families catalyze the same reaction. Trends Biochem Sci 2005; 30:225-8. [PMID: 15896737 DOI: 10.1016/j.tibs.2005.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mammals have four deoxyribonucleoside kinases, the cytoplasmic (TK1) and mitochondrial (TK2) thymidine kinases, and the deoxycytidine (dCK) and deoxyguanosine (dGK) kinases, which salvage the precursors for nucleic acids synthesis. In addition to the native deoxyribonucleoside substrates, the kinases can phosphorylate and thereby activate a variety of anti-cancer and antiviral prodrugs. Recently, the crystal structure of human TK1 has been solved and has revealed that enzymes with fundamentally different origins and folds catalyze similar, crucial cellular reactions.
Collapse
Affiliation(s)
- Michael P B Sandrini
- Cell and Organism Biology, Lund University, Sölvegatan 35, SE-22732 Lund, Sweden
| | | |
Collapse
|
37
|
McKee EE, Bentley AT, Hatch M, Gingerich J, Susan-Resiga D. Phosphorylation of thymidine and AZT in heart mitochondria: elucidation of a novel mechanism of AZT cardiotoxicity. Cardiovasc Toxicol 2005; 4:155-67. [PMID: 15371631 PMCID: PMC1472705 DOI: 10.1385/ct:4:2:155] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/16/2004] [Accepted: 02/18/2004] [Indexed: 11/11/2022]
Abstract
Antiretroviral nucleoside analogs used in highly active antiretroviral therapy (HAART) are associated with cardiovascular and other tissue toxicity associated with mitochondrial DNA depletion, suggesting a block in mitochondrial (mt)-DNA replication. Because the triphosphate forms of these analogs variably inhibit mt-DNA polymerase, this enzyme has been promoted as the major target of toxicity associated with HAART. We have used isolated mitochondria from rat heart to study the mitochondrial transport and phosphorylation of thymidine and AZT (azidothymidine, or zidovudine), a component used in HAART. We demonstrate that isolated mitochondria readily transport thymidine and phosphorylate it to thymidine 5'-triphosphate (TTP) within the matrix. Under identical conditions, AZT is phosphorylated only to AZT-5'-monophosphate (AZT-MP). The kinetics of thymidine and AZT suggest negative cooperativity of substrate interaction with the enzyme, consistent with work by others on mitochondrial thymidine kinase 2. Results show that TMP and AZT-MP are not transported across the inner membrane, suggesting that AZT-MP may accumulate with time in the matrix. Given the lack of AZT-5'-triphosphate (AZT-TP), it seems unlikely that the toxicity of AZT in the heart is mediated by AZT-TP inhibition of DNA polymerase gamma. Rather, our work shows that AZT is a potent inhibitor of thymidine phosphorylation in heart mitochondria, having an inhibitory concentration (IC)(50) of 7.0 +/- 0.9 microM. Thus, the toxicity of AZT in some tissues may be mediated by disrupting the substrate supply of TTP for mt-DNA replication.
Collapse
Affiliation(s)
- Edward E McKee
- Indiana University School of Medicine, South Bend Center for Medical Education, Notre Dame, IN 46556, USA.
| | | | | | | | | |
Collapse
|
38
|
Wöhrl BM, Loubière L, Brundiers R, Goody RS, Klatzmann D, Konrad M. Expressing engineered thymidylate kinase variants in human cells to improve AZT phosphorylation and human immunodeficiency virus inhibition. J Gen Virol 2005; 86:757-764. [PMID: 15722537 DOI: 10.1099/vir.0.80529-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The triphosphorylated form of the nucleoside analogue AZT (AZTTP) acts as a chain terminator during reverse transcription of the human immunodeficiency virus (HIV) genome. The bottleneck in the conversion of AZT to AZTTP is the phosphorylation of AZT monophosphate (AZTMP) by cellular thymidylate kinase. Human thymidylate kinase was engineered to exhibit highly improved activity for AZTMP to AZTDP conversion. It was demonstrated here that genetically modified human cells transiently expressing these enzyme variants show more than 10-fold higher intracellular concentrations of AZTDP and AZTTP. Stable clones expressing these enzymes appear to phosphorylate AZTMP less efficiently, but first experiments indicate they are still more potent in HIV inhibition than the parental cells. It was proposed that the concept of introducing into human cells a catalytically improved human enzyme, rather than an enzyme of viral, bacterial or yeast origin, may serve as a paradigm for ameliorating the metabolic activation of an established drug.
