1
|
Goradia N, Werner S, Mullapudi E, Greimeier S, Bergmann L, Lang A, Mertens H, Węglarz A, Sander S, Chojnowski G, Wikman H, Ohlenschläger O, von Amsberg G, Pantel K, Wilmanns M. Master corepressor inactivation through multivalent SLiM-induced polymerization mediated by the oncogene suppressor RAI2. Nat Commun 2024; 15:5241. [PMID: 38898011 PMCID: PMC11187106 DOI: 10.1038/s41467-024-49488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
While the elucidation of regulatory mechanisms of folded proteins is facilitated due to their amenability to high-resolution structural characterization, investigation of these mechanisms in disordered proteins is more challenging due to their structural heterogeneity, which can be captured by a variety of biophysical approaches. Here, we used the transcriptional master corepressor CtBP, which binds the putative metastasis suppressor RAI2 through repetitive SLiMs, as a model system. Using cryo-electron microscopy embedded in an integrative structural biology approach, we show that RAI2 unexpectedly induces CtBP polymerization through filaments of stacked tetrameric CtBP layers. These filaments lead to RAI2-mediated CtBP nuclear foci and relieve its corepressor function in RAI2-expressing cancer cells. The impact of RAI2-mediated CtBP loss-of-function is illustrated by the analysis of a diverse cohort of prostate cancer patients, which reveals a substantial decrease in RAI2 in advanced treatment-resistant cancer subtypes. As RAI2-like SLiM motifs are found in a wide range of organisms, including pathogenic viruses, our findings serve as a paradigm for diverse functional effects through multivalent interaction-mediated polymerization by disordered proteins in healthy and diseased conditions.
Collapse
Affiliation(s)
- Nishit Goradia
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Stefan Werner
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, Mildred Scheel Cancer Career Center HaTriCS4, Martinistrasse 52, 20246, Hamburg, Germany
| | - Edukondalu Mullapudi
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Sarah Greimeier
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Lina Bergmann
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Andras Lang
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstraße 11, 07745, Jena, Germany
| | - Haydyn Mertens
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Aleksandra Węglarz
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simon Sander
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Grzegorz Chojnowski
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Harriet Wikman
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany
| | - Oliver Ohlenschläger
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstraße 11, 07745, Jena, Germany
| | - Gunhild von Amsberg
- Martini Clinic, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, University Cancer Center Hamburg, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany.
- University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Li J, Wang Y, Wang L, Hao D, Li P, Su M, Zhao Z, Liu T, Tai L, Lu J, Di LJ. Metabolic modulation of CtBP dimeric status impacts the repression of DNA damage repair genes and the platinum sensitivity of ovarian cancer. Int J Biol Sci 2023; 19:2081-2096. [PMID: 37151877 PMCID: PMC10158025 DOI: 10.7150/ijbs.80952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
Platinum drug-based chemotherapy plays a dominant role in OC (ovarian cancer) treatment. The expression of DNA damage repair (DDR) genes is critical in distinguishing drug-sensitive and drug-refractory patients, as well as in the development of drug resistance in long-term treated patients. CtBP is a highly expressed oncogene in OC and was found to repress DDR genes expression in our previous study. In the present study, the formation of CtBP dimers in live cells was studied, and the functional differences between monomeric and oligomeric CtBP were explored by CHIP-seq and RNA-seq. Besides, the dynamics of CtBP dimer formation in response to the metabolic modulation were investigated by the protein fragment complementation (PCA) assays. We show that dimerized CtBP, but not the dimerization-defective mutant, binds to and represses DDR gene expression in OC cells. Treatment of the mice tumors grown from engrafted OC cells by cisplatin disclosed that high-level CtBP expression promotes the CtBP dimerization and increases the therapeutic effect of cisplatin. Moreover, the CtBP dimerization is responsive to the intracellular metabolic status as represented by the free NADH abundance. Metformin was found to increase the dimerization of CtBP and potentiate the therapeutic effect of cisplatin in a CtBP dimerization-dependent manner. Our data suggest that the CtBP dimerization status is a potential biomarker to predict platinum drug sensitivity in patients with ovarian cancer and a target of metformin to improve the therapeutic effect of platinum drugs in OC treatment.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, PR China
- Current address: Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, PR China
| | - Yuan Wang
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, PR China
- Current address: State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Li Wang
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, PR China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, PR China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, PR China
| | - Dapeng Hao
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, PR China
| | - Peipei Li
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, PR China
| | - Minxia Su
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, PR China
- Institute of Chinese Medical Sciences, University of Macau, Macau, PR China
| | - Zhiqiang Zhao
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, PR China
| | - Tianyu Liu
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, PR China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, PR China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, PR China
| | - Lixin Tai
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, PR China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, PR China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, PR China
| | - jinjian Lu
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, PR China
- Institute of Chinese Medical Sciences, University of Macau, Macau, PR China
| | - Li-jun Di
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, PR China
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, PR China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, PR China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, PR China
- ✉ Corresponding author: Dr. Li-jun Di. . Faculty of Health Sciences, University of Macau, Macau, SAR of People's Republic of China, E12-4009, Avenida da Universidade, Taipa, Macau, China. Tel. 853-88224497; Fax. 853-88222314
| |
Collapse
|
3
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
4
|
El Naggar O, Doyle B, Mariner K, Gilmour SK. Difluoromethylornithine (DFMO) Enhances the Cytotoxicity of PARP Inhibition in Ovarian Cancer Cells. Med Sci (Basel) 2022; 10:medsci10020028. [PMID: 35736348 PMCID: PMC9230675 DOI: 10.3390/medsci10020028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/26/2022] Open
Abstract
Ovarian cancer accounts for 3% of the total cancers in women, yet it is the fifth leading cause of cancer deaths among women. The BRCA1/2 germline and somatic mutations confer a deficiency of the homologous recombination (HR) repair pathway. Inhibitors of poly (ADP-ribose) polymerase (PARP), another important component of DNA damage repair, are somewhat effective in BRCA1/2 mutant tumors. However, ovarian cancers often reacquire functional BRCA and develop resistance to PARP inhibitors. Polyamines have been reported to facilitate the DNA damage repair functions of PARP. Given the elevated levels of polyamines in tumors, we hypothesized that treatment with the polyamine synthesis inhibitor, α-difluoromethylornithine (DFMO), may enhance ovarian tumor sensitivity to the PARP inhibitor, rucaparib. In HR-competent ovarian cancer cell lines with varying sensitivities to rucaparib, we show that co-treatment with DFMO increases the sensitivity of ovarian cancer cells to rucaparib. Immunofluorescence assays demonstrated that, in the presence of hydrogen peroxide-induced DNA damage, DFMO strongly inhibits PARylation, increases DNA damage accumulation, and reduces cell viability in both HR-competent and deficient cell lines. In vitro viability assays show that DFMO and rucaparib cotreatment significantly enhances the cytotoxicity of the chemotherapeutic agent, cisplatin. These results suggest that DFMO may be a useful adjunct chemotherapeutic to improve the anti-tumor efficacy of PARP inhibitors in treating ovarian cancer.
Collapse
|
5
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
6
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
7
|
Yang J, Qi L, Chiang HC, Yuan B, Li R, Hu Y. BRCA1 Antibodies Matter. Int J Biol Sci 2021; 17:3239-3254. [PMID: 34421362 PMCID: PMC8375228 DOI: 10.7150/ijbs.63115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/11/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) encodes a tumor suppressor that is frequently mutated in familial breast and ovarian cancer patients. BRCA1 functions in multiple important cellular processes including DNA damage repair, cell cycle checkpoint activation, protein ubiquitination, chromatin remodeling, transcriptional regulation, as well as R-loop formation and apoptosis. A large number of BRCA1 antibodies have been generated and become commercially available over the past three decades, however, many commercial antibodies are poorly characterized and, when widely used, led to unreliable data. In search of reliable and specific BRCA1 antibodies (Abs), particularly antibodies recognizing mouse BRCA1, we performed a rigorous validation of a number of commercially available anti-BRCA1 antibodies, using proper controls in a panel of validation applications, including Western blot (WB), immunoprecipitation (IP), immunoprecipitation-mass spectrometry (IP-MS), chromatin immunoprecipitation (ChIP) and immunofluorescence (IF). Furthermore, we assessed the specificity of these antibodies to detect mouse BRCA1 protein through the use of testis tissue and mouse embryonic fibroblasts (MEFs) from Brca1+/+ and Brca1Δ11/Δ11 mice. We find that Ab1, D-9, 07-434 (for recognizing human BRCA1) and 287.17, 440621, BR-64 (for recognizing mouse BRCA1) are specific with high quality performance in the indicated assays. We share these results here with the goal of helping the community combat the common challenges associated with anti-BRCA1 antibody specificity and reproducibility and, hopefully, better understanding BRCA1 functions at cellular and tissue levels.
Collapse
Affiliation(s)
- Jing Yang
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Leilei Qi
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Huai-Chin Chiang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Bin Yuan
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
8
|
The transrepression and transactivation roles of CtBPs in the pathogenesis of different diseases. J Mol Med (Berl) 2021; 99:1335-1347. [PMID: 34196767 DOI: 10.1007/s00109-021-02107-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Gene transcription is strictly controlled by transcriptional complexes, which are assemblies of transcription factors, transcriptional regulators, and co-regulators. Mammalian genomes encode two C-terminal-binding proteins (CtBPs), CtBP1 and CtBP2, which are both well-known transcriptional corepressors of oncogenic processes. Their overexpression in tumors is associated with malignant behavior, such as uncontrolled cell proliferation, migration, and invasion, as well as with an increase in the epithelial-mesenchymal transition. CtBPs coordinate with other transcriptional regulators, such as histone deacetylases (HDACs) and histone acetyltransferases (p300 and CBP [CREBP-binding protein]) that contain the PXDLS motif, and with transcription factors to assemble transcriptional complexes that dock onto the promoters of genes to initiate gene transcription. Emerging evidence suggests that CtBPs function as both corepressors and coactivators in different biological processes ranging from apoptosis to inflammation and osteogenesis. Therapeutic targeting of CtBPs or the interactions required to form transcriptional complexes has also shown promising effects in preventing disease progression. This review summarizes the most recent progress in the study of CtBP functions and therapeutic inhibitors in different biological processes. This knowledge may enable a better understanding of the complexity of the roles of CtBPs, while providing new insights into therapeutic strategies that target CtBPs.
