1
|
Kim RG, Huang W, Findinier J, Bunbury F, Redekop P, Shrestha R, Grismer TS, Vilarrasa-Blasi J, Jinkerson RE, Fakhimi N, Fauser F, Jonikas MC, Onishi M, Xu SL, Grossman AR. Chloroplast Methyltransferase Homolog RMT2 is Involved in Photosystem I Biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572672. [PMID: 38187728 PMCID: PMC10769443 DOI: 10.1101/2023.12.21.572672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Oxygen (O2), a dominant element in the atmosphere and essential for most life on Earth, is produced by the photosynthetic oxidation of water. However, metabolic activity can cause accumulation of reactive O2 species (ROS) and severe cell damage. To identify and characterize mechanisms enabling cells to cope with ROS, we performed a high-throughput O2 sensitivity screen on a genome-wide insertional mutant library of the unicellular alga Chlamydomonas reinhardtii. This screen led to identification of a gene encoding a protein designated Rubisco methyltransferase 2 (RMT2). Although homologous to methyltransferases, RMT2 has not been experimentally demonstrated to have methyltransferase activity. Furthermore, the rmt2 mutant was not compromised for Rubisco (first enzyme of Calvin-Benson Cycle) levels but did exhibit a marked decrease in accumulation/activity of photosystem I (PSI), which causes light sensitivity, with much less of an impact on other photosynthetic complexes. This mutant also shows increased accumulation of Ycf3 and Ycf4, proteins critical for PSI assembly. Rescue of the mutant phenotype with a wild-type (WT) copy of RMT2 fused to the mNeonGreen fluorophore indicates that the protein localizes to the chloroplast and appears to be enriched in/around the pyrenoid, an intrachloroplast compartment present in many algae that is packed with Rubisco and potentially hypoxic. These results indicate that RMT2 serves an important role in PSI biogenesis which, although still speculative, may be enriched around or within the pyrenoid.
Collapse
Affiliation(s)
- Rick G. Kim
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Weichao Huang
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Justin Findinier
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Freddy Bunbury
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Petra Redekop
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Ruben Shrestha
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - TaraBryn S Grismer
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | | | - Robert E. Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Neda Fakhimi
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Friedrich Fauser
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Martin C. Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Shou-Ling Xu
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Arthur R. Grossman
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Vergara-Cruces Á, Pramanick I, Pearce D, Vogirala VK, Byrne MJ, Low JKK, Webster MW. Structure of the plant plastid-encoded RNA polymerase. Cell 2024; 187:1145-1159.e21. [PMID: 38428394 DOI: 10.1016/j.cell.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
Chloroplast genes encoding photosynthesis-associated proteins are predominantly transcribed by the plastid-encoded RNA polymerase (PEP). PEP is a multi-subunit complex composed of plastid-encoded subunits similar to bacterial RNA polymerases (RNAPs) stably bound to a set of nuclear-encoded PEP-associated proteins (PAPs). PAPs are essential to PEP activity and chloroplast biogenesis, but their roles are poorly defined. Here, we present cryoelectron microscopy (cryo-EM) structures of native 21-subunit PEP and a PEP transcription elongation complex from white mustard (Sinapis alba). We identify that PAPs encase the core polymerase, forming extensive interactions that likely promote complex assembly and stability. During elongation, PAPs interact with DNA downstream of the transcription bubble and with the nascent mRNA. The models reveal details of the superoxide dismutase, lysine methyltransferase, thioredoxin, and amino acid ligase enzymes that are subunits of PEP. Collectively, these data provide a foundation for the mechanistic understanding of chloroplast transcription and its role in plant growth and adaptation.
Collapse
Affiliation(s)
- Ángel Vergara-Cruces
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ishika Pramanick
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David Pearce
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Vinod K Vogirala
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Matthew J Byrne
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Michael W Webster
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
3
|
Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Crit Rev Biochem Mol Biol 2024; 59:20-68. [PMID: 38449437 DOI: 10.1080/10409238.2024.2318547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Daniel-Ivad P, Ryan KS. Structure of methyltransferase RedM that forms the dimethylpyrrolinium of the bisindole reductasporine. J Biol Chem 2024; 300:105520. [PMID: 38042494 PMCID: PMC10784701 DOI: 10.1016/j.jbc.2023.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Bisindoles are biologically active natural products that arise from the oxidative dimerization of two molecules of l-tryptophan. In bacterial bisindole pathways, a core set of transformations is followed by the action of diverse tailoring enzymes that catalyze reactions that lead to diverse bisindole products. Among bisindoles, reductasporine is distinct due to its dimethylpyrrolinium structure. Its previously reported biosynthetic gene cluster encodes two unique tailoring enzymes, the imine reductase RedE and the dimethyltransferase RedM, which were shown to produce reductasporine from a common bisindole intermediate in recombinant E. coli. To gain more insight into the unique tailoring enzymes in reductasporine assembly, we reconstituted the biosynthetic pathway to reductasporine in vitro and then solved the 1.7 Å resolution structure of RedM. Our work reveals RedM adopts a variety of conformational changes with distinct open and closed conformations, and site-directed mutagenesis alongside sequence analysis identifies important active site residues. Finally, our work sets the stage for understanding how RedM evolved to react with a pyrrolinium scaffold and may enable the development of new dimethyltransferase catalysts.
Collapse
Affiliation(s)
- Phillip Daniel-Ivad
- Department of Chemistry, The University of British Columbia, Vancouver, Canada
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
5
|
Seni S, Singh RK, Prasad M. Dynamics of epigenetic control in plants via SET domain containing proteins: Structural and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194966. [PMID: 37532097 DOI: 10.1016/j.bbagrm.2023.194966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Plants control expression of their genes in a way that involves manipulating the chromatin structural dynamics in order to adapt to environmental changes and carry out developmental processes. Histone modifications like histone methylation are significant epigenetic marks which profoundly and globally modify chromatin, potentially affecting the expression of several genes. Methylation of histones is catalyzed by histone lysine methyltransferases (HKMTs), that features an evolutionary conserved domain known as SET [Su(var)3-9, E(Z), Trithorax]. This methylation is directed at particular lysine (K) residues on H3 or H4 histone. Plant SET domain group (SDG) proteins are categorized into different classes that have been conserved through evolution, and each class have specificity that influences how the chromatin structure operates. The domains discovered in plant SET domain proteins have typically been linked to protein-protein interactions, suggesting that majority of the SDGs function in complexes. Additionally, SDG-mediated histone mark deposition also affects alternative splicing events. In present review, we discussed the diversity of SDGs in plants including their structural properties. Additionally, we have provided comprehensive summary of the functions of the SDG-domain containing proteins in plant developmental processes and response to environmental stimuli have also been highlighted.
Collapse
Affiliation(s)
- Sushmita Seni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.
| |
Collapse
|
6
|
Jurich C, Yang ZJ. High-throughput computational investigation of protein electrostatics and cavity for SAM-dependent methyltransferases. Protein Sci 2023; 32:e4690. [PMID: 37278582 PMCID: PMC10273352 DOI: 10.1002/pro.4690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
S-adenosyl methionine (SAM)-dependent methyl transferases (MTases) are a ubiquitous class of enzymes catalyzing dozens of essential life processes. Despite targeting a large space of substrates with diverse intrinsic reactivity, SAM MTases have similar catalytic efficiency. While understanding of MTase mechanism has grown tremendously through the integration of structural characterization, kinetic assays, and multiscale simulations, it remains elusive how these enzymes have evolved to fit the diverse chemical needs of their respective substrates. In this work, we performed a high-throughput molecular modeling analysis of 91 SAM MTases to better understand how their properties (i.e., electric field [EF] strength and active site volumes) help achieve similar catalytic efficiency toward substrates of different reactivity. We found that EF strengths have largely adjusted to make the target atom a better methyl acceptor. For MTases that target RNA/DNA and histone proteins, our results suggest that EF strength accommodates formal hybridization state and variation in cavity volume trends with diversity of substrate classes. Metal ions in SAM MTases contribute negatively to EF strength for methyl donation and enzyme scaffolds tend to offset these contributions.
Collapse
Affiliation(s)
| | - Zhongyue J. Yang
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashvilleTennesseeUSA
- Data Science InstituteVanderbilt UniversityNashvilleTennesseeUSA
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
7
|
Khella MS, Schnee P, Weirich S, Bui T, Bröhm A, Bashtrykov P, Pleiss J, Jeltsch A. The T1150A cancer mutant of the protein lysine dimethyltransferase NSD2 can introduce H3K36 trimethylation. J Biol Chem 2023:104796. [PMID: 37150325 DOI: 10.1016/j.jbc.2023.104796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play essential roles in gene expression regulation and cancer development. Somatic mutations in PKMTs are frequently observed in cancer cells. In biochemical experiments, we show here that the NSD1 mutations Y1971C, R2017Q and R2017L observed mostly in solid cancers are catalytically inactive suggesting that NSD1 acts as tumor suppressor gene in these tumors. In contrast, the frequently observed T1150A in NSD2 and its T2029A counterpart in NSD1, both observed in leukemia, are hyperactive and introduce up to thee methyl groups in H3K36 in biochemical and cellular assays, while wildtype NSD2 and NSD1 only introduce up to two methyl groups. In molecular dynamics simulations, we determine key mechanistic and structural features controlling the product specificity of this class of enzymes. Simulations with NSD2 revealed that H3K36me3 formation is possible due to an enlarged active site pocket of T1150A and loss of direct contacts of T1150 to critical residues which regulate the product specificity of NSD2. Bioinformatic analyses of published data suggested that the generation of H3K36me3 by NSD2 T1150A could alter gene regulation by antagonizing H3K27me3 finally leading to the upregulation of oncogenes.