Collapse
Affiliation(s)
- Birgitta M Wöhrl
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Physikalische Biochemie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | - Laurence Loubière
- Laboratoire de Biologie et Thérapeutique des Pathologies Immunitaires, Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, CNRS ERS 107 CERVI, 83 boulevard de l'Hôpital, F-75651 Paris Cedex 13, France
| | - Ralf Brundiers
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Molekulare Genetik, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Roger S Goody
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Physikalische Biochemie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | - David Klatzmann
- Laboratoire de Biologie et Thérapeutique des Pathologies Immunitaires, Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, CNRS ERS 107 CERVI, 83 boulevard de l'Hôpital, F-75651 Paris Cedex 13, France
| | - Manfred Konrad
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Molekulare Genetik, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
39
|
Segura-Peña D, Sekulic N, Ort S, Konrad M, Lavie A. Substrate-induced conformational changes in human UMP/CMP kinase. J Biol Chem 2004; 279:33882-9. [PMID: 15163660 DOI: 10.1074/jbc.m401989200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human UMP/CMP kinase plays a crucial role in supplying precursors for nucleic acid synthesis by catalyzing the conversion of UMP, CMP, and dCMP into their diphosphate form. In addition, this kinase is an essential component of the activation cascade of medicinally relevant nucleoside analog prodrugs such as AraC, gemcitabine, and ddC. During the catalytic cycle the enzyme undergoes large conformational changes from open in the absence of substrates to closed in the presence of both phosphoryl donor and phosphoryl acceptor. Here we report the crystal structure of the substrate-free, open form of human UMP/CMP kinase. Comparison of the open structure with the closed state previously reported for the similar Dictyostelium discoideum UMP/CMP kinase reveals the conformational changes that occur upon substrate binding. We observe a classic example of induced fit where substrate-induced conformational changes in hinge residues result in rigid body movements of functional domains to form the catalytically competent state. In addition, a homology model of the human enzyme in the closed state based on the structure of D. discoideum UMP/CMP kinase aids to rationalize the substrate specificity of the human enzyme.
Collapse
Affiliation(s)
- Dario Segura-Peña
- University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
40
|
Keil M, Exner TE, Brickmann J. Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network. J Comput Chem 2004; 25:779-89. [PMID: 15011250 DOI: 10.1002/jcc.10361] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An algorithm for the identification of possible binding sites of biomolecules, which are represented as regions of the molecular surface, is introduced. The algorithm is based on the segmentation of the molecular surface into overlapping patches as described in the first article of this series.1 The properties of these patches (calculated on the basis of physical and chemical properties) are used for the analysis of the molecular surfaces of 7821 proteins and protein complexes. Special attention is drawn to known protein binding sites. A binding site identification algorithm is realized on the basis of the calculated data using a neural network strategy. The neural network is able to classify surface patches as protein-protein, protein-DNA, protein-ligand, or nonbinding sites. To show the capability of the algorithm, results of the surface analysis and the predictions are presented and discussed with representative examples.