Collapse
|
9
|
Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021; 9:microorganisms9061179. [PMID: 34070716 PMCID: PMC8227491 DOI: 10.3390/microorganisms9061179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15–20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host’s epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
Collapse
|
10
|
Leung E, Hazrati LN. Breast cancer type 1 and neurodegeneration: consequences of deficient DNA repair. Brain Commun 2021; 3:fcab117. [PMID: 34222870 PMCID: PMC8242133 DOI: 10.1093/braincomms/fcab117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous cellular processes, including toxic protein aggregation and oxidative stress, have been studied extensively as potential mechanisms underlying neurodegeneration. However, limited therapeutic efficacy targeting these processes has prompted other mechanisms to be explored. Previous research has emphasized a link between cellular senescence and neurodegeneration, where senescence induced by excess DNA damage and deficient DNA repair results in structural and functional changes that ultimately contribute to brain dysfunction and increased vulnerability for neurodegeneration. Specific DNA repair proteins, such as breast cancer type 1, have been associated with both stress-induced senescence and neurodegenerative diseases, however, specific mechanisms remain unclear. Therefore, this review explores DNA damage-induced senescence in the brain as a driver of neurodegeneration, with particular focus on breast cancer type 1, and its potential contribution to sex-specific differences associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Emily Leung
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
11
|
Penkert J, Märtens A, Seifert M, Auber B, Derlin K, Hille-Betz U, Hörmann P, Klopp N, Prokein J, Schlicker L, Wacker F, Wallaschek H, Schlegelberger B, Hiller K, Ripperger T, Illig T. Plasma Metabolome Signature Indicative of BRCA1 Germline Status Independent of Cancer Incidence. Front Oncol 2021; 11:627217. [PMID: 33898308 PMCID: PMC8058469 DOI: 10.3389/fonc.2021.627217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/19/2021] [Indexed: 12/03/2022] Open
Abstract
Individuals carrying a pathogenic germline variant in the breast cancer predisposition gene BRCA1 (gBRCA1+) are prone to developing breast cancer. Apart from its well-known role in DNA repair, BRCA1 has been shown to powerfully impact cellular metabolism. While, in general, metabolic reprogramming was named a hallmark of cancer, disrupted metabolism has also been suggested to drive cancer cell evolution and malignant transformation by critically altering microenvironmental tissue integrity. Systemic metabolic effects induced by germline variants in cancer predisposition genes have been demonstrated before. Whether or not systemic metabolic alterations exist in gBRCA1+ individuals independent of cancer incidence has not been investigated yet. We therefore profiled the plasma metabolome of 72 gBRCA1+ women and 72 age-matched female controls, none of whom (carriers and non-carriers) had a prior cancer diagnosis and all of whom were cancer-free during the follow-up period. We detected one single metabolite, pyruvate, and two metabolite ratios involving pyruvate, lactate, and a metabolite of yet unknown structure, significantly altered between the two cohorts. A machine learning signature of metabolite ratios was able to correctly distinguish between gBRCA1+ and controls in ~82%. The results of this study point to innate systemic metabolic differences in gBRCA1+ women independent of cancer incidence and raise the question as to whether or not constitutional alterations in energy metabolism may be involved in the etiology of BRCA1-associated breast cancer.
Collapse
Affiliation(s)
- Judith Penkert
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Andre Märtens
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Katja Derlin
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Ursula Hille-Betz
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Philipp Hörmann
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Norman Klopp
- Hannover Unified Biobank (HUB), Hannover, Germany
| | - Jana Prokein
- Center for Information Management, Hannover Medical School, Hannover, Germany
| | - Lisa Schlicker
- Division of Tumour Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Hannah Wallaschek
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank (HUB), Hannover, Germany
| |
Collapse
|
12
|
Bruno E, Oliverio A, Paradiso A, Daniele A, Tommasi S, Terribile DA, Filippone A, Digennaro M, Pilato B, Danza K, Guarino D, Rossi C, Rossi MM, Venturelli E, Giussani M, Peissel B, Pasanisi P. Lifestyle Characteristics in Women Carriers of BRCA Mutations: Results From an Italian Trial Cohort. Clin Breast Cancer 2020; 21:e168-e176. [PMID: 33357965 DOI: 10.1016/j.clbc.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Women with deleterious mutations in BRCA1/2 have a high lifetime penetrance of developing breast cancer and/or ovarian cancer. Genetic and/or environmental factors may influence BRCA penetrance, and identifying modifiable exposures might be valuable for prevention. PATIENTS AND METHODS We implemented a multicenter prospective 2-arm (1:1) randomized controlled trial to investigate whether a Mediterranean dietary intervention with moderate protein restriction would reduce potential modulators of BRCA penetrance such as insulin-like growth factor 1 (IGF-1), body weight, and metabolic risk factors. We studied the baseline characteristics of women with BRCA-positive disease who joined the trial cohort, focusing on the relationships between selected lifestyle exposures, metabolic/anthropometric parameters, and BRCA-related cancer. RESULTS A total of 502 women (304 with a previous diagnosis of breast cancer and/or ovarian cancer and 198 unaffected) with deleterious BRCA mutations, with or without a previous cancer, aged 18 to 70 years and without metastases were included. Late age at menarche and pregnancy were negatively associated with BRCA-related cancer, especially in women with BRCA1-positive disease. Higher fat mass and the presence of 4 or 5 metabolic risk factors were significantly associated with BRCA-related cancer (hazard ratio, 1.87, 95% confidence interval, 1.21-2.88; and hazard ratio, 1.87, 95% confidence interval, 1.11-3.19, respectively), with greater effect in BRCA2-positive women. CONCLUSIONS Our findings confirm previous observations about reproductive factors in women with BRCA disease and suggest a potential impact of metabolic factors in BRCA-related cancer. The prospective follow-up of the trial cohort will enable us to study the environmental modulators of BRCA penetrance and their impact in relation to the history of BRCA-related cancer. [ClinicalTrials.gov NCT03066856].
Collapse
Affiliation(s)
- Eleonora Bruno
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Andreina Oliverio
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Angelo Paradiso
- Experimental Oncology, Center for Study of Heredo-Familial Tumors, IRCCS Istituto Tumori "Giovanni Paolo II" Bari, Bari, Italy
| | - Antonella Daniele
- Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II" Bari, Bari, Italy
| | - Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori "Giovanni Paolo II" Bari, Bari, Italy
| | - Daniela A Terribile
- Department of Women Health Area, Università Cattolica, Rome, Italy; Department of Women and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Maria Digennaro
- Experimental Oncology, Center for Study of Heredo-Familial Tumors, IRCCS Istituto Tumori "Giovanni Paolo II" Bari, Bari, Italy
| | - Brunella Pilato
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori "Giovanni Paolo II" Bari, Bari, Italy
| | - Katia Danza
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori "Giovanni Paolo II" Bari, Bari, Italy
| | | | - Cristina Rossi
- Department of Women and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Maddalena Rossi
- Department of Women and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elisabetta Venturelli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Marta Giussani
- Unit of Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Patrizia Pasanisi
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| |
Collapse
|
13
|
Kreuzer M, Banerjee A, Birts CN, Darley M, Tavassoli A, Ivan M, Blaydes JP. Glycolysis, via NADH-dependent dimerisation of CtBPs, regulates hypoxia-induced expression of CAIX and stem-like breast cancer cell survival. FEBS Lett 2020; 594:2988-3001. [PMID: 32618367 DOI: 10.1002/1873-3468.13874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Adaptive responses to hypoxia are mediated by the hypoxia-inducible factor (HIF) family of transcription factors. These responses include the upregulation of glycolysis to maintain ATP production. This also generates acidic metabolites, which require HIF-induced carbonic anhydrase IX (CAIX) for their neutralisation. C-terminal binding proteins (CtBPs) are coregulators of gene transcription and couple glycolysis with gene transcription due to their regulation by the glycolytic coenzyme NADH. Here, we find that experimental manipulation of glycolysis and CtBP function in breast cancer cells through multiple complementary approaches supports a hypothesis whereby the expression of known HIF-inducible genes, and CAIX in particular, adapts to available glucose in the microenvironment through a mechanism involving CtBPs. This novel pathway promotes the survival of stem cell-like cancer (SCLC) cells in hypoxia.
Collapse
Affiliation(s)
- Mira Kreuzer
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK.,Institute for Life Sciences, University of Southampton, Southampton, Hants, UK
| | - Arindam Banerjee
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK
| | - Charles N Birts
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK.,Institute for Life Sciences, University of Southampton, Southampton, Hants, UK
| | - Matthew Darley
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK
| | - Ali Tavassoli
- Institute for Life Sciences, University of Southampton, Southampton, Hants, UK.,School of Chemistry, University of Southampton, Southampton, Hants, UK
| | - Mircea Ivan
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeremy P Blaydes
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK.,Institute for Life Sciences, University of Southampton, Southampton, Hants, UK
| |
Collapse
|
14
|
Zhang B, Lyu J, Yang EJ, Liu Y, Wu C, Pardeshi L, Tan K, Chen Q, Xu X, Deng CX, Shim JS. Class I histone deacetylase inhibition is synthetic lethal with BRCA1 deficiency in breast cancer cells. Acta Pharm Sin B 2020; 10:615-627. [PMID: 32322466 PMCID: PMC7161709 DOI: 10.1016/j.apsb.2019.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene, which is frequently mutated in breast and ovarian cancers. BRCA1 plays a key role in the homologous recombination directed DNA repair, allowing its deficiency to act as a therapeutic target of DNA damaging agents. In this study, we found that inhibition of the class I histone deacetylases (HDAC) exhibited synthetic lethality with BRCA1 deficiency in breast cancer cells. Transcriptome profiling and validation study showed that HDAC inhibition enhanced the expression of thioredoxin interaction protein (TXNIP), causing reactive oxygen species (ROS)-mediated DNA damage. This effect induced preferential apoptosis in BRCA1 -/- breast cancer cells where DNA repair system is compromised. Two animal experiments and gene expression-associated patients' survival analysis further confirmed in vivo synthetic lethality between BRCA1 and HDAC. Finally, the combination of inhibitors of HDAC and bromodomain and extra-terminal motif (BET), another BRCA1 synthetic lethality target that also works through oxidative stress-mediated DNA damage, showed a strong anticancer effect in BRCA1 -/- breast cancer cells. Together, this study provides a new therapeutic strategy for BRCA1-deficient breast cancer by targeting two epigenetic machineries, HDAC and BET.
Collapse
|
15
|
Association of the functional genetic variants of TOX3 gene with breast cancer in Iran: A case-control study. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Goncalves MB, Moehlin J, Clarke E, Grist J, Hobbs C, Carr AM, Jack J, Mendoza-Parra MA, Corcoran JPT. RARβ Agonist Drug (C286) Demonstrates Efficacy in a Pre-clinical Neuropathic Pain Model Restoring Multiple Pathways via DNA Repair Mechanisms. iScience 2019; 20:554-566. [PMID: 31655065 PMCID: PMC6833472 DOI: 10.1016/j.isci.2019.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
Neuropathic pain (NP) is associated with profound gene expression alterations within the nociceptive system. DNA mechanisms, such as epigenetic remodeling and repair pathways have been implicated in NP. Here we have used a rat model of peripheral nerve injury to study the effect of a recently developed RARβ agonist, C286, currently under clinical research, in NP. A 4-week treatment initiated 2 days after the injury normalized pain sensation. Genome-wide and pathway enrichment analysis showed that multiple mechanisms persistently altered in the spinal cord were restored to preinjury levels by the agonist. Concomitant upregulation of DNA repair proteins, ATM and BRCA1, the latter being required for C286-mediated pain modulation, suggests that early DNA repair may be important to prevent phenotypic epigenetic imprints in NP. Thus, C286 is a promising drug candidate for neuropathic pain and DNA repair mechanisms may be useful therapeutic targets to explore.
