1
|
Fu R, Su WP, He H. Genetic Algorithm-Enhanced Direct Method in Protein Crystallography. Molecules 2025; 30:288. [PMID: 39860156 PMCID: PMC11767379 DOI: 10.3390/molecules30020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Direct methods based on iterative projection algorithms can determine protein crystal structures directly from X-ray diffraction data without prior structural information. However, traditional direct methods often converge to local minima during electron density iteration, leading to reconstruction failure. Here, we present an enhanced direct method incorporating genetic algorithms for electron density modification in real space. The method features customized selection, crossover, and mutation strategies; premature convergence prevention; and efficient message passing interface (MPI) parallelization. We systematically tested the method on 15 protein structures from different space groups with diffraction resolutions of 1.35∼2.5 Å. The test cases included high-solvent-content structures, high-resolution structures with medium solvent content, and structures with low solvent content and non-crystallographic symmetry (NCS). Results showed that the enhanced method significantly improved success rates from below 30% to nearly 100%, with average phase errors reduced below 40°. The reconstructed electron density maps were of sufficient quality for automated model building. This method provides an effective alternative for solving structures that are difficult to predict accurately by AlphaFold3 or challenging to solve by molecular replacement and experimental phasing methods. The implementation is available on Github.
Collapse
Affiliation(s)
- Ruijiang Fu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
| | - Wu-Pei Su
- Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA;
| | - Hongxing He
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
2
|
Guo C, Whitehead RD, Struppe J, Porat-Dahlerbruch G, Hassan A, Gronenborn AM, Alexandrescu AT, Teschke CM, Polenova T. Structural Model of Bacteriophage P22 Scaffolding Protein in a Procapsid by Magic-Angle Spinning NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621488. [PMID: 39554170 PMCID: PMC11565965 DOI: 10.1101/2024.11.01.621488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Icosahedral dsDNA viruses such as the tailed bacteriophages and herpesviruses have a conserved pathway to virion assembly that is initiated from a scaffolding protein driven procapsid formation. The dsDNA is actively packaged into procapsids, which undergo complex maturation reactions to form infectious virions. In bacteriophage P22, scaffolding protein (SP) directs the assembly of coat proteins into procapsids that have a T=7 icosahedral arrangement, en route to the formation of the mature P22 capsid. Other than the C-terminal helix-turn-helix involved in interaction with coat protein, the structure of the P22 303 amino acid scaffolding protein within the procapsid is not understood. Here, we present a structural model of P22 scaffolding protein encapsulated within the 23 MDa procapsid determined by magic angle spinning NMR spectroscopy. We took advantage of the 10-fold sensitivity gains afforded by the novel CPMAS CryoProbe to establish the secondary structure of P22 scaffolding protein and employed 19F MAS NMR experiments to probe its oligomeric state in the procapsid. Our results indicate that the scaffolding protein has both α-helical and disordered segments and forms a trimer of dimers when bound to the procapsid lattice. This work provides the first structural information for P22 SP beyond the C-terminal helix-turn-helix and demonstrates the power of MAS NMR to understand higher-order viral protein assemblies involving structural components that are inaccessible to other structural biology techniques.
Collapse
Affiliation(s)
- Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Richard D. Whitehead
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Jochem Struppe
- Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, MA 01821, United States
| | - Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Alia Hassan
- Bruker BioSpin Corporation, 8117 Fällanden, Switzerland
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh PA 15261, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Evseev P, Gutnik D, Evpak A, Kasimova A, Miroshnikov K. Origin, Evolution and Diversity of φ29-like Phages-Review and Bioinformatic Analysis. Int J Mol Sci 2024; 25:10838. [PMID: 39409167 PMCID: PMC11476376 DOI: 10.3390/ijms251910838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Phage φ29 and related bacteriophages are currently the smallest known tailed viruses infecting various representatives of both Gram-positive and Gram-negative bacteria. They are characterised by genomic content features and distinctive properties that are unique among known tailed phages; their characteristics include protein primer-driven replication and a packaging process characteristic of this group. Searches conducted using public genomic databases revealed in excess of 2000 entries, including bacteriophages, phage plasmids and sequences identified as being archaeal that share the characteristic features of phage φ29. An analysis of predicted proteins, however, indicated that the metagenomic sequences attributed as archaeal appear to be misclassified and belong to bacteriophages. An analysis of the translated polypeptides of major capsid proteins (MCPs) of φ29-related phages indicated the dissimilarity of MCP sequences to those of almost all other known Caudoviricetes groups and a possible distant relationship to MCPs of T7-like (Autographiviridae) phages. Sequence searches conducted using HMM revealed the relatedness between the main structural proteins of φ29-like phages and an unusual lactococcal phage, KSY1 (Chopinvirus KSY1), whose genome contains two genes of RNA polymerase that are similar to the RNA polymerases of phages of the Autographiviridae and Schitoviridae (N4-like) families. An analysis of the tail tube proteins of φ29-like phages indicated their dissimilarity of the lower collar protein to tail proteins of all other viral groups, but revealed its possible distant relatedness with proteins of toxin translocation complexes. The combination of the unique features and distinctive origin of φ29-related phages suggests the categorisation of this vast group in a new order or as a new taxon of a higher rank.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia
| | - Daria Gutnik
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorsakaya Street, 3, 664033 Irkutsk, Russia
| | - Alena Evpak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Anastasia Kasimova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, 119991 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| |
Collapse
|
4
|
Iglesias SM, Hou CFD, Reid J, Schauer E, Geier R, Soriaga A, Sim L, Gao L, Whitelegge J, Kyme P, Birx D, Lemire S, Cingolani G. Cryo-EM analysis of Pseudomonas phage Pa193 structural components. Commun Biol 2024; 7:1275. [PMID: 39370451 PMCID: PMC11456595 DOI: 10.1038/s42003-024-06985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024] Open
Abstract
The World Health Organization has designated Pseudomonas aeruginosa as a critical pathogen for the development of new antimicrobials. Bacterial viruses, or bacteriophages, have been used in various clinical settings, commonly called phage therapy, to address this growing public health crisis. Here, we describe a high-resolution structural atlas of a therapeutic, contractile-tailed Pseudomonas phage, Pa193. We used bioinformatics, proteomics, and cryogenic electron microscopy single particle analysis to identify, annotate, and build atomic models for 21 distinct structural polypeptide chains forming the icosahedral capsid, neck, contractile tail, and baseplate. We identified a putative scaffolding protein stabilizing the interior of the capsid 5-fold vertex. We also visualized a large portion of Pa193 ~ 500 Å long tail fibers and resolved the interface between the baseplate and tail fibers. The work presented here provides a framework to support a better understanding of phages as biomedicines for phage therapy and inform engineering opportunities.
Collapse
Affiliation(s)
- Stephano M Iglesias
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Johnny Reid
- Armata Pharmaceuticals Inc., Los Angeles, USA
| | | | - Renae Geier
- Armata Pharmaceuticals Inc., Los Angeles, USA
| | | | - Lucy Sim
- Armata Pharmaceuticals Inc., Los Angeles, USA
| | - Lucy Gao
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, USA
| | - Julian Whitelegge
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, USA
| | - Pierre Kyme
- Armata Pharmaceuticals Inc., Los Angeles, USA
| | | | | | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA.
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
5
|
Pourcel C, Essoh C, Ouldali M, Tavares P. Acinetobacter baumannii satellite phage Aci01-2-Phanie depends on a helper myophage for its multiplication. J Virol 2024; 98:e0066724. [PMID: 38829140 PMCID: PMC11264900 DOI: 10.1128/jvi.00667-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
We report the discovery of a satellite-helper phage system with a novel type of dependence on a tail donor. The Acinetobacter baumannii satellite podovirus Aci01-2-Phanie (short name Phanie) uses a phage phi29-like DNA replication and packaging mode. Its linear 11,885 bp dsDNA genome bears 171 bp inverted terminal repeats (ITR). Phanie is related to phage DU-PP-III from Pectobacterium and to members of the Astrithrvirus from Salmonella enterica. Together, they form a new clade of phages with 27% to 30% identity over the whole genome. Detailed 3D protein structure prediction and mass spectrometry analyses demonstrate that Phanie encodes its capsid structural genes and genes necessary to form a short tail. However, our study reveals that Phanie virions are non-infectious unless they associate with the contractile tail of an unrelated phage, Aci01-1, to produce chimeric myoviruses. Following the coinfection of Phanie with myovirus Aci01-1, hybrid viral particles composed of Phanie capsids and Aci01-1 contractile tails are assembled together with Phanie and Aci01-1 particles.IMPORTANCEThere are few reported cases of satellite-helper phage interactions but many more may be yet undiscovered. Here we describe a new mode of satellite phage dependence on a helper phage. Phanie, like phage phi29, replicates its linear dsDNA by a protein primed-mechanism and protects it inside podovirus-like particles. However, these particles are defective, requiring the acquisition of the tail from a myovirus helper for production of infectious virions. The formation of chimeras between a phi29-like podovirus and a helper contractile tail reveals an unexpected association between very different bacterial viruses.