Collapse
Affiliation(s)
- Matthias Keil
- Department of Physical Chemistry, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | | | | |
Collapse
|
41
|
Leipe DD, Koonin EV, Aravind L. Evolution and classification of P-loop kinases and related proteins. J Mol Biol 2003; 333:781-815. [PMID: 14568537 DOI: 10.1016/j.jmb.2003.08.040] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sequences and structures of all P-loop-fold proteins were compared with the aim of reconstructing the principal events in the evolution of P-loop-containing kinases. It is shown that kinases and some related proteins comprise a monophyletic assemblage within the P-loop NTPase fold. An evolutionary classification of these proteins was developed using standard phylogenetic methods, analysis of shared sequence and structural signatures, and similarity-based clustering. This analysis resulted in the identification of approximately 40 distinct protein families within the P-loop kinase class. Most of these enzymes phosphorylate nucleosides and nucleotides, as well as sugars, coenzyme precursors, adenosine 5'-phosphosulfate and polynucleotides. In addition, the class includes sulfotransferases, amide bond ligases, pyrimidine and dihydrofolate reductases, and several other families of enzymes that have acquired new catalytic capabilities distinct from the ancestral kinase reaction. Our reconstruction of the early history of the P-loop NTPase fold includes the initial split into the common ancestor of the kinase and the GTPase classes, and the common ancestor of ATPases. This was followed by the divergence of the kinases, which primarily phosphorylated nucleoside monophosphates (NMP), but could have had broader specificity. We provide evidence for the presence of at least two to four distinct P-loop kinases, including distinct forms specific for dNMP and rNMP, and related enzymes in the last universal common ancestor of all extant life forms. Subsequent evolution of kinases seems to have been dominated by the emergence of new bacterial and, to a lesser extent, archaeal families. Some of these enzymes retained their kinase activity but evolved new substrate specificities, whereas others acquired new activities, such as sulfate transfer and reduction. Eukaryotes appear to have acquired most of their kinases via horizontal gene transfer from Bacteria, partly from the mitochondrial and chloroplast endosymbionts and partly at later stages of evolution. A distinct superfamily of kinases, which we designated DxTN after its sequence signature, appears to have evolved in selfish replicons, such as bacteriophages, and was subsequently widely recruited by eukaryotes for multiple functions related to nucleic acid processing and general metabolism. In the course of this analysis, several previously undetected groups of predicted kinases were identified, including widespread archaeo-eukaryotic and archaeal families. The results could serve as a framework for systematic experimental characterization of new biochemical and biological functions of kinases.
Collapse
Affiliation(s)
- Detlef D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
42
|
Vanheusden V, Munier-Lehmann H, Froeyen M, Dugué L, Heyerick A, De Keukeleire D, Pochet S, Busson R, Herdewijn P, Van Calenbergh S. 3'-C-branched-chain-substituted nucleosides and nucleotides as potent inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase. J Med Chem 2003; 46:3811-21. [PMID: 12930144 DOI: 10.1021/jm021108n] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thymidine monophosphate kinase (TMPK) of Mycobacterium tuberculosis (TMPKmt) represents an attractive target for blocking the bacterial DNA synthesis. In an attempt to find high-affinity inhibitors of TMPKmt, a cavity in the enzyme at the 3'-position was explored via the introduction of various substituents at the 3'-position of the thymidine monophosphate (dTMP) scaffold. Various 3'-C-branched chain substituted nucleotides in the 2'-deoxyribo (3-6) and ribo series (7, 8) were synthesized from one key intermediate (23). 2'-Deoxy analogues proved to be potent inhibitors of TMPKmt: 3'-CH(2)NH(2) (4), 3'-CH(2)N(3) (3), and 3'-CH(2)F (5) nucleotides exhibit the highest affinities within this series, with K(i) values of 10.5, 12, and 15 microM, respectively. These results show that TMPKmt tolerates the introduction of sterically demanding substituents at the 3'-position. Ribo analogues experience a significant affinity decrease, which is probably due to steric hindrance of Tyr103 in close vicinity of the 2'-position. Although the 5'-O-phosphorylated compounds have somewhat higher affinities for the enzyme, the parent nucleosides generally exhibit affinities for TMPKmt in the same order of magnitude and display a superior selectivity profile versus human TMPK. This series of inhibitors holds promise for the development of a new class of antituberculosis agents.