Collapse
Affiliation(s)
- Maria B Goncalves
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK.
| | - Julien Moehlin
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Earl Clarke
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - John Grist
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Carl Hobbs
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Julian Jack
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Marco Antonio Mendoza-Parra
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France.
| | - Jonathan P T Corcoran
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
17
|
Byun JS, Park S, Yi DI, Shin JH, Hernandez SG, Hewitt SM, Nicklaus MC, Peach ML, Guasch L, Tang B, Wakefield LM, Yan T, Caban A, Jones A, Kabbout M, Vohra N, Nápoles AM, Singhal S, Yancey R, De Siervi A, Gardner K. Epigenetic re-wiring of breast cancer by pharmacological targeting of C-terminal binding protein. Cell Death Dis 2019; 10:689. [PMID: 31534138 PMCID: PMC6751206 DOI: 10.1038/s41419-019-1892-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
The C-terminal binding protein (CtBP) is an NADH-dependent dimeric family of nuclear proteins that scaffold interactions between transcriptional regulators and chromatin-modifying complexes. Its association with poor survival in several cancers implicates CtBP as a promising target for pharmacological intervention. We employed computer-assisted drug design to search for CtBP inhibitors, using quantitative structure-activity relationship (QSAR) modeling and docking. Functional screening of these drugs identified 4 compounds with low toxicity and high water solubility. Micro molar concentrations of these CtBP inhibitors produces significant de-repression of epigenetically silenced pro-epithelial genes, preferentially in the triple-negative breast cancer cell line MDA-MB-231. This epigenetic reprogramming occurs through eviction of CtBP from gene promoters; disrupted recruitment of chromatin-modifying protein complexes containing LSD1, and HDAC1; and re-wiring of activating histone marks at targeted genes. In functional assays, CtBP inhibition disrupts CtBP dimerization, decreases cell migration, abolishes cellular invasion, and improves DNA repair. Combinatorial use of CtBP inhibitors with the LSD1 inhibitor pargyline has synergistic influence. Finally, integrated correlation of gene expression in breast cancer patients with nuclear levels of CtBP1 and LSD1, reveals new potential therapeutic vulnerabilities. These findings implicate a broad role for this class of compounds in strategies for epigenetically targeted therapeutic intervention.
Collapse
Affiliation(s)
- Jung S Byun
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Samson Park
- Genetics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Dae Ik Yi
- Genetics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jee-Hye Shin
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | | | - Stephen M Hewitt
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 20892, USA
| | - Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Laura Guasch
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 20892, USA
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Tingfen Yan
- National Human Genome Institute, Bethesda, MD, 20892, USA
| | - Ambar Caban
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Alana Jones
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Mohamed Kabbout
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Nasreen Vohra
- Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Anna María Nápoles
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA
| | - Sandeep Singhal
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ryan Yancey
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Adriana De Siervi
- Laboratorio de Oncologıa Molecular y Nuevos Blancos Terapeuticos, Instituto de Biologıa y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Kevin Gardner
- National Institute on Minority Health and Health Disparities, Bethesda, MD, 20892, USA. .,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
18
|
Chatterjee B, Ghosh K, Kanade SR. Resveratrol modulates epigenetic regulators of promoter histone methylation and acetylation that restores BRCA1, p53, p21 CIP1 in human breast cancer cell lines. Biofactors 2019; 45:818-829. [PMID: 31317586 DOI: 10.1002/biof.1544] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/27/2019] [Indexed: 01/09/2023]
Abstract
The epigenetic enzymes catalyze posttranslational modifications (PTMs) of histones, which functionally determine gene expression at the chromatin level. Resveratrol (RVT) a much studied anti-cancer natural molecule is known for restoration of BRCA1, p53, and p21 in cancer cells. We aimed to investigate the role of histone methylation and acetylation on upregulation of these tumor suppressor genes. Our results suggest RVT significantly increase expression of BRCA1, p53, and p21, while decreased expression of protein arginine methyltransferase 5 (PRMT5) and enhancer of Zeste homolog 2 (EZH2) at a 20 μM concentration by 48 hr in both MCF-7 and MDA-MB-231 breast cancer cells. Also, there was an overall loss of H4R3me2s (catalytic product of PRMT5) and H3K27me3 (catalytic product of PRMT5). In contrast, RVT exposure caused a significant decrease in lysine deacetylase (KDAC) activity and expression of KDAC1-3, whereas the expression of lysine acetyltransferase KAT2A/3B was increased compared to the unexposed cells. As an outcome, RVT increased global level of H3K9ac and H3K27ac marks. The chromatin immunoprecipitation showed 20 μM RVT exposure significantly reduced the enrichment of repressive histone marks (H4R3me2s and H3K27me3) while the abundance of activating histone marks (H3K9/27ac) within the proximal promoter region of BRCA1, p53, and p21 was increased. We hypothesize RVT by affecting the expression and function of methylation and acetylation enzymes altered the epigenetic modifications on promoter histones that restored expression of these critically important tumor suppressor genes.
Collapse
Affiliation(s)
- Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, India
| | - Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, India
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, Telangana, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala, India
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Central University P.O., Hyderabad, Telangana, India
| |
Collapse
|
19
|
Breheny PJ. Marginal false discovery rates for penalized regression models. Biostatistics 2019; 20:299-314. [PMID: 29420686 DOI: 10.1093/biostatistics/kxy004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 01/14/2018] [Indexed: 11/14/2022] Open
Abstract
Penalized regression methods are an attractive tool for high-dimensional data analysis, but their widespread adoption has been hampered by the difficulty of applying inferential tools. In particular, the question "How reliable is the selection of those features?" has proved difficult to address. In part, this difficulty arises from defining false discoveries in the classical, fully conditional sense, which is possible in low dimensions but does not scale well to high-dimensional settings. Here, we consider the analysis of marginal false discovery rates (mFDRs) for penalized regression methods. Restricting attention to the mFDR permits straightforward estimation of the number of selections that would likely have occurred by chance alone, and therefore provides a useful summary of selection reliability. Theoretical analysis and simulation studies demonstrate that this approach is quite accurate when the correlation among predictors is mild, and only slightly conservative when the correlation is stronger. Finally, the practical utility of the proposed method and its considerable advantages over other approaches are illustrated using gene expression data from The Cancer Genome Atlas and genome-wide association study data from the Myocardial Applied Genomics Network.
Collapse
|
20
|
Tu J, Li X, Wang J. Characterization of bidirectional gene pairs in The Cancer Genome Atlas (TCGA) dataset. PeerJ 2019; 7:e7107. [PMID: 31245179 PMCID: PMC6585903 DOI: 10.7717/peerj.7107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
The “bidirectional gene pair” indicates a particular head-to-head gene organization in which transcription start sites of two genes are located on opposite strands of genomic DNA within a region of one kb. Despite bidirectional gene pairs are well characterized, little is known about their expression profiles and regulation features in tumorigenesis. We used RNA-seq data from The Cancer Genome Atlas (TCGA) dataset for a systematic analysis of the expression profiles of bidirectional gene pairs in 13 cancer datasets. Gene pairs on the opposite strand with transcription end site distance within one kb or on the same strand with the distance of two genes between 1–10 kb and gene pairs comprising two randomly chosen genes were used as control gene pairs (CG1, CG2, and random). We identified and characterized up-/down-regulated genes by comparing the expression level between tumors and adjacent normal tissues in 13 TCGA datasets. There were no consistently significant difference in the percentage of up-/down-regulated genes between bidirectional and control/random genes in most of TCGA datasets. However, the percentage of bidirectional gene pairs comprising two up- or two down-regulated genes was significantly higher than gene pairs from CG1/2 in 12/11 analyzed TCGA datasets and the random gene pairs in all 13 TCGA datasets. Then we identified the methylation correlated bidirectional genes to explore the regulatory mechanism of bidirectional genes. Like the differentially expressed gene pairs, the bidirectional genes in a pair were significantly prone to be both hypo- or hyper-methylation correlated genes in 12/13 TCGA datasets when comparing to the CG2/random gene pairs despite no significant difference between the percentages of hypo-/hyper-methylation correlated genes in bidirectional and CG2/random genes in most of TCGA datasets. Finally, we explored the correlation between bidirectional genes and patient’s survival, identifying prognostic bidirectional genes and prognostic bidirectional gene pairs in each TCGA dataset. Remarkably, we found a group of prognostic bidirectional gene pairs in which the combination of two protein coding genes with different expression level correlated with different survival prognosis in survival analysis for OS. The percentage of these gene pairs in bidirectional gene pair were significantly higher than the gene pairs in controls in COAD datasets and lower in none of 13 TCGA datasets.
Collapse
Affiliation(s)
- Juchuanli Tu
- College of Life Sciences, Beijing Normal University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Xiaolu Li
- National Institute of Biological Sciences, Beijing, China
| | - Jianjun Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Scherbakov AM, Shestakova EA, Galeeva KE, Bogush TA. BRCA1 and Estrogen Receptor α Expression Regulation in Breast Cancer Cells. Mol Biol 2019. [DOI: 10.1134/s0026893319030166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Zhou S, Jin J, Wang J, Zhang Z, Huang S, Zheng Y, Cai L. Effects of Breast Cancer Genes 1 and 2 on Cardiovascular Diseases. Curr Probl Cardiol 2019; 46:100421. [PMID: 31558344 DOI: 10.1016/j.cpcardiol.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
Abstract
Carriers of mutations of breast cancer gene 1 and/or 2 (BRCA1/2) have a higher risk of developing breast and ovarian cancers at a relatively young age. Recently, a causative role for BRCA1/2 in cardiovascular diseases has been emerging. In this review, we summarize currently available evidence obtained from studies on animal models and human BRCA1/2 mutation carriers that shows a correlation of BRCA1/2 deficiency with various cardiovascular diseases, including ischemic heart disease, atherosclerosis, and chemotherapy-linked cardiac muscle disorders. We also discuss one of the major mechanisms by which BRCA1/2 protects the heart against oxidative stress, ie mediating the activity of Nrf2 and its downstream targets that govern antioxidant signaling. More research is needed to elucidate whether the carriers of the BRCA1/2 mutations with ovarian and breast cancers have increased susceptibility to chemotherapy-induced cardiac functional impairment.