Collapse
Affiliation(s)
- Christine Pourcel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christiane Essoh
- Department of Biochemistry-Genetic, School of Biological Sciences, Université Peleforo Gon Coulibaly, Korhogo, Côte d'Ivoire
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Paulo Tavares
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
6
|
Cingolani G, Iglesias S, Hou CF, Lemire S, Soriaga A, Kyme P. Cryo-EM analysis of Pseudomonas phage Pa193 structural components. RESEARCH SQUARE 2024:rs.3.rs-4189479. [PMID: 38659960 PMCID: PMC11042391 DOI: 10.21203/rs.3.rs-4189479/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The World Health Organization has designated Pseudomonas aeruginosa as a critical pathogen for the development of new antimicrobials. Bacterial viruses, or bacteriophages, have been used in various clinical settings, commonly called phage therapy, to address this growing public health crisis. Here, we describe a high-resolution structural atlas of a therapeutic, contractile-tailed Pseudomonas phage, Pa193. We used bioinformatics, proteomics, and cryogenic electron microscopy single particle analysis to identify, annotate, and build atomic models for 21 distinct structural polypeptide chains forming the icosahedral capsid, neck, contractile tail, and baseplate. We identified a putative scaffolding protein stabilizing the interior of the capsid 5-fold vertex. We also visualized a large portion of Pa193 ~ 500 Å long tail fibers and resolved the interface between the baseplate and tail fibers. The work presented here provides a framework to support a better understanding of phages as biomedicines for phage therapy and inform engineering opportunities.
Collapse
|
7
|
Rūmnieks J, Füzik T, Tārs K. Structure of the Borrelia Bacteriophage φBB1 Procapsid. J Mol Biol 2023; 435:168323. [PMID: 37866476 DOI: 10.1016/j.jmb.2023.168323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Bacteriophages of Borrelia burgdorferi are a biologically important but under-investigated feature of the Lyme disease-causing spirochete. No virulent borrelial viruses have been identified, but all B. burgdorferi isolates carry a prophage φBB1 as resident circular plasmids. Like its host, the φBB1 phage is quite distinctive and shares little sequence similarity with other known bacteriophages. We expressed φBB1 head morphogenesis proteins in Escherichia coli which resulted in assembly of homogeneous prolate procapsid structures and used cryo-electron microscopy to determine the three-dimensional structure of these particles. The φBB1 procapsids consist of 415 copies of the major capsid protein and an equal combined number of three homologous capsid decoration proteins that form trimeric knobs on the outside of the particle. One of the end vertices of the particle is occupied by a portal assembled from twelve copies of the portal protein. The φBB1 scaffolding protein is entirely α-helical and has an elongated shape with a small globular domain in the middle. Within the tubular section of the procapsid, the internal scaffold is built of stacked rings, each composed of 32 scaffolding protein molecules, which run in opposite directions from both caps with a heterogeneous part in the middle. Inside the portal-containing cap, the scaffold is organized asymmetrically with ten scaffolding protein molecules bound to the portal. The φBB1 procapsid structure provides better insight into the vast structural diversity of bacteriophages and presents clues of how elongated bacteriophage particles might be assembled.
Collapse
Affiliation(s)
- Jānis Rūmnieks
- Latvian Biomedical Research and Study Center, Rātsupītes 1, 1067 Riga, Latvia.
| | - Tibor Füzik
- Structural Virology, Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Center, Rātsupītes 1, 1067 Riga, Latvia; Faculty of Biology, University of Latvia, Jelgavas 1, 1004 Riga, Latvia
| |
Collapse
|
8
|
Mahony J, Goulet A, van Sinderen D, Cambillau C. Partial Atomic Model of the Tailed Lactococcal Phage TP901-1 as Predicted by AlphaFold2: Revelations and Limitations. Viruses 2023; 15:2440. [PMID: 38140681 PMCID: PMC10747895 DOI: 10.3390/v15122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Bacteria are engaged in a constant battle against preying viruses, called bacteriophages (or phages). These remarkable nano-machines pack and store their genomes in a capsid and inject it into the cytoplasm of their bacterial prey following specific adhesion to the host cell surface. Tailed phages possessing dsDNA genomes are the most abundant phages in the bacterial virosphere, particularly those with long, non-contractile tails. All tailed phages possess a nano-device at their tail tip that specifically recognizes and adheres to a suitable host cell surface receptor, being proteinaceous and/or saccharidic. Adhesion devices of tailed phages infecting Gram-positive bacteria are highly diverse and, for the majority, remain poorly understood. Their long, flexible, multi-domain-encompassing tail limits experimental approaches to determine their complete structure. We have previously shown that the recently developed protein structure prediction program AlphaFold2 can overcome this limitation by predicting the structures of phage adhesion devices with confidence. Here, we extend this approach and employ AlphaFold2 to determine the structure of a complete phage, the lactococcal P335 phage TP901-1. Herein we report the structures of its capsid and neck, its extended tail, and the complete adhesion device, the baseplate, which was previously partially determined using X-ray crystallography.
Collapse
Affiliation(s)
- Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
| | - Adeline Goulet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université—CNRS, UMR 7255, 13009 Marseille, France;
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
| | - Christian Cambillau
- School of Microbiology & APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université—CNRS, UMR 7255, 13009 Marseille, France;
| |
Collapse
|
9
|
Huet A, Oh B, Maurer J, Duda RL, Conway JF. A symmetry mismatch unraveled: How phage HK97 scaffold flexibly accommodates a 12-fold pore at a 5-fold viral capsid vertex. SCIENCE ADVANCES 2023; 9:eadg8868. [PMID: 37327331 PMCID: PMC10275583 DOI: 10.1126/sciadv.adg8868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/12/2023] [Indexed: 06/18/2023]
Abstract
Tailed bacteriophages and herpesviruses use a transient scaffold to assemble icosahedral capsids with hexameric capsomers on the faces and pentameric capsomers at all but one vertex where a 12-fold portal is thought to nucleate the assembly. How does the scaffold orchestrate this step? We have determined the portal vertex structure of the bacteriophage HK97 procapsid, where the scaffold is a domain of the major capsid protein. The scaffold forms rigid helix-turn-strand structures on the interior surfaces of all capsomers and is further stabilized around the portal, forming trimeric coiled-coil towers, two per surrounding capsomer. These 10 towers bind identically to 10 of 12 portal subunits, adopting a pseudo-12-fold organization that explains how the symmetry mismatch is managed at this early step.
Collapse
Affiliation(s)
- Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bonnie Oh
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josh Maurer
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert L. Duda
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - James F. Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
DiIorio MC, Kulczyk AW. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron Microscopy. MICROMACHINES 2022; 14:118. [PMID: 36677177 PMCID: PMC9866264 DOI: 10.3390/mi14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Biological macromolecules and assemblies precisely rearrange their atomic 3D structures to execute cellular functions. Understanding the mechanisms by which these molecular machines operate requires insight into the ensemble of structural states they occupy during the functional cycle. Single-particle cryo-electron microscopy (cryo-EM) has become the preferred method to provide near-atomic resolution, structural information about dynamic biological macromolecules elusive to other structure determination methods. Recent advances in cryo-EM methodology have allowed structural biologists not only to probe the structural intermediates of biochemical reactions, but also to resolve different compositional and conformational states present within the same dataset. This article reviews newly developed sample preparation and single-particle analysis (SPA) techniques for high-resolution structure determination of intrinsically dynamic and heterogeneous samples, shedding light upon the intricate mechanisms employed by molecular machines and helping to guide drug discovery efforts.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry and Microbiology, Rutgers University, 75 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
11
|
Hawkins NC, Kizziah JL, Hatoum-Aslan A, Dokland T. Structure and host specificity of Staphylococcus epidermidis bacteriophage Andhra. SCIENCE ADVANCES 2022; 8:eade0459. [PMID: 36449623 PMCID: PMC9710869 DOI: 10.1126/sciadv.ade0459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/14/2022] [Indexed: 05/28/2023]
Abstract
Staphylococcus epidermidis is an opportunistic pathogen of the human skin, often associated with infections of implanted medical devices. Staphylococcal picoviruses are a group of strictly lytic, short-tailed bacteriophages with compact genomes that are attractive candidates for therapeutic use. Here, we report the structure of the complete virion of S. epidermidis-infecting phage Andhra, determined using high-resolution cryo-electron microscopy, allowing atomic modeling of 11 capsid and tail proteins. The capsid is a T = 4 icosahedron containing a unique stabilizing capsid lining protein. The tail includes 12 trimers of a unique receptor binding protein (RBP), a lytic protein that also serves to anchor the RBPs to the tail stem, and a hexameric tail knob that acts as a gatekeeper for DNA ejection. Using structure prediction with AlphaFold, we identified the two proteins that comprise the tail tip heterooctamer. Our findings elucidate critical features for virion assembly, host recognition, and penetration.
Collapse
Affiliation(s)
- N’Toia C. Hawkins
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James L. Kizziah
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Asma Hatoum-Aslan
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Lilina AV, Leekens S, Hashim HM, Vermeire P, Harvey JN, Strelkov SV. Stability profile of vimentin rod domain. Protein Sci 2022; 31:e4505. [PMID: 36369679 PMCID: PMC9703591 DOI: 10.1002/pro.4505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
Abstract
Intermediate filaments (IFs) form an essential part of the metazoan cytoskeleton. Despite a long history of research, a proper understanding of their molecular architecture and assembly process is still lacking. IFs self-assemble from elongated dimers, which are defined by their central "rod" domain. This domain forms an α-helical coiled coil consisting of three segments called coil1A, coil1B, and coil2. It has been hypothesized that the structural plasticity of the dimer, including the unraveling of some coiled-coil regions, is essential for the assembly process. To systematically explore this possibility, we have studied six 50-residue fragments covering the entire rod domain of human vimentin, a model IF protein. After creating in silico models of these fragments, their evaluation using molecular dynamics was performed. Large differences were seen across the six fragments with respect to their structural variability during a 100 ns simulation. Next, the fragments were prepared recombinantly, whereby their correct dimerization was promoted by adding short N- or C-terminal capping motifs. The capped fragments were subjected to circular dichroism measurements at varying temperatures. The obtained melting temperatures reveal the relative stabilities of individual fragments, which correlate well with in silico results. We show that the least stable regions of vimentin rod are coil1A and the first third of coil2, while the structures of coil1B and the rest of coil2 are significantly more robust. These observations are in line with the data obtained using other experimental approaches, and contribute to a better understanding of the molecular mechanisms driving IF assembly.