Collapse
Affiliation(s)
- Veerle Vanheusden
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Harelbekestraat 72, 9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fioravanti E, Haouz A, Ursby T, Munier-Lehmann H, Delarue M, Bourgeois D. Mycobacterium tuberculosis thymidylate kinase: structural studies of intermediates along the reaction pathway. J Mol Biol 2003; 327:1077-92. [PMID: 12662932 DOI: 10.1016/s0022-2836(03)00202-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mycobacterium tuberculosis TMP kinase (TMPK(Mtub)) represents a promising target for developing drugs against tuberculosis because the configuration of its active site is unique in the TMPK family. To help elucidate the phosphorylation mechanism employed by this enzyme, structural changes occurring upon binding of substrates and subsequent catalysis were investigated by protein crystallography. Six new structures of TMPK(Mtub) were solved at a resolution better than 2.3A, including the first structure of an apo-TMPK, obtained by triggering catalysis in a crystal of a TMPK(Mtub)-TMP complex, which resulted in the release of the TDP product. A series of snapshots along the reaction pathway is obtained, revealing the closure of the active site in going from an empty to a fully occupied state, suggestive of an induced-fit mechanism typical of NMPKs. However, in TMPK(Mtub) the LID closure couples to the binding with an unusual location for a magnesium ion coordinating TMP in the active site. Our data suggest strongly that this ion is required for catalysis, acting as a clamp, possibly in concert with Arg95, to neutralise electrostatic repulsion between the anionic substrates, optimise their proper alignment and activate them through direct and water-mediated interactions. The 3'-hydroxyl moiety of TMP, critical to metal stabilisation, appears to be a target of choice for the design of potent inhibitors. On the other hand, the usual NTP-bound magnesium is not seen in our structures and Arg14, a P-loop residue unique to TMPK(Mtub), may take over its role. Therefore, TMPK(Mtub) seems to have swapped the use of a metal ion as compared with e.g. human TMPK. Finally, TTP was observed in crystals of TMPK(Mtub), locked by Arg14, thus providing a structural explanation for the observed inhibitory effect of TTP putatively involved in a mechanism of feedback regulation of the enzymatic activity.
Collapse
Affiliation(s)
- E Fioravanti
- LCCP, UMR 9015, IBS, 41 avenue Jules Horowitz, 38027 1, Grenoble, Cedex, France
| | | | | | | | | | | |
Collapse
|
44
|
Monnerjahn C, Konrad M. Modulated nucleoside kinases as tools to improve the activation of therapeutic nucleoside analogues. Chembiochem 2003; 4:143-6. [PMID: 12616626 DOI: 10.1002/cbic.200390024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The use of nucleoside analogues in anticancer and antiviral treatments is often impaired by the slow intracellular activation of these drugs. This problem can be addressed by the modulation of rate-limiting enzymes in the activation pathways of the nucleoside analogues. Therapeutic strategies based on the combination of optimized activating enzymes and established nucleoside drugs promise significant improvements to traditional chemotherapy.
Collapse
Affiliation(s)
- Christian Monnerjahn
- Max-Planck-Institute for Biophysical Chemistry, Department of Molecular Genetics, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
45
|
Haouz A, Vanheusden V, Munier-Lehmann H, Froeyen M, Herdewijn P, Van Calenbergh S, Delarue M. Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase. New insights into the phosphoryl transfer mechanism. J Biol Chem 2003; 278:4963-71. [PMID: 12454011 DOI: 10.1074/jbc.m209630200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemical synthesis of new compounds designed as inhibitors of Mycobacterium tuberculosis TMP kinase (TMPK) is reported. The synthesis concerns TMP analogues modified at the 5-position of the thymine ring as well as a novel compound with a six-membered sugar ring. The binding properties of the analogues are compared with the known inhibitor azido-TMP, which is postulated here to work by excluding the TMP-bound Mg(2+) ion. The crystallographic structure of the complex of one of the compounds, 5-CH(2)OH-dUMP, with TMPK has been determined at 2.0 A. It reveals a major conformation for the hydroxyl group in contact with a water molecule and a minor conformation pointing toward Ser(99). Looking for a role for Ser(99), we have identified an unusual catalytic triad, or a proton wire, made of strictly conserved residues (including Glu(6), Ser(99), Arg(95), and Asp(9)) that probably serves to protonate the transferred PO(3) group. The crystallographic structure of the commercially available bisubstrate analogue P(1)-(adenosine-5')-P(5)-(thymidine-5')-pentaphosphate bound to TMPK is also reported at 2.45 A and reveals an alternative binding pocket for the adenine moiety of the molecule compared with what is observed either in the Escherichia coli or in the yeast enzyme structures. This alternative binding pocket opens a way for the design of a new family of specific inhibitors.