Collapse
|
23
|
Hong R, Zhang W, Xia X, Zhang K, Wang Y, Wu M, Fan J, Li J, Xia W, Xu F, Chen J, Wang S, Zhan Q. Preventing BRCA1/ZBRK1 repressor complex binding to the GOT2 promoter results in accelerated aspartate biosynthesis and promotion of cell proliferation. Mol Oncol 2019; 13:959-977. [PMID: 30714292 PMCID: PMC6441895 DOI: 10.1002/1878-0261.12466] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/27/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) has been implicated in modulating metabolism via transcriptional regulation. However, direct metabolic targets of BRCA1 and the underlying regulatory mechanisms are still unknown. Here, we identified several metabolic genes, including the gene which encodes glutamate‐oxaloacetate transaminase 2 (GOT2), a key enzyme for aspartate biosynthesis, which are repressed by BRCA1. We report that BRCA1 forms a co‐repressor complex with ZBRK1 that coordinately represses GOT2 expression via a ZBRK1 recognition element in the promoter of GOT2. Impairment of this complex results in upregulation of GOT2, which in turn increases aspartate and alpha ketoglutarate production, leading to rapid cell proliferation of breast cancer cells. Importantly, we found that GOT2 can serve as an independent prognostic factor for overall survival and disease‐free survival of patients with breast cancer, especially triple‐negative breast cancer. Interestingly, we also demonstrated that GOT2 overexpression sensitized breast cancer cells to methotrexate, suggesting a promising precision therapeutic strategy for breast cancer treatment. In summary, our findings reveal that BRCA1 modulates aspartate biosynthesis through transcriptional repression of GOT2, and provides a biological basis for treatment choices in breast cancer.
Collapse
Affiliation(s)
- Ruoxi Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xi Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, China
| | - Kai Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mengjiao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiawen Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wen Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fei Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shusen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Regulation of SOX11 expression through CCND1 and STAT3 in mantle cell lymphoma. Blood 2018; 133:306-318. [PMID: 30530749 DOI: 10.1182/blood-2018-05-851667] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
The neural transcription factor SOX11 is usually highly expressed in typical mantle cell lymphoma (MCL), but it is absent in the more indolent form of MCL. Despite being an important diagnostic marker for this hard-to-treat malignancy, the mechanisms of aberrant SOX11 expression are largely unknown. Herein, we describe 2 modes of SOX11 regulation by the cell-cycle regulator cyclin D1 (CCND1) and the signal transducer and activator of transcription 3 (STAT3). We found that ectopic expression of CCND1 in multiple human MCL cell lines resulted in increased SOX11 transcription, which correlated with increased acetylated histones H3K9 and H3K14 (H3K9/14Ac). Increased H3K9/14Ac and SOX11 expression was also observed after histone deacetylase 1 (HDAC1) or HDAC2 was depleted by RNA interference or inhibited by the HDAC inhibitor vorinostat. Mechanistically, we showed that CCND1 interacted with and sequestered HDAC1 and HDAC2 from the SOX11 locus, leading to SOX11 upregulation. Interestingly, our data revealed a potential inverse relationship between phosphorylated Y705 STAT3 and SOX11 expression in MCL cell lines, primary tumors, and patient-derived xenografts. Functionally, inactivation of STAT3 by inhibiting the upstream Janus kinase (JAK) 1 or JAK2 or by STAT3 knockdown was found to increase SOX11 expression, whereas interleukin-21 (IL-21)-induced STAT3 activation or overexpression of the constitutively active form of STAT3 decreased SOX11 expression. In addition, targeting SOX11 directly by RNA interference or indirectly by IL-21 treatment induced toxicity in SOX11+ MCL cells. Collectively, we demonstrate the involvement of CCND1 and STAT3 in the regulation of SOX11 expression, providing new insights and therapeutic implications in MCL.
Collapse
|
25
|
Kundur S, Prayag A, Selvakumar P, Nguyen H, McKee L, Cruz C, Srinivasan A, Shoyele S, Lakshmikuttyamma A. Synergistic anticancer action of quercetin and curcumin against triple‐negative breast cancer cell lines. J Cell Physiol 2018; 234:11103-11118. [DOI: 10.1002/jcp.27761] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sai Kundur
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Amrita Prayag
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Priyanga Selvakumar
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Hung Nguyen
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Lloyd McKee
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Clairissa Cruz
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Asha Srinivasan
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Sunday Shoyele
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| | - Ashakumary Lakshmikuttyamma
- Department of Pharmaceutical Sciences Jefferson College of Pharmacy, Thomas Jefferson University Philadelphia Pennsylvania
| |
Collapse
|
26
|
CtBP promotes metastasis of breast cancer through repressing cholesterol and activating TGF-β signaling. Oncogene 2018; 38:2076-2091. [PMID: 30442980 DOI: 10.1038/s41388-018-0570-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Metastasis is the process through which the primary cancer cells spread beyond the primary tumor and disseminate to other organs. Most cancer patients die of metastatic disease. EMT is proposed to be the initial event associated with cancer metastasis and how it occurred is still a mystery. CtBP is known as a co-repressor abundantly expressed in many types of cancer and regulates genes involved in cancer initiation, progression, and metastasis. We found that CtBP regulates intracellular cholesterol homeostasis in breast cancer cells by forming a complex with ZEB1 and transcriptionally repressing SREBF2 expression. Importantly, CtBP repression of intracellular cholesterol abundance leads to increased EMT and cell migration. The reason is that cholesterol negatively regulates the stability of TGF-β receptors on the cell membrane. Interestingly, TGF-β is also capable of reducing intracellular cholesterol relying on the increased recruitment of ZEB1 and CtBP complex to SREBF2 promoter. Thus, we propose a feedback loop formed by CtBP, cholesterol, and TGF-β signaling pathway, through which TGF-β triggers the cascade that mobilizes the cancer cells for metastasis. Consistently, the intravenous injection of breast cancer cells with ectopically CtBP expression show increased lung metastasis depending on the reduction of intracellular cholesterol. Finally, we analyzed the public breast cancer datasets and found that CtBP expression negatively correlates with SREBF2 and HMGCR expressions. High expression of CtBP and low expression of SREBF2 and HMGCR significantly correlates with high EMT of the primary tumors.
Collapse
|
27
|
Dökümcü K, Simonian M, Farahani RM. miR4673 improves fitness profile of neoplastic cells by induction of autophagy. Cell Death Dis 2018; 9:1068. [PMID: 30341280 PMCID: PMC6195512 DOI: 10.1038/s41419-018-1088-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Therapeutic resistance of neoplasms is mainly attributed to gradual evolution of mutational profile1. Here, we demonstrate a microRNA-mediated mechanism that effectively improves fitness of SKBR3 mammary carcinoma cells by cytoplasmic reprogramming. The reprogramming is triggered by endogenous miR4673 transcribed from notch-1 locus. The miRNA downregulates cdk-18, a cyclin-dependent kinase that regulates M-G1 transition in cycling cells2,3. Suppression of cdk-18 triggers mitophagy and autophagy. Due to high autophagic flux, oestrogen receptor-1+/progesterone receptor+/p53+ (Esr1+/Pr+/p53+) SKBR3 cells are coerced into an Esr1-/Prlow/p53-profile. Increased mitophagy in combination with proteasomal degradation of p53 transiently arrests the cycling cells at G0 and enhances radio-resistance of the SKBR3 population. These findings highlight the impact on cancer therapy of non-encoded neoplastic resistance, arising as a consequence of miRNA-mediated autophagic reprogramming that uncouples phenotype and genotype.
Collapse
Affiliation(s)
- Kağan Dökümcü
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, NSW, Australia
- Department of Life Sciences, The University of Sydney Dental School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mary Simonian
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, NSW, Australia
| | - Ramin M Farahani
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, NSW, Australia.
- Department of Life Sciences, The University of Sydney Dental School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
28
|
Lukyanova EN, Snezhkina AV, Kalinin DV, Pokrovsky AV, Golovyuk AL, Stepanov OA, Pudova EA, Razmakhaev GS, Orlova MV, Polyakov AP, Kiseleva MV, Kaprin AD, Kudryavtseva AV. Analysis of mutations in CDC27, CTBP2, HYDIN and KMT5A genes in carotid paragangliomas. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Carotid paragangliomas (CPGLs) are rare neuroendocrine tumors that arise from paraganglionic tissue of the carotid body localizing at the bifurcation of carotid artery. These tumors are slowly growing, but occasionally they become aggressive and metastatic. Surgical treatment remains high-risk and extremely challenging; radiation and chemotherapy are poorly effective. The study of molecular pathogenesis of CPGLs will allow developing novel therapeutic approaches and revealing biomarkers. Previously, we performed the exome sequencing of 52 CPGLs and estimated mutational load (ML). Paired histologically normal tissues or blood were unavailable, so potentially germline mutations were excluded from the analysis with strong filtering conditions using 1000 Genomes Project and ExAC databases. In this work, ten genes (ZNF717, CDC27, FRG2C, FAM104B, CTBP2, HLA-DRB1, HYDIN, KMT5A, MUC3A, and PRSS3) characterized by the highest level of mutational load were analyzed. Using several prediction algorithms (SIFT, PolyPhen-2, MutationTaster, and LRT), potentially pathogenic mutations were identified in four genes (CDC27, CTBP2, HYDIN, and KMT5A). Many of these mutations occurred in the majority of cases, and their mutation type was checked using exome sequencing data of blood prepared with the same exome enrichment kit that was used for preparation of exome libraries from CPGLs. The majority of the mutations were germline that can apparently be associated with annotation errors in 1000 Genomes Pro ject and ExAC. However, part of the mutations identified in CDC27, CTBP2, HYDIN, and KMT5A remain potentially pathogenic, and there is a large body of data on the involvement of these genes in the formation and progression of other tumors. This allows considering CDC27, CTBP2, HYDIN, and KMT5A genes as potentially associated with CPGL pathogenesis and requires taking them into account in further investigations. Thus, there is a necessity to improve the methods for identification of cancer-asso ciated genes as well as pathogenic mutations.
Collapse
Affiliation(s)
| | | | - D. V. Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation
| | - A. V. Pokrovsky
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation
| | - A. L. Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation
| | | | - E. A. Pudova
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation
| | - G. S. Razmakhaev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| | - M. V. Orlova
- Peoples’ Friendship University of Russia (RUDN University)
| | - A. P. Polyakov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| | - M. V. Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| | - A. D. Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| | - A. V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, RAS; National Medical Research Radiological Center, Ministry of Health of the Russian Federation
| |
Collapse
|
29
|
Wang Q, Xu L, Chen P, Xu Z, Qiu J, Ge J, Yu K, Zhuang J. Brca1 Is Upregulated by 5-Aza-CdR and Promotes DNA Repair and Cell Survival, and Inhibits Neurite Outgrowth in Rat Retinal Neurons. Int J Mol Sci 2018; 19:ijms19041214. [PMID: 29673145 PMCID: PMC5979323 DOI: 10.3390/ijms19041214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023] Open
Abstract
Previous studies have reported that Brca1 acts as a “hinge” in the development of the central nervous system (CNS). However, the precise role of Brca1 in rat retinal neurons remains unclear. Here, we found that Brca1 is developmentally downregulated and silenced in adult retina. Brca1 was upregulated in rat primary retinal neurons by 5-Aza-2′-deoxycytidine (5-Aza-CdR) treatment. Moreover, the upregulation of Brca1 by both 5-Aza-CdR and transgenic Brca1 promoted genomic stability and improved cell viability following exposure to ionizing radiation (IR). Furthermore, transgenic Brca1 significantly inhibited neurite outgrowth of retinal neurons, which implicates that Brca1 silencing promotes cell differentiation and determines neuronal morphology. Taken together, our results reveal a biological function of Brca1 in retinal development.