Collapse
Affiliation(s)
- Mina S Khella
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, 11566, Egypt
| | - Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Tan Bui
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alexander Bröhm
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
8
|
Zhao YY, Xu XL, Deng H, Wang KN, Rahman A, Ma Y, Shaik F, Wang CM, Qian P, Guo H. Structural and Energetic Origin of Different Product Specificities and Activities for SETD3 and Its Mutants on the Methylation of the β-Actin H73K Peptide: Insights from a QM/MM Study. J Chem Theory Comput 2023; 19:349-362. [PMID: 36520638 DOI: 10.1021/acs.jctc.2c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The methylation of the lysine residue can affect some fundamental biological processes, and specific biological effects of the methylations are often related to product specificity of methyltransferases. The question remains concerning how active-site structural features and dynamics control the activity as well as the number (1, 2, or 3) of methyl groups on methyl lysine products. SET domain containing protein 3 (SETD3) has been identified recently as the β-actin histidine73-N3 methyltransferase, and also, it has a weak methylation activity on the H73K β-actin peptide for which the target H73 residue is mutated into K73. Interestingly, the K73 methylation activity of SETD3 increases significantly as a result of the N255 → A or N255 → F/W273 → A mutation, and the N255A product specificity also differs from that of wild-type. Here, we performed QM/MM molecular dynamics and potential of mean force (PMF) simulations for SETD3 and its mutants (N255A and N255F/W273A) to study how SETD3 and its mutants could have different product specificities and activities for the K73 methylation. The PMF simulations show that the barrier for the first methylation of K73 is higher compared to the barrier of the H73 methylation in SETD3. Moreover, the second methylation of K73 has been found to have a barrier from the free energy simulation that is higher by 2.2 kcal/mol compared to the barrier of the first methyl transfer to K73, agreeing with the suggestion that SETD3 is a monomethylase. For the first, second, and third methylations of K73 in the N255A mutant, the barriers obtained from the PMF simulations for transferring the second and third methyl groups are found to be lower relative to the barrier for the first methyl transfer. Thus, N255A can be considered as a trimethyl lysine methyltransferase. In addition, for the first K73 methylation, the activities from the PMF simulations follow the order of N255F/W273A > N255A > WT, in agreement with experiments. The examination of the structural and dynamic results at the active sites provides better understanding of different product specificities and activities for the K73 methylations in SETD3 and its mutants. It is demonstrated that the existence of well-balanced interactions at the active site leading to the near attack conformation is of crucial importance for the efficient methyl transfers. Moreover, the presence of potential interactions (e.g., the C-H···O and cation-π interactions) that are strengthening at the transition state can also be important. Furthermore, the activity as well as product specificity of the K73 methylation also seems to be controlled by certain active-site water molecules which may be released to provide extra space for the addition of more methyl groups on K73.
Collapse
Affiliation(s)
- Yuan-Yuan Zhao
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Xiao-Long Xu
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Hao Deng
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Kang-Ning Wang
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Adua Rahman
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yue Ma
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Fathima Shaik
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Chun-Mei Wang
- Network Technology Center, Fushun Vocational Technical Institute, Fushun 110172, P. R. China
| | - Ping Qian
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China.,Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian 271018, P. R. China
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
9
|
Parallel functional annotation of cancer-associated missense mutations in histone methyltransferases. Sci Rep 2022; 12:18487. [PMID: 36323913 PMCID: PMC9630446 DOI: 10.1038/s41598-022-23229-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/27/2022] [Indexed: 12/03/2022] Open
Abstract
Using exome sequencing for biomarker discovery and precision medicine requires connecting nucleotide-level variation with functional changes in encoded proteins. However, for functionally annotating the thousands of cancer-associated missense mutations, or variants of uncertain significance (VUS), purifying variant proteins for biochemical and functional analysis is cost-prohibitive and inefficient. We describe parallel functional annotation (PFA) of large numbers of VUS using small cultures and crude extracts in 96-well plates. Using members of a histone methyltransferase family, we demonstrate high-throughput structural and functional annotation of cancer-associated mutations. By combining functional annotation of paralogs, we discovered two phylogenetic and clustering parameters that improve the accuracy of sequence-based functional predictions to over 90%. Our results demonstrate the value of PFA for defining oncogenic/tumor suppressor functions of histone methyltransferases as well as enhancing the accuracy of sequence-based algorithms in predicting the effects of cancer-associated mutations.
Collapse
|
10
|
Zhu Z, Liu Y, Qi J, Sui Z. Identification of epigenetic histone modifications and analysis of histone lysine methyltransferases in Alexandrium pacificum. HARMFUL ALGAE 2022; 119:102323. [PMID: 36344193 DOI: 10.1016/j.hal.2022.102323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Alexandrium pacificum is a toxic dinoflagellate that can cause harmful algal blooms (HABs). The molecular mechanisms of HABs are still poorly understood, especially at the epigenetics level. Organism growth and metabolic processes are affected by histone modifications, an important mode of epigenetic regulation. In this study, various types of modifications, including methylation, acetylation, ubiquitination, and phosphorylation in A. pacificum cells were identified by using pan-antibodies, mass spectrometry, and an H3 modification multiplex assay kit. The modification abundance of H3K4me2 and H3K27me3 of A. pacificum varied under different growth conditions detected by Western blots. A class of SET domain genes (SDGs) encoding histone lysine methyltransferase was analyzed. A total of 179 SDG members were identified in A. pacificum, of which 53 sequences encoding complete proteins were classified into three categories by phylogenetic analysis, conserved domains and motifs analysis. Expression analysis and real-time polymerase chain reaction validation showed that the expressions of some SDGs were significantly influenced by light, nitrogen, phosphorus and manganese supplements. The results revealed that histone lysine methylation played an important role in responding to HABs inducing conditions. This study provided useful information for the further exploration of the role and regulatory mechanism of SDGs in the rapid growth of A. pacificum.
Collapse
Affiliation(s)
- Zhimei Zhu
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Qi
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education of China, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Zhang X, Noberini R, Bonaldi T, Collemare J, Seidl MF. The histone code of the fungal genus Aspergillus uncovered by evolutionary and proteomic analyses. Microb Genom 2022; 8. [PMID: 36129736 PMCID: PMC9676040 DOI: 10.1099/mgen.0.000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical modifications of DNA and histone proteins impact the organization of chromatin within the nucleus. Changes in these modifications, catalysed by different chromatin-modifying enzymes, influence chromatin organization, which in turn is thought to impact the spatial and temporal regulation of gene expression. While combinations of different histone modifications, the histone code, have been studied in several model species, we know very little about histone modifications in the fungal genus Aspergillus, whose members are generally well studied due to their importance as models in cell and molecular biology as well as their medical and biotechnological relevance. Here, we used phylogenetic analyses in 94 Aspergilli as well as other fungi to uncover the occurrence and evolutionary trajectories of enzymes and protein complexes with roles in chromatin modifications or regulation. We found that these enzymes and complexes are highly conserved in Aspergilli, pointing towards a complex repertoire of chromatin modifications. Nevertheless, we also observed few recent gene duplications or losses, highlighting Aspergillus species to further study the roles of specific chromatin modifications. SET7 (KMT6) and other components of PRC2 (Polycomb Repressive Complex 2), which is responsible for methylation on histone H3 at lysine 27 in many eukaryotes including fungi, are absent in Aspergilli as well as in closely related Penicillium species, suggesting that these lost the capacity for this histone modification. We corroborated our computational predictions by performing untargeted MS analysis of histone post-translational modifications in Aspergillus nidulans. This systematic analysis will pave the way for future research into the complexity of the histone code and its functional implications on genome architecture and gene regulation in fungi.
Collapse
Affiliation(s)
- Xin Zhang
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haematology-Oncology, University of Milano, Via Santa Sofia 9/1, 20122 Milano, Italy
| | - Jerome Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
12
|
Reduction in Phosphoribulokinase Amount and Re-Routing Metabolism in Chlamydomonas reinhardtii CP12 Mutants. Int J Mol Sci 2022; 23:ijms23052710. [PMID: 35269851 PMCID: PMC8910624 DOI: 10.3390/ijms23052710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
The chloroplast protein CP12 is involved in the dark/light regulation of the Calvin–Benson–Bassham cycle, in particular, in the dark inhibition of two enzymes: glyceraldehyde−3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), but other functions related to stress have been proposed. We knocked out the unique CP12 gene to prevent its expression in Chlamydomonas reinhardtii (ΔCP12). The growth rates of both wild-type and ΔCP12 cells were nearly identical, as was the GAPDH protein abundance and activity in both cell lines. On the contrary, the abundance of PRK and its specific activity were significantly reduced in ΔCP12, as revealed by relative quantitative proteomics. Isolated PRK lost irreversibly its activity over-time in vitro, which was prevented in the presence of recombinant CP12 in a redox-independent manner. We have identified amino acid residues in the CP12 protein that are required for this new function preserving PRK activity. Numerous proteins involved in redox homeostasis and stress responses were more abundant and the expressions of various metabolic pathways were also increased or decreased in the absence of CP12. These results highlight CP12 as a moonlighting protein with additional functions beyond its well-known regulatory role in carbon metabolism.