Collapse
Affiliation(s)
- Ahmed Haouz
- Unité de Biochimie Structurale, URA 2185 du CNRS, Biologie Structurale et Agents Infectieux, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Meier C. cycloSal-Pronucleotides—Design of the Concept, Chemistry, and Antiviral Activity. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1075-8593(03)04006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
47
|
Wu Y, Fa M, Tae EL, Schultz PG, Romesberg FE. Enzymatic phosphorylation of unnatural nucleosides. J Am Chem Soc 2002; 124:14626-30. [PMID: 12465973 DOI: 10.1021/ja028050m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an effort to expand the genetic alphabet, a number of unnatural, predominantly hydrophobic, nucleoside analogues have been developed which pair selectively in duplex DNA and during enzymatic synthesis. Significant progress has been made toward the efficient in vitro replication of DNA containing these base pairs. However, the in vivo expansion of the genetic alphabet will require that the unnatural nucleoside triphosphates be available within the cell at sufficient concentrations for DNA replication. We report our initial efforts toward the development of an unnatural in vivo nucleoside phosphorylation pathway that is based on nucleoside salvage enzymes. The first step of this pathway is catalyzed by the D. melanogaster nucleoside kinase, which catalyzes the phosphorylation of nucleosides to the corresponding monophosphates. We demonstrate that each unnatural nucleoside is phosphorylated with a rate that should be sufficient for the in vivo replication of DNA.
Collapse
Affiliation(s)
- Yiqin Wu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
48
|
Petit CM, Koretke KK. Characterization of Streptococcus pneumoniae thymidylate kinase: steady-state kinetics of the forward reaction and isothermal titration calorimetry. Biochem J 2002; 363:825-31. [PMID: 11964185 PMCID: PMC1222537 DOI: 10.1042/0264-6021:3630825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thymidylate kinase (TMK) catalyses the phosphorylation of dTMP to form dTDP in both the de novo and salvage pathways of dTTP synthesis. The tmk gene from the bacterial pathogen Streptococcus pneumoniae was identified. The gene, encoding a 212-amino-acid polypeptide (23352 Da), was cloned and overexpressed in Escherichia coli with an N-terminal hexahistidine tag. The enzyme was purified to homogeneity, and characterized in the forward reaction. The pH profile of TMK indicates that its activity is optimal at pH 8.5. The substrate specificity of the enzyme was examined; it was found that not only ATP, but also dATP and to a lesser extent CTP, could act as phosphate donors, and dTMP and dUMP could serve as phosphate acceptors. Furthermore, AZT-MP (3'-azido-3'-deoxythymidine 5'-monophosphate) was shown not to be a substrate for S. pneumoniae TMK. Steady-state kinetics and inhibition studies with adenosine 5'-[beta-thio]diphosphate and dTDP in addition to isothermal titration calorimetry were performed. The data showed that binding follows an ordered pathway, in which ATP binds first with a K(m) of 235 +/- 46 microM and a K(d) of 116 +/- 3 microM, and dTMP binds secondly with a K(m) of 66 +/- 12 microM and a K(d) of 53 +/- 2 microM.
