1
|
Arimura Y, Konishi HA, Funabiki H. MagIC-Cryo-EM: Structural determination on magnetic beads for scarce macromolecules in heterogeneous samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.21.576499. [PMID: 38328033 PMCID: PMC10849486 DOI: 10.1101/2024.01.21.576499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cryo-EM single-particle analyses typically require target macromolecule concentration at 0.05~5.0 mg/ml, which is often difficult to achieve. Here, we devise Magnetic Isolation and Concentration (MagIC)-cryo-EM, a technique enabling direct structural analysis of targets captured on magnetic beads, thereby reducing the targets' concentration requirement to < 0.0005 mg/ml. Adapting MagIC-cryo-EM to a Chromatin Immunoprecipitation protocol, we characterized structural variations of the linker histone H1.8-associated nucleosomes that were isolated from interphase and metaphase chromosomes in Xenopus egg extract. Combining Duplicated Selection To Exclude Rubbish particles (DuSTER), a particle curation method that excludes low signal-to-noise ratio particles, we also resolved the 3D cryo-EM structures of nucleoplasmin NPM2 co-isolated with the linker histone H1.8 and revealed distinct open and closed structural variants. Our study demonstrates the utility of MagIC-cryo-EM for structural analysis of scarce macromolecules in heterogeneous samples and provides structural insights into the cell cycle-regulation of H1.8 association to nucleosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
- Current address: Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA, 98109-1024
| | - Hide A. Konishi
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
2
|
Yonezawa N, Shindo T, Oda H, Kimura H, Hiraoka Y, Haraguchi T, Yamagata K. Reconstruction of artificial nuclei with nuclear import activity in living mouse oocytes. Genes Cells 2024; 29:820-837. [PMID: 39140385 DOI: 10.1111/gtc.13149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
In eukaryotes, DNA is housed within the cell nucleus. Molecules required for the formation of a nucleus have been identified using in vitro systems with frog egg extracts and in vivo imaging of somatic cells. However, little is known about the physicochemical factors and conditions required for nuclear formation in mouse oocytes. In this study, using a reconstitution approach with purified DNA, we aimed to determine factors, such as the amount and timing of DNA introduction, required for the formation of nuclei with nuclear transport activity in mouse oocytes. T4 phage DNA (~166 kbp) was microinjected into strontium-activated oocytes to evaluate the conditions appropriate for nuclear formation. Microinjection of 100-500 ng/μL of T4 DNA, but not 20 ng/μL, was sufficient for the formation of nucleus-like structures. Furthermore, microinjection of DNA during metaphase II to telophase II, but not during interphase, was sufficient. Electron and fluorescence microscopy showed that T4 DNA-induced nucleus-like structures had nuclear lamina and nuclear pore complex structures similar to those of natural nuclei, as well as nuclear import activity. These results suggest that exogenous DNA can form artificial nuclei with nuclear transport functions in mouse oocytes, regardless of the sequence or source of the DNA.
Collapse
Affiliation(s)
- Nao Yonezawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| |
Collapse
|
3
|
Wassing IE, Nishiyama A, Shikimachi R, Jia Q, Kikuchi A, Hiruta M, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is an evolutionarily conserved hemimethylated DNA sensor in eukaryotes. SCIENCE ADVANCES 2024; 10:eadp5753. [PMID: 39178260 PMCID: PMC11343034 DOI: 10.1126/sciadv.adp5753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency, centromeric instability, and facial anomalies syndrome, characterized by DNA hypomethylation at heterochromatin. It remains unclear why CDCA7-HELLS is the sole nucleosome remodeling complex whose deficiency abrogates the maintenance of DNA methylation. We here identify the unique zinc-finger domain of CDCA7 as an evolutionarily conserved hemimethylation-sensing zinc finger (HMZF) domain. Cryo-electron microscopy structural analysis of the CDCA7-nucleosome complex reveals that the HMZF domain can recognize hemimethylated CpG in the outward-facing DNA major groove within the nucleosome core particle, whereas UHRF1, the critical activator of the maintenance methyltransferase DNMT1, cannot. CDCA7 recruits HELLS to hemimethylated chromatin and facilitates UHRF1-mediated H3 ubiquitylation associated with replication-uncoupled maintenance DNA methylation. We propose that the CDCA7-HELLS nucleosome remodeling complex assists the maintenance of DNA methylation on chromatin by sensing hemimethylated CpG that is otherwise inaccessible to UHRF1 and DNMT1.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
4
|
Doronin SA, Ilyin AA, Kononkova AD, Solovyev MA, Olenkina OM, Nenasheva VV, Mikhaleva EA, Lavrov SA, Ivannikova AY, Simonov RA, Fedotova AA, Khrameeva EE, Ulianov SV, Razin SV, Shevelyov YY. Nucleoporin Elys attaches peripheral chromatin to the nuclear pores in interphase nuclei. Commun Biol 2024; 7:783. [PMID: 38951619 PMCID: PMC11217421 DOI: 10.1038/s42003-024-06495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/23/2024] [Indexed: 07/03/2024] Open
Abstract
Transport of macromolecules through the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs) consisting of nucleoporins (Nups). Elys/Mel-28 is the Nup that binds and connects the decondensing chromatin with the reassembled NPCs at the end of mitosis. Whether Elys links chromatin with the NE during interphase is unknown. Here, using DamID-seq, we identified Elys binding sites in Drosophila late embryos and divided them into those associated with nucleoplasmic or with NPC-linked Elys. These Elys binding sites are located within active or inactive chromatin, respectively. Strikingly, Elys knockdown in S2 cells results in peripheral chromatin displacement from the NE, in decondensation of NE-attached chromatin, and in derepression of genes within. It also leads to slightly more compact active chromatin regions. Our findings indicate that NPC-linked Elys, together with the nuclear lamina, anchors peripheral chromatin to the NE, whereas nucleoplasmic Elys decompacts active chromatin.
Collapse
Affiliation(s)
- Semen A Doronin
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Artem A Ilyin
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
- Department of Molecular Biosciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Anna D Kononkova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143026, Skolkovo, Russia
| | - Mikhail A Solovyev
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Oxana M Olenkina
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Valentina V Nenasheva
- Laboratory of Molecular Neurogenetics and Innate Immunity, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Elena A Mikhaleva
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Sergey A Lavrov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Anna Y Ivannikova
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Ruslan A Simonov
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
| | - Anna A Fedotova
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia
- Department of Regulation of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Ekaterina E Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143026, Skolkovo, Russia.
| | - Sergey V Ulianov
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Sergey V Razin
- Department of Cellular Genomics, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Yuri Y Shevelyov
- Laboratory of Analysis of Gene Regulation, Institute of Molecular Genetics of NRC "Kurchatov Institute", 123182, Moscow, Russia.
| |
Collapse
|
5
|
Golfier S, Quail T, Brugués J. Single-Molecule Approaches to Study DNA Condensation. Methods Mol Biol 2024; 2740:1-19. [PMID: 38393466 DOI: 10.1007/978-1-0716-3557-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Proteins drive genome compartmentalization across different length scales. While the identities of these proteins have been well-studied, the physical mechanisms that drive genome organization have remained largely elusive. Studying these mechanisms is challenging owing to a lack of methodologies to parametrize physical models in cellular contexts. Furthermore, because of the complex, entangled, and dense nature of chromatin, conventional live imaging approaches often lack the spatial resolution to dissect these principles. In this chapter, we will describe how to image the interactions of λ-DNA with proteins under purified and cytoplasmic conditions. First, we will outline how to prepare biotinylated DNA, functionalize coverslips with biotin-conjugated poly-ethylene glycol (PEG), and assemble DNA microchannels compatible for the imaging of protein-DNA interactions using total internal fluorescence microscopy. Then we will describe experimental methods to image protein-DNA interactions in vitro and DNA loop extrusion using Xenopus laevis egg extracts.