Collapse
Affiliation(s)
- Qiyun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Lijun Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Zhuojun Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
30
|
Blevins MA, Huang M, Zhao R. The Role of CtBP1 in Oncogenic Processes and Its Potential as a Therapeutic Target. Mol Cancer Ther 2018; 16:981-990. [PMID: 28576945 DOI: 10.1158/1535-7163.mct-16-0592] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/11/2016] [Accepted: 02/22/2017] [Indexed: 12/24/2022]
Abstract
Transcriptional corepressor proteins have emerged as an important facet of cancer etiology. These corepressor proteins are often altered by loss- or gain-of-function mutations, leading to transcriptional imbalance. Thus, research directed at expanding our current understanding of transcriptional corepressors could impact the future development of new cancer diagnostics, prognostics, and therapies. In this review, our current understanding of the CtBP corepressors, and their role in both development and disease, is discussed in detail. Importantly, the role of CtBP1 overexpression in adult tissues in promoting the progression of multiple cancer types through their ability to modulate the transcription of developmental genes ectopically is explored. CtBP1 overexpression is known to be protumorigenic and affects the regulation of gene networks associated with "cancer hallmarks" and malignant behavior, including increased cell survival, proliferation, migration, invasion, and the epithelial-mesenchymal transition. As a transcriptional regulator of broad developmental processes capable of promoting malignant growth in adult tissues, therapeutically targeting the CtBP1 corepressor has the potential to be an effective method for the treatment of diverse tumor types. Although efforts to develop CtBP1 inhibitors are still in the early stages, the current progress and the future perspectives of therapeutically targeting this transcriptional corepressor are also discussed. Mol Cancer Ther; 16(6); 981-90. ©2017 AACR.
Collapse
Affiliation(s)
- Melanie A Blevins
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Mingxia Huang
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
31
|
Abstract
Glucose and Glutamine are two essential ingredients for cell growth. However, it remains open for investigation whether there is a general mechanism that coordinates the consumption of glucose and glutamine in cancer cells. Glutamine is mainly metabolized through the glutaminolysis pathway and our previous report indicated that CtBP increases GDH activity and promotes glutaminolysis through repressing the expression of SIRT4, a well-known mitochondrion-located factor that inhibits glutaminolysis pathway. CtBP is known to be a sensor of intracellular metabolic status; we thus hypothesized that a consensus CtBP-SIRT4-GDH axis may mediate the crosstalk between glycolysis and glutaminolysis. Herein, supporting this hypothesis, we observed the coordinated consumption of glucose and glutamine across different cell lines. This coordination was found to be related to CtBP repression activity on SIRT4 expression under high level of glucose but not low glucose level. Low level of glucose supply was found to decrease GDH activity via blocking CtBP dimerization. Mechanically, low glucose also abolished CtBP binding to SIRT4 promoter and the repression of SIRT4 expression. Consistently, the CtBP dimerization inhibitor MTOB mimicked low glucose effects on SIRT4 expression, and GDH activity suggest that CtBP requires high glucose supply to act as a suppressor of SIRT4 gene. In conclusion, we propose that a general molecular pathway composed by CtBP-SIRT4-GDH coordinating the metabolism of glucose and glutamine in cancer cells.
Collapse
|
32
|
Lahusen TJ, Kim SJ, Miao K, Huang Z, Xu X, Deng CX. BRCA1 function in the intra-S checkpoint is activated by acetylation via a pCAF/SIRT1 axis. Oncogene 2018; 37:2343-2350. [PMID: 29440709 DOI: 10.1038/s41388-018-0127-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/14/2017] [Accepted: 12/09/2017] [Indexed: 12/15/2022]
Abstract
Breast cancer associated gene 1 (BRCA1) function has been shown to be regulated by phosphorylation but the role of acetylation has not been determined. Therefore, we tested whether BRCA1 can be acetylated by the acetyltransferases P300/CBP-associated factor (pCAF), GCN5, and p300. p300 exhibited the highest level of BRCA1 acetylation; however, there was also a decrease in the total level of BRCA1. Therefore, we focused on pCAF and GCN5 because they both acetylated BRCA1 without affecting BRCA1 expression. Further analysis indicated that the acetylated form of BRCA1 is deacetylated by wild-type (WT) SIRT1, but not deacetylase mutant SIRT1, suggesting that SIRT1 is a specific deacetylase of BRCA1. We demonstrated that lysine 830 of BRCA1 is a preferential acetylation site by pCAF and tested its function in embryonic stem (ES) cells by changing lysine 830 to arginine using a transcription activator-like effector nuclease (TALEN) system. After exposure to DNA damage-inducing UV radiation, the viability of BRCA1 K830R mutant cells is greater than the WT ES cells. Further analysis using additional cell lines indicated that the BRCA1 K830R mutation impairs the intra-S checkpoint. Also, checkpoint kinase 1 (CHK1) phosphorylation was less in K830R cells as compared with WT cells after UV exposure. These data suggest that acetylation of BRCA1 on lysine 830 activates BRCA1 function at the intra-S checkpoint after DNA damage.
Collapse
Affiliation(s)
- Tyler J Lahusen
- Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seung-Jin Kim
- Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai Miao
- Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Zebin Huang
- Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Chu-Xia Deng
- Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA. .,Faculty of Health Sciences, University of Macau, Macau, SAR, China.
| |
Collapse
|
33
|
Chang CC, Zhang C, Zhang Q, Sahin O, Wang H, Xu J, Xiao Y, Zhang J, Rehman SK, Li P, Hung MC, Behbod F, Yu D. Upregulation of lactate dehydrogenase a by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression. Oncotarget 2018; 7:35270-83. [PMID: 27150057 PMCID: PMC5085227 DOI: 10.18632/oncotarget.9136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. Elevated glycolysis in cancer cells switches the cellular metabolic flux to produce more biological building blocks, thereby sustaining rapid proliferation. Recently, new evidence has emerged that metabolic dysregulation may occur at early-stages of neoplasia and critically contribute to cancer initiation. Here, our bioinformatics analysis of microarray data from early-stages breast neoplastic lesions revealed that 14-3-3ζ expression is strongly correlated with the expression of canonical glycolytic genes, particularly lactate dehydrogenase A (LDHA). Experimentally, increasing 14-3-3ζ expression in human mammary epithelial cells (hMECs) up-regulated LDHA expression, elevated glycolytic activity, and promoted early transformation. Knockdown of LDHA in the 14-3-3ζ-overexpressing hMECs significantly reduced glycolytic activity and inhibited transformation. Mechanistically, 14-3-3ζ overexpression activates the MEK-ERK-CREB axis, which subsequently up-regulates LDHA. In vivo, inhibiting the activated the MEK/ERK pathway in 14-3-3ζ-overexpressing hMEC-derived MCF10DCIS.COM lesions led to effective inhibition of tumor growth. Therefore, targeting the MEK/ERK pathway could be an effective strategy for intervention of 14-3-3ζ-overexpressing early breast lesions. Together, our data demonstrate that overexpression of 14-3-3ζ in early stage pre-cancerous breast epithelial cells may trigger an elevated glycolysis and transcriptionally up-regulating LDHA, thereby contributes to human breast cancer initiation.
Collapse
Affiliation(s)
- Chia-Chi Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Cancer Biology Program, Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chenyu Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingling Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ozgur Sahin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jia Xu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sumaiyah K Rehman
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Cancer Biology Program, Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Cancer Biology Program, Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
34
|
Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP. Nat Commun 2017; 8:624. [PMID: 28935892 PMCID: PMC5608947 DOI: 10.1038/s41467-017-00707-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 07/21/2017] [Indexed: 01/04/2023] Open
Abstract
The innate inflammatory response contributes to secondary injury in brain trauma and other disorders. Metabolic factors such as caloric restriction, ketogenic diet, and hyperglycemia influence the inflammatory response, but how this occurs is unclear. Here, we show that glucose metabolism regulates pro-inflammatory NF-κB transcriptional activity through effects on the cytosolic NADH:NAD+ ratio and the NAD(H) sensitive transcriptional co-repressor CtBP. Reduced glucose availability reduces the NADH:NAD+ ratio, NF-κB transcriptional activity, and pro-inflammatory gene expression in macrophages and microglia. These effects are inhibited by forced elevation of NADH, reduced expression of CtBP, or transfection with an NAD(H) insensitive CtBP, and are replicated by a synthetic peptide that inhibits CtBP dimerization. Changes in the NADH:NAD+ ratio regulate CtBP binding to the acetyltransferase p300, and regulate binding of p300 and the transcription factor NF-κB to pro-inflammatory gene promoters. These findings identify a mechanism by which alterations in cellular glucose metabolism can influence cellular inflammatory responses. Several metabolic factors affect cellular glucose metabolism as well as the innate inflammatory response. Here, the authors show that glucose metabolism regulates pro-inflammatory responses through effects on the cytosolic NADH:NAD+ ratio and the NAD(H)-sensitive transcription co-repressor CtBP.
Collapse
|
35
|
Dcona MM, Morris BL, Ellis KC, Grossman SR. CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther 2017; 18:379-391. [PMID: 28532298 PMCID: PMC5536941 DOI: 10.1080/15384047.2017.1323586] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
C-terminal Binding Proteins (CtBP) 1 and 2 are oncogenic transcriptional co-regulators overexpressed in many cancer types, with their expression level correlating to worse prognostic outcomes and aggressive tumor features. CtBP negatively regulates the expression of many tumor suppressor genes, while coactivating genes that promote proliferation, epithelial-mesenchymal transition, and cancer stem cell self-renewal activity. In light of this evidence, the development of novel inhibitors that mitigate CtBP function may provide clinically actionable therapeutic tools. This review article focuses on the progress made in understanding CtBP structure, role in tumor progression, and discovery and development of CtBP inhibitors that target CtBP's dehydrogenase activity and other functions, with a focus on the theory and rationale behind the designs of current inhibitors. We provide insight into the future development and use of rational combination therapy that may further augment the efficacy of CtBP inhibitors, specifically addressing metastasis and cancer stem cell populations within tumors.
Collapse
Affiliation(s)
- M Michael Dcona
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Benjamin L Morris
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Keith C Ellis
- c Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| | - Steven R Grossman
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
36
|
RIBEYE(B)-domain binds to lipid components of synaptic vesicles in an NAD(H)-dependent, redox-sensitive manner. Biochem J 2017; 474:1205-1220. [PMID: 28202712 DOI: 10.1042/bcj20160886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022]
Abstract
Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD+, the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes.