Collapse
Affiliation(s)
- Chantal M Petit
- Microbial Musculoskeletal and Proliferative Diseases, GlaxoSmithKline Pharmaceuticals, 1250 S. Collegeville Road, UP1345, Collegeville, PA 19426-0989, USA.
| | | |
Collapse
|
49
|
Bertrand T, Briozzo P, Assairi L, Ofiteru A, Bucurenci N, Munier-Lehmann H, Golinelli-Pimpaneau B, Bârzu O, Gilles AM. Sugar specificity of bacterial CMP kinases as revealed by crystal structures and mutagenesis of Escherichia coli enzyme. J Mol Biol 2002; 315:1099-110. [PMID: 11827479 DOI: 10.1006/jmbi.2001.5286] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial cytidine monophosphate (CMP) kinases are characterised by an insert enlarging their CMP binding domain, and by their particular substrate specificity. Thus, both CMP and 2'-deoxy-CMP (dCMP) are good phosphate acceptors for the CMP kinase from Escherichia coli (E. coli CMPK), whereas eukaryotic UMP/CMP kinases phosphorylate the deoxynucleotides with very low efficiency. Four crystal structures of E. coli CMPK complexed with nucleoside monophosphates differing in their sugar moiety were solved. Both structures with CMP or dCMP show interactions with the pentose that were not described so far. These interactions are lost with the poorer substrates AraCMP and 2',3'-dideoxy-CMP. Comparison of all four structures shows that the pentose hydroxyls are involved in ligand-induced movements of enzyme domains. It also gives a structural basis of the mechanism by which either ribose or deoxyribose can be accommodated. In parallel, for the four nucleotides the kinetic results of the wild-type enzyme and of three structure-based variants are presented. The phosphorylation rate is significantly decreased when either of the two pentose interacting residues is mutated. One of these is an arginine that is highly conserved in all known nucleoside monophosphate kinases. In contrast, the other residue, Asp185, is typical of bacterial CMP kinases. It interacts with Ser101, the only residue conserved in all CMP binding domain inserts. Mutating Ser101 reduces CMP phosphorylation only moderately, but dramatically reduces dCMP phosphorylation. This is the first experimental evidence of a catalytic role involving the characteristic insert of bacterial CMP kinases. Furthermore, this role concerns only dCMP phosphorylation, a feature of this family of enzymes.
Collapse
Affiliation(s)
- Thomas Bertrand
- Laboratoire d'Enzymologie et de Biochimie Structurales, UPR 9063 du CNRS, Gif-sur-Yvette Cedex, 91198, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Munier-Lehmann H, Chaffotte A, Pochet S, Labesse G. Thymidylate kinase of Mycobacterium tuberculosis: a chimera sharing properties common to eukaryotic and bacterial enzymes. Protein Sci 2001; 10:1195-205. [PMID: 11369858 PMCID: PMC2374024 DOI: 10.1110/ps.45701] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
We have overexpressed in Escherichia coli the thymidylate kinase of Mycobacterium tuberculosis (TMPKmt). Biochemical and physico-chemical characterization of TMPKmt revealed distinct structural and catalytic features when compared to its counterpart from yeast (TMPKy) or E. coli (TMPKec). Denaturation of the dimeric TMPKmt by urea under equilibrium conditions was studied by intrinsic fluorescence and circular dichroism (CD) spectroscopy. It suggested a three-state unfolding mechanism with a monomeric intermediate. On the other hand, 3'-azido-3'-deoxythymidine monophosphate (AZT-MP), which is substrate for TMPKy and TMPKec acts as a potent competitive inhibitor for TMPKMT: We propose a structural model of TMPKmt in which the overall fold described in TMPKy and TMPKec is conserved and slight differences at the level of primary and 3D-structure explain strong variations in the phosphorylation rate of substrate analogs. According to the model, we synthesized dTMP analogs acting either as substrates or specific inhibitors of TMPKMT: This approach based on slight structural differences among similar proteins could be applied to other essential enzymes for the design of new species-specific antimicrobials.
Collapse
Affiliation(s)
- H Munier-Lehmann
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|