Collapse
Affiliation(s)
- Stefan Golfier
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- B CUBE, Center for Molecular Bioengineering, TU Dresden, Dresden, Germany
| | - Thomas Quail
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- EMBL Heidelberg, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
- Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
6
|
Wassing IE, Nishiyama A, Hiruta M, Jia Q, Shikimachi R, Kikuchi A, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is a hemimethylated DNA adaptor for the nucleosome remodeler HELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572350. [PMID: 38187757 PMCID: PMC10769307 DOI: 10.1101/2023.12.19.572350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, characterized by hypomethylation at heterochromatin. The unique zinc-finger domain, zf-4CXXC_R1, of CDCA7 is widely conserved across eukaryotes but is absent from species that lack HELLS and DNA methyltransferases, implying its specialized relation with methylated DNA. Here we demonstrate that zf-4CXXC_R1 acts as a hemimethylated DNA sensor. The zf-4CXXC_R1 domain of CDCA7 selectively binds to DNA with a hemimethylated CpG, but not unmethylated or fully methylated CpG, and ICF disease mutations eliminated this binding. CDCA7 and HELLS interact via their N-terminal alpha helices, through which HELLS is recruited to hemimethylated DNA. While placement of a hemimethylated CpG within the nucleosome core particle can hinder its recognition by CDCA7, cryo-EM structure analysis of the CDCA7-nucleosome complex suggests that zf-4CXXC_R1 recognizes a hemimethylated CpG in the major groove at linker DNA. Our study provides insights into how the CDCA7-HELLS nucleosome remodeling complex uniquely assists maintenance DNA methylation.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
7
|
Hara Y. Physical forces modulate interphase nuclear size. Curr Opin Cell Biol 2023; 85:102253. [PMID: 37801797 DOI: 10.1016/j.ceb.2023.102253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
The eukaryotic nucleus exhibits remarkable plasticity in size, adjusting dynamically to changes in cellular conditions such as during development and differentiation, and across species. Traditionally, the supply of structural constituents to the nuclear envelope has been proposed as the principal determinant of nuclear size. However, recent experimental and theoretical analyses have provided an alternative perspective, which emphasizes the crucial role of physical forces such as osmotic pressure and chromatin repulsion forces in regulating nuclear size. These forces can be modulated by the molecular profiles that traverse the nuclear envelope and assemble in the macromolecular complex. This leads to a new paradigm wherein multiple nuclear macromolecules that are not limited to only the structural constituents of the nuclear envelope, are involved in the control of nuclear size and related functions.
Collapse
Affiliation(s)
- Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi City, 753-8512, Japan.
| |
Collapse
|
8
|
Penzo A, Palancade B. Puzzling out nuclear pore complex assembly. FEBS Lett 2023; 597:2705-2727. [PMID: 37548888 DOI: 10.1002/1873-3468.14713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Nuclear pore complexes (NPCs) are sophisticated multiprotein assemblies embedded within the nuclear envelope and controlling the exchanges of molecules between the cytoplasm and the nucleus. In this review, we summarize the mechanisms by which these elaborate complexes are built from their subunits, the nucleoporins, based on our ever-growing knowledge of NPC structural organization and on the recent identification of additional features of this process. We present the constraints faced during the production of nucleoporins, their gathering into oligomeric complexes, and the formation of NPCs within nuclear envelopes, and review the cellular strategies at play, from co-translational assembly to the enrolment of a panel of cofactors. Remarkably, the study of NPCs can inform our perception of the biogenesis of multiprotein complexes in general - and vice versa.
Collapse
Affiliation(s)
- Arianna Penzo
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
9
|
Capelson M. You are who your friends are-nuclear pore proteins as components of chromatin-binding complexes. FEBS Lett 2023; 597:2769-2781. [PMID: 37652464 PMCID: PMC11081553 DOI: 10.1002/1873-3468.14728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Nuclear pore complexes are large multicomponent protein complexes that are embedded in the nuclear envelope, where they mediate nucleocytoplasmic transport. In addition to supporting transport, nuclear pore components, termed nucleoporins (Nups), can interact with chromatin and influence genome function. A subset of Nups can also localize to the nuclear interior and bind chromatin intranuclearly, providing an opportunity to investigate chromatin-associated functions of Nups outside of the transport context. This review focuses on the gene regulatory functions of such intranuclear Nups, with a particular emphasis on their identity as components of several chromatin regulatory complexes. Recent proteomic screens have identified Nups as interacting partners of active and repressive epigenetic machinery, architectural proteins, and DNA replication complexes, providing insight into molecular mechanisms via which Nups regulate gene expression programs. This review summarizes these interactions and discusses their potential functions in the broader framework of nuclear genome organization.
Collapse
Affiliation(s)
- Maya Capelson
- Cell and Molecular Biology Program, Department of Biology, San Diego State University, CA, USA
| |
Collapse
|
10
|
Shevelyov YY. Interactions of Chromatin with the Nuclear Lamina and Nuclear Pore Complexes. Int J Mol Sci 2023; 24:15771. [PMID: 37958755 PMCID: PMC10649103 DOI: 10.3390/ijms242115771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Heterochromatin and euchromatin form different spatial compartments in the interphase nucleus, with heterochromatin being localized mainly at the nuclear periphery. The mechanisms responsible for peripheral localization of heterochromatin are still not fully understood. The nuclear lamina and nuclear pore complexes were obvious candidates for the role of heterochromatin binders. This review is focused on recent studies showing that heterochromatin interactions with the nuclear lamina and nuclear pore complexes maintain its peripheral localization. Differences in chromatin interactions with the nuclear envelope in cell populations and in individual cells are also discussed.
Collapse
Affiliation(s)
- Yuri Y Shevelyov
- Laboratory of Analysis of Gene Regulation, National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
11
|
Yang J, Yang M, Wang Y, Sun J, Liu Y, Zhang L, Guo B. STING in tumors: a focus on non-innate immune pathways. Front Cell Dev Biol 2023; 11:1278461. [PMID: 37965570 PMCID: PMC10642211 DOI: 10.3389/fcell.2023.1278461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) and downstream stimulator of interferon genes (STING) are involved in mediating innate immunity by promoting the release of interferon and other inflammatory factors. Mitochondrial DNA (mtDNA) with a double-stranded structure has greater efficiency and sensitivity in being detected by DNA sensors and thus has an important role in the activation of the cGAS-STING pathway. Many previous findings suggest that the cGAS-STING pathway-mediated innate immune regulation is the most important aspect affecting tumor survival, not only in its anti-tumor role but also in shaping the immunosuppressive tumor microenvironment (TME) through a variety of pathways. However, recent studies have shown that STING regulation of non-immune pathways is equally profound and also involved in tumor cell progression. In this paper, we will focus on the non-innate immune system pathways, in which the cGAS-STING pathway also plays an important role in cancer.