Collapse
|
13
|
Sehrish S, Sumbal W, Xie M, Zhao C, Zuo R, Gao F, Liu S. Genome-Wide Identification and Characterization of SET Domain Family Genes in Brassica napus L. Int J Mol Sci 2022; 23:ijms23041936. [PMID: 35216050 PMCID: PMC8879272 DOI: 10.3390/ijms23041936] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/23/2022] Open
Abstract
SET domain group encoding proteins function as histone lysine methyltransferases. These proteins are involved in various biological processes, including plant development and adaption to the environment by modifying the chromatin structures. So far, the SET domain genes (SDGs) have not been systematically investigated in Brassica napus (B. napus). In the current study, through genome-wide analysis, a total of 122 SDGs were identified in the B. napus genome. These BnSDGs were subdivided into seven (I-VII) classes based on phylogeny analysis, domain configurations, and motif distribution. Segmental duplication was involved in the evolution of this family, and the duplicated genes were under strong purifying selection. The promoter sequence of BnSDGs consisted of various growth, hormones, and stress-related cis-acting elements along with transcription factor binding sites (TFBSs) for 20 TF families in 59 of the 122 BnSDGs. The gene ontology (GO) analysis revealed that BnSDGs were closely associated with histone and non-histone methylation and metal binding capacity localized mostly in the nucleus. The in silico expression analysis at four developmental stages in leaf, stem root, floral organ, silique, and seed tissues showed a broad range of tissue and stage-specific expression pattern. The expression analysis under four abiotic stresses (dehydration, cold, ABA, and salinity) also provided evidence for the importance of BnSDGs in stress environments. Based on expression analysis, we performed reverse transcription-quantitative PCR for 15 target BnSDGs in eight tissues (young leaf, mature leaf, root, stem, carpel, stamen, sepal, and petals). Our results were in accordance with the in silico expression data, suggesting the importance of these genes in plant development. In conclusion, this study lays a foundation for future functional studies on SDGs in B. napus.
Collapse
|
14
|
Wilson JR. Determination of Histone Methyltransferase Structure by Crystallography. Methods Mol Biol 2022; 2529:137-147. [PMID: 35733014 DOI: 10.1007/978-1-0716-2481-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As discussed in previous chapters, the methylation of specific arginine and lysine side chains is carried out by two families of histone methyltransferases, the Protein Arginine Methyltransferase (PRMT) family for arginine, and the SET domain family for lysine. The methylation of H3K79 by Dot1 is a notable outlier. In all cases, X-ray crystallography has been a powerful technique that has provided the framework for understanding the enzyme mechanism, kinetics, regulation and specificity of these enzymes and is now a platform for the design of compounds aimed to inhibit their activity either to further understand their function or in a therapeutic setting. Notably, in combination with the structures of the complementary recognition domains that recognize their products, these structures have provided an important insight into how integral the number of methyl groups added to the acceptor amine is to making histone methylation a key process in epigenetic regulation of gene transcription. Here the concepts applied to determine their structure by X-ray crystallography are outlined, with particular emphasis on lysine methylation by the SET domain.
Collapse
|
15
|
Jarrell DK, Hassell KN, Alshiraihi I, Crans DC, Brown MA. Structural Analysis of SMYD3 Lysine Methyltransferase for the Development of Competitive and Specific Enzyme Inhibitors. Diseases 2021; 10:4. [PMID: 35076487 PMCID: PMC8788566 DOI: 10.3390/diseases10010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
Lysine methylation is among the key posttranslational modifications to histones that contribute to epigenetic regulation. SMYD3 is a lysine methyltransferase that is essential for the proliferation of a range of tumorigenic cells. The findings that SMYD3 is significantly upregulated in most colorectal carcinomas, hepatocellular carcinomas, and breast cell carcinomas support a model in which its aberrant expression modifies established patterns of gene expression, ultimately driving unrestrained proliferation. Herein, we dissect the unique structural features of SMYD3 relative to other SET enzymes, with an emphasis on the implications for selective design of therapeutics for the clinical management of cancer. Further, we illustrate the ability of inhibitors targeting the SET domain of SMYD3 to reduce the viability of colorectal and lung carcinoma cells.
Collapse
Affiliation(s)
- Dillon K. Jarrell
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly N. Hassell
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (K.N.H.); (D.C.C.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
| | - Ilham Alshiraihi
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- Biology Department, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (K.N.H.); (D.C.C.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
| | - Mark A. Brown
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- Graduate Degree Program in Ecology, Department of Ethnic Studies, Global Health and Health Disparities, Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Witecka A, Kwiatkowski S, Ishikawa T, Drozak J. The Structure, Activity, and Function of the SETD3 Protein Histidine Methyltransferase. Life (Basel) 2021; 11:1040. [PMID: 34685411 PMCID: PMC8537074 DOI: 10.3390/life11101040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/03/2022] Open
Abstract
SETD3 has been recently identified as a long sought, actin specific histidine methyltransferase that catalyzes the Nτ-methylation reaction of histidine 73 (H73) residue in human actin or its equivalent in other metazoans. Its homologs are widespread among multicellular eukaryotes and expressed in most mammalian tissues. SETD3 consists of a catalytic SET domain responsible for transferring the methyl group from S-adenosyl-L-methionine (AdoMet) to a protein substrate and a RuBisCO LSMT domain that recognizes and binds the methyl-accepting protein(s). The enzyme was initially identified as a methyltransferase that catalyzes the modification of histone H3 at K4 and K36 residues, but later studies revealed that the only bona fide substrate of SETD3 is H73, in the actin protein. The methylation of actin at H73 contributes to maintaining cytoskeleton integrity, which remains the only well characterized biological effect of SETD3. However, the discovery of numerous novel methyltransferase interactors suggests that SETD3 may regulate various biological processes, including cell cycle and apoptosis, carcinogenesis, response to hypoxic conditions, and enterovirus pathogenesis. This review summarizes the current advances in research on the SETD3 protein, its biological importance, and role in various diseases.
Collapse
Affiliation(s)
- Apolonia Witecka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| | - Sebastian Kwiatkowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jakub Drozak
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| |
Collapse
|
17
|
Exploration of the Activation Mechanism of the Epigenetic Regulator MLL3: A QM/MM Study. Biomolecules 2021; 11:biom11071051. [PMID: 34356675 PMCID: PMC8301819 DOI: 10.3390/biom11071051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
The mixed lineage leukemia 3 or MLL3 is the enzyme in charge of the writing of an epigenetic mark through the methylation of lysine 4 from the N-terminal domain of histone 3 and its deregulation has been related to several cancer lines. An interesting feature of this enzyme comes from its regulation mechanism, which involves its binding to an activating dimer before it can be catalytically functional. Once the trimer is formed, the reaction mechanism proceeds through the deprotonation of the lysine followed by the methyl-transfer reaction. Here we present a detailed exploration of the activation mechanism through a QM/MM approach focusing on both steps of the reaction, aiming to provide new insights into the deprotonation process and the role of the catalytic machinery in the methyl-transfer reaction. Our finding suggests that the source of the activation mechanism comes from conformational restriction mediated by the formation of a network of salt-bridges between MLL3 and one of the activating subunits, which restricts and stabilizes the positioning of several residues relevant for the catalysis. New insights into the deprotonation mechanism of lysine are provided, identifying a valine residue as crucial in the positioning of the water molecule in charge of the process. Finally, a tyrosine residue was found to assist the methyl transfer from SAM to the target lysine.
Collapse
|
18
|
Kugler P, Trumm M, Frese M, Wendisch VF. L-Carnitine Production Through Biosensor-Guided Construction of the Neurospora crassa Biosynthesis Pathway in Escherichia coli. Front Bioeng Biotechnol 2021; 9:671321. [PMID: 33937222 PMCID: PMC8085414 DOI: 10.3389/fbioe.2021.671321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
L-Carnitine is a bioactive compound derived from L-lysine and S-adenosyl-L-methionine, which is closely associated with the transport of long-chain fatty acids in the intermediary metabolism of eukaryotes and sought after in the pharmaceutical, food, and feed industries. The L-carnitine biosynthesis pathway has not been observed in prokaryotes, and the use of eukaryotic microorganisms as natural L-carnitine producers lacks economic viability due to complex cultivation and low titers. While biotransformation processes based on petrochemical achiral precursors have been described for bacterial hosts, fermentative de novo synthesis has not been established although it holds the potential for a sustainable and economical one-pot process using renewable feedstocks. This study describes the metabolic engineering of Escherichia coli for L-carnitine production. L-carnitine biosynthesis enzymes from the fungus Neurospora crassa that were functionally active in E. coli were identified and applied individually or in cascades to assemble and optimize a four-step L-carnitine biosynthesis pathway in this host. Pathway performance was monitored by a transcription factor-based L-carnitine biosensor. The engineered E. coli strain produced L-carnitine from supplemented L-Nε-trimethyllysine in a whole cell biotransformation, resulting in 15.9 μM carnitine found in the supernatant. Notably, this strain also produced 1.7 μM L-carnitine de novo from glycerol and ammonium as carbon and nitrogen sources through endogenous Nε-trimethyllysine. This work provides a proof of concept for the de novoL-carnitine production in E. coli, which does not depend on petrochemical synthesis of achiral precursors, but makes use of renewable feedstocks instead. To the best of our knowledge, this is the first description of L-carnitine de novo synthesis using an engineered bacterium.