Collapse
|
37
|
Wiedmeier JE, Ohlrich A, Chu A, Rountree MR, Turker MS. Induction of the long noncoding RNA NBR2 from the bidirectional BRCA1 promoter under hypoxic conditions. Mutat Res 2017; 796:13-19. [PMID: 28249151 DOI: 10.1016/j.mrfmmm.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
BRCA1 plays an important role in preventing breast cancer and is often silenced or repressed in sporadic cancer. The BRCA1 promoter is bidirectional: it drives transcription of the long non-coding (lnc) NBR2 transcript in the opposite orientation relative to the BRCA1 transcript. Hypoxic conditions repress BRCA1 transcription, but their effect on expression of the NBR2 transcript has not been reported. We used quantitative RT-PCR to measure BRCA1 and NBR2 transcript levels in 0% and 1% oxygen in MCF-7 breast cancer cells and found that NBR2 transcript levels increased as a function of time under hypoxic conditions, whereas BRCA1 mRNA levels were repressed. Hypoxic conditions were ineffective in reducing BRCA1 mRNA in the UACC-3199 breast cancer cell line, which is reported to have an epigenetically silenced BRCA1 promoter, even though appreciable levels of BRCA1 and NBR2 mRNA were detected. Significant recovery back to baseline RNA levels occurred within 48h after the MCF-7 cells were restored to normoxic conditions. We used a construct with the 218bp minimal BRCA1 promoter linked to marker genes to show that this minimal promoter repressed expression bidirectionally under hypoxic conditions, which suggests that the elements necessary for induction of NBR2 are located elsewhere.
Collapse
Affiliation(s)
- J Erin Wiedmeier
- University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Anna Ohlrich
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States
| | - Adrian Chu
- University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | | | - Mitchell S Turker
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, United States.
| |
Collapse
|
38
|
Li M, Riddle S, Zhang H, D'Alessandro A, Flockton A, Serkova NJ, Hansen KC, Moldovan R, McKeon BA, Frid M, Kumar S, Li H, Liu H, Caánovas A, Medrano JF, Thomas MG, Iloska D, Plecitá-Hlavatá L, Ježek P, Pullamsetti S, Fini MA, El Kasmi KC, Zhang Q, Stenmark KR. Metabolic Reprogramming Regulates the Proliferative and Inflammatory Phenotype of Adventitial Fibroblasts in Pulmonary Hypertension Through the Transcriptional Corepressor C-Terminal Binding Protein-1. Circulation 2016; 134:1105-1121. [PMID: 27562971 PMCID: PMC5069179 DOI: 10.1161/circulationaha.116.023171] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/12/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular wall cells, including fibroblasts, in pulmonary hypertension (PH). Here, we test the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and proinflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional corepressor C-terminal binding protein 1 (CtBP1). METHODS RNA sequencing, quantitative polymerase chain reaction,13C-nuclear magnetic resonance, fluorescence-lifetime imaging, mass spectrometry-based metabolomics, and tracing experiments with U-13C-glucose were used to assess glycolytic reprogramming and to measure the NADH/NAD+ ratio in bovine and human adventitial fibroblasts and mouse lung tissues. Immunohistochemistry was used to assess CtBP1 expression in the whole-lung tissues. CtBP1 siRNA and the pharmacological inhibitor 4-methylthio-2-oxobutyric acid (MTOB) were used to abrogate CtBP1 activity in cells and hypoxic mice. RESULTS We found that adventitial fibroblasts from calves with severe hypoxia-induced PH and humans with idiopathic pulmonary arterial hypertension (PH-Fibs) displayed aerobic glycolysis when cultured under normoxia, accompanied by increased free NADH and NADH/NAD+ ratios. Expression of the NADH sensor CtBP1 was increased in vivo and in vitro in fibroblasts within the pulmonary adventitia of humans with idiopathic pulmonary arterial hypertension and animals with PH and cultured PH-Fibs, respectively. Decreasing NADH pharmacologically with MTOB or genetically blocking CtBP1 with siRNA upregulated the cyclin-dependent genes (p15 and p21) and proapoptotic regulators (NOXA and PERP), attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of the anti-inflammatory gene HMOX1. Chromatin immunoprecipitation analysis demonstrated that CtBP1 directly binds the HMOX1 promoter. Treatment of hypoxic mice with MTOB decreased glycolysis and expression of inflammatory genes, attenuated proliferation, and suppressed macrophage numbers and remodeling in the distal pulmonary vasculature. CONCLUSIONS CtBP1 is a critical factor linking changes in cell metabolism to cell phenotype in hypoxic and other forms of PH and a therapeutic target.
Collapse
Affiliation(s)
- Min Li
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Suzette Riddle
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Hui Zhang
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Angelo D'Alessandro
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Amanda Flockton
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Natalie J Serkova
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Kirk C Hansen
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Radu Moldovan
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - B Alexandre McKeon
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Maria Frid
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Sushil Kumar
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Hong Li
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Hongbing Liu
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Angela Caánovas
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Juan F Medrano
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Milton G Thomas
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Dijana Iloska
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Lydie Plecitá-Hlavatá
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Petr Ježek
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Soni Pullamsetti
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Mehdi A Fini
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Karim C El Kasmi
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - QingHong Zhang
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.)
| | - Kurt R Stenmark
- From Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO (M.L., S.R., H.Z., A.F., B.A.M., M.F., S.K., M.A.F., K.R.S.); Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., K.C.H.), Department of Anesthesiology (N.J.S.), Advanced Light Microscopy Core Facility (R.M.), Department of Dermatology (H.L., H.L., Q.Z.), and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.), University of Colorado, Denver; Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (L.P.-H., P.J.); Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (D.I., S.P.); Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada (A.C.); Department of Animal Science, University of California-Davis, Davis (J.F.M.); and Department of Animal Science, Colorado State University, Fort Collins (M.G.T.).
| |
Collapse
|
39
|
Judes G, Dagdemir A, Karsli-Ceppioglu S, Lebert A, Echegut M, Ngollo M, Bignon YJ, Penault-Llorca F, Bernard-Gallon D. H3K4 acetylation, H3K9 acetylation and H3K27 methylation in breast tumor molecular subtypes. Epigenomics 2016; 8:909-24. [DOI: 10.2217/epi-2016-0015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Here, we investigated how the St Gallen breast molecular subtypes displayed distinct histone H3 profiles. Patients & methods: 192 breast tumors divided into five St Gallen molecular subtypes (luminal A, luminal B HER2-, luminal B HER2+, HER2+ and basal-like) were evaluated for their histone H3 modifications on gene promoters. Results: ANOVA analysis allowed to identify specific H3 signatures according to three groups of genes: hormonal receptor genes (ERS1, ERS2, PGR), genes modifying histones (EZH2, P300, SRC3) and tumor suppressor gene (BRCA1). A similar profile inside high-risk cancers (luminal B [HER2+], HER2+ and basal-like) compared with low-risk cancers including luminal A and luminal B (HER2-) were demonstrated. Conclusion: The H3 modifications might contribute to clarify the differences between breast cancer subtypes.
Collapse
Affiliation(s)
- Gaëlle Judes
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
- EA 4677 ‘ERTICA’, University of Auvergne, 63011 Clermont-Ferrand, France
| | - Aslihan Dagdemir
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
- EA 4677 ‘ERTICA’, University of Auvergne, 63011 Clermont-Ferrand, France
| | - Seher Karsli-Ceppioglu
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
- EA 4677 ‘ERTICA’, University of Auvergne, 63011 Clermont-Ferrand, France
- Department of Toxicology, Faculty of Pharmacy, Marmara University, 34668 Istanbul, Turkey
| | - André Lebert
- University Blaise Pascal, Pascal Institute UMR 6602 CNRS/UBP, 63177 Aubière, France
| | - Maureen Echegut
- Department of Toxicology, Faculty of Pharmacy, Marmara University, 34668 Istanbul, Turkey
| | - Marjolaine Ngollo
- EA 4677 ‘ERTICA’, University of Auvergne, 63011 Clermont-Ferrand, France
- Department of Toxicology, Faculty of Pharmacy, Marmara University, 34668 Istanbul, Turkey
| | - Yves-Jean Bignon
- EA 4677 ‘ERTICA’, University of Auvergne, 63011 Clermont-Ferrand, France
- Department of Toxicology, Faculty of Pharmacy, Marmara University, 34668 Istanbul, Turkey
| | - Frédérique Penault-Llorca
- EA 4677 ‘ERTICA’, University of Auvergne, 63011 Clermont-Ferrand, France
- Department of Biopathology, Centre Jean Perrin, 63011 Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
- EA 4677 ‘ERTICA’, University of Auvergne, 63011 Clermont-Ferrand, France
| |
Collapse
|
40
|
Brett-Morris A, Mislmani M, Welford SM. SAT1 and glioblastoma multiforme: Disarming the resistance. Mol Cell Oncol 2016; 2:e983393. [PMID: 27308461 PMCID: PMC4905296 DOI: 10.4161/23723556.2014.983393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 01/22/2023]
Abstract
Glioblastoma multiforme is the most common and most detrimental form of brain tumor, with a current survival time of as little as 14 months. We have recently identified a novel mechanism of therapeutic resistance based on overexpression of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase, which promotes DNA repair via chromatin modification.