Collapse
Affiliation(s)
- Jiaying Yang
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mei Yang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingtong Wang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jicheng Sun
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yiran Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhao G, Liu S, Arun S, Renda F, Khodjakov A, Pellman D. A tubule-sheet continuum model for the mechanism of nuclear envelope assembly. Dev Cell 2023; 58:847-865.e10. [PMID: 37098350 PMCID: PMC10205699 DOI: 10.1016/j.devcel.2023.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
Nuclear envelope (NE) assembly defects cause chromosome fragmentation, cancer, and aging. However, major questions about the mechanism of NE assembly and its relationship to nuclear pathology are unresolved. In particular, how cells efficiently assemble the NE starting from vastly different, cell type-specific endoplasmic reticulum (ER) morphologies is unclear. Here, we identify a NE assembly mechanism, "membrane infiltration," that defines one end of a continuum with another NE assembly mechanism, "lateral sheet expansion," in human cells. Membrane infiltration involves the recruitment of ER tubules or small sheets to the chromatin surface by mitotic actin filaments. Lateral sheet expansion involves actin-independent envelopment of peripheral chromatin by large ER sheets that then extend over chromatin within the spindle. We propose a "tubule-sheet continuum" model that explains the efficient NE assembly from any starting ER morphology, the cell type-specific patterns of nuclear pore complex (NPC) assembly, and the obligatory NPC assembly defect of micronuclei.
Collapse
Affiliation(s)
- Gengjing Zhao
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shiwei Liu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sanjana Arun
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Moreno-Andrés D, Holl K, Antonin W. The second half of mitosis and its implications in cancer biology. Semin Cancer Biol 2023; 88:1-17. [PMID: 36436712 DOI: 10.1016/j.semcancer.2022.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
The nucleus undergoes dramatic structural and functional changes during cell division. With the entry into mitosis, in human cells the nuclear envelope breaks down, chromosomes rearrange into rod-like structures which are collected and segregated by the spindle apparatus. While these processes in the first half of mitosis have been intensively studied, much less is known about the second half of mitosis, when a functional nucleus reforms in each of the emerging cells. Here we review our current understanding of mitotic exit and nuclear reformation with spotlights on the links to cancer biology.
Collapse
Affiliation(s)
- Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Kristin Holl
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Shen W, Gong B, Xing C, Zhang L, Sun J, Chen Y, Yang C, Yan L, Chen L, Yao L, Li G, Deng H, Wu X, Meng A. Comprehensive maturity of nuclear pore complexes regulates zygotic genome activation. Cell 2022; 185:4954-4970.e20. [PMID: 36493774 DOI: 10.1016/j.cell.2022.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Nuclear pore complexes (NPCs) are channels for nucleocytoplasmic transport of proteins and RNAs. However, it remains unclear whether composition, structure, and permeability of NPCs dynamically change during the cleavage period of vertebrate embryos and affect embryonic development. Here, we report that the comprehensive NPC maturity (CNM) controls the onset of zygotic genome activation (ZGA) during zebrafish early embryogenesis. We show that more nucleoporin proteins are recruited to and assembled into NPCs with development, resulting in progressive increase of NPCs in size and complexity. Maternal transcription factors (TFs) transport into nuclei more efficiently with increasing CNM. Deficiency or dysfunction of Nup133 or Ahctf1/Elys impairs NPC assembly, maternal TFs nuclear transport, and ZGA onset, while nup133 overexpression promotes these processes. Therefore, CNM may act as a molecular timer for ZGA by controlling nuclear transport of maternal TFs that reach nuclear concentration thresholds at a given time to initiate ZGA.
Collapse
Affiliation(s)
- Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Gong
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cencan Xing
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Zhang
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawei Sun
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Yan
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Luxi Chen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Likun Yao
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangyuan Li
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Developmental Diseases and Cancer Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Laboratory of Stem Cell Regulation, Guangzhou Laboratory, Guangzhou 510320, China.
| |
Collapse
|
15
|
Pessina F, Romussi A, Piccini D, Mazzucco G, Varasi M, Doksani Y. Enrichment of DNA replication intermediates by EdU pull down. Methods Cell Biol 2022; 182:83-94. [PMID: 38359989 DOI: 10.1016/bs.mcb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Analysis of replication fork structures in electron microscopy (EM) can provide important mechanistic insights in DNA replication studies. A major challenge in this type of analysis is the paucity of replication intermediates. At any given time only a small fraction of the restriction fragments of genomic DNA will contain a replication fork. To address this issue, we have developed an EdU-pull-down procedure to enrich for replicating DNA. Cells are exposed to a brief pulse of EdU, a cleavable biotin moiety is attached to EdU by copper-catalyzed azide-alkyne cycloaddition (CuAAC), in conditions that minimize the damage to DNA. Biotinylated DNA is purified with streptavidin beads, in conditions that facilitate association of long DNA filaments. Finally, the DNA is eluted by cleaving the biotin moiety. This approach can enrich over 150-times for replicating DNA and about 50-times in replication fork structures, as verified by EM. This procedure could benefit analysis of replication intermediates in EM as well as other techniques for the study of replicating DNA.
Collapse
Affiliation(s)
- Fabio Pessina
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Alessia Romussi
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Daniele Piccini
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giulia Mazzucco
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mario Varasi
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ylli Doksani
- IFOM ETS The AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
16
|
Fang T, Li C, Liang A, Zhang H, Zhang F, Zhang XE, Yang YY, Li F. Probing cell membrane integrity using a histone-targeting protein nanocage displaying precisely positioned fluorophores. NANO RESEARCH 2022; 16:894-904. [PMID: 36090614 PMCID: PMC9438879 DOI: 10.1007/s12274-022-4785-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Cell membrane integrity is fundamental to the normal activities of cells and is involved in both acute and chronic pathologies. Here, we report a probe for analyzing cell membrane integrity developed from a 9 nm-sized protein nanocage named Dps via fluorophore conjugation with high spatial precision to avoid self-quenching. The probe cannot enter normal live cells but can accumulate in dead or live cells with damaged membranes, which, interestingly, leads to weak cytoplasmic and strong nuclear staining. This differential staining is found attributed to the high affinity of Dps for histones rather than DNA, providing a staining mechanism different from those of known membrane exclusion probes (MEPs). Moreover, the Dps nanoprobe is larger in size and thus applies a more stringent criterion for identifying severe membrane damage than currently available MEPs. This study shows the potential of Dps as a new bioimaging platform for biological and medical analyses. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (Figs. S1-S12 including distance information between neighboring fluorophores on Dps, TEM images, MALDI-TOF analysis, fluorescence spectra, confocal images, gel retardation analysis, tissue staining, and additional data) is available in the online version of this article at 10.1007/s12274-022-4785-5.