Collapse
Affiliation(s)
- Pierre Kugler
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Marika Trumm
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Marcel Frese
- Department of Chemistry, Organic and Bioorganic Chemistry (OCIII), Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
19
|
Lewis CA, Wolfenden R. The Burden Borne by Protein Methyltransferases: Rates and Equilibria of Non-enzymatic Methylation of Amino Acid Side Chains by SAM in Water. Biochemistry 2021; 60:854-858. [PMID: 33667085 DOI: 10.1021/acs.biochem.1c00028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
SAM is a powerful methylating agent, with a methyl group transfer potential matching the phosphoryl group transfer potential of ATP. SAM-dependent N-methyltransferases have evolved to catalyze the modification of specific lysine residues in histones and transcription factors, in addition to generating epinephrine, N-methylnicotinamide, and a quaternary amine (betaine) that is used to maintain osmotic pressure in plants and halophilic bacteria. To assess the catalytic power of these enzymes and their potential susceptibility to transition state and multisubstrate analogue inhibitors, we determined the rates and positions of the equilibrium of methyl transfer from the trimethylsulfonium ion to model amines in the absence of a catalyst. Unlike the methyl group transfer potential of SAM, which becomes more negative with an increase in pH throughout the normal pH range, equilibrium constants for the hydrolytic demethylation of secondary, tertiary, and quaternary amines are found to be insensitive to a change in pH and resemble each other in magnitude, with an average ΔG value of approximately -0.7 kcal/mol at pH 7. Thus, each of the three steps in the mono-, di-, and trimethylation of lysine by SAM is accompanied by a change in free energy of -7.5 kcal/mol in a neutral solution. Arrhenius analysis of the uncatalyzed reactions shows that the unprotonated form of glycine attacks the trimethylsulfonium ion (TMS+) with second-order rates constant of 1.8 × 10-7 M-1 s-1 at 25 °C (ΔH⧧ = 22 kcal/mol, and TΔS⧧ = -6 kcal/mol). Comparable values are observed for the methylation of secondary and tertiary amines, with k25 values of 1.1 × 10-7 M-1 s-1 for sarcosine and 4.3 × 10-8 M-1 s-1 for dimethylglycine. The non-enzymatic methylations of imidazole and methionine by TMS+, benchmarks for the methylation of histidine and methionine residues by SETD3, exhibit k25 values of 3.3 × 10-9 and 1.2 × 10-9 M-1 s-1, respectively. Lysine methylation by SAM, although slow under physiological conditions (t1/2 = 7 weeks at 25 °C), is accelerated 1.1 × 1012 -fold at the active site of a SET domain methyltransferase.
Collapse
Affiliation(s)
- Charles A Lewis
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Richard Wolfenden
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
20
|
Maas MN, Hintzen JCJ, Porzberg MRB, Mecinović J. Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. Int J Mol Sci 2020; 21:E9451. [PMID: 33322546 PMCID: PMC7764450 DOI: 10.3390/ijms21249451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Trimethyllysine is an important post-translationally modified amino acid with functions in the carnitine biosynthesis and regulation of key epigenetic processes. Protein lysine methyltransferases and demethylases dynamically control protein lysine methylation, with each state of methylation changing the biophysical properties of lysine and the subsequent effect on protein function, in particular histone proteins and their central role in epigenetics. Epigenetic reader domain proteins can distinguish between different lysine methylation states and initiate downstream cellular processes upon recognition. Dysregulation of protein methylation is linked to various diseases, including cancer, inflammation, and genetic disorders. In this review, we cover biomolecular studies on the role of trimethyllysine in carnitine biosynthesis, different enzymatic reactions involved in the synthesis and removal of trimethyllysine, trimethyllysine recognition by reader proteins, and the role of trimethyllysine on the nucleosome assembly.
Collapse
Affiliation(s)
| | | | | | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.N.M.); (J.C.J.H.); (M.R.B.P.)
| |
Collapse
|
21
|
Batra R, Gautam T, Pal S, Chaturvedi D, Rakhi, Jan I, Balyan HS, Gupta PK. Identification and characterization of SET domain family genes in bread wheat (Triticum aestivum L.). Sci Rep 2020; 10:14624. [PMID: 32884064 PMCID: PMC7471321 DOI: 10.1038/s41598-020-71526-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/18/2020] [Indexed: 01/21/2023] Open
Abstract
SET domain genes (SDGs) that are involved in histone methylation have been examined in many plant species, but have never been examined in bread wheat; the histone methylation caused due to SDGs is associated with regulation of gene expression at the transcription level. We identified a total of 166 bread wheat TaSDGs, which carry some interesting features including the occurrence of tandem/interspersed duplications, SSRs (simple sequence repeats), transposable elements, lncRNAs and targets for miRNAs along their lengths and transcription factor binding sites (TFBS) in the promoter regions. Only 130 TaSDGs encoded proteins with complete SET domain, the remaining 36 proteins had truncated SET domain. The TaSDG encoded proteins were classified into six classes (I–V and VII). In silico expression analysis indicated relatively higher expression (FPKM > 20) of eight of the 130 TaSDGs in different tissues, and downregulation of 30 TaSDGs under heat and drought at the seedling stage. qRT-PCR was also conducted to validate the expression of seven genes at the seedling stage in pairs of contrasting genotypes in response to abiotic stresses (water and heat) and biotic stress (leaf rust). These genes were generally downregulated in response to the three stresses examined.
Collapse
Affiliation(s)
- Ritu Batra
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Sunita Pal
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Deepti Chaturvedi
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Rakhi
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India.
| |
Collapse
|
22
|
SETD3 is regulated by a couple of microRNAs and plays opposing roles in proliferation and metastasis of hepatocellular carcinoma. Clin Sci (Lond) 2020; 133:2085-2105. [PMID: 31654063 DOI: 10.1042/cs20190666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/22/2019] [Accepted: 10/09/2019] [Indexed: 02/05/2023]
Abstract
A previous study reported that histone methyltransferase SETD3 is up-regulated in tumor tissues of hepatocellular carcinoma (HCC) and is associated with the growth of HCC. However, the clinical significance and the effect of SETD3 on HCC metastasis remain unclear. In the present study, both the protein and mRNA expression levels of SETD3 were measured in a larger cohort of HCC patients. The results showed that the protein level of SETD3 in HCC tissues was significantly higher than that in non-tumorous tissues, which was inconsistent with the mRNA expression level of SETD3. The high protein level of SETD3 in HCC tissues was significantly associated with male gender, poor pathological differentiation, liver cirrhosis and unfavorable prognosis of HCC patients. Subsequently, we demonstrated that SETD3 could be regulated at post-transcriptional step by a couple of miRNAs (miR-16, miR-195 and miR-497). Additionally, in vitro and in vivo experiments revealed that SETD3 played opposing roles in proliferation and metastasis of HCC: promoting proliferation but inhibiting metastasis. Mechanistic experiments revealed that doublecortin-like kinase 1 (DCLK1) was a downstream target of SETD3. SETD3 could increase the DNA methylation level of DCLK1 promoter to inhibit the transcription of DCLK1. Further study revealed that DCLK1/PI3K/matrix metalloproteinase (MMP) 2 (MMP-2) was an important pathway that mediated the effect of SETD3 on HCC metastasis. In conclusion, the present study revealed that SETD3 is associated with tumorigenesis and is a promising biomarker for predicting the prognosis of HCC patients after surgical resection. In addition, SETD3 plays inhibitory role in HCC metastasis partly through DCLK1/PI3K/MMP-2 pathway.
Collapse
|
23
|
Feng X, Lu H, Yue J, Shettigar M, Liu J, Denzin LK, Shen Z. Deletion of Mouse Setd4 Promotes the Recovery of Hematopoietic Failure. Int J Radiat Oncol Biol Phys 2020; 107:779-792. [PMID: 32259569 DOI: 10.1016/j.ijrobp.2020.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Acquired hematopoietic failure is commonly caused by therapeutic and accidental exposure of the bone marrow (BM) to toxic agents. Efficient recovery from BM failure is dictated not only by the intrinsic sensitivity and proliferation capacity of the hematopoietic stem and progenitor cells but also by the BM environment niche. Identification of genetic factors that improve recovery from hematopoietic failure is essential. Vertebrate SETD4 is a poorly characterized and putatively nonhistone methyltransferase. This study aims to identify the roles of SETD4 in BM recovery. METHODS AND MATERIALS An inducible SETD4 knockout mouse model (Setd4flox/flox;Rosa26-CreERT2+) was used. Adult sex-matched littermates were treated with tamoxifen to induce Setd4 deletion or oil as the control. Tamoxifen-treated Setd4wt/wt;Rosa26-CreERT2+ mice were included as another control. Those mice were irradiated to induce hematopoietic syndrome and analyzed to identify the roles and mechanisms of Setd4 in of BM recovery. RESULTS Loss of Setd4 in adult mice improved the survival of whole-body irradiation-induced BM failure. This was associated with improved recoveries of long-term and short-term hematopoietic stem cells (HSCs) and early progenitor cells. BM transplantation analyses surprisingly showed that the improved recovery was not due to radiation resistance of the Setd4-deficient HSCs but that Setd4-deficient HSCs were actually more sensitive to radiation. However, the Setd4-deficient mice were better recipients for allogeneic HSC transplantation. Furthermore, there was enhanced splenic erythropoiesis in Setd4-deficient mice. CONCLUSION These findings not only revealed a previously unrecognized role of Setd4 as a unique modulator of hematopoiesis but also underscored the critical role of the BM niche in recovery from hematopoietic failure. Our study also implicated Setd4 as a potential target for therapeutic inhibition to improve the conditioning of the BM niche before allogeneic transplantation.