Collapse
Affiliation(s)
- Adina Brett-Morris
- Department of Radiation Oncology; School of Medicine; Case Western Reserve University ; 10900 Euclid Avenue; Cleveland, OH USA
| | - Mazen Mislmani
- Department of Radiation Oncology; School of Medicine; Case Western Reserve University ; 10900 Euclid Avenue; Cleveland, OH USA
| | - Scott M Welford
- Department of Radiation Oncology; School of Medicine; Case Western Reserve University ; 10900 Euclid Avenue; Cleveland, OH USA
| |
Collapse
|
41
|
Zhao Z, Wang L, Di L. Compartmentation of metabolites in regulating epigenome of cancer. Mol Med 2016; 22:349-360. [PMID: 27258652 DOI: 10.2119/molmed.2016.00051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 01/10/2023] Open
Abstract
Covalent modification of DNA and histones are important epigenetic events and the genome wide reshaping of epigenetic markers is common in cancer. The epigenetic markers are produced by enzymatic reactions and some of these reactions require the presence of metabolites as cofactors (termed Epigenetic Enzyme Required Metabolites, EERMs). Recent studies found that the abundance of these EERMs correlates with epigenetic enzyme activities. Also, the subcellular compartmentation, especially the nuclear localization of these EERMs may play a role in regulating the activities of epigenetic enzymes. Moreover, gene specific recruitment of enzymes which produce the EERMs in the proximity of the epigenetic modification events accompanying the gene expression regulation, were proposed. Therefore, it is of importance to summarize these findings of the EERMs in regulating the epigenetic modifications at both DNA and histone levels, and to understand how EERMs contribute to cancer development by addressing their global versus local distribution.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lijun Di
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
42
|
Mucaki EJ, Caminsky NG, Perri AM, Lu R, Laederach A, Halvorsen M, Knoll JHM, Rogan PK. A unified analytic framework for prioritization of non-coding variants of uncertain significance in heritable breast and ovarian cancer. BMC Med Genomics 2016; 9:19. [PMID: 27067391 PMCID: PMC4828881 DOI: 10.1186/s12920-016-0178-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sequencing of both healthy and disease singletons yields many novel and low frequency variants of uncertain significance (VUS). Complete gene and genome sequencing by next generation sequencing (NGS) significantly increases the number of VUS detected. While prior studies have emphasized protein coding variants, non-coding sequence variants have also been proven to significantly contribute to high penetrance disorders, such as hereditary breast and ovarian cancer (HBOC). We present a strategy for analyzing different functional classes of non-coding variants based on information theory (IT) and prioritizing patients with large intragenic deletions. METHODS We captured and enriched for coding and non-coding variants in genes known to harbor mutations that increase HBOC risk. Custom oligonucleotide baits spanning the complete coding, non-coding, and intergenic regions 10 kb up- and downstream of ATM, BRCA1, BRCA2, CDH1, CHEK2, PALB2, and TP53 were synthesized for solution hybridization enrichment. Unique and divergent repetitive sequences were sequenced in 102 high-risk, anonymized patients without identified mutations in BRCA1/2. Aside from protein coding and copy number changes, IT-based sequence analysis was used to identify and prioritize pathogenic non-coding variants that occurred within sequence elements predicted to be recognized by proteins or protein complexes involved in mRNA splicing, transcription, and untranslated region (UTR) binding and structure. This approach was supplemented by in silico and laboratory analysis of UTR structure. RESULTS 15,311 unique variants were identified, of which 245 occurred in coding regions. With the unified IT-framework, 132 variants were identified and 87 functionally significant VUS were further prioritized. An intragenic 32.1 kb interval in BRCA2 that was likely hemizygous was detected in one patient. We also identified 4 stop-gain variants and 3 reading-frame altering exonic insertions/deletions (indels). CONCLUSIONS We have presented a strategy for complete gene sequence analysis followed by a unified framework for interpreting non-coding variants that may affect gene expression. This approach distills large numbers of variants detected by NGS to a limited set of variants prioritized as potential deleterious changes.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Natasha G Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ami M Perri
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Ruipeng Lu
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3290, USA
| | - Matthew Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Joan H M Knoll
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada
- Cytognomix Inc., London, Canada
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada.
- Department of Computer Science, Faculty of Science, Western University, London, N6A 2C1, Canada.
- Cytognomix Inc., London, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, N6A 2C1, Canada.
| |
Collapse
|
43
|
Han CC, Yue LL, Yang Y, Jian BY, Ma LW, Liu JC. TOX3 protein expression is correlated with pathological characteristics in breast cancer. Oncol Lett 2016; 11:1762-1768. [PMID: 26998074 PMCID: PMC4774471 DOI: 10.3892/ol.2016.4117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/23/2015] [Indexed: 01/20/2023] Open
Abstract
TOX3 is a newly identified gene that has been observed to correlate with breast cancer by genome-wide association studies (GWAS) in recent years. In addition, it has been noted that single-nucleotide polymorphisms (SNPs) in the TOX3 gene have a strong correlation with estrogen receptor (ER)-positive tumors. However, the role of TOX3 in breast carcinoma development is still unclear. There are limited studies on the subject of TOX3 mRNA expression in breast tumors and little information on the variation of TOX3 protein expression in relation to the clinical pathological features in breast cancer and healthy tissues. In this study, we characterize the protein expression of TOX3 in breast tumors with respect to various clinical and pathological characteristics and explore the correlation between TOX3 protein expression and ER-positive tumors. A breast cancer tissue microarray containing 267 human breast tumors and 25 healthy controls, breast cancer cell lines (ZR-75-1, MDA-MB-231, MCF-7 and Bcap-37) with positive or negative ER expression, tumor tissues and matched controls were used to analyze the protein expression levels of TOX3 by immunohistochemistry, western blot analysis and quantitative polymerase chain reaction. Among the 267 breast tumor specimens, ER expression was detected in 66 tumor tissues. The expression levels of TOX3 increased in breast carcinoma tissue compared with controls, and were higher in advanced carcinoma (T3 and T4), lymph node metastases tissues (N2) and stage III tissues. Furthermore, TOX3 protein expression was more intense in ER-positive tumors, but did not demonstrate a statistical significance. However, it was significantly increased in ER-positive breast cancer cell lines (ZR-75-1, MCF-7 and Bcap-37) compared with the MDA-MB-231 cell line, which had ER-negative expression. Our findings provide support to the hypothesis that TOX3 has a strong correlation with the development of breast cancer. The current study is likely to assist in investigating the mechanisms involved in breast cancer development.
Collapse
Affiliation(s)
- Cui-Cui Han
- Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161042, P.R. China
| | - Li-Ling Yue
- Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161042, P.R. China
| | - Ying Yang
- Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161042, P.R. China
| | - Bai-Yu Jian
- Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161042, P.R. China
| | - Li-Wei Ma
- Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161042, P.R. China
| | - Ji-Cheng Liu
- Institute of Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161042, P.R. China
| |
Collapse
|
44
|
El-Araby AM, Fouad AA, Hanbal AM, Abdelwahab SM, Qassem OM, El-Araby ME. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises. Arch Pharm (Weinheim) 2016; 349:73-90. [PMID: 26754591 DOI: 10.1002/ardp.201500375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed.
Collapse
Affiliation(s)
- Amr M El-Araby
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Amr M Hanbal
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Omar M Qassem
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | - Moustafa E El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanya, Jeddah, Saudi Arabia.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
45
|
Stankiewicz TR, Gray JJ, Winter AN, Linseman DA. C-terminal binding proteins: central players in development and disease. Biomol Concepts 2015; 5:489-511. [PMID: 25429601 DOI: 10.1515/bmc-2014-0027] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/07/2014] [Indexed: 01/06/2023] Open
Abstract
C-terminal binding proteins (CtBPs) were initially identified as binding partners for the E1A-transforming proteins. Although the invertebrate genome encodes one CtBP protein, two CtBPs (CtBP1 and CtBP2) are encoded by the vertebrate genome and perform both unique and duplicative functions. CtBP1 and CtBP2 are closely related and act as transcriptional corepressors when activated by nicotinamide adenine dinucleotide binding to their dehydrogenase domains. CtBPs exert transcriptional repression primarily via recruitment of a corepressor complex to DNA that consists of histone deacetylases (HDACs) and histone methyltransferases, although CtBPs can also repress transcription through HDAC-independent mechanisms. More recent studies have demonstrated a critical function for CtBPs in the transcriptional repression of pro-apoptotic genes such as Bax, Puma, Bik, and Noxa. Nonetheless, although recent efforts have characterized the essential involvement of CtBPs in promoting cellular survival, the dysregulation of CtBPs in both neurodegenerative disease and cancers remains to be fully elucidated.
Collapse
|
46
|
Li D, Chen NN, Cao JM, Sun WP, Zhou YM, Li CY, Wang XX. BRCA1 as a nicotinamide adenine dinucleotide (NAD)-dependent metabolic switch in ovarian cancer. Cell Cycle 2015; 13:2564-71. [PMID: 25486197 DOI: 10.4161/15384101.2015.942208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Both hereditary factors (e.g., BRCA1) and nicotinamide adenine dinucleotide (NAD)-dependent metabolic pathways are implicated in the initiation and progression of ovarian cancer. However, whether crosstalk exists between BRCA1 and NAD metabolism remains largely unknown. Here, we showed that: (i) BRCA1 inactivation events (mutation and promoter methylation) were accompanied by elevated levels of NAD; (ii) the knockdown or overexpression of BRCA1 was an effective way to induce an increase or decrease of nicotinamide phosphoribosyltransferase (Nampt)-related NAD synthesis, respectively; and (iii) BRCA1 expression patterns were inversely correlated with NAD levels in human ovarian cancer specimens. In addition, it is worth noting that: (i) NAD incubation induced increased levels of BRCA1 in a concentration-dependent manner; (ii) Nampt knockdown-mediated reduction in NAD levels was effective at inhibiting BRCA1 expression; and (iii) the overexpression of Nampt led to higher NAD levels and a subsequent increase in BRCA1 levels in primary ovarian cancer cells and A2780, HO-8910 and ES2 ovarian cancer cell lines. These results highlight a novel link between BRCA1 and NAD. Our findings imply that genetic (e.g., BRCA1 inactivation) and NAD-dependent metabolic pathways are jointly involved in the malignant progression of ovarian cancer.
Collapse
Affiliation(s)
- Da Li
- a Department of Obstetrics and Gynecology ; Shengjing Hospital of China Medical University ; Shenyang , China
| | | | | | | | | | | | | |
Collapse
|
47
|
Li D, Bi FF, Chen NN, Cao JM, Sun WP, Zhou YM, Li CY, Yang Q. A novel crosstalk between BRCA1 and poly (ADP-ribose) polymerase 1 in breast cancer. Cell Cycle 2015; 13:3442-9. [PMID: 25485588 DOI: 10.4161/15384101.2014.956507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BRCA mutations are the main known hereditary factor for breast cancer. Notably, poly (ADP-ribose) polymerase 1 (PARP1) expression status plays a critical role in breast cancer progression and the clinical development of PARP1 inhibitors to treat BRCA-mutated breast cancer has advanced rapidly. However, dynamic crosstalk between BRCA1 and PARP1 remains largely unknown. Here, we showed that: (i) BRCA1 inactivation events (mutation, promoter methylation, or knockdown) were accompanied by increased PARP1 and nicotinamide adenine dinucleotide (NAD) levels, and a subsequent increase in NAD-dependent PARP1 activity in MDA-MB-231 and primary breast cancer cells; (ii) the overexpression of BRCA1 resulted in decreased PARP1 and NAD levels, and a subsequent impairment in NAD-dependent PARP1 activity in MDA-MB-231 and primary breast cancer cells; and (iii) intracellular NAD levels were largely responsible for regulating PARP1 activity in breast cancer cells, and NAD levels were positively correlated with PARP1 activity in human breast cancer specimens (R = 0.647, P < 0.001). Interestingly, the high efficiency of PARP1 triggered by BRCA1 inactivation may further inhibit BRCA1 transcription by NAD depletion. These results highlight a novel interaction between BRCA1 and PARP1, which may be beneficial for the dynamic balance between BRCA1 and PARP1-related biologic processes, especially for maintaining stable DNA repair ability. All of this may improve our understanding of the basic molecular mechanism underlying BRCA1- and PARP1-related breast cancer progression.