Collapse
Affiliation(s)
- Ti Fang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510120 China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Chaoqun Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ao Liang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hui Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Fan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yi-Yu Yang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510120 China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
17
|
Shintomi K. Making Mitotic Chromosomes in a Test Tube. EPIGENOMES 2022; 6:20. [PMID: 35893016 PMCID: PMC9326633 DOI: 10.3390/epigenomes6030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mitotic chromosome assembly is an essential preparatory step for accurate transmission of the genome during cell division. During the past decades, biochemical approaches have uncovered the molecular basis of mitotic chromosomes. For example, by using cell-free assays of frog egg extracts, the condensin I complex central for the chromosome assembly process was first identified, and its functions have been intensively studied. A list of chromosome-associated proteins has been almost completed, and it is now possible to reconstitute structures resembling mitotic chromosomes with a limited number of purified factors. In this review, I introduce how far we have come in understanding the mechanism of chromosome assembly using cell-free assays and reconstitution assays, and I discuss their potential applications to solve open questions.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| |
Collapse
|
18
|
Mishra S, Levy DL. Nuclear F-actin and Lamin A antagonistically modulate nuclear shape. J Cell Sci 2022; 135:275607. [PMID: 35665815 PMCID: PMC9377710 DOI: 10.1242/jcs.259692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/28/2022] [Indexed: 12/25/2022] Open
Abstract
Nuclear shape influences cell migration, gene expression and cell cycle progression, and is altered in disease states like laminopathies and cancer. What factors and forces determine nuclear shape? We find that nuclei assembled in Xenopus egg extracts in the presence of dynamic F-actin exhibit a striking bilobed nuclear morphology with distinct membrane compositions in the two lobes and accumulation of F-actin at the inner nuclear envelope. The addition of Lamin A (encoded by lmna), which is absent from Xenopus eggs, results in rounder nuclei, suggesting that opposing nuclear F-actin and Lamin A forces contribute to the regulation of nuclear shape. Nuclear F-actin also promotes altered nuclear shape in Lamin A-knockdown HeLa cells and, in both systems, abnormal nuclear shape is driven by formins and not Arp2/3 or myosin. Although the underlying mechanisms might differ in Xenopus and HeLa cells, we propose that nuclear F-actin filaments nucleated by formins impart outward forces that lead to altered nuclear morphology unless Lamin A is present. Targeting nuclear actin dynamics might represent a novel approach to rescuing disease-associated defects in nuclear shape.
Collapse
Affiliation(s)
- Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA,Author for correspondence ()
| |
Collapse
|
19
|
Okada Y. Sperm chromatin condensation: epigenetic mechanisms to compact the genome and spatiotemporal regulation from inside and outside the nucleus. Gene 2022; 97:41-53. [PMID: 35491100 DOI: 10.1266/ggs.21-00065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sperm chromatin condensation is a critical step in mammalian spermatogenesis to protect the paternal DNA from external damaging factors and to acquire fertility. During chromatin condensation, various events proceed in a chronological order, independently or in sequence, interacting with each other both inside and outside the nucleus to support the dramatic chromatin changes. Among these events, histone-protamine replacement, which is concomitant with acrosome biogenesis and cytoskeletal alteration, is the most critical step associated with nuclear elongation. Failures of not only intranuclear events but also extra-nuclear events severely affect sperm shape and chromatin state and are subsequently linked to infertility. This review focuses on nuclear and non-nuclear factors that affect sperm chromatin condensation and its effects, and further discusses the possible utility of sperm chromatin for clinical applications.
Collapse
Affiliation(s)
- Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo
| |
Collapse
|
20
|
Wesley NA, Skrajna A, Simmons HC, Budziszewski GR, Azzam DN, Cesmat AP, McGinty RK. Time Resolved-Fluorescence Resonance Energy Transfer platform for quantitative nucleosome binding and footprinting. Protein Sci 2022; 31:e4339. [PMID: 35634775 PMCID: PMC9134878 DOI: 10.1002/pro.4339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
Abstract
Quantitative analysis of chromatin protein-nucleosome interactions is essential to understand regulation of genome-templated processes. However, current methods to measure nucleosome interactions are limited by low throughput, low signal-to-noise, and/or the requirement for specialized instrumentation. Here, we report a Lanthanide Chelate Excite Time-Resolved Fluorescence Resonance Energy Transfer (LANCE TR-FRET) assay to efficiently quantify chromatin protein-nucleosome interactions. The system makes use of commercially available reagents, offers robust signal-to-noise with minimal sample requirements, uses a conventional fluorescence microplate reader, and can be adapted for high-throughput workflows. We determined the nucleosome-binding affinities of several chromatin proteins and complexes, which are consistent with measurements obtained through orthogonal biophysical methods. We also developed a TR-FRET competition assay for high-resolution footprinting of chromatin protein-nucleosome interactions. Finally, we set up a TR-FRET competition assay using the LANA peptide to quantitate nucleosome acidic patch binding. We applied this assay to establish a proof-of-principle for regulation of nucleosome acidic patch binding by methylation of chromatin protein arginine anchors. Overall, our TR-FRET assays allow facile, high-throughput quantification of chromatin interactions and are poised to complement mechanistic chromatin biochemistry, structural biology, and drug discovery programs.
Collapse
Affiliation(s)
- Nathaniel A. Wesley
- Department of Biochemistry and Biophysics, UNC School of MedicineThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Aleksandra Skrajna
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Holly C. Simmons
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gabrielle R. Budziszewski
- Department of Biochemistry and Biophysics, UNC School of MedicineThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Dalal N. Azzam
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Andrew P. Cesmat
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Robert K. McGinty
- Department of Biochemistry and Biophysics, UNC School of MedicineThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
21
|
Hattersley N, Schlientz AJ, Prevo B, Oegema K, Desai A. MEL-28/ELYS and CENP-C coordinately control outer kinetochore assembly and meiotic chromosome-microtubule interactions. Curr Biol 2022; 32:2563-2571.e4. [PMID: 35609608 DOI: 10.1016/j.cub.2022.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
During mitosis and meiosis in the majority of eukaryotes, centromeric chromatin comprised of CENP-A nucleosomes and their reader CENP-C recruits components of the outer kinetochore to build an interface with spindle microtubules.1,2 One exception is C. elegans oocyte meiosis, where outer kinetochore proteins form cup-like structures on chromosomes independently of centromeric chromatin.3 Here, we show that the nucleoporin MEL-28 (ortholog of human ELYS) and CENP-CHCP-4 act in parallel to recruit outer kinetochore components to oocyte meiotic chromosomes. Unexpectedly, co-inhibition of MEL-28 and CENP-CHCP-4 resulted in chromosomes being expelled from the meiotic spindle prior to anaphase onset, a more severe phenotype than what was observed following ablation of the outer kinetochore.4,5 This observation suggested that MEL-28 and the outer kinetochore independently link chromosomes to spindle microtubules. Consistent with this, the chromosome expulsion defect was observed following co-inhibition of MEL-28 and the microtubule-coupling KNL-1/MIS-12/NDC-80 (KMN) network of the outer kinetochore. Use of engineered mutants showed that MEL-28 acts in conjunction with the microtubule-binding NDC-80 complex to keep chromosomes within the oocyte meiotic spindle and that this function likely involves the Y-complex of nucleoporins that associate with MEL-28; by contrast, the ability to dock protein phosphatase 1, shared by MEL-28 and KNL-1, is not involved. These results highlight nuclear pore-independent functions for a conserved nucleoporin and explain two unusual features of oocyte meiotic chromosome segregation in C. elegans: centromeric chromatin-independent outer kinetochore assembly, and dispensability of the outer kinetochore for constraining chromosomes in the acentrosomal meiotic spindle.