Collapse
Affiliation(s)
- Xing Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Huimei Lu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Jingyin Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Megha Shettigar
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Jingmei Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Lisa K Denzin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Zhiyuan Shen
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey.
| |
Collapse
|
24
|
Mindt M, Walter T, Kugler P, Wendisch VF. Microbial Engineering for Production of N-Functionalized Amino Acids and Amines. Biotechnol J 2020; 15:e1900451. [PMID: 32170807 DOI: 10.1002/biot.201900451] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/04/2020] [Indexed: 01/04/2023]
Abstract
N-functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine-chemical industries N-functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N-alkylated, N-hydroxylated, N-acylated, or other N-functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N-functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N-hydroxylases, N-acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany.,BU Bioscience, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Tatjana Walter
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Pierre Kugler
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
25
|
Feng X, Lu H, Yue J, Schneider N, Liu J, Denzin LK, Chan CS, De S, Shen Z. Loss of Setd4 delays radiation-induced thymic lymphoma in mice. DNA Repair (Amst) 2019; 86:102754. [PMID: 31794893 DOI: 10.1016/j.dnarep.2019.102754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022]
Abstract
Radiation-induced lymphomagenesis results from a clonogenic lymphoid cell proliferation due to genetic alterations and immunological dysregulation. Mouse models had been successfully used to identify risk and protective factors for radiation-induced DNA damage and carcinogenesis. The mammalian SETD4 is a poorly understood putative methyl-transferase. Here, we report that conditional Setd4 deletion in adult mice significantly extended the survival of radiation-induced T-lymphoma. However, in Tp53 deficient mice, Setd4 deletion did not delay the radiation-induced lymphomagenesis although it accelerated the spontaneous T-lymphomagenesis in non-irradiated mice. The T-lymphomas were largely clonogenic in both Setd4flox/flox and Setd4Δ/Δ mice based on sequencing analysis of the T-cell antigen β receptors. However, the Setd4Δ/Δ T-lymphomas were CD4+/CD8+ double positive, while the littermate Setd4flox/floxtumor were largely CD8+ single positive. A genomic sequencing analysis on chromosome deletion, inversion, duplication, and translocation, revealed a larger contribution of inversion but a less contribution of deletion to the overall chromosome rearrangements in the in Setd4Δ/Δ tumors than the Setd4flox/flox tumors. In addition, the Setd4flox/flox mice died more often from the large sizes of primary thymus lymphoma at earlier time, but there was a slight increase of lymphoma dissemination among peripheral organs in Setd4Δ/Δ at later times. These results suggest that Setd4 has a critical role in modulating lymphomagenesis and may be targeted to suppress radiation-induced carcinogenesis.
Collapse
Affiliation(s)
- Xing Feng
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Huimei Lu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Jingyin Yue
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Neta Schneider
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Lisa K Denzin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Chang S Chan
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Subhajyoti De
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
26
|
Structural basis for the target specificity of actin histidine methyltransferase SETD3. Nat Commun 2019; 10:3541. [PMID: 31388018 PMCID: PMC6684798 DOI: 10.1038/s41467-019-11554-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022] Open
Abstract
SETD3 is an actin histidine-N3 methyltransferase, whereas other characterized SET-domain enzymes are protein lysine methyltransferases. We report that in a pre-reactive complex SETD3 binds the N3-protonated form (N3-H) of actin His73, and in a post-reactive product complex, SETD3 generates the methylated histidine in an N1-protonated (N1-H) and N3-methylated form. During the reaction, the imidazole ring of His73 rotates ~105°, which shifts the proton from N3 to N1, thus ensuring that the target atom N3 is deprotonated prior to the methyl transfer. Under the conditions optimized for lysine deprotonation, SETD3 has weak lysine methylation activity on an actin peptide in which the target His73 is substituted by a lysine. The structure of SETD3 with Lys73-containing peptide reveals a bent conformation of Lys73, with its side chain aliphatic carbons tracing along the edge of imidazole ring and the terminal ε-amino group occupying a position nearly identical to the N3 atom of unmethylated histidine. SETD3 is the first known metazoan protein histidine methyltransferase but the molecular basis for its target specificity is unclear. Here, the authors elucidate the structural and molecular determinants for the histidine specificity of SETD3.
Collapse
|
27
|
Kauko A, Lehto K. Eukaryote specific folds: Part of the whole. Proteins 2018; 86:868-881. [PMID: 29675831 DOI: 10.1002/prot.25517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/07/2023]
Abstract
The origin of eukaryotes is one of the central transitions in the history of life; without eukaryotes there would be no complex multicellular life. The most accepted scenarios suggest the endosymbiosis of a mitochondrial ancestor with a complex archaeon, even though the details regarding the host and the triggering factors are still being discussed. Accordingly, phylogenetic analyses have demonstrated archaeal affiliations with key informational systems, while metabolic genes are often related to bacteria, mostly to the mitochondrial ancestor. Despite of this, there exists a large number of protein families and folds found only in eukaryotes. In this study, we have analyzed structural superfamilies and folds that probably appeared during eukaryogenesis. These folds typically represent relatively small binding domains of larger multidomain proteins. They are commonly involved in biological processes that are particularly complex in eukaryotes, such as signaling, trafficking/cytoskeleton, ubiquitination, transcription and RNA processing, but according to recent studies, these processes also have prokaryotic roots. Thus the folds originating from an eukaryotic stem seem to represent accessory parts that have contributed in the expansion of several prokaryotic processes to a new level of complexity. This might have taken place as a co-evolutionary process where increasing complexity and fold innovations have supported each other.
Collapse
Affiliation(s)
- Anni Kauko
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Kirsi Lehto
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Martín-Morales L, Feldman M, Vershinin Z, Garre P, Caldés T, Levy D. SETD6 dominant negative mutation in familial colorectal cancer type X. Hum Mol Genet 2018; 26:4481-4493. [PMID: 28973356 DOI: 10.1093/hmg/ddx336] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 08/15/2017] [Indexed: 01/01/2023] Open
Abstract
Familiar colorectal cancer type X (FCCTX) comprises families that fulfill the Amsterdam criteria for hereditary non-polyposis colorectal cancer, but that lack the mismatch repair deficiency that defines the Lynch syndrome. Thus, the genetic cause that increases the predisposition to colorectal and other related cancers in families with FCCTX remains to be elucidated. Using whole-exome sequencing, we have identified a truncating mutation in the SETD6 gene (c.791_792insA, p.Met264IlefsTer3) in all the affected members of a FCCTX family. SETD6 is a mono-methyltransferase previously shown to modulate the NF-κB and Wnt signaling pathways, among other. In the present study, we characterized the truncated version of SETD6, providing evidence that this SETD6 mutation may play a role in the cancer inheritance in this family. Here we demonstrate that the truncated SETD6 lacks its enzymatic activity as a methyltransferase, while maintaining other properties such as its expression, localization and substrate-binding ability. In addition, we show that the mutant allele is expressed and that the resulting protein competes with the wild type for their substrates, pointing to a dominant negative nature. These findings suggest that the identified mutation impairs the normal function of SETD6, which may result in the deregulation of the different pathways in which it is involved, contributing to the increased susceptibility to cancer in this FCCTX family.
Collapse
Affiliation(s)
- Lorena Martín-Morales
- Molecular Oncology Laboratory, Department of Medical Oncology, Hospital Clínico San Carlos, IdISSC, CIBERONC, 28040 Madrid, Spain
| | - Michal Feldman
- The Shraga Segal Department of Microbiology, Immunology and Genetics.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | - Zlata Vershinin
- The Shraga Segal Department of Microbiology, Immunology and Genetics.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | - Pilar Garre
- Molecular Oncology Laboratory, Department of Medical Oncology, Hospital Clínico San Carlos, IdISSC, CIBERONC, 28040 Madrid, Spain
| | - Trinidad Caldés
- Molecular Oncology Laboratory, Department of Medical Oncology, Hospital Clínico San Carlos, IdISSC, CIBERONC, 28040 Madrid, Spain
| | - Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| |
Collapse
|
29
|
Sarma S, Lodha M. Phylogenetic relationship and domain organisation of SET domain proteins of Archaeplastida. BMC PLANT BIOLOGY 2017; 17:238. [PMID: 29228906 PMCID: PMC5725981 DOI: 10.1186/s12870-017-1177-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND SET is a conserved protein domain with methyltransferase activity. Several genome and transcriptome data in plant lineage (Archaeplastida) are available but status of SET domain proteins in most of the plant lineage is not comprehensively analysed. RESULTS In this study phylogeny and domain organisation of 506 computationally identified SET domain proteins from 16 members of plant lineage (Archaeplastida) are presented. SET domain proteins of rice and Arabidopsis are used as references. This analysis revealed conserved as well as unique features of SET domain proteins in Archaeplastida. SET domain proteins of plant lineage can be categorised into five classes- E(z), Ash, Trx, Su(var) and Orphan. Orphan class of SET proteins contain unique domains predominantly in early Archaeplastida. Contrary to previous study, this study shows first appearance of several domains like SRA on SET domain proteins in chlorophyta instead of bryophyta. CONCLUSION The present study is a framework to experimentally characterize SET domain proteins in plant lineage.
Collapse
Affiliation(s)
- Supriya Sarma
- Centre for Cellular and Molecular Biology (CSIR), Uppal Road, Habsiguda, Hyderabad, 500007, India.
| | - Mukesh Lodha
- Centre for Cellular and Molecular Biology (CSIR), Uppal Road, Habsiguda, Hyderabad, 500007, India.
| |
Collapse
|
30
|
SETD4 Regulates Cell Quiescence and Catalyzes the Trimethylation of H4K20 during Diapause Formation in Artemia. Mol Cell Biol 2017; 37:MCB.00453-16. [PMID: 28031330 DOI: 10.1128/mcb.00453-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/02/2016] [Indexed: 01/19/2023] Open
Abstract
As a prominent characteristic of cell life, the regulation of cell quiescence is important for proper development, regeneration, and stress resistance and may play a role in certain degenerative diseases. However, the mechanism underlying quiescence remains largely unknown. Encysted embryos of Artemia are useful for studying the regulation of this state because they remain quiescent for prolonged periods during diapause, a state of obligate dormancy. In the present study, SET domain-containing protein 4, a histone lysine methyltransferase from Artemia, was identified, characterized, and named Ar-SETD4. We found that Ar-SETD4 was expressed abundantly in Artemia diapause embryos, in which cells were in a quiescent state. Meanwhile, trimethylated histone H4K20 (H4K20me3) was enriched in diapause embryos. The knockdown of Ar-SETD4 reduced the level of H4K20me3 significantly and prevented the formation of diapause embryos in which neither the cell cycle nor embryogenesis ceased. The catalytic activity of Ar-SETD4 on H4K20me3 was confirmed by an in vitro histone methyltransferase (HMT) assay and overexpression in cell lines. This study provides insights into the function of SETD4 and the mechanism of cell quiescence regulation.