Collapse
Affiliation(s)
| | - Simon Leekens
- Laboratory for BiocrystallographyKU LeuvenLeuvenBelgium
| | - Hani M. Hashim
- Laboratory for BiocrystallographyKU LeuvenLeuvenBelgium
- Department of ChemistryKU LeuvenLeuvenBelgium
| | | | | | | |
Collapse
|
13
|
Davis CR, Backos D, Morais MC, Churchill MEA, Catalano CE. Characterization of a Primordial Major Capsid-Scaffolding Protein Complex in Icosahedral Virus Shell Assembly. J Mol Biol 2022; 434:167719. [PMID: 35820453 DOI: 10.1016/j.jmb.2022.167719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022]
Abstract
Capsid assembly pathways are strongly conserved in the complex dsDNA viruses, where major capsid proteins (MCP) self-assemble into icosahedral procapsid shells, chaperoned by a scaffolding protein. Without a scaffold, the capsid proteins aggregate and form aberrant structures. This, coupled with the rapid co-polymerization of MCP and scaffolding proteins, has thwarted characterization of the earliest steps in shell assembly. Here we interrogate the structure and biophysical properties of a soluble, assembly-deficient phage lambda major capsid protein, MCP(W308A). The mutant protein is folded, soluble to high concentrations and binds to the scaffolding protein in an apparent SP2:MCP(W308A)1 stoichiometry but does not assemble beyond this initiating complex. The MCP(W308A) crystal structure was solved to 2.7 Å revealing the canonical HK97 fold in a "pre-assembly" conformation featuring the conserved N-arm and E-loops folded into the body of the protein. Structural, biophysical and computational analyses suggest that MCP(W308A) is thermodynamically trapped in this pre-assembly conformation precluding self-association interactions required for shell assembly. A model is described wherein dynamic interactions between MCP proteins play an essential role in high fidelity viral shell assembly. Scaffold-chaperoned MCP polymerization is a strongly conserved process in all the large dsDNA viruses and our results provide insight into this primordial complex in solution and have broad biological significance in our understanding of virus assembly mechanisms.
Collapse
Affiliation(s)
- Christal R Davis
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald Backos
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mair E A Churchill
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carlos E Catalano
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
14
|
Fang Q, Tang WC, Fokine A, Mahalingam M, Shao Q, Rossmann MG, Rao VB. Structures of a large prolate virus capsid in unexpanded and expanded states generate insights into the icosahedral virus assembly. Proc Natl Acad Sci U S A 2022; 119:e2203272119. [PMID: 36161892 PMCID: PMC9546572 DOI: 10.1073/pnas.2203272119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Many icosahedral viruses assemble proteinaceous precursors called proheads or procapsids. Proheads are metastable structures that undergo a profound structural transition known as expansion that transforms an immature unexpanded head into a mature genome-packaging head. Bacteriophage T4 is a model virus, well studied genetically and biochemically, but its structure determination has been challenging because of its large size and unusually prolate-shaped, ∼1,200-Å-long and ∼860-Å-wide capsid. Here, we report the cryogenic electron microscopy (cryo-EM) structures of T4 capsid in both of its major conformational states: unexpanded at a resolution of 5.1 Å and expanded at a resolution of 3.4 Å. These are among the largest structures deposited in Protein Data Bank to date and provide insights into virus assembly, head length determination, and shell expansion. First, the structures illustrate major domain movements and ∼70% additional gain in inner capsid volume, an essential transformation to contain the entire viral genome. Second, intricate intracapsomer interactions involving a unique insertion domain dramatically change, allowing the capsid subunits to rotate and twist while the capsomers remain fastened at quasi-threefold axes. Third, high-affinity binding sites emerge for a capsid decoration protein that clamps adjacent capsomers, imparting extraordinary structural stability. Fourth, subtle conformational changes at capsomers' periphery modulate intercapsomer angles between capsomer planes that control capsid length. Finally, conformational changes were observed at the symmetry-mismatched portal vertex, which might be involved in triggering head expansion. These analyses illustrate how small changes in local capsid subunit interactions lead to profound shifts in viral capsid morphology, stability, and volume.
Collapse
Affiliation(s)
- Qianglin Fang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Wei-Chun Tang
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Marthandan Mahalingam
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Qianqian Shao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
15
|
Peters JJ, Leitz J, Guo Q, Beck F, Baumeister W, Brunger AT. A feature-guided, focused 3D signal permutation method for subtomogram averaging. J Struct Biol 2022; 214:107851. [PMID: 35346811 PMCID: PMC9149098 DOI: 10.1016/j.jsb.2022.107851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023]
Abstract
Advances in electron microscope instrumentation, cryo-electron tomography data collection, and subtomogram averaging have allowed for the in-situ visualization of molecules and their complexes in their native environment. Current data processing pipelines commonly extract subtomograms as a cubic subvolume with the key assumption that the selected object of interest is discrete from its surroundings. However, in instances when the object is in its native environment, surrounding densities may negatively affect the subsequent alignment and refinement processes, leading to loss of information due to misalignment. For example, the strong densities from surrounding membranes may dominate the alignment process for membrane proteins. Here, we developed methods for feature-guided subtomogram alignment and 3D signal permutation for subtomogram averaging. Our 3D signal permutation method randomizes and filters voxels outside a mask of any shape and blurs the boundary of the mask that encapsulates the object of interest. The randomization preserves global statistical properties such as mean density and standard deviation of voxel density values, effectively producing a featureless background surrounding the object of interest. This signal permutation process can be repeatedly applied with intervening alignments of the 3D signal-permuted subvolumes, recentering of the mask, and optional adjustments of the shape of the mask. We have implemented these methods in a new processing pipeline which starts from tomograms, contains feature-guided subtomogram extraction and alignment, 3D signal-permutation, and subtomogram visualization tools. As an example, feature-guided alignment and 3D signal permutation leads to improved subtomogram average maps for a dataset of synaptic protein complexes in their native environment.
Collapse
Affiliation(s)
- John Jacob Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States; Department of Structural Biology, Stanford University, Stanford, United States; Department of Photon Science, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States; Department of Structural Biology, Stanford University, Stanford, United States; Department of Photon Science, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Qiang Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Florian Beck
- CryoEM Technology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States; Department of Structural Biology, Stanford University, Stanford, United States; Department of Photon Science, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United States.
| |
Collapse
|
16
|
Woodson M, Pajak J, Mahler BP, Zhao W, Zhang W, Arya G, White MA, Jardine PJ, Morais MC. A viral genome packaging motor transitions between cyclic and helical symmetry to translocate dsDNA. SCIENCE ADVANCES 2021; 7:7/19/eabc1955. [PMID: 33962953 PMCID: PMC8104870 DOI: 10.1126/sciadv.abc1955] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Molecular segregation and biopolymer manipulation require the action of molecular motors to do work by applying directional forces to macromolecules. The additional strand conserved E (ASCE) ring motors are an ancient family of molecular motors responsible for diverse biological polymer manipulation tasks. Viruses use ASCE segregation motors to package their genomes into their protein capsids and provide accessible experimental systems due to their relative simplicity. We show by cryo-EM-focused image reconstruction that ASCE ATPases in viral double-stranded DNA (dsDNA) packaging motors adopt helical symmetry complementary to their dsDNA substrates. Together with previous data, our results suggest that these motors cycle between helical and planar configurations, providing a possible mechanism for directional translocation of DNA. Similar changes in quaternary structure have been observed for proteasome and helicase motors, suggesting an ancient and common mechanism of force generation that has been adapted for specific tasks over the course of evolution.
Collapse
Affiliation(s)
- Michael Woodson
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joshua Pajak
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Bryon P Mahler
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wei Zhao
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Characterization Facility, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Mark A White
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marc C Morais
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
Huang L, Xiang Y. Structures of the tailed bacteriophages that infect Gram-positive bacteria. Curr Opin Virol 2020; 45:65-74. [DOI: 10.1016/j.coviro.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/07/2020] [Accepted: 09/06/2020] [Indexed: 01/04/2023]
|
18
|
Hanke L, Vidakovics Perez L, Sheward DJ, Das H, Schulte T, Moliner-Morro A, Corcoran M, Achour A, Karlsson Hedestam GB, Hällberg BM, Murrell B, McInerney GM. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat Commun 2020; 11:4420. [PMID: 32887876 DOI: 10.1101/2020.06.02.130161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/08/2020] [Indexed: 05/23/2023] Open
Abstract
SARS-CoV-2 enters host cells through an interaction between the spike glycoprotein and the angiotensin converting enzyme 2 (ACE2) receptor. Directly preventing this interaction presents an attractive possibility for suppressing SARS-CoV-2 replication. Here, we report the isolation and characterization of an alpaca-derived single domain antibody fragment, Ty1, that specifically targets the receptor binding domain (RBD) of the SARS-CoV-2 spike, directly preventing ACE2 engagement. Ty1 binds the RBD with high affinity, occluding ACE2. A cryo-electron microscopy structure of the bound complex at 2.9 Å resolution reveals that Ty1 binds to an epitope on the RBD accessible in both the 'up' and 'down' conformations, sterically hindering RBD-ACE2 binding. While fusion to an Fc domain renders Ty1 extremely potent, Ty1 neutralizes SARS-CoV-2 spike pseudovirus as a 12.8 kDa nanobody, which can be expressed in high quantities in bacteria, presenting opportunities for manufacturing at scale. Ty1 is therefore an excellent candidate as an intervention against COVID-19.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiotensin-Converting Enzyme 2
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/metabolism
- Binding Sites
- COVID-19
- Camelids, New World/immunology
- Chlorocebus aethiops
- Coronavirus Infections/drug therapy
- Coronavirus Infections/virology
- Cryoelectron Microscopy
- Epitopes/immunology
- Epitopes/metabolism
- HEK293 Cells
- Humans
- Male
- Models, Molecular
- Pandemics
- Peptidyl-Dipeptidase A/chemistry
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/virology
- Protein Binding
- SARS-CoV-2
- Single-Domain Antibodies/immunology
- Single-Domain Antibodies/isolation & purification
- Single-Domain Antibodies/pharmacology
- Spike Glycoprotein, Coronavirus/antagonists & inhibitors
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Vero Cells
Collapse
Affiliation(s)
- Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Vidakovics Perez
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tim Schulte
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | | | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Karolinska Institutet VR-RÅC, Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany.