Collapse
Affiliation(s)
- Neil Hattersley
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA
| | - Aleesa J Schlientz
- Division of Biological Sciences & Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Bram Prevo
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA; Division of Biological Sciences & Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA; Division of Biological Sciences & Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Dultz E, Wojtynek M, Medalia O, Onischenko E. The Nuclear Pore Complex: Birth, Life, and Death of a Cellular Behemoth. Cells 2022; 11:1456. [PMID: 35563762 PMCID: PMC9100368 DOI: 10.3390/cells11091456] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the only transport channels that cross the nuclear envelope. Constructed from ~500-1000 nucleoporin proteins each, they are among the largest macromolecular assemblies in eukaryotic cells. Thanks to advances in structural analysis approaches, the construction principles and architecture of the NPC have recently been revealed at submolecular resolution. Although the overall structure and inventory of nucleoporins are conserved, NPCs exhibit significant compositional and functional plasticity even within single cells and surprising variability in their assembly pathways. Once assembled, NPCs remain seemingly unexchangeable in post-mitotic cells. There are a number of as yet unresolved questions about how the versatility of NPC assembly and composition is established, how cells monitor the functional state of NPCs or how they could be renewed. Here, we review current progress in our understanding of the key aspects of NPC architecture and lifecycle.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
| | - Matthias Wojtynek
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Evgeny Onischenko
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
23
|
Haase J, Chen R, Parker WM, Bonner MK, Jenkins LM, Kelly AE. The TFIIH complex is required to establish and maintain mitotic chromosome structure. eLife 2022; 11:e75475. [PMID: 35293859 PMCID: PMC8956287 DOI: 10.7554/elife.75475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Condensins compact chromosomes to promote their equal segregation during mitosis, but the mechanism of condensin engagement with and action on chromatin is incompletely understood. Here, we show that the general transcription factor TFIIH complex is continuously required to establish and maintain a compacted chromosome structure in transcriptionally silent Xenopus egg extracts. Inhibiting the DNA-dependent ATPase activity of the TFIIH complex subunit XPB rapidly and reversibly induces a complete loss of chromosome structure and prevents the enrichment of condensins I and II, but not topoisomerase II, on chromatin. In addition, inhibiting TFIIH prevents condensation of both mouse and Xenopus nuclei in Xenopus egg extracts, which suggests an evolutionarily conserved mechanism of TFIIH action. Reducing nucleosome density through partial histone depletion restores chromosome structure and condensin enrichment in the absence of TFIIH activity. We propose that the TFIIH complex promotes mitotic chromosome condensation by dynamically altering the chromatin environment to facilitate condensin loading and condensin-dependent loop extrusion.
Collapse
Affiliation(s)
- Julian Haase
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Richard Chen
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Wesley M Parker
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Mary Kate Bonner
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Alexander E Kelly
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| |
Collapse
|
24
|
The intricate roles of RCC1 in normal cells and cancer cells. Biochem Soc Trans 2022; 50:83-93. [PMID: 35191966 DOI: 10.1042/bst20210861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
RCC1 (regulator of chromosome condensation 1) is a highly conserved chromatin-binding protein and the only known guanine-nucleotide exchange factor of Ran (a nuclear Ras homolog). RCC1 plays an essential role in the regulation of cell cycle-related activities such as nuclear envelope formation, nuclear pore complex and spindle assembly, and nucleocytoplasmic transport. Over the last decade, increasing evidence has emerged highlighting the potential relevance of RCC1 to carcinogenesis, especially cervical, lung, and breast cancer. In this review, we briefly discuss the roles of RCC1 in both normal and tumor cells based on articles published in recent years, followed by a brief overview of future perspectives in the field.
Collapse
|
25
|
Holzer G, De Magistris P, Gramminger C, Sachdev R, Magalska A, Schooley A, Scheufen A, Lennartz B, Tatarek‐Nossol M, Lue H, Linder MI, Kutay U, Preisinger C, Moreno‐Andres D, Antonin W. The nucleoporin Nup50 activates the Ran guanine nucleotide exchange factor RCC1 to promote NPC assembly at the end of mitosis. EMBO J 2021; 40:e108788. [PMID: 34725842 PMCID: PMC8634129 DOI: 10.15252/embj.2021108788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
During mitotic exit, thousands of nuclear pore complexes (NPCs) assemble concomitant with the nuclear envelope to build a transport-competent nucleus. Here, we show that Nup50 plays a crucial role in NPC assembly independent of its well-established function in nuclear transport. RNAi-mediated downregulation in cells or immunodepletion of Nup50 protein in Xenopus egg extracts interferes with NPC assembly. We define a conserved central region of 46 residues in Nup50 that is crucial for Nup153 and MEL28/ELYS binding, and for NPC interaction. Surprisingly, neither NPC interaction nor binding of Nup50 to importin α/β, the GTPase Ran, or chromatin is crucial for its function in the assembly process. Instead, an N-terminal fragment of Nup50 can stimulate the Ran GTPase guanine nucleotide exchange factor RCC1 and NPC assembly, indicating that Nup50 acts via the Ran system in NPC reformation at the end of mitosis. In support of this conclusion, Nup50 mutants defective in RCC1 binding and stimulation cannot replace the wild-type protein in in vitro NPC assembly assays, whereas excess RCC1 can compensate the loss of Nup50.
Collapse
Affiliation(s)
- Guillaume Holzer
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Paola De Magistris
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- Present address:
Department of BionanoscienceKavli Institute of NanoscienceDelftthe Netherlands
| | | | - Ruchika Sachdev
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
| | - Adriana Magalska
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
| | - Allana Schooley
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
| | - Anja Scheufen
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Birgitt Lennartz
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Marianna Tatarek‐Nossol
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Hongqi Lue
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Monika I Linder
- Institute of BiochemistryETH ZurichZurichSwitzerland
- Present address:
Department of PediatricsDr. von Hauner Children's Hospital and Gene CenterUniversity Hospital, LMUMunichGermany
| | - Ulrike Kutay
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Christian Preisinger
- Proteomics FacilityInterdisciplinary Centre for Clinical Research (IZKF)Medical SchoolRWTH Aachen UniversityAachenGermany
| | - Daniel Moreno‐Andres
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell BiologyMedical SchoolRWTH Aachen UniversityAachenGermany
| |
Collapse
|
26
|
Arimura Y, Shih RM, Froom R, Funabiki H. Structural features of nucleosomes in interphase and metaphase chromosomes. Mol Cell 2021; 81:4377-4397.e12. [PMID: 34478647 PMCID: PMC8571072 DOI: 10.1016/j.molcel.2021.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022]
Abstract
Structural heterogeneity of nucleosomes in functional chromosomes is unknown. Here, we devise the template-, reference- and selection-free (TRSF) cryo-EM pipeline to simultaneously reconstruct cryo-EM structures of protein complexes from interphase or metaphase chromosomes. The reconstructed interphase and metaphase nucleosome structures are on average indistinguishable from canonical nucleosome structures, despite DNA sequence heterogeneity, cell-cycle-specific posttranslational modifications, and interacting proteins. Nucleosome structures determined by a decoy-classifying method and structure variability analyses reveal the nucleosome structural variations in linker DNA, histone tails, and nucleosome core particle configurations, suggesting that the opening of linker DNA, which is correlated with H2A C-terminal tail positioning, is suppressed in chromosomes. High-resolution (3.4-3.5 Å) nucleosome structures indicate DNA-sequence-independent stabilization of superhelical locations ±0-1 and ±3.5-4.5. The linker histone H1.8 preferentially binds to metaphase chromatin, from which chromatosome cryo-EM structures with H1.8 at the on-dyad position are reconstituted. This study presents the structural characteristics of nucleosomes in chromosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Rochelle M Shih
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
27
|
Ito N, Sakamoto T, Matsunaga S. Components of the Nuclear Pore Complex are Rising Stars in the Formation of a Subnuclear Platform of Chromatin Organization beyond Their Structural Role as a Nuclear Gate. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nanami Ito
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | | |
Collapse
|
28
|
Choppakatla P, Dekker B, Cutts EE, Vannini A, Dekker J, Funabiki H. Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization. eLife 2021; 10:e68918. [PMID: 34406118 PMCID: PMC8416026 DOI: 10.7554/elife.68918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
DNA loop extrusion by condensins and decatenation by DNA topoisomerase II (topo II) are thought to drive mitotic chromosome compaction and individualization. Here, we reveal that the linker histone H1.8 antagonizes condensins and topo II to shape mitotic chromosome organization. In vitro chromatin reconstitution experiments demonstrate that H1.8 inhibits binding of condensins and topo II to nucleosome arrays. Accordingly, H1.8 depletion in Xenopus egg extracts increased condensins and topo II levels on mitotic chromatin. Chromosome morphology and Hi-C analyses suggest that H1.8 depletion makes chromosomes thinner and longer through shortening the average loop size and reducing the DNA amount in each layer of mitotic loops. Furthermore, excess loading of condensins and topo II to chromosomes by H1.8 depletion causes hyper-chromosome individualization and dispersion. We propose that condensins and topo II are essential for chromosome individualization, but their functions are tuned by the linker histone to keep chromosomes together until anaphase.