Collapse
|
31
|
Blazer LL, Li F, Kennedy S, Zheng YG, Arrowsmith CH, Vedadi M. A Suite of Biochemical Assays for Screening RNA Methyltransferase BCDIN3D. SLAS DISCOVERY 2016; 22:32-39. [PMID: 27581605 DOI: 10.1177/1087057116666276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BCDIN3D is an RNA-methyltransferase that O-methylates the 5' phosphate of RNA and regulates microRNA maturation. To discover small-molecule inhibitors of BCDIN3D, a suite of biochemical assays was developed. A radiometric methyltransferase assay and fluorescence polarization-based S-adenosylmethionine and RNA displacement assays are described. In addition, differential scanning fluorimetry and surface plasmon resonance were used to characterize binding. These assays provide a comprehensive package for the development of small-molecule modulators of BCDIN3D activity.
Collapse
Affiliation(s)
- Levi L Blazer
- 1 Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Fengling Li
- 1 Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Steven Kennedy
- 1 Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Yujun George Zheng
- 2 Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Cheryl H Arrowsmith
- 1 Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.,3 Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Masoud Vedadi
- 1 Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.,4 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Liu Q, Wang MW. Histone lysine methyltransferases as anti-cancer targets for drug discovery. Acta Pharmacol Sin 2016; 37:1273-1280. [PMID: 27397541 DOI: 10.1038/aps.2016.64] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022] Open
Abstract
Post-translational epigenetic modification of histones is controlled by a number of histone-modifying enzymes. Such modification regulates the accessibility of DNA and the subsequent expression or silencing of a gene. Human histone methyltransferases (HMTs)constitute a large family that includes histone lysine methyltransferases (HKMTs) and histone/protein arginine methyltransferases (PRMTs). There is increasing evidence showing a correlation between HKMTs and cancer pathogenesis. Here, we present an overview of representative HKMTs, including their biological and biochemical properties as well as the profiles of small molecule inhibitors for a comprehensive understanding of HKMTs in drug discovery.
Collapse
|
33
|
Ma S, Martin-Laffon J, Mininno M, Gigarel O, Brugière S, Bastien O, Tardif M, Ravanel S, Alban C. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants. MOLECULAR PLANT 2016; 9:569-81. [PMID: 26785049 DOI: 10.1016/j.molp.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/07/2015] [Accepted: 01/11/2016] [Indexed: 05/09/2023]
Abstract
Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity.
Collapse
Affiliation(s)
- Sheng Ma
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Jacqueline Martin-Laffon
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Morgane Mininno
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Océane Gigarel
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Sabine Brugière
- Université Grenoble Alpes, 38041 Grenoble, France; CEA, iRTSV, Biologie à Grande Echelle, 38054 Grenoble, France; INSERM, U1038, 38054 Grenoble, France
| | - Olivier Bastien
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Marianne Tardif
- Université Grenoble Alpes, 38041 Grenoble, France; CEA, iRTSV, Biologie à Grande Echelle, 38054 Grenoble, France; INSERM, U1038, 38054 Grenoble, France
| | - Stéphane Ravanel
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Claude Alban
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France.
| |
Collapse
|
34
|
Prins A, Orr DJ, Andralojc PJ, Reynolds MP, Carmo-Silva E, Parry MAJ. Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1827-38. [PMID: 26798025 PMCID: PMC4783365 DOI: 10.1093/jxb/erv574] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rubisco is a major target for improving crop photosynthesis and yield, yet natural diversity in catalytic properties of this enzyme is poorly understood. Rubisco from 25 genotypes of the Triticeae tribe, including wild relatives of bread wheat (Triticum aestivum), were surveyed to identify superior enzymes for improving photosynthesis in this crop. In vitro Rubisco carboxylation velocity (V c), Michaelis-Menten constants for CO2 (K c) and O2 (K o) and specificity factor (S c/o) were measured at 25 and 35 °C. V c and K c correlated positively, while V c and S c/o were inversely related. Rubisco large subunit genes (rbcL) were sequenced, and predicted corresponding amino acid differences analysed in relation to the corresponding catalytic properties. The effect of replacing native wheat Rubisco with counterparts from closely related species was analysed by modelling the response of photosynthesis to varying CO2 concentrations. The model predicted that two Rubisco enzymes would increase photosynthetic performance at 25 °C while only one of these also increased photosynthesis at 35 °C. Thus, under otherwise identical conditions, catalytic variation in the Rubiscos analysed is predicted to improve photosynthetic rates at physiological CO2 concentrations. Naturally occurring Rubiscos with superior properties amongst the Triticeae tribe can be exploited to improve wheat photosynthesis and crop productivity.
Collapse
Affiliation(s)
- Anneke Prins
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ UK
| | - Douglas J Orr
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ UK
| | - P John Andralojc
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ UK
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco CP 56130, Mexico
| | - Elizabete Carmo-Silva
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ UK
| | - Martin A J Parry
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ UK
| |
Collapse
|
35
|
Bergamin E, Couture JF. Preparation, Biochemical Analysis, and Structure Determination of SET Domain Histone Methyltransferases. Methods Enzymol 2016; 573:209-40. [PMID: 27372755 DOI: 10.1016/bs.mie.2016.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotes, several lysine residues on histone proteins are methylated. This posttranslational modification is linked to a myriad of nuclear-based transactions such as epigenetic inheritance of heterochromatin, regulation of gene expression, DNA damage repair, and DNA replication. The majority of the enzymes responsible for writing these marks onto chromatin belong to the SET domain family of histone lysine methyltransferases. Although they often share important structural features, including a conserved catalytic domain, SET domain enzymes use different mechanisms to achieve substrate recognition, mono-, di-, or trimethylate lysine residues and some require other proteins to achieve maximal methyltransferase activity. In this chapter, we summarize our efforts to purify, crystallize, and enzymatically characterize SET domain enzymes with a specific focus on the histone H3K27 monomethyltransferase ATXR5.
Collapse
Affiliation(s)
- E Bergamin
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - J F Couture
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
36
|
Jiang Z, Kempinski C, Bush CJ, Nybo SE, Chappell J. Engineering Triterpene and Methylated Triterpene Production in Plants Provides Biochemical and Physiological Insights into Terpene Metabolism. PLANT PHYSIOLOGY 2016; 170:702-16. [PMID: 26603654 PMCID: PMC4734568 DOI: 10.1104/pp.15.01548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 05/08/2023]
Abstract
Linear, branch-chained triterpenes, including squalene (C30), botryococcene (C30), and their methylated derivatives (C31-C37), generated by the green alga Botryococcus braunii race B have received significant attention because of their utility as chemical and biofuel feedstocks. However, the slow growth habit of B. braunii makes it impractical as a production system. In this study, we evaluated the potential of generating high levels of botryococcene in tobacco (Nicotiana tabacum) plants by diverting carbon flux from the cytosolic mevalonate pathway or the plastidic methylerythritol phosphate pathway by the targeted overexpression of an avian farnesyl diphosphate synthase along with two versions of botryococcene synthases. Up to 544 µg g(-1) fresh weight of botryococcene was achieved when this metabolism was directed to the chloroplasts, which is approximately 90 times greater than that accumulating in plants engineered for cytosolic production. To test if methylated triterpenes could be produced in tobacco, we also engineered triterpene methyltransferases (TMTs) from B. braunii into wild-type plants and transgenic lines selected for high-level triterpene accumulation. Up to 91% of the total triterpene contents could be converted to methylated forms (C31 and C32) by cotargeting the TMTs and triterpene biosynthesis to the chloroplasts, whereas only 4% to 14% of total triterpenes were methylated when this metabolism was directed to the cytoplasm. When the TMTs were overexpressed in the cytoplasm of wild-type plants, up to 72% of the total squalene was methylated, and total triterpene (C30+C31+C32) content was elevated 7-fold. Altogether, these results point to innate mechanisms controlling metabolite fluxes, including a homeostatic role for squalene.
Collapse
Affiliation(s)
- Zuodong Jiang
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| | - Chase Kempinski
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| | - Caroline J Bush
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| | - S Eric Nybo
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| | - Joe Chappell
- Plant Biology Program (Z.J., C.K., J.C.) and Department of Pharmaceutical Sciences (C.J.B., S.E.N., J.C.), University of Kentucky, Lexington, Kentucky 40536-0596
| |
Collapse
|
37
|
Rogawski DS, Ndoj J, Cho HJ, Maillard I, Grembecka J, Cierpicki T. Two Loops Undergoing Concerted Dynamics Regulate the Activity of the ASH1L Histone Methyltransferase. Biochemistry 2015; 54:5401-13. [PMID: 26292256 PMCID: PMC4664444 DOI: 10.1021/acs.biochem.5b00697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
ASH1L (absent, small, or homeotic-like 1) is a histone methyltransferase (HMTase) involved in gene activation that is overexpressed in multiple forms of cancer. Previous studies of ASH1L's catalytic SET domain identified an autoinhibitory loop that blocks access of histone substrate to the enzyme active site. Here, we used both nuclear magnetic resonance and X-ray crystallography to identify conformational dynamics in the ASH1L autoinhibitory loop. Using site-directed mutagenesis, we found that point mutations in the autoinhibitory loop that perturb the structure of the SET domain result in decreased enzyme activity, indicating that the autoinhibitory loop is not a simple gate to the active site but is rather a key feature critical to ASH1L function. We also identified a second loop in the SET-I subdomain of ASH1L that experiences conformational dynamics, and we trapped two different conformations of this loop using crystallographic studies. Mutation of the SET-I loop led to a large decrease in ASH1L enzymatic activity in addition to a significant conformational change in the SET-I loop, demonstrating the importance of the structure and dynamics of the SET-I loop to ASH1L function. Furthermore, we found that three C-terminal chromatin-interacting domains greatly enhance ASH1L enzymatic activity and that ASH1L requires native nucleosome substrate for robust activity. Our study illuminates the role of concerted conformational dynamics in ASH1L function and identifies structural features important for ASH1L enzymatic activity.