Collapse
Key Words
- BRCA1
- CtBP, C-terminal binding proteins
- DMEM, Dulbecco's Modified Eagles Medium
- DNA repair
- ER, endoplasmic reticulum
- ETS1, protein C-ets-1
- NAD
- NAD, nicotinamide adenine dinucleotide
- Nampt, nicotinamide phosphoribosyltransferase
- PARP1
- PARP1, poly (ADP-ribose) polymerase 1
- PCR, polymerase chain reaction
- SD, standard deviations
- TNBC, triple-negative breast cancer
- breast cancer
- shRNAs, short hairpin RNAs
Collapse
Affiliation(s)
- Da Li
- a Department of Obstetrics and Gynecology ; Shengjing Hospital of China Medical University ; Shenyang , China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang L, Di LJ. Wnt/β-Catenin Mediates AICAR Effect to Increase GATA3 Expression and Inhibit Adipogenesis. J Biol Chem 2015; 290:19458-68. [PMID: 26109067 DOI: 10.1074/jbc.m115.641332] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/06/2022] Open
Abstract
A better understanding of the mechanism and manipulation of the tightly regulated cellular differentiation process of adipogenesis may contribute to a reduction in obesity and diabetes. Multiple transcription factors and signaling pathways are involved in the regulation of adipogenesis. Here, we report that the AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) can activate AMPK in preadipocytes and thus increase the expression of GATA3, an anti-adipogenic factor. However, AICAR-increased GATA3 is mediated by the stimulation of Wnt/β-catenin signaling in preadipocytes. Mechanistically, AICAR-activated AMPK inhibits GSK3β through a phosphorylation process that stabilizes β-catenin. This stabilized β-catenin then translocates into nucleus where it interacts with T-cell factors (TCF), leading to the increased β-catenin/TCF transcriptional activity that induces GATA3 expression. In addition, AICAR also relieves the repressing effect of the C-terminal-binding protein (CtBP) co-repressor by diverting CtBP away from the β-catenin·TCF complex at the GATA3 promoter. The anti-adipogenic effect of GATA3 and AICAR is consistently attenuated by the disruption of Wnt/β-catenin signaling. Furthermore, GATA3 suppresses key adipogenic regulators by binding to the promoters of these regulators, such as the peroxisome proliferator-activated receptor-γ (PPARγ) gene, and the disruption of Wnt/β-catenin signaling reduces the GATA3 binding at the PPARγ promoter. In differentiated adipocytes, GATA3 expression inhibition is facilitated by the down-regulation of β-catenin levels, the reduction in β-catenin binding, and the increase in CtBP binding at the GATA3 promoter. Our findings shed light on the molecular mechanism of adipogenesis by suggesting that different regulation pathways and adipogenic regulators collectively modulate adipocyte differentiation through cross-talk.
Collapse
Affiliation(s)
- Li Wang
- From the Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau SAR (Special Administrative Region), China and
| | - Li-jun Di
- the Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
49
|
Daly B, Olopade OI. A perfect storm: How tumor biology, genomics, and health care delivery patterns collide to create a racial survival disparity in breast cancer and proposed interventions for change. CA Cancer J Clin 2015; 65:221-38. [PMID: 25960198 DOI: 10.3322/caac.21271] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/11/2022] Open
Abstract
It is well known that there is a significant racial divide in breast cancer incidence and mortality rates. African American women are less likely to be diagnosed with breast cancer than white women but are more likely to die from it. This review explores the factors that may contribute to the racial survival disparity. Consideration is paid to what is known about the role of differences in tumor biology, genomics, cancer screening, and quality of cancer care. It is argued that it is the collision of 2 forces, tumor biology and genomics, with patterns of care that leads to the breast cancer mortality gap. The delays, misuse, and underuse of treatment for African American patients are of increased significance when these patients are presenting with more aggressive forms of breast cancer. In the current climate of health care reform ushered in by the Affordable Care Act, this article also evaluates interventions to close the disparity gap. Prior interventions have been too narrowly focused on the patient rather than addressing the system and improving care across the continuum of breast cancer evaluation and treatment. Lastly, areas of future investigation and policy initiatives aimed at reducing the racial survival disparity in breast cancer are discussed.
Collapse
Affiliation(s)
- Bobby Daly
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Olufunmilayo I Olopade
- Walter L. Palmer Distinguished Service Professor and Director Center for Clinical Cancer Genetics, Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
50
|
Romero A, García-García F, López-Perolio I, Ruiz de Garibay G, García-Sáenz JA, Garre P, Ayllón P, Benito E, Dopazo J, Díaz-Rubio E, Caldés T, de la Hoya M. BRCA1 Alternative splicing landscape in breast tissue samples. BMC Cancer 2015; 15:219. [PMID: 25884417 PMCID: PMC4393587 DOI: 10.1186/s12885-015-1145-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/27/2015] [Indexed: 11/23/2022] Open
Abstract
Background BRCA1 is a key protein in cell network, involved in DNA repair pathways and cell cycle. Recently, the ENIGMA consortium has reported a high number of alternative splicing (AS) events at this locus in blood-derived samples. However, BRCA1 splicing pattern in breast tissue samples is unknown. Here, we provide an accurate description of BRCA1 splicing events distribution in breast tissue samples. Methods BRCA1 splicing events were scanned in 70 breast tumor samples, 4 breast samples from healthy individuals and in 72 blood-derived samples by capillary electrophoresis (capillary EP). Molecular subtype was identified in all tumor samples. Splicing events were considered predominant if their relative expression level was at least the 10% of the full-length reference signal. Results 54 BRCA1 AS events were identified, 27 of them were annotated as predominant in at least one sample. Δ5q, Δ13, Δ9, Δ5 and ▼1aA were significantly more frequently annotated as predominant in breast tumor samples than in blood-derived samples. Predominant splicing events were, on average, more frequent in tumor samples than in normal breast tissue samples (P = 0.010). Similarly, likely inactivating splicing events (PTC-NMDs, Non-Coding, Δ5 and Δ18) were more frequently annotated as predominant in tumor than in normal breast samples (P = 0.020), whereas there were no significant differences for other splicing events (No-Fs) frequency distribution between tumor and normal breast samples (P = 0.689). Conclusions Our results complement recent findings by the ENIGMA consortium, demonstrating that BRCA1 AS, despite its tremendous complexity, is similar in breast and blood samples, with no evidences for tissue specific AS events. Further on, we conclude that somatic inactivation of BRCA1 through spliciogenic mutations is, at best, a rare mechanism in breast carcinogenesis, albeit our data detects an excess of likely inactivating AS events in breast tumor samples. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1145-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atocha Romero
- Molecular Oncology Laboratoy, Instituto de Investigación Sanitaria San Carlos. Center affiliated to the Red Temática de Investigación Cooperativa (RD12/0036/006), Instituto Carlos III, Spanish Ministry of Economy and Competitivy, 28040, Madrid, Spain. .,Medical Oncology Department, Hospital Puerta de Hierro, Madrid, Spain. .,Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Instituto Carlos III, Spanish Ministry of Economy and Competitivy, Barcelona, 08908, Spain.
| | - Francisco García-García
- Computational Genomics Department, Centro de Investigación Príncipe Felipe, Valencia, Spain. .,Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Instituto Carlos III, Spanish Ministry of Economy and Competitivy, Barcelona, 08908, Spain.
| | - Irene López-Perolio
- Molecular Oncology Laboratoy, Instituto de Investigación Sanitaria San Carlos. Center affiliated to the Red Temática de Investigación Cooperativa (RD12/0036/006), Instituto Carlos III, Spanish Ministry of Economy and Competitivy, 28040, Madrid, Spain. .,Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Instituto Carlos III, Spanish Ministry of Economy and Competitivy, Barcelona, 08908, Spain.
| | - Gorka Ruiz de Garibay
- Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Instituto Carlos III, Spanish Ministry of Economy and Competitivy, Barcelona, 08908, Spain.
| | - José A García-Sáenz
- Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Instituto Carlos III, Spanish Ministry of Economy and Competitivy, Barcelona, 08908, Spain. .,Medical Oncology Department. Hospital Clínico San Carlos. Department of Medicine. Faculty of Medicine, Universidad Complutense Madrid, Madrid, Spain.
| | - Pilar Garre
- Molecular Oncology Laboratoy, Instituto de Investigación Sanitaria San Carlos. Center affiliated to the Red Temática de Investigación Cooperativa (RD12/0036/006), Instituto Carlos III, Spanish Ministry of Economy and Competitivy, 28040, Madrid, Spain. .,Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Instituto Carlos III, Spanish Ministry of Economy and Competitivy, Barcelona, 08908, Spain.
| | - Patricia Ayllón
- Molecular Oncology Laboratoy, Instituto de Investigación Sanitaria San Carlos. Center affiliated to the Red Temática de Investigación Cooperativa (RD12/0036/006), Instituto Carlos III, Spanish Ministry of Economy and Competitivy, 28040, Madrid, Spain. .,Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Instituto Carlos III, Spanish Ministry of Economy and Competitivy, Barcelona, 08908, Spain.
| | - Esperanza Benito
- Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Instituto Carlos III, Spanish Ministry of Economy and Competitivy, Barcelona, 08908, Spain. .,Plastic Surgery Department, Hospital Clínico San Carlos, Madrid, Spain.
| | - Joaquín Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe, Valencia, Spain. .,Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Instituto Carlos III, Spanish Ministry of Economy and Competitivy, Barcelona, 08908, Spain. .,Functional Genomics Node, INB, CIPF, Valencia, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain.
| | - Eduardo Díaz-Rubio
- Molecular Oncology Laboratoy, Instituto de Investigación Sanitaria San Carlos. Center affiliated to the Red Temática de Investigación Cooperativa (RD12/0036/006), Instituto Carlos III, Spanish Ministry of Economy and Competitivy, 28040, Madrid, Spain. .,Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Instituto Carlos III, Spanish Ministry of Economy and Competitivy, Barcelona, 08908, Spain. .,Medical Oncology Department. Hospital Clínico San Carlos. Department of Medicine. Faculty of Medicine, Universidad Complutense Madrid, Madrid, Spain.
| | - Trinidad Caldés
- Molecular Oncology Laboratoy, Instituto de Investigación Sanitaria San Carlos. Center affiliated to the Red Temática de Investigación Cooperativa (RD12/0036/006), Instituto Carlos III, Spanish Ministry of Economy and Competitivy, 28040, Madrid, Spain. .,Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Instituto Carlos III, Spanish Ministry of Economy and Competitivy, Barcelona, 08908, Spain.
| | - Miguel de la Hoya
- Molecular Oncology Laboratoy, Instituto de Investigación Sanitaria San Carlos. Center affiliated to the Red Temática de Investigación Cooperativa (RD12/0036/006), Instituto Carlos III, Spanish Ministry of Economy and Competitivy, 28040, Madrid, Spain. .,Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Instituto Carlos III, Spanish Ministry of Economy and Competitivy, Barcelona, 08908, Spain.
| |
Collapse
|