Collapse
Affiliation(s)
- Pavan Choppakatla
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Bastiaan Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Erin E Cutts
- Division of Structural Biology, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer ResearchLondonUnited Kingdom
- Fondazione Human Technopole, Structural Biology Research Centre, 20157MilanItaly
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
29
|
Kutay U, Jühlen R, Antonin W. Mitotic disassembly and reassembly of nuclear pore complexes. Trends Cell Biol 2021; 31:1019-1033. [PMID: 34294532 DOI: 10.1016/j.tcb.2021.06.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Nuclear pore complexes (NPCs) are huge protein assemblies within the nuclear envelope (NE) that serve as selective gates for macromolecular transport between nucleus and cytoplasm. When higher eukaryotic cells prepare for division, they rapidly disintegrate NPCs during NE breakdown such that nuclear and cytoplasmic components mix to enable the formation of a cytoplasmic mitotic spindle. At the end of mitosis, reassembly of NPCs is coordinated with the establishment of the NE around decondensing chromatin. We review recent progress on mitotic NPC disassembly and reassembly, focusing on vertebrate cells. We highlight novel mechanistic insights into how NPCs are rapidly disintegrated into conveniently reusable building blocks, and put divergent models of (post-)mitotic NPC assembly into a spatial and temporal context.
Collapse
Affiliation(s)
- Ulrike Kutay
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland.
| | - Ramona Jühlen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
30
|
Barrows JK, Fullbright G, Long D. BRCA1-BARD1 regulates transcription through BRD4 in Xenopus nucleoplasmic extract. Nucleic Acids Res 2021; 49:3263-3273. [PMID: 33660782 PMCID: PMC8034626 DOI: 10.1093/nar/gkab111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor BRCA1 is considered a master regulator of genome integrity. Although widely recognized for its DNA repair functions, BRCA1 has also been implicated in various mechanisms of chromatin remodeling and transcription regulation. However, the precise role that BRCA1 plays in these processes has been difficult to establish due to the widespread consequences of its cellular dysfunction. Here, we use nucleoplasmic extract derived from the eggs of Xenopus laevis to investigate the role of BRCA1 in a cell-free transcription system. We report that BRCA1-BARD1 suppresses transcription initiation independent of DNA damage signaling and its established role in histone H2A ubiquitination. BRCA1-BARD1 acts through a histone intermediate, altering acetylation of histone H4K8 and recruitment of the chromatin reader and oncogene regulator BRD4. Together, these results establish a functional relationship between an established (BRCA1) and emerging (BRD4) regulator of genome integrity.
Collapse
Affiliation(s)
- John K Barrows
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - George Fullbright
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David T Long
- To whom correspondence should be addressed. Tel: +1 843 792 6949;
| |
Collapse
|
31
|
Piette BL, Alerasool N, Lin ZY, Lacoste J, Lam MHY, Qian WW, Tran S, Larsen B, Campos E, Peng J, Gingras AC, Taipale M. Comprehensive interactome profiling of the human Hsp70 network highlights functional differentiation of J domains. Mol Cell 2021; 81:2549-2565.e8. [PMID: 33957083 DOI: 10.1016/j.molcel.2021.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
Hsp70s comprise a deeply conserved chaperone family that has a central role in maintaining protein homeostasis. In humans, Hsp70 client specificity is provided by 49 different co-factors known as J domain proteins (JDPs). However, the cellular function and client specificity of JDPs have largely remained elusive. We have combined affinity purification-mass spectrometry (AP-MS) and proximity-dependent biotinylation (BioID) to characterize the interactome of all human JDPs and Hsp70s. The resulting network suggests specific functions for many uncharacterized JDPs, and we establish a role of conserved JDPs DNAJC9 and DNAJC27 in histone chaperoning and ciliogenesis, respectively. Unexpectedly, we find that the J domain of DNAJC27 but not of other JDPs can fully replace the function of endogenous DNAJC27, suggesting a previously unappreciated role for J domains themselves in JDP specificity. More broadly, our work expands the role of the Hsp70-regulated proteostasis network and provides a platform for further discovery of JDP-dependent functions.
Collapse
Affiliation(s)
- Benjamin L Piette
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nader Alerasool
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Jessica Lacoste
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mandy Hiu Yi Lam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie Tran
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Eric Campos
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
32
|
Shevelyov YY. The Role of Nucleoporin Elys in Nuclear Pore Complex Assembly and Regulation of Genome Architecture. Int J Mol Sci 2020; 21:ijms21249475. [PMID: 33322130 PMCID: PMC7764596 DOI: 10.3390/ijms21249475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022] Open
Abstract
For a long time, the nuclear lamina was thought to be the sole scaffold for the attachment of chromosomes to the nuclear envelope (NE) in metazoans. However, accumulating evidence indicates that nuclear pore complexes (NPCs) comprised of nucleoporins (Nups) participate in this process as well. One of the Nups, Elys, initiates NPC reassembly at the end of mitosis. Elys directly binds the decondensing chromatin and interacts with the Nup107–160 subcomplex of NPCs, thus serving as a seeding point for the subsequent recruitment of other NPC subcomplexes and connecting chromatin with the re-forming NE. Recent studies also uncovered the important functions of Elys during interphase where it interacts with chromatin and affects its compactness. Therefore, Elys seems to be one of the key Nups regulating chromatin organization. This review summarizes the current state of our knowledge about the participation of Elys in the post-mitotic NPC reassembly as well as the role that Elys and other Nups play in the maintenance of genome architecture.
Collapse
Affiliation(s)
- Yuri Y Shevelyov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
| |
Collapse
|
33
|
Liu S, Pellman D. The coordination of nuclear envelope assembly and chromosome segregation in metazoans. Nucleus 2020; 11:35-52. [PMID: 32208955 PMCID: PMC7289584 DOI: 10.1080/19491034.2020.1742064] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 01/25/2023] Open
Abstract
The nuclear envelope (NE) is composed of two lipid bilayer membranes that enclose the eukaryotic genome. In interphase, the NE is perforated by thousands of nuclear pore complexes (NPCs), which allow transport in and out of the nucleus. During mitosis in metazoans, the NE is broken down and then reassembled in a manner that enables proper chromosome segregation and the formation of a single nucleus in each daughter cell. Defects in coordinating NE reformation and chromosome segregation can cause aberrant nuclear architecture. This includes the formation of micronuclei, which can trigger a catastrophic mutational process commonly observed in cancers called chromothripsis. Here, we discuss the current understanding of the coordination of NE reformation with chromosome segregation during mitotic exit in metazoans. We review differing models in the field and highlight recent work suggesting that normal NE reformation and chromosome segregation are physically linked through the timing of mitotic spindle disassembly.