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Hanke L, Vidakovics Perez L, Sheward DJ, Das H, Schulte T, Moliner-Morro A, Corcoran M, Achour A, Karlsson Hedestam GB, Hällberg BM, Murrell B, McInerney GM. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat Commun 2020; 11:4420. [PMID: 32887876 PMCID: PMC7473855 DOI: 10.1038/s41467-020-18174-5] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/08/2020] [Indexed: 11/26/2022] Open
Abstract
SARS-CoV-2 enters host cells through an interaction between the spike glycoprotein and the angiotensin converting enzyme 2 (ACE2) receptor. Directly preventing this interaction presents an attractive possibility for suppressing SARS-CoV-2 replication. Here, we report the isolation and characterization of an alpaca-derived single domain antibody fragment, Ty1, that specifically targets the receptor binding domain (RBD) of the SARS-CoV-2 spike, directly preventing ACE2 engagement. Ty1 binds the RBD with high affinity, occluding ACE2. A cryo-electron microscopy structure of the bound complex at 2.9 Å resolution reveals that Ty1 binds to an epitope on the RBD accessible in both the 'up' and 'down' conformations, sterically hindering RBD-ACE2 binding. While fusion to an Fc domain renders Ty1 extremely potent, Ty1 neutralizes SARS-CoV-2 spike pseudovirus as a 12.8 kDa nanobody, which can be expressed in high quantities in bacteria, presenting opportunities for manufacturing at scale. Ty1 is therefore an excellent candidate as an intervention against COVID-19.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiotensin-Converting Enzyme 2
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/metabolism
- Binding Sites
- COVID-19
- Camelids, New World/immunology
- Chlorocebus aethiops
- Coronavirus Infections/drug therapy
- Coronavirus Infections/virology
- Cryoelectron Microscopy
- Epitopes/immunology
- Epitopes/metabolism
- HEK293 Cells
- Humans
- Male
- Models, Molecular
- Pandemics
- Peptidyl-Dipeptidase A/chemistry
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/virology
- Protein Binding
- SARS-CoV-2
- Single-Domain Antibodies/immunology
- Single-Domain Antibodies/isolation & purification
- Single-Domain Antibodies/pharmacology
- Spike Glycoprotein, Coronavirus/antagonists & inhibitors
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Vero Cells
Collapse
Affiliation(s)
- Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Vidakovics Perez
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tim Schulte
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | | | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Karolinska Institutet VR-RÅC, Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany.
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Kizziah JL, Rodenburg CM, Dokland T. Structure of the Capsid Size-Determining Scaffold of "Satellite" Bacteriophage P4. Viruses 2020; 12:E953. [PMID: 32867300 PMCID: PMC7552001 DOI: 10.3390/v12090953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
P4 is a mobile genetic element (MGE) that can exist as a plasmid or integrated into its Escherichia coli host genome, but becomes packaged into phage particles by a helper bacteriophage, such as P2. P4 is the original example of what we have termed "molecular piracy", the process by which one MGE usurps the life cycle of another for its own propagation. The P2 helper provides most of the structural gene products for assembly of the P4 virion. However, when P4 is mobilized by P2, the resulting capsids are smaller than those normally formed by P2 alone. The P4-encoded protein responsible for this size change is called Sid, which forms an external scaffolding cage around the P4 procapsids. We have determined the high-resolution structure of P4 procapsids, allowing us to build an atomic model for Sid as well as the gpN capsid protein. Sixty copies of Sid form an intertwined dodecahedral cage around the T = 4 procapsid, making contact with only one out of the four symmetrically non-equivalent copies of gpN. Our structure provides a basis for understanding the sir mutants in gpN that prevent small capsid formation, as well as the nms "super-sid" mutations that counteract the effect of the sir mutations, and suggests a model for capsid size redirection by Sid.
Collapse
Affiliation(s)
| | | | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.K.); (C.M.R.)
| |
Collapse
|
21
|
Addressing the Molecular Mechanism of Longitudinal Lamin Assembly Using Chimeric Fusions. Cells 2020; 9:cells9071633. [PMID: 32645958 PMCID: PMC7407374 DOI: 10.3390/cells9071633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022] Open
Abstract
The molecular architecture and assembly mechanism of intermediate filaments have been enigmatic for decades. Among those, lamin filaments are of particular interest due to their universal role in cell nucleus and numerous disease-related mutations. Filament assembly is driven by specific interactions of the elementary dimers, which consist of the central coiled-coil rod domain flanked by non-helical head and tail domains. We aimed to investigate the longitudinal 'head-to-tail' interaction of lamin dimers (the so-called ACN interaction), which is crucial for filament assembly. To this end, we prepared a series of recombinant fragments of human lamin A centred around the N- and C-termini of the rod. The fragments were stabilized by fusions to heterologous capping motifs which provide for a correct formation of parallel, in-register coiled-coil dimers. As a result, we established crystal structures of two N-terminal fragments one of which highlights the propensity of the coiled-coil to open up, and one C-terminal rod fragment. Additional studies highlighted the capacity of such N- and C-terminal fragments to form specific complexes in solution, which were further characterized using chemical cross-linking. These data yielded a molecular model of the ACN complex which features a 6.5 nm overlap of the rod ends.
Collapse
|
22
|
Bárdy P, Füzik T, Hrebík D, Pantůček R, Thomas Beatty J, Plevka P. Structure and mechanism of DNA delivery of a gene transfer agent. Nat Commun 2020; 11:3034. [PMID: 32541663 PMCID: PMC7296036 DOI: 10.1038/s41467-020-16669-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/17/2020] [Indexed: 11/09/2022] Open
Abstract
Alphaproteobacteria, which are the most abundant microorganisms of temperate oceans, produce phage-like particles called gene transfer agents (GTAs) that mediate lateral gene exchange. However, the mechanism by which GTAs deliver DNA into cells is unknown. Here we present the structure of the GTA of Rhodobacter capsulatus (RcGTA) and describe the conformational changes required for its DNA ejection. The structure of RcGTA resembles that of a tailed phage, but it has an oblate head shortened in the direction of the tail axis, which limits its packaging capacity to less than 4,500 base pairs of linear double-stranded DNA. The tail channel of RcGTA contains a trimer of proteins that possess features of both tape measure proteins of long-tailed phages from the family Siphoviridae and tail needle proteins of short-tailed phages from the family Podoviridae. The opening of a constriction within the RcGTA baseplate enables the ejection of DNA into bacterial periplasm.
Collapse
Affiliation(s)
- Pavol Bárdy
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
23
|
Alonso A, Fabritius A, Ozzello C, Andreas M, Klenchin D, Rayment I, Winey M. Yeast pericentrin/Spc110 contains multiple domains required for tethering the γ-tubulin complex to the centrosome. Mol Biol Cell 2020; 31:1437-1452. [PMID: 32374651 PMCID: PMC7359572 DOI: 10.1091/mbc.e20-02-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Saccharomyces cerevisiae spindle pole body (SPB) serves as the sole microtubule-organizing center of the cell, nucleating both cytoplasmic and nuclear microtubules. Yeast pericentrin, Spc110, binds to and activates the γ-tubulin complex via its N terminus, allowing nuclear microtubule polymerization to occur. The Spc110 C terminus links the γ-tubulin complex to the central plaque of the SPB by binding to Spc42, Spc29, and calmodulin (Cmd1). Here, we show that overexpression of the C terminus of Spc110 is toxic to cells and correlates with its localization to the SPB. Spc110 domains that are required for SPB localization and toxicity include its Spc42-, Spc29-, and Cmd1-binding sites. Overexpression of the Spc110 C terminus induces SPB defects and disrupts microtubule organization in both cycling and G2/M arrested cells. Notably, the two mitotic SPBs are affected in an asymmetric manner such that one SPB appears to be pulled away from the nucleus toward the cortex but remains attached via a thread of nuclear envelope. This SPB also contains relatively fewer microtubules and less endogenous Spc110. Our data suggest that overexpression of the Spc110 C terminus acts as a dominant-negative mutant that titrates endogenous Spc110 from the SPB causing spindle defects.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Amy Fabritius
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Courtney Ozzello
- The Boulder Laboratory for 3D Electron Microscopy of Cells, Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309
| | - Mike Andreas
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Dima Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
24
|
Dokland T. Molecular Piracy: Redirection of Bacteriophage Capsid Assembly by Mobile Genetic Elements. Viruses 2019; 11:v11111003. [PMID: 31683607 PMCID: PMC6893505 DOI: 10.3390/v11111003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/21/2023] Open
Abstract
Horizontal transfer of mobile genetic elements (MGEs) is a key aspect of the evolution of bacterial pathogens. Transduction by bacteriophages is especially important in this process. Bacteriophages—which assemble a machinery for efficient encapsidation and transfer of genetic material—often transfer MGEs and other chromosomal DNA in a more-or-less nonspecific low-frequency process known as generalized transduction. However, some MGEs have evolved highly specific mechanisms to take advantage of bacteriophages for their own propagation and high-frequency transfer while strongly interfering with phage production—“molecular piracy”. These mechanisms include the ability to sense the presence of a phage entering lytic growth, specific recognition and packaging of MGE genomes into phage capsids, and the redirection of the phage assembly pathway to form capsids with a size more appropriate for the size of the MGE. This review focuses on the process of assembly redirection, which has evolved convergently in many different MGEs from across the bacterial universe. The diverse mechanisms that exist suggest that size redirection is an evolutionarily advantageous strategy for many MGEs.