Collapse
Affiliation(s)
- David S. Rogawski
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Juliano Ndoj
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Hyo Je Cho
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Ivan Maillard
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109,Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109,Corresponding author: Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510C, Ann Arbor, MI, USA 48109. Tel.: (734) 615-9324;
| |
Collapse
|
38
|
Scheiner S. Comparison of CH···O, SH···O, Chalcogen, and Tetrel Bonds Formed by Neutral and Cationic Sulfur-Containing Compounds. J Phys Chem A 2015; 119:9189-99. [DOI: 10.1021/acs.jpca.5b06831] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
39
|
Shinsky SA, Monteith KE, Viggiano S, Cosgrove MS. Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation. J Biol Chem 2015; 290:6361-75. [PMID: 25561738 DOI: 10.1074/jbc.m114.627646] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mixed lineage leukemia protein-1 (MLL1) is a member of the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases that are required for metazoan development. MLL1 is the best characterized human SET1 family member, which includes MLL1-4 and SETd1A/B. MLL1 assembles with WDR5, RBBP5, ASH2L, DPY-30 (WRAD) to form the MLL1 core complex, which is required for H3K4 dimethylation and transcriptional activation. Because all SET1 family proteins interact with WRAD in vivo, it is hypothesized they are regulated by similar mechanisms. However, recent evidence suggests differences among family members that may reflect unique regulatory inputs in the cell. Missing is an understanding of the intrinsic enzymatic activities of different SET1 family complexes under standard conditions. In this investigation, we reconstituted each human SET1 family core complex and compared subunit assembly and enzymatic activities. We found that in the absence of WRAD, all but one SET domain catalyzes at least weak H3K4 monomethylation. In the presence of WRAD, all SET1 family members showed stimulated monomethyltransferase activity but differed in their di- and trimethylation activities. We found that these differences are correlated with evolutionary lineage, suggesting these enzyme complexes have evolved to accomplish unique tasks within metazoan genomes. To understand the structural basis for these differences, we employed a "phylogenetic scanning mutagenesis" assay and identified a cluster of amino acid substitutions that confer a WRAD-dependent gain-of-function dimethylation activity on complexes assembled with the MLL3 or Drosophila trithorax proteins. These results form the basis for understanding how WRAD differentially regulates SET1 family complexes in vivo.
Collapse
Affiliation(s)
- Stephen A Shinsky
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Kelsey E Monteith
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Susan Viggiano
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Michael S Cosgrove
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
40
|
Characterization of a Novel Histone H3K36 Methyltransferase setd3 in Zebrafish. Biosci Biotechnol Biochem 2014; 75:289-94. [DOI: 10.1271/bbb.100648] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Lanouette S, Mongeon V, Figeys D, Couture JF. The functional diversity of protein lysine methylation. Mol Syst Biol 2014; 10:724. [PMID: 24714364 PMCID: PMC4023394 DOI: 10.1002/msb.134974] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Large‐scale characterization of post‐translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, has highlighted their importance in the regulation of a myriad of signaling events. While high‐throughput technologies have tremendously helped cataloguing the proteins modified by these PTMs, the identification of lysine‐methylated proteins, a PTM involving the transfer of one, two or three methyl groups to the ε‐amine of a lysine side chain, has lagged behind. While the initial findings were focused on the methylation of histone proteins, several studies have recently identified novel non‐histone lysine‐methylated proteins. This review provides a compilation of all lysine methylation sites reported to date. We also present key examples showing the impact of lysine methylation and discuss the circuitries wired by this important PTM.
Collapse
Affiliation(s)
- Sylvain Lanouette
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
42
|
Kipp DR, Quinn CM, Fortin PD. Enzyme-dependent lysine deprotonation in EZH2 catalysis. Biochemistry 2013; 52:6866-78. [PMID: 24000826 DOI: 10.1021/bi400805w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein lysine methyltransferases (PKMTs) are key players in epigenetic regulation and have been associated with a variety of diseases, including cancers. The catalytic subunit of Polycomb Repressive Complex 2, EZH2 (EC 2.1.1.43), is a PKMT and a member of a family of SET domain lysine methyltransferases that catalyze the transfer of a methyl group from S-adenosyl-l-methionine to lysine 27 of histone 3 (H3K27). Wild-type (WT) EZH2 primarily catalyzes the mono- and dimethylation of H3K27; however, a clinically relevant active site mutation (Y641F) has been shown to alter the reaction specificity, dominantly catalyzing trimethylation of H3K27, and has been linked to tumor genesis and maintenance. Herein, we explore the chemical mechanism of methyl transfer by EZH2 and its Y641F mutant with pH-rate profiles and solvent kinetic isotope effects (sKIEs) using a short peptide derived from histone H3 [H3(21-44)]. A key component of the chemical reaction is the essential deprotonation of the ε-NH3(+) group of lysine to accommodate subsequent methylation. This deprotonation has been suggested by independent studies (1) to occur prior to binding to the enzyme (by bulk solvent) or (2) to be facilitated within the active site following binding, either (a) by the enzyme itself or (b) by a water molecule with access to the binding pocket. Our pH-rate and sKIE data best support a model in which lysine deprotonation is enzyme-dependent and at least partially rate-limiting. Furthermore, our experimental data are in agreement with prior computational models involving enzyme-dependent solvent deprotonation through a channel providing bulk solvent access to the active site. The mechanism of deprotonation and the rate-limiting catalytic steps appear to be unchanged between the WT and Y641F mutant enzymes, despite their activities being highly dependent on different substrate methylation states, suggesting determinants of substrate and product specificity in EZH2 are independent of catalytic events limiting the steady-state rate.
Collapse
Affiliation(s)
- D Randal Kipp
- Novartis Institutes for Biomedical Research , 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
43
|
Zhang R, Li X, Liang Z, Zhu K, Lu J, Kong X, Ouyang S, Li L, Zheng YG, Luo C. Theoretical insights into catalytic mechanism of protein arginine methyltransferase 1. PLoS One 2013; 8:e72424. [PMID: 23977297 PMCID: PMC3748068 DOI: 10.1371/journal.pone.0072424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet) as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.
Collapse
Affiliation(s)
- Ruihan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Li
- Division of Nephrology, Shanghai Changzheng Hospital, Shanghai, China
| | - Zhongjie Liang
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Kongkai Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junyan Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiangqian Kong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sisheng Ouyang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lin Li
- Division of Nephrology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yujun George Zheng
- Department of Chemistry, Program of Molecular Basis of Diseases, Georgia State University, Atlanta, Georgia, United States of America
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Center for Systems Biology, Soochow University, Jiangsu, China
| |
Collapse
|
44
|
Lu Z, Huang X, Ouyang Y, Yao J. Genome-wide identification, phylogenetic and co-expression analysis of OsSET gene family in rice. PLoS One 2013; 8:e65426. [PMID: 23762371 PMCID: PMC3676427 DOI: 10.1371/journal.pone.0065426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/23/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SET domain is responsible for the catalytic activity of histone lysine methyltransferases (HKMTs) during developmental process. Histone lysine methylation plays a crucial and diverse regulatory function in chromatin organization and genome function. Although several SET genes have been identified and characterized in plants, the understanding of OsSET gene family in rice is still very limited. METHODOLOGY/PRINCIPAL FINDINGS In this study, a systematic analysis was performed and revealed the presence of at least 43 SET genes in rice genome. Phylogenetic and structural analysis grouped SET proteins into five classes, and supposed that the domains out of SET domain were significant for the specific of histone lysine methylation, as well as the recognition of methylated histone lysine. Based on the global microarray, gene expression profile revealed that the transcripts of OsSET genes were accumulated differentially during vegetative and reproductive developmental stages and preferentially up or down-regulated in different tissues. Cis-elements identification, co-expression analysis and GO analysis of expression correlation of 12 OsSET genes suggested that OsSET genes might be involved in cell cycle regulation and feedback. CONCLUSIONS/SIGNIFICANCE This study will facilitate further studies on OsSET family and provide useful clues for functional validation of OsSETs.