Collapse
Affiliation(s)
- Shiwei Liu
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
34
|
Skrajna A, Goldfarb D, Kedziora KM, Cousins E, Grant GD, Spangler CJ, Barbour EH, Yan X, Hathaway NA, Brown NG, Cook JG, Major MB, McGinty RK. Comprehensive nucleosome interactome screen establishes fundamental principles of nucleosome binding. Nucleic Acids Res 2020; 48:9415-9432. [PMID: 32658293 PMCID: PMC7515726 DOI: 10.1093/nar/gkaa544] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 02/03/2023] Open
Abstract
Nuclear proteins bind chromatin to execute and regulate genome-templated processes. While studies of individual nucleosome interactions have suggested that an acidic patch on the nucleosome disk may be a common site for recruitment to chromatin, the pervasiveness of acidic patch binding and whether other nucleosome binding hot-spots exist remain unclear. Here, we use nucleosome affinity proteomics with a library of nucleosomes that disrupts all exposed histone surfaces to comprehensively assess how proteins recognize nucleosomes. We find that the acidic patch and two adjacent surfaces are the primary hot-spots for nucleosome disk interactions, whereas nearly half of the nucleosome disk participates only minimally in protein binding. Our screen defines nucleosome surface requirements of nearly 300 nucleosome interacting proteins implicated in diverse nuclear processes including transcription, DNA damage repair, cell cycle regulation and nuclear architecture. Building from our screen, we demonstrate that the Anaphase-Promoting Complex/Cyclosome directly engages the acidic patch, and we elucidate a redundant mechanism of acidic patch binding by nuclear pore protein ELYS. Overall, our interactome screen illuminates a highly competitive nucleosome binding hub and establishes universal principles of nucleosome recognition.
Collapse
Affiliation(s)
- Aleksandra Skrajna
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Katarzyna M Kedziora
- Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Emily M Cousins
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gavin D Grant
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Cathy J Spangler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Emily H Barbour
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Xiaokang Yan
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Nathaniel A Hathaway
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Jeanette G Cook
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Michael B Major
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert K McGinty
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Ren X, Jiang K, Zhang F. The Multifaceted Roles of RCC1 in Tumorigenesis. Front Mol Biosci 2020; 7:225. [PMID: 33102517 PMCID: PMC7522611 DOI: 10.3389/fmolb.2020.00225] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2020] [Indexed: 01/31/2023] Open
Abstract
RCC1 (regulator of chromosome condensation 1) is the only known guanine nucleotide exchange factor of Ran, a nuclear Ras-like G protein. RCC1 combines with chromatin and Ran to establish a concentration gradient of RanGTP, thereby participating in a series of cell physiological activities. In this review, we discuss the structure of RCC1 and describe how RCC1 affects the formation and function of the nuclear envelope, spindle formation, and nuclear transport. We mainly focus on the effect of RCC1 on the cell cycle during tumorigenesis and the recent research progress that has been made in relation to different tumor types.
Collapse
Affiliation(s)
- Xuanqi Ren
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Kai Jiang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Feng Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
36
|
Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, Uruma N, Hirai S, Funabiki H, Kurumizaka H. Structural basis for the inhibition of cGAS by nucleosomes. Science 2020; 370:455-458. [PMID: 32912999 DOI: 10.1126/science.abd0237] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) senses invasion of pathogenic DNA and stimulates inflammatory signaling, autophagy, and apoptosis. Organization of host DNA into nucleosomes was proposed to limit cGAS autoinduction, but the underlying mechanism was unknown. Here, we report the structural basis for this inhibition. In the cryo-electron microscopy structure of the human cGAS-nucleosome core particle (NCP) complex, two cGAS monomers bridge two NCPs by binding the acidic patch of the histone H2A-H2B dimer and nucleosomal DNA. In this configuration, all three known cGAS DNA binding sites, required for cGAS activation, are repurposed or become inaccessible, and cGAS dimerization, another prerequisite for activation, is inhibited. Mutating key residues linking cGAS and the acidic patch alleviates nucleosomal inhibition. This study establishes a structural framework for why cGAS is silenced on chromatinized self-DNA.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Christian Zierhut
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryan Kim
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Nobuki Uruma
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Seiya Hirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan. .,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
37
|
Baumann C, Ma W, Wang X, Kandasamy MK, Viveiros MM, De La Fuente R. Helicase LSH/Hells regulates kinetochore function, histone H3/Thr3 phosphorylation and centromere transcription during oocyte meiosis. Nat Commun 2020; 11:4486. [PMID: 32900989 PMCID: PMC7478982 DOI: 10.1038/s41467-020-18009-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/23/2020] [Indexed: 12/31/2022] Open
Abstract
Centromeres are epigenetically determined nuclear domains strictly required for chromosome segregation and genome stability. However, the mechanisms regulating centromere and kinetochore chromatin modifications are not known. Here, we demonstrate that LSH is enriched at meiotic kinetochores and its targeted deletion induces centromere instability and abnormal chromosome segregation. Superresolution chromatin analysis resolves LSH at the inner centromere and kinetochores during oocyte meiosis. LSH knockout pachytene oocytes exhibit reduced HDAC2 and DNMT-1. Notably, mutant oocytes show a striking increase in histone H3 phosphorylation at threonine 3 (H3T3ph) and accumulation of major satellite transcripts in both prophase-I and metaphase-I chromosomes. Moreover, knockout oocytes exhibit centromere fusions, ectopic kinetochore formation and abnormal exchange of chromatin fibers between paired bivalents and asynapsed chromosomes. Our results indicate that loss of LSH affects the levels and chromosomal localization of H3T3ph and provide evidence that, by maintaining transcriptionally repressive heterochromatin, LSH may be essential to prevent deleterious meiotic recombination events at repetitive centromeric sequences.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, 30602, USA
| | - Wei Ma
- School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Xiaotian Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, 30602, USA
| | | | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, 30602, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
38
|
Gruszka DT, Xie S, Kimura H, Yardimci H. Single-molecule imaging reveals control of parental histone recycling by free histones during DNA replication. SCIENCE ADVANCES 2020; 6:eabc0330. [PMID: 32948589 PMCID: PMC7500940 DOI: 10.1126/sciadv.abc0330] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/28/2020] [Indexed: 05/08/2023]
Abstract
During replication, nucleosomes are disrupted ahead of the replication fork, followed by their reassembly on daughter strands from the pool of recycled parental and new histones. However, because no previous studies have managed to capture the moment that replication forks encounter nucleosomes, the mechanism of recycling has remained unclear. Here, through real-time single-molecule visualization of replication fork progression in Xenopus egg extracts, we determine explicitly the outcome of fork collisions with nucleosomes. Most of the parental histones are evicted from the DNA, with histone recycling, nucleosome sliding, and replication fork stalling also occurring but at lower frequencies. Critically, we find that local histone recycling becomes dominant upon depletion of endogenous histones from extracts, revealing that free histone concentration is a key modulator of parental histone dynamics at the replication fork. The mechanistic details revealed by these studies have major implications for our understanding of epigenetic inheritance.