Collapse
Affiliation(s)
- Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35242, USA.
| |
Collapse
|
25
|
Ignatiou A, Brasilès S, El Sadek Fadel M, Bürger J, Mielke T, Topf M, Tavares P, Orlova EV. Structural transitions during the scaffolding-driven assembly of a viral capsid. Nat Commun 2019; 10:4840. [PMID: 31649265 PMCID: PMC6813328 DOI: 10.1038/s41467-019-12790-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/25/2019] [Indexed: 11/11/2022] Open
Abstract
Assembly of tailed bacteriophages and herpesviruses starts with formation of procapsids (virion precursors without DNA). Scaffolding proteins (SP) drive assembly by chaperoning the major capsid protein (MCP) to build an icosahedral lattice. Here we report near-atomic resolution cryo-EM structures of the bacteriophage SPP1 procapsid, the intermediate expanded procapsid with partially released SPs, and the mature capsid with DNA. In the intermediate state, SPs are bound only to MCP pentons and to adjacent subunits from hexons. SP departure results in the expanded state associated with unfolding of the MCP N-terminus and straightening of E-loops. The newly formed extensive inter-capsomere bonding appears to compensate for release of SPs that clasp MCP capsomeres together. Subsequent DNA packaging instigates bending of MCP A domain loops outwards, closing the hexons central opening and creating the capsid auxiliary protein binding interface. These findings provide a molecular basis for the sequential structural rearrangements during viral capsid maturation.
Collapse
Affiliation(s)
- Athanasios Ignatiou
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Sandrine Brasilès
- Department of Virology, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Mehdi El Sadek Fadel
- Department of Virology, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Jörg Bürger
- Max-Planck-Institut für Molekulare Genetik, Microscopy and Cryo-Electron Microscopy Group, Ihnestraße 63-73, 14195, Berlin, Germany
- Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Thorsten Mielke
- Max-Planck-Institut für Molekulare Genetik, Microscopy and Cryo-Electron Microscopy Group, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Paulo Tavares
- Department of Virology, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
26
|
Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. SCIENCE ADVANCES 2019; 5:eaaw7414. [PMID: 31663016 PMCID: PMC6795507 DOI: 10.1126/sciadv.aaw7414] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/23/2019] [Indexed: 06/01/2023]
Abstract
Phages infecting Staphylococcus aureus can be used as therapeutics against antibiotic-resistant bacterial infections. However, there is limited information about the mechanism of genome delivery of phages that infect Gram-positive bacteria. Here, we present the structures of native S. aureus phage P68, genome ejection intermediate, and empty particle. The P68 head contains 72 subunits of inner core protein, 15 of which bind to and alter the structure of adjacent major capsid proteins and thus specify attachment sites for head fibers. Unlike in the previously studied phages, the head fibers of P68 enable its virion to position itself at the cell surface for genome delivery. The unique interaction of one end of P68 DNA with one of the 12 portal protein subunits is disrupted before the genome ejection. The inner core proteins are released together with the DNA and enable the translocation of phage genome across the bacterial membrane into the cytoplasm.
Collapse
Affiliation(s)
- Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dana Štveráková
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Roman Pantůček
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
27
|
Whitehead RD, Teschke CM, Alexandrescu AT. NMR Mapping of Disordered Segments from a Viral Scaffolding Protein Enclosed in a 23 MDa Procapsid. Biophys J 2019; 117:1387-1392. [PMID: 31585705 DOI: 10.1016/j.bpj.2019.08.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 01/10/2023] Open
Abstract
Scaffolding proteins (SPs) are required for the capsid shell assembly of many tailed double-stranded DNA bacteriophages, some archaeal viruses, herpesviruses, and adenoviruses. Despite their importance, only one high-resolution structure is available for SPs within procapsids. Here, we use the inherent size limit of NMR to identify mobile segments of the 303-residue phage P22 SP free in solution and when incorporated into a ∼23 MDa procapsid complex. Free SP gives NMR signals from its acidic N-terminus (residues 1-40) and basic C-terminus (residues 264-303), whereas NMR signals from the middle segment (residues 41-263) are missing because of intermediate conformational exchange on the NMR chemical shift timescale. When SP is incorporated into P22 procapsids, NMR signals from the C-terminal helix-turn-helix domain disappear because of binding to the procapsid interior. Signals from the N-terminal domain persist, indicating that this segment retains flexibility when bound to procapsids. The unstructured character of the N-terminus, coupled with its high content of negative charges, is likely important for dissociation and release of SP during the double-stranded DNA genome packaging step accompanying phage maturation.
Collapse
Affiliation(s)
- Richard D Whitehead
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut; Department of Chemistry, University of Connecticut, Storrs, Connecticut.
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
28
|
Drennan AC, Krishna S, Seeger MA, Andreas MP, Gardner JM, Sether EKR, Jaspersen SL, Rayment I. Structure and function of Spc42 coiled-coils in yeast centrosome assembly and duplication. Mol Biol Cell 2019; 30:1505-1522. [PMID: 30969903 PMCID: PMC6724696 DOI: 10.1091/mbc.e19-03-0167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 11/12/2022] Open
Abstract
Centrosomes and spindle pole bodies (SPBs) are membraneless organelles whose duplication and assembly is necessary for bipolar mitotic spindle formation. The structural organization and functional roles of major proteins in these organelles can provide critical insights into cell division control. Spc42, a phosphoregulated protein with an N-terminal dimeric coiled-coil (DCC), assembles into a hexameric array at the budding yeast SPB core, where it functions as a scaffold for SPB assembly. Here, we present in vitro and in vivo data to elucidate the structural arrangement and biological roles of Spc42 elements. Crystal structures reveal details of two additional coiled-coils in Spc42: a central trimeric coiled-coil and a C-terminal antiparallel DCC. Contributions of the three Spc42 coiled-coils and adjacent undetermined regions to the formation of an ∼145 Å hexameric lattice in an in vitro lipid monolayer assay and to SPB duplication and assembly in vivo reveal structural and functional redundancy in Spc42 assembly. We propose an updated model that incorporates the inherent symmetry of these Spc42 elements into a lattice, and thereby establishes the observed sixfold symmetry. The implications of this model for the organization of the central SPB core layer are discussed.
Collapse
Affiliation(s)
- Amanda C. Drennan
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| | | | - Mark A. Seeger
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| | | | | | | | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| |
Collapse
|
29
|
Xu J, Wang D, Gui M, Xiang Y. Structural assembly of the tailed bacteriophage ϕ29. Nat Commun 2019; 10:2366. [PMID: 31147544 PMCID: PMC6542822 DOI: 10.1038/s41467-019-10272-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/24/2019] [Indexed: 11/30/2022] Open
Abstract
The mature virion of the tailed bacteriophage ϕ29 is an ~33 MDa complex that contains more than 450 subunits of seven structural proteins assembling into a prolate head and a short non-contractile tail. Here, we report the near-atomic structures of the ϕ29 pre-genome packaging head (prohead), the mature virion and the genome-emptied virion. Structural comparisons suggest local rotation or oscillation of the head-tail connector upon DNA packaging and release. Termination of the DNA packaging occurs through pressure-dependent correlative positional and conformational changes in the connector. The funnel-shaped tail lower collar attaches the expanded narrow end of the connector and has a 180-Å long, 24-strand β barrel narrow stem tube that undergoes conformational changes upon genome release. The appendages form an interlocked assembly attaching the tail around the collar. The membrane active long loops at the distal end of the tail knob exit during the late stage of infection and form the cone-shaped tip of a largely hydrophobic helix barrel, prepared for membrane penetration. Mature particles of bacteriophage ϕ29 consist of a 33-MDa complex formed by over 450 subunits, assembled into a head and a short tail. Here, Xu et al. report the near-atomic structures of the ϕ29 prohead, the mature virion and the genome-emptied virion, providing insights into DNA packaging and release.