Collapse
Affiliation(s)
- Zhanhua Lu
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| | - Xiaolong Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, PR China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
45
|
Struck AW, Thompson ML, Wong LS, Micklefield J. S-Adenosyl-Methionine-Dependent Methyltransferases: Highly Versatile Enzymes in Biocatalysis, Biosynthesis and Other Biotechnological Applications. Chembiochem 2012. [DOI: 10.1002/cbic.201200556] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Chen Z, Yan CT, Dou Y, Viboolsittiseri SS, Wang JH. The role of a newly identified SET domain-containing protein, SETD3, in oncogenesis. Haematologica 2012; 98:739-43. [PMID: 23065515 DOI: 10.3324/haematol.2012.066977] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The SET domain is found in histone methyltransferases and other lysine methyltransferases. SET domain-containing proteins such as MLL1 play a critical role in leukemogenesis, while others such as SETD2 may function as a tumor suppressor in breast cancer and renal cell carcinoma. We recently discovered that SETD3, a well-conserved SET domain-containing protein, was involved in a translocation to the immunoglobulin lambda light chain locus in one of the non-homologous end-joining/p53-deficient peripheral B-cell lymphomas. We showed that a truncated mRNA lacking the SET domain sequences in Setd3 gene was highly expressed in the lymphoma. Furthermore, we found that the truncated SET-less protein displayed oncogenic potential while the full length SETD3 protein did not. Finally, SETD3 exhibits histone methyltransferases activity on nucleosomal histone 3 in a SET-domain dependent manner. We propose that this newly identified Setd3 gene may play an important role in carcinogenesis.
Collapse
Affiliation(s)
- Zhangguo Chen
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO, USA
| | | | | | | | | |
Collapse
|
47
|
Zhang L, Ma H. Complex evolutionary history and diverse domain organization of SET proteins suggest divergent regulatory interactions. THE NEW PHYTOLOGIST 2012; 195:248-63. [PMID: 22510098 DOI: 10.1111/j.1469-8137.2012.04143.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
• Plants and animals possess very different developmental processes, yet share conserved epigenetic regulatory mechanisms, such as histone modifications. One of the most important forms of histone modification is methylation on lysine residues of the tails, carried out by members of the SET protein family, which are widespread in eukaryotes. • We analyzed molecular evolution by comparative genomics and phylogenetics of the SET genes from plant and animal genomes, grouping SET genes into several subfamilies and uncovering numerous gene duplications, particularly in the Suv, Ash, Trx and E(z) subfamilies. • Domain organizations differ between different subfamilies and between plant and animal SET proteins in some subfamilies, and support the grouping of SET genes into seven main subfamilies, suggesting that SET proteins have acquired distinctive regulatory interactions during evolution. We detected evidence for independent evolution of domain organization in different lineages, including recruitment of new domains following some duplications. • More recent duplications in both vertebrates and land plants are probably the result of whole-genome or segmental duplications. The evolution of the SET gene family shows that gene duplications caused by segmental duplications and other mechanisms have probably contributed to the complexity of epigenetic regulation, providing insights into the evolution of the regulation of chromatin structure.
Collapse
Affiliation(s)
- Liangsheng Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | | |
Collapse
|
48
|
Mininno M, Brugière S, Pautre V, Gilgen A, Ma S, Ferro M, Tardif M, Alban C, Ravanel S. Characterization of chloroplastic fructose 1,6-bisphosphate aldolases as lysine-methylated proteins in plants. J Biol Chem 2012; 287:21034-44. [PMID: 22547063 PMCID: PMC3375527 DOI: 10.1074/jbc.m112.359976] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/28/2012] [Indexed: 11/06/2022] Open
Abstract
In pea (Pisum sativum), the protein-lysine methyltransferase (PsLSMT) catalyzes the trimethylation of Lys-14 in the large subunit (LS) of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the enzyme catalyzing the CO(2) fixation step during photosynthesis. Homologs of PsLSMT, herein referred to as LSMT-like enzymes, are found in all plant genomes, but methylation of LS Rubisco is not universal in the plant kingdom, suggesting a species-specific protein substrate specificity of the methyltransferase. In this study, we report the biochemical characterization of the LSMT-like enzyme from Arabidopsis thaliana (AtLSMT-L), with a focus on its substrate specificity. We show that, in Arabidopsis, LS Rubisco is not naturally methylated and that the physiological substrates of AtLSMT-L are chloroplastic fructose 1,6-bisphosphate aldolase isoforms. These enzymes, which are involved in the assimilation of CO(2) through the Calvin cycle and in chloroplastic glycolysis, are trimethylated at a conserved lysyl residue located close to the C terminus. Both AtLSMT-L and PsLSMT are able to methylate aldolases with similar kinetic parameters and product specificity. Thus, the divergent substrate specificity of LSMT-like enzymes from pea and Arabidopsis concerns only Rubisco. AtLSMT-L is able to interact with unmethylated Rubisco, but the complex is catalytically unproductive. Trimethylation does not modify the kinetic properties and tetrameric organization of aldolases in vitro. The identification of aldolases as methyl proteins in Arabidopsis and other species like pea suggests a role of protein lysine methylation in carbon metabolism in chloroplasts.
Collapse
Affiliation(s)
- Morgane Mininno
- From the INRA, USC1359, F-38054 Grenoble
- CNRS, UMR5168, F-38054 Grenoble
- the Commissariat à l'Energie Atomique, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble
- the Université Joseph Fourier-Grenoble I, UMR5168, F-38041 Grenoble
| | - Sabine Brugière
- the Commissariat à l'Energie Atomique, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble
- INSERM, U1038, F-38054 Grenoble, and
- the Université Joseph Fourier-Grenoble I, U1038, F-38041 Grenoble, France
| | - Virginie Pautre
- From the INRA, USC1359, F-38054 Grenoble
- CNRS, UMR5168, F-38054 Grenoble
- the Commissariat à l'Energie Atomique, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble
- the Université Joseph Fourier-Grenoble I, UMR5168, F-38041 Grenoble
| | - Annabelle Gilgen
- From the INRA, USC1359, F-38054 Grenoble
- CNRS, UMR5168, F-38054 Grenoble
- the Commissariat à l'Energie Atomique, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble
- the Université Joseph Fourier-Grenoble I, UMR5168, F-38041 Grenoble
| | - Sheng Ma
- From the INRA, USC1359, F-38054 Grenoble
- CNRS, UMR5168, F-38054 Grenoble
- the Commissariat à l'Energie Atomique, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble
- the Université Joseph Fourier-Grenoble I, UMR5168, F-38041 Grenoble
| | - Myriam Ferro
- the Commissariat à l'Energie Atomique, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble
- INSERM, U1038, F-38054 Grenoble, and
- the Université Joseph Fourier-Grenoble I, U1038, F-38041 Grenoble, France
| | - Marianne Tardif
- the Commissariat à l'Energie Atomique, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble
- INSERM, U1038, F-38054 Grenoble, and
- the Université Joseph Fourier-Grenoble I, U1038, F-38041 Grenoble, France
| | - Claude Alban
- From the INRA, USC1359, F-38054 Grenoble
- CNRS, UMR5168, F-38054 Grenoble
- the Commissariat à l'Energie Atomique, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble
- the Université Joseph Fourier-Grenoble I, UMR5168, F-38041 Grenoble
| | - Stéphane Ravanel
- From the INRA, USC1359, F-38054 Grenoble
- CNRS, UMR5168, F-38054 Grenoble
- the Commissariat à l'Energie Atomique, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble
- the Université Joseph Fourier-Grenoble I, UMR5168, F-38041 Grenoble
| |
Collapse
|
49
|
Eom GH, Kim KB, Kim JH, Kim JY, Kim JR, Kee HJ, Kim DW, Choe N, Park HJ, Son HJ, Choi SY, Kook H, Seo SB. Histone methyltransferase SETD3 regulates muscle differentiation. J Biol Chem 2011; 286:34733-42. [PMID: 21832073 DOI: 10.1074/jbc.m110.203307] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone lysine methylation, as one of the most important factors in transcriptional regulation, is associated with a various physiological conditions. Using a bioinformatics search, we identified and subsequently cloned mouse SET domain containing 3 (SETD3) with SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) and Rubis-subs-bind domains. SETD3 is a novel histone H3K4 and H3K36 methyltransferase with transcriptional activation activity. SETD3 is expressed abundantly in muscular tissues and, when overexpressed, activates transcription of muscle-related genes, myogenin, muscle creatine kinase (MCK), and myogenic factor 6 (Myf6), thereby inducing muscle cell differentiation. Conversely, knockdown of SETD3 by shRNA significantly retards muscle cell differentiation. In this study, SETD3 was recruited to the myogenin gene promoter along with MyoD where it activated transcription. Together, these data indicate that SETD3 is a H3K4/K36 methyltransferase and plays an important role in the transcriptional regulation of muscle cell differentiation.
Collapse
Affiliation(s)
- Gwang Hyeon Eom
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Foreman KW, Brown M, Park F, Emtage S, Harriss J, Das C, Zhu L, Crew A, Arnold L, Shaaban S, Tucker P. Structural and functional profiling of the human histone methyltransferase SMYD3. PLoS One 2011; 6:e22290. [PMID: 21779408 PMCID: PMC3136521 DOI: 10.1371/journal.pone.0022290] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/21/2011] [Indexed: 12/13/2022] Open
Abstract
The SET and MYND Domain (SMYD) proteins comprise a unique family of multi-domain SET histone methyltransferases that are implicated in human cancer progression. Here we report an analysis of the crystal structure of the full length human SMYD3 in a complex with an analog of the S-adenosyl methionine (SAM) methyl donor cofactor. The structure revealed an overall compact architecture in which the "split-SET" domain adopts a canonical SET domain fold and closely assembles with a Zn-binding MYND domain and a C-terminal superhelical 9 α-helical bundle similar to that observed for the mouse SMYD1 structure. Together, these structurally interlocked domains impose a highly confined binding pocket for histone substrates, suggesting a regulated mechanism for its enzymatic activity. Our mutational and biochemical analyses confirm regulatory roles of the unique structural elements both inside and outside the core SET domain and establish a previously undetected preference for trimethylation of H4K20.
Collapse
Affiliation(s)
- Kenneth W Foreman
- OSI Pharmaceuticals, Inc., Farmingdale, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|