Collapse
Affiliation(s)
- Jingwei Xu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.,Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093, Zürich, Switzerland
| | - Dianhong Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Miao Gui
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
30
|
Serna M. Hands on Methods for High Resolution Cryo-Electron Microscopy Structures of Heterogeneous Macromolecular Complexes. Front Mol Biosci 2019; 6:33. [PMID: 31157234 PMCID: PMC6529575 DOI: 10.3389/fmolb.2019.00033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/24/2019] [Indexed: 01/23/2023] Open
Abstract
Electron microscopy of frozen hydrated samples (cryo-EM) is a powerful structural technique that allows the direct study of functional macromolecular complexes in an almost physiological environment. Protein macromolecular complexes are dynamic structures that usually hold together by an intricate network of protein-protein interactions that can be weak and transient. Moreover, a standard feature of many of these complexes is that they behave as nanomachines able to undergo functionally relevant conformational changes in one or several complex components. Among all the other main structural biology techniques, only cryo-EM has the potential of successfully dealing at the same time with both sample heterogeneity and inherent flexibility. The cryo-EM field is currently undergoing a revolution thanks to groundbreaking technical developments that have brought within our reach the possibility of solving the structure of biological complexes at atomic resolution. These technical developments have been mostly focused on new direct electron detector technology and improved sample preparation methods leading to better image quality. This fact has in turn required the development of new and better image processing algorithms to make the most of the higher quality data. The aim of this review is to provide a brief overview of some reported examples of single particle analysis strategies designed to find different conformational and compositional states within target macromolecular complex and specifically to deal with it to reach higher resolution information. Different image processing methodologies specifically aimed to symmetric or pseudo-symmetric protein complexes will also be discussed.
Collapse
Affiliation(s)
- Marina Serna
- Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
31
|
Virus capsid assembly across different length scales inspire the development of virus-based biomaterials. Curr Opin Virol 2019; 36:38-46. [PMID: 31071601 DOI: 10.1016/j.coviro.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 01/26/2023]
Abstract
In biology, there are an abundant number of self-assembled structures organized according to hierarchical levels of complexity. In some examples, the assemblies formed at each level exhibit unique properties and behaviors not present in individual components. Viruses are an example of such where first individual subunits come together to form a capsid structure, some utilizing a scaffolding protein to template or catalyze the capsid formation. Increasing the level of complexity, the viral capsids can then be used as building blocks of higher-level assemblies. This has inspired scientists to design and construct virus capsid-based functional nano-materials. This review provides some insight into the assembly of virus capsids across several length scales, and certain properties that arise at different levels, providing examples found in naturally occurring systems and those that are synthetically designed.
Collapse
|
32
|
Image processing for cryogenic transmission electron microscopy of symmetry-mismatched complexes. Biosci Rep 2018; 38:BSR20170203. [PMID: 29439140 PMCID: PMC5857907 DOI: 10.1042/bsr20170203] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022] Open
Abstract
Cryogenic transmission electron microscopy (cryo-TEM) is a high-resolution biological imaging method, whereby biological samples, such as purified proteins, macromolecular complexes, viral particles, organelles and cells, are embedded in vitreous ice preserving their native structures. Due to sensitivity of biological materials to the electron beam of the microscope, only relatively low electron doses can be applied during imaging. As a result, the signal arising from the structure of interest is overpowered by noise in the images. To increase the signal-to-noise ratio, different image processing-based strategies that aim at coherent averaging of signal have been devised. In such strategies, images are generally assumed to arise from multiple identical copies of the structure. Prior to averaging, the images must be grouped according to the view of the structure they represent and images representing the same view must be simultaneously aligned relatively to each other. For computational reconstruction of the 3D structure, images must contain different views of the original structure. Structures with multiple symmetry-related substructures are advantageous in averaging approaches because each image provides multiple views of the substructures. However, the symmetry assumption may be valid for only parts of the structure, leading to incoherent averaging of the other parts. Several image processing approaches have been adapted to tackle symmetry-mismatched substructures with increasing success. Such structures are ubiquitous in nature and further computational method development is needed to understanding their biological functions.
Collapse
|
33
|
Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy. Viruses 2018; 10:v10020067. [PMID: 29414851 PMCID: PMC5850374 DOI: 10.3390/v10020067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
The majority of viruses on Earth form capsids built by multiple copies of one or more types of a coat protein arranged with 532 symmetry, generating an icosahedral shell. This highly repetitive structure is ideal to closely pack identical protein subunits and to enclose the nucleic acid genomes. However, the icosahedral capsid is not merely a passive cage but undergoes dynamic events to promote packaging, maturation and the transfer of the viral genome into the host. These essential processes are often mediated by proteinaceous complexes that interrupt the shell’s icosahedral symmetry, providing a gateway through the capsid. In this review, we take an inventory of molecular structures observed either internally, or at the 5-fold vertices of icosahedral DNA viruses that infect bacteria, archea and eukaryotes. Taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of individual components, we review the design principles of non-icosahedral structural components that interrupt icosahedral symmetry and discuss how these macromolecules play vital roles in genome packaging, ejection and host receptor-binding.
Collapse
|
34
|
Dearborn AD, Wall EA, Kizziah JL, Klenow L, Parker LK, Manning KA, Spilman MS, Spear JM, Christie GE, Dokland T. Competing scaffolding proteins determine capsid size during mobilization of Staphylococcus aureus pathogenicity islands. eLife 2017; 6:30822. [PMID: 28984245 PMCID: PMC5644958 DOI: 10.7554/elife.30822] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/02/2017] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs), such as SaPI1, exploit specific helper bacteriophages, like 80α, for their high frequency mobilization, a process termed 'molecular piracy'. SaPI1 redirects the helper's assembly pathway to form small capsids that can only accommodate the smaller SaPI1 genome, but not a complete phage genome. SaPI1 encodes two proteins, CpmA and CpmB, that are responsible for this size redirection. We have determined the structures of the 80α and SaPI1 procapsids to near-atomic resolution by cryo-electron microscopy, and show that CpmB competes with the 80α scaffolding protein (SP) for a binding site on the capsid protein (CP), and works by altering the angle between capsomers. We probed these interactions genetically and identified second-site suppressors of lethal mutations in SP. Our structures show, for the first time, the detailed interactions between SP and CP in a bacteriophage, providing unique insights into macromolecular assembly processes.
Collapse
Affiliation(s)
- Altaira D Dearborn
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Erin A Wall
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States
| | - James L Kizziah
- Department of Microbiology, University of Alabama, Birmingham, United States
| | - Laura Klenow
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States
| | - Laura K Parker
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States.,Department of Microbiology, University of Alabama, Birmingham, United States
| | - Keith A Manning
- Department of Microbiology, University of Alabama, Birmingham, United States
| | | | - John M Spear
- Biological Science Imaging Resource, Florida State University, Tallahassee, United States
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States
| | - Terje Dokland
- Department of Microbiology, University of Alabama, Birmingham, United States
| |
Collapse
|
35
|
Design considerations in coiled-coil fusion constructs for the structural determination of a problematic region of the human cardiac myosin rod. J Struct Biol 2017; 200:219-228. [PMID: 28743637 DOI: 10.1016/j.jsb.2017.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/21/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022]
Abstract
X-ray structural determination of segments of the myosin rod has proved difficult because of the strong salt-dependent aggregation properties and repeating pattern of charges on the surface of the coiled-coil that lead to the formation of paracrystals. This problem has been resolved in part through the use of globular assembly domains that improve protein folding and prevent aggregation. The primary consideration now in designing coiled-coil fusion constructs for myosin is deciding where to truncate the coiled-coil and which amino acid residues to include from the folding domain. This is especially important for myosin that contains numerous regions of low predicted coiled-coil propensity. Here we describe the strategy adopted to determine the structure of the region that extends from Arg1677 - Leu1797 that included two areas that do not show a strong sequence signature of a conventional left-handed coiled coil or canonical heptad repeat. This demonstrates again that, with careful choice of fusion constructs, overlapping structures exhibit very similar conformations for the myosin rod fragments in the canonical regions. However, conformational variability is seen around Leu1706 which is a hot spot for cardiomyopathy mutations suggesting that this might be important for function.
Collapse
|
36
|
Fokine A, Rossmann MG. Common Evolutionary Origin of Procapsid Proteases, Phage Tail Tubes, and Tubes of Bacterial Type VI Secretion Systems. Structure 2016; 24:1928-1935. [PMID: 27667692 PMCID: PMC5093050 DOI: 10.1016/j.str.2016.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 08/20/2016] [Indexed: 01/07/2023]
Abstract
Many large viruses, including tailed dsDNA bacteriophages and herpesviruses, assemble their capsids via formation of precursors, called procapsids or proheads. The prohead has an internal core, made of scaffolding proteins, and an outer shell, formed by the major capsid protein. The prohead usually contains a protease, which is activated during capsid maturation to destroy the inner core and liberate space for the genome. Here, we report a 2.0 Å resolution structure of the pentameric procapsid protease of bacteriophage T4, gene product (gp)21. The structure corresponds to the enzyme's pre-active state in which its N-terminal region blocks the catalytic center, demonstrating that the activation mechanism involves self-cleavage of nine N-terminal residues. We describe similarities and differences between T4 gp21 and related herpesvirus proteases. We found that gp21 and the herpesvirus proteases have similarity with proteins forming the tubes of phage tails and bacterial type VI secretion systems, suggesting their common evolutionary origin.
Collapse
Affiliation(s)
- Andrei Fokine
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA,Correspondence: (A. F); (M. G. R)
| | - Michael G. Rossmann
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA,Correspondence: (A. F); (M. G. R)
| |
Collapse
|
37
|
Farley MM, Tu J, Kearns DB, Molineux IJ, Liu J. Ultrastructural analysis of bacteriophage Φ29 during infection of Bacillus subtilis. J Struct Biol 2016; 197:163-171. [PMID: 27480510 DOI: 10.1016/j.jsb.2016.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022]
Abstract
Recent advances in cryo-electron tomography (cryo-ET) have allowed direct visualization of the initial interactions between bacteriophages and their hosts. Previous studies focused on phage infection in Gram-negative bacteria but it is of particular interest how phages penetrate the thick, highly cross-linked Gram-positive cell wall. Here we detail structural intermediates of phage Φ29 during infection of Bacillus subtilis. Use of a minicell-producing strain facilitated in situ tomographic reconstructions of infecting phage particles. Φ29 initially contacts the cell wall at an angle through a subset of the twelve appendages, which are attached to the collar at the head proximal portion of the tail knob. The appendages are flexible and switch between extended and downward conformations during this stage of reversible adsorption; appendages enzymatically hydrolyze wall teichoic acids to bring the phage closer to the cell. A cell wall-degrading enzyme at the distal tip of the tail knob locally digests peptidoglycan, facilitating penetration of the tail further into the cell wall, and the phage particle reorients so that the tail becomes perpendicular to the cell surface. All twelve appendages attain the same "down" conformation during this stage of adsorption. Once the tail has become totally embedded in the cell wall, the tip can fuse with the cytoplasmic membrane. The membrane bulges out, presumably to facilitate genome ejection into the cytoplasm, and the deformation remains after complete ejection. This study provides the first visualization of the structural changes occurring in a phage particle during adsorption and genome transfer into a Gram-positive bacterium.
Collapse
Affiliation(s)
- Madeline M Farley
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Jiagang Tu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| | - Ian J Molineux
- Center for Infectious Disease, Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Abstract
Frealign is a software tool designed to process electron microscope images of single molecules and complexes to obtain reconstructions at the highest possible resolution. It provides a number of refinement parameters and options that allow users to tune their refinement to achieve specific goals, such as masking to classify selected regions within a particle, control over the refinement of specific alignment parameters to accommodate various data collection schemes, refinement of pseudosymmetric particles, and generation of initial maps. This chapter provides a general overview of Frealign functions and a more detailed guide to using Frealign in typical scenarios.
Collapse
|
39
|
Abstract
This chapter describes algorithmic advances in the RELION software, and how these are used in high-resolution cryo-electron microscopy (cryo-EM) structure determination. Since the presence of projections of different three-dimensional structures in the dataset probably represents the biggest challenge in cryo-EM data processing, special emphasis is placed on how to deal with structurally heterogeneous datasets. As such, this chapter aims to be of practical help to those who wish to use RELION in their cryo-EM structure determination efforts.
Collapse
|
40
|
Korkmaz EN, Taylor KC, Andreas MP, Ajay G, Heinze NT, Cui Q, Rayment I. A composite approach towards a complete model of the myosin rod. Proteins 2016; 84:172-189. [PMID: 26573747 PMCID: PMC4715562 DOI: 10.1002/prot.24964] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/23/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022]
Abstract
Sarcomeric myosins have the remarkable ability to form regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. This has been established for over 50 years and yet a molecular model for the thick filament has not been attained. In part this is due to the lack of a detailed molecular model for the coiled-coil that constitutes the myosin rod. The ability to self-assemble resides in the C-terminal section of myosin known as light meromyosin (LMM) which exhibits strong salt-dependent aggregation that has inhibited structural studies. Here we evaluate the feasibility of generating a complete model for the myosin rod by combining overlapping structures of five sections of coiled-coil covering 164 amino acid residues which constitute 20% of LMM. Each section contains ∼ 7-9 heptads of myosin. The problem of aggregation was overcome by incorporating the globular folding domains, Gp7 and Xrcc4 which enhance crystallization. The effect of these domains on the stability and conformation of the myosin rod was examined through biophysical studies and overlapping structures. In addition, a computational approach was developed to combine the sections into a contiguous model. The structures were aligned, trimmed to form a contiguous model, and simulated for >700 ns to remove the discontinuities and achieve an equilibrated conformation that represents the native state. This experimental and computational strategy lays the foundation for building a model for the entire myosin rod.
Collapse
Affiliation(s)
- E. Nihal Korkmaz
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, WI 53706, USA
| | - Keenan C. Taylor
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| | - Michael P. Andreas
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| | - Guatam Ajay
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| | - Nathan T. Heinze
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, WI 53706, USA
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
41
|
Bai XC, Rajendra E, Yang G, Shi Y, Scheres SHW. Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife 2015; 4. [PMID: 26623517 PMCID: PMC4718806 DOI: 10.7554/elife.11182] [Citation(s) in RCA: 468] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
Human γ-secretase is an intra-membrane protease that cleaves many different substrates. Aberrant cleavage of Notch is implicated in cancer, while abnormalities in cutting amyloid precursor protein lead to Alzheimer's disease. Our previous cryo-EM structure of γ-secretase revealed considerable disorder in its catalytic subunit presenilin. Here, we describe an image classification procedure that characterizes molecular plasticity at the secondary structure level, and apply this method to identify three distinct conformations in our previous sample. In one of these conformations, an additional transmembrane helix is visible that cannot be attributed to the known components of γ-secretase. In addition, we present a γ-secretase structure in complex with the dipeptidic inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). Our results reveal how conformational mobility in the second and sixth transmembrane helices of presenilin is greatly reduced upon binding of DAPT or the additional helix, and form the basis for a new model of how substrate enters the transmembrane domain. DOI:http://dx.doi.org/10.7554/eLife.11182.001 An enzyme called gamma-secretase cuts other proteins in cells into smaller pieces. Like most enzymes, gamma-secretase is expected to move through several different three-dimensional shapes to perform its role, and identifying these structures could help us to understand how the enzyme works. One of the proteins that is targeted by gamma-secretase is called amyloid precursor protein, and cutting this protein results in the formation of so-called amyloid-beta peptides. When gamma-secretase doesn't work properly, these amyloid-beta peptides can accumulate in the brain and large accumulations of these peptides have been observed in the brains of patients with Alzheimer's disease. Earlier in 2015, a group of researchers used a technique called cryo-electron microscopy (cryo-EM) to produce a three-dimensional model of gamma-secretase. This revealed that the active site of the enzyme, that is, the region that is used to cut the other proteins, is particularly flexible. Now, Bai et al. – including many of the researchers from the earlier work – studied this flexibility in more detail. For the experiments, gamma-secretase was exposed to an inhibitor molecule that stopped it from cutting other proteins. This meant that the structure of gamma-secretase became more rigid than normal, which made it possible to collect more detailed structural information using cryo-EM. Bai et al. also developed new methods for processing images to separate the images of individual enzyme molecules based on the different shapes they had adopted at the time. These methods make it possible to view a mixture of very similar enzyme structures that differ only in a small region of the protein (in this case the active site). In the future, it would be useful to repeat these imaging experiments using a range of different molecules that alter the activity of gamma-secretase. Furthermore, the new image processing methods developed by Bai et al. could be used to study flexibility in the shapes of other proteins. DOI:http://dx.doi.org/10.7554/eLife.11182.002
Collapse
Affiliation(s)
- Xiao-chen Bai
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Eeson Rajendra
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Guanghui Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | | |
Collapse
|
42
|
Hernando-Pérez M, Cartagena-Rivera AX, Lošdorfer Božič A, Carrillo PJP, San Martín C, Mateu MG, Raman A, Podgornik R, de Pablo PJ. Quantitative nanoscale electrostatics of viruses. NANOSCALE 2015; 7:17289-98. [PMID: 26228582 DOI: 10.1039/c5nr04274g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed ϕ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.
Collapse
Affiliation(s)
- M Hernando-Pérez
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center - IFIMAC, Universidad Autónoma de Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The Minor Capsid Protein VP11 of Thermophilic Bacteriophage P23-77 Facilitates Virus Assembly by Using Lipid-Protein Interactions. J Virol 2015; 89:7593-603. [PMID: 25972558 DOI: 10.1128/jvi.00262-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Thermus thermophilus bacteriophage P23-77 is the type member of a new virus family of icosahedral, tailless, inner-membrane-containing double-stranded DNA (dsDNA) viruses infecting thermophilic bacteria and halophilic archaea. The viruses have a unique capsid architecture consisting of two major capsid proteins assembled in various building blocks. We analyzed the function of the minor capsid protein VP11, which is the third known capsid component in bacteriophage P23-77. Our findings show that VP11 is a dynamically elongated dimer with a predominantly α-helical secondary structure and high thermal stability. The high proportion of basic amino acids in the protein enables electrostatic interaction with negatively charged molecules, including nucleic acid and large unilamellar lipid vesicles (LUVs). The plausible biological function of VP11 is elucidated by demonstrating the interactions of VP11 with Thermus-derived LUVs and with the major capsid proteins by means of the dynamic-light-scattering technique. In particular, the major capsid protein VP17 was able to link VP11-complexed LUVs into larger particles, whereas the other P23-77 major capsid protein, VP16, was unable to link VP11-comlexed LUVs. Our results rule out a previously suggested penton function for VP11. Instead, the electrostatic membrane association of VP11 triggers the binding of the major capsid protein VP17, thus facilitating a controlled incorporation of the two different major protein species into the assembling capsid. IMPORTANCE The study of thermophilic viruses with inner membranes provides valuable insights into the mechanisms used for stabilization and assembly of protein-lipid systems at high temperatures. Our results reveal a novel way by which an internal membrane and outer capsid shell are linked in a virus that uses two different major protein species for capsid assembly. We show that a positive protein charge is important in order to form electrostatic interactions with the lipid surface, thereby facilitating the incorporation of other capsid proteins on the membrane surface. This implies an alternative function for basic proteins present in the virions of other lipid-containing thermophilic viruses, whose proposed role in genome packaging is based on their capability to bind DNA. The unique minor capsid protein of bacteriophage P23-77 resembles in its characteristics the scaffolding proteins of tailed phages, though it constitutes a substantial part of the mature virion.
Collapse
|
44
|
Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions. Proc Natl Acad Sci U S A 2014; 111:E4606-14. [PMID: 25313071 DOI: 10.1073/pnas.1407020111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many dsDNA viruses first assemble a DNA-free procapsid, using a scaffolding protein-dependent process. The procapsid, then, undergoes dramatic conformational maturation while packaging DNA. For bacteriophage T7 we report the following four single-particle cryo-EM 3D reconstructions and the derived atomic models: procapsid (4.6-Å resolution), an early-stage DNA packaging intermediate (3.5 Å), a later-stage packaging intermediate (6.6 Å), and the final infectious phage (3.6 Å). In the procapsid, the N terminus of the major capsid protein, gp10, has a six-turn helix at the inner surface of the shell, where each skewed hexamer of gp10 interacts with two scaffolding proteins. With the exit of scaffolding proteins during maturation the gp10 N-terminal helix unfolds and swings through the capsid shell to the outer surface. The refolded N-terminal region has a hairpin that forms a novel noncovalent, joint-like, intercapsomeric interaction with a pocket formed during shell expansion. These large conformational changes also result in a new noncovalent, intracapsomeric topological linking. Both interactions further stabilize the capsids by interlocking all pentameric and hexameric capsomeres in both DNA packaging intermediate and phage. Although the final phage shell has nearly identical structure to the shell of the DNA-free intermediate, surprisingly we found that the icosahedral faces of the phage are slightly (∼4 Å) contracted relative to the faces of the intermediate, despite the internal pressure from the densely packaged DNA genome. These structures provide a basis for understanding the capsid maturation process during DNA packaging that is essential for large numbers of dsDNA viruses.
Collapse
|
45
|
Keller N, delToro D, Grimes S, Jardine PJ, Smith DE. Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage Phi29. PHYSICAL REVIEW LETTERS 2014; 112:248101. [PMID: 24996111 PMCID: PMC5001848 DOI: 10.1103/physrevlett.112.248101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Indexed: 05/12/2023]
Abstract
We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine(3+) causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interactions facilitate packaging despite increasing the energy of the theoretical optimum spooled DNA conformation.
Collapse
Affiliation(s)
- Nicholas Keller
- Department of Physics, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| | - Damian delToro
- Department of Physics, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| | - Shelley Grimes
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, 515 Delaware Street SE, Minneapolis, Minnesota 55455, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, 515 Delaware Street SE, Minneapolis, Minnesota 55455, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA
| |
Collapse
|
46
|
Oh B, Moyer CL, Hendrix RW, Duda RL. The delta domain of the HK97 major capsid protein is essential for assembly. Virology 2014; 456-457:171-8. [PMID: 24889236 DOI: 10.1016/j.virol.2014.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 01/14/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Abstract
The 102 residue N-terminal extension of the HK97 major capsid protein, the delta domain, is normally present during the assembly of immature HK97 procapsids, but it is removed during maturation like well-known internal scaffolding proteins of other tailed phages and herpesviruses. The delta domain also shares other unusual properties usually found in other viral and phage scaffolding proteins, including its location on the inside of the capsid, a high predicted and measured α-helical content, and an additional prediction for the ability to form parallel coiled-coils. Viral scaffolding proteins are essential for capsid assembly and phage viability, so we tested whether the HK97 delta domain was essential for capsid assembly. We studied the effects of deleting all or parts of the delta domain on capsid assembly and on complementation of capsid-protein-defective phage, and our results demonstrate that the delta domain is required for HK97 capsid assembly.
Collapse
Affiliation(s)
- Bonnie Oh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Crystal L Moyer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
47
|
Highly specific salt bridges govern bacteriophage P22 icosahedral capsid assembly: identification of the site in coat protein responsible for interaction with scaffolding protein. J Virol 2014; 88:5287-97. [PMID: 24600011 DOI: 10.1128/jvi.00036-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Icosahedral virus assembly requires a series of concerted and highly specific protein-protein interactions to produce a proper capsid. In bacteriophage P22, only coat protein (gp5) and scaffolding protein (gp8) are needed to assemble a procapsid-like particle, both in vivo and in vitro. In scaffolding protein's coat binding domain, residue R293 is required for procapsid assembly, while residue K296 is important but not essential. Here, we investigate the interaction of scaffolding protein with acidic residues in the N-arm of coat protein, since this interaction has been shown to be electrostatic. Through site-directed mutagenesis of genes 5 and 8, we show that changing coat protein N-arm residue 14 from aspartic acid to alanine causes a lethal phenotype. Coat protein residue D14 is shown by cross-linking to interact with scaffolding protein residue R293 and, thus, is intimately involved in proper procapsid assembly. To a lesser extent, coat protein N-arm residue E18 is also implicated in the interaction with scaffolding protein and is involved in capsid size determination, since a cysteine mutation at this site generated petite capsids. The final acidic residue in the N-arm that was tested, E15, is shown to only weakly interact with scaffolding protein's coat binding domain. This work supports growing evidence that surface charge density may be the driving force of virus capsid protein interactions. IMPORTANCE Bacteriophage P22 infects Salmonella enterica serovar Typhimurium and is a model for icosahedral viral capsid assembly. In this system, coat protein interacts with an internal scaffolding protein, triggering the assembly of an intermediate called a procapsid. Previously, we determined that there is a single amino acid in scaffolding protein required for P22 procapsid assembly, although others modulate affinity. Here, we identify partners in coat protein. We show experimentally that relatively weak interactions between coat and scaffolding proteins are capable of driving correctly shaped and sized procapsids and that the lack of these proper protein-protein interfaces leads to aberrant structures. The present work represents an important contribution supporting the hypothesis that virus capsid assembly is governed by seemingly simple interactions. The highly specific nature of the subunit interfaces suggests that these could be good targets for antivirals.
Collapse
|
48
|
Fokine A, Rossmann MG. Molecular architecture of tailed double-stranded DNA phages. BACTERIOPHAGE 2014; 4:e28281. [PMID: 24616838 DOI: 10.4161/bact.28281] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 01/21/2023]
Abstract
The tailed double-stranded DNA bacteriophages, or Caudovirales, constitute ~96% of all the known phages. Although these phages come in a great variety of sizes and morphology, their virions are mainly constructed of similar molecular building blocks via similar assembly pathways. Here we review the structure of tailed double-stranded DNA bacteriophages at a molecular level, emphasizing the structural similarity and common evolutionary origin of proteins that constitute these virions.
Collapse
Affiliation(s)
- Andrei Fokine
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| | - Michael G Rossmann
- Department of Biological Sciences; Purdue University; West Lafayette, IN USA
| |
Collapse
|
49
|
Insights into the structure and assembly of the bacteriophage 29 double-stranded DNA packaging motor. J Virol 2014; 88:3986-96. [PMID: 24403593 DOI: 10.1128/jvi.03203-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The tailed double-stranded DNA (dsDNA) bacteriophage 29 packages its 19.3-kbp genome into a preassembled procapsid structure by using a transiently assembled phage-encoded molecular motor. This process is remarkable considering that compaction of DNA to near-crystalline densities within the confined space of the capsid requires that the packaging motor work against significant entropic, enthalpic, and DNA-bending energies. The motor consists of three phage-encoded components: the dodecameric connector protein gp10, an oligomeric RNA molecule known as the prohead RNA (pRNA), and the homomeric ring ATPase gp16. Although atomic resolution structures of the connector and different pRNA subdomains have been determined, the mechanism of self-assembly and the resulting stoichiometry of the various motor components on the phage capsid have been the subject of considerable controversy. Here a subnanometer asymmetric cryoelectron microscopy (cryo-EM) reconstruction of a connector-pRNA complex at a unique vertex of the procapsid conclusively demonstrates the pentameric symmetry of the pRNA and illuminates the relative arrangement of the connector and the pRNA. Additionally, a combination of biochemical and cryo-EM analyses of motor assembly intermediates suggests a sequence of molecular events that constitute the pathway by which the motor assembles on the head, thereby reconciling conflicting data regarding pRNA assembly and stoichiometry. Taken together, these data provide new insight into the assembly, structure, and mechanism of a complex molecular machine. IMPORTANCE Viruses consist of a protein shell, or capsid, that protects and surrounds their genetic material. Thus, genome encapsidation is a fundamental and essential step in the life cycle of any virus. In dsDNA viruses, powerful molecular motors essentially pump the viral DNA into a preformed protein shell. This article describes how a viral dsDNA packaging motor self-assembles on the viral capsid and provides insight into its mechanism of action.
Collapse
|
50
|
Abstract
Bacteriophage T4 is the most well-studied member of Myoviridae, the most complex family of tailed phages. T4 assembly is divided into three independent pathways: the head, the tail and the long tail fibers. The prolate head encapsidates a 172 kbp concatemeric dsDNA genome. The 925 Å-long tail is surrounded by the contractile sheath and ends with a hexagonal baseplate. Six long tail fibers are attached to the baseplate's periphery and are the host cell's recognition sensors. The sheath and the baseplate undergo large conformational changes during infection. X-ray crystallography and cryo-electron microscopy have provided structural information on protein-protein and protein-nucleic acid interactions that regulate conformational changes during assembly and infection of Escherichia coli cells.
Collapse
Affiliation(s)
- Moh Lan Yap
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-2032, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-2032, USA
| |
Collapse
|