Collapse
Affiliation(s)
- D T Gruszka
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - S Xie
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - H Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - H Yardimci
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
39
|
VPS72/YL1-Mediated H2A.Z Deposition Is Required for Nuclear Reassembly after Mitosis. Cells 2020; 9:cells9071702. [PMID: 32708675 PMCID: PMC7408173 DOI: 10.3390/cells9071702] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023] Open
Abstract
The eukaryotic nucleus remodels extensively during mitosis. Upon mitotic entry, the nuclear envelope breaks down and chromosomes condense into rod-shaped bodies, which are captured by the spindle apparatus and segregated during anaphase. Through telophase, chromosomes decondense and the nuclear envelope reassembles, leading to a functional interphase nucleus. While the molecular processes occurring in early mitosis are intensively investigated, our knowledge about molecular mechanisms of nuclear reassembly is rather limited. Using cell free and cellular assays, we identify the histone variant H2A.Z and its chaperone VPS72/YL1 as important factors for reassembly of a functional nucleus after mitosis. Live-cell imaging shows that siRNA-mediated downregulation of VPS72 extends the telophase in HeLa cells. In vitro, depletion of VPS72 or H2A.Z results in malformed and nonfunctional nuclei. VPS72 is part of two chromatin-remodeling complexes, SRCAP and EP400. Dissecting the mechanism of nuclear reformation using cell-free assays, we, however, show that VPS72 functions outside of the SRCAP and EP400 remodeling complexes to deposit H2A.Z, which in turn is crucial for formation of a functional nucleus.
Collapse
|
40
|
Abstract
The size of the intracellular structure that encloses genomic DNA - known as the nucleus in eukaryotes and nucleoid in prokaryotes - is believed to scale according to cell size and genomic content inside them across the tree of life. However, an actual scaling relationship remains largely unexplored across eukaryotic species. Here, I collected a large dataset of nuclear and cell volumes in diverse species across different phyla, including some prokaryotes, from the published literature and assessed the scaling relationship. Although entire inter-species data showed that nuclear volume correlates with cell volume, the quantitative scaling property exhibited differences among prokaryotes, unicellular eukaryotes and multicellular eukaryotes. Additionally, the nuclear volume correlates with genomic content inside the nucleus of multicellular eukaryotes but not of prokaryotes and unicellular eukaryotes. In this Hypothesis, I, thus, propose that the basic concept of nuclear-size scaling is conserved across eukaryotes; however, structural and mechanical properties of nuclear membranes and chromatin can result in different scaling relationships of nuclear volume to cell volume and genomic content among species. In particular, eukaryote-specific properties of the nuclear membrane may contribute to the extreme flexibility of nuclear size with regard to DNA density inside the nucleus.
Collapse
Affiliation(s)
- Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi city 753-8512, Japan
| |
Collapse
|
41
|
Golfier S, Quail T, Kimura H, Brugués J. Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner. eLife 2020; 9:e53885. [PMID: 32396063 PMCID: PMC7316503 DOI: 10.7554/elife.53885] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Loop extrusion by structural maintenance of chromosomes (SMC) complexes has been proposed as a mechanism to organize chromatin in interphase and metaphase. However, the requirements for chromatin organization in these cell cycle phases are different, and it is unknown whether loop extrusion dynamics and the complexes that extrude DNA also differ. Here, we used Xenopus egg extracts to reconstitute and image loop extrusion of single DNA molecules during the cell cycle. We show that loops form in both metaphase and interphase, but with distinct dynamic properties. Condensin extrudes DNA loops non-symmetrically in metaphase, whereas cohesin extrudes loops symmetrically in interphase. Our data show that loop extrusion is a general mechanism underlying DNA organization, with dynamic and structural properties that are biochemically regulated during the cell cycle.
Collapse
Affiliation(s)
- Stefan Golfier
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Centre for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
| | - Thomas Quail
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Centre for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Centre for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
| |
Collapse
|
42
|
Chen P, Tomschik M, Nelson KM, Oakey J, Gatlin JC, Levy DL. Nucleoplasmin is a limiting component in the scaling of nuclear size with cytoplasmic volume. J Cell Biol 2019; 218:4063-4078. [PMID: 31636119 PMCID: PMC6891103 DOI: 10.1083/jcb.201902124] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/08/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022] Open
Abstract
How nuclear size is regulated relative to cell size is a fundamental cell biological question. Reductions in both cell and nuclear sizes during Xenopus laevis embryogenesis provide a robust scaling system to study mechanisms of nuclear size regulation. To test if the volume of embryonic cytoplasm is limiting for nuclear growth, we encapsulated gastrula-stage embryonic cytoplasm and nuclei in droplets of defined volume using microfluidics. Nuclei grew and reached new steady-state sizes as a function of cytoplasmic volume, supporting a limiting component mechanism of nuclear size control. Through biochemical fractionation, we identified the histone chaperone nucleoplasmin (Npm2) as a putative nuclear size effector. Cellular amounts of Npm2 decrease over development, and nuclear size was sensitive to Npm2 levels both in vitro and in vivo, affecting nuclear histone levels and chromatin organization. We propose that reductions in cell volume and the amounts of limiting components, such as Npm2, contribute to developmental nuclear size scaling.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| | | | - Katherine M Nelson
- Department of Molecular Biology, University of Wyoming, Laramie, WY
- Department of Chemical Engineering, University of Wyoming, Laramie, WY
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| |
Collapse
|
43
|
Gozalo A, Duke A, Lan Y, Pascual-Garcia P, Talamas JA, Nguyen SC, Shah PP, Jain R, Joyce EF, Capelson M. Core Components of the Nuclear Pore Bind Distinct States of Chromatin and Contribute to Polycomb Repression. Mol Cell 2019; 77:67-81.e7. [PMID: 31784359 DOI: 10.1016/j.molcel.2019.10.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/04/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Interactions between the genome and the nuclear pore complex (NPC) have been implicated in multiple gene regulatory processes, but the underlying logic of these interactions remains poorly defined. Here, we report high-resolution chromatin binding maps of two core components of the NPC, Nup107 and Nup93, in Drosophila cells. Our investigation uncovered differential binding of these NPC subunits, where Nup107 preferentially targets active genes while Nup93 associates primarily with Polycomb-silenced regions. Comparison to Lamin-associated domains (LADs) revealed that NPC binding sites can be found within LADs, demonstrating a linear binding of the genome along the nuclear envelope. Importantly, we identified a functional role of Nup93 in silencing of Polycomb target genes and in spatial folding of Polycomb domains. Our findings lend to a model where different nuclear pores bind different types of chromatin via interactions with specific NPC sub-complexes, and a subset of Polycomb domains is stabilized by interactions with Nup93.
Collapse
Affiliation(s)
- Alejandro Gozalo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Duke
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Talamas
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Son C Nguyen
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parisha P Shah
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric F Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maya Capelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Barrows JK, Long DT. Cell-free transcription in Xenopus egg extract. J Biol Chem 2019; 294:19645-19654. [PMID: 31732562 DOI: 10.1074/jbc.ra119.011350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
Soluble extracts prepared from Xenopus eggs have been used extensively to study various aspects of cellular and developmental biology. During early egg development, transcription of the zygotic genome is suppressed. As a result, traditional extracts derived from unfertilized and early stage eggs possess little or no intrinsic transcriptional activity. In this study, we show that Xenopus nucleoplasmic extract (NPE) supports robust transcription of a chromatinized plasmid substrate. Although prepared from eggs in a transcriptionally inactive state, the process of making NPE resembles some aspects of egg fertilization and early embryo development that lead to transcriptional activation. With this system, we observed that promoter-dependent recruitment of transcription factors and RNA polymerase II leads to conventional patterns of divergent transcription and pre-mRNA processing, including intron splicing and 3' cleavage and polyadenylation. We also show that histone density controls transcription factor binding and RNA polymerase II activity, validating a mechanism proposed to regulate genome activation during development. Together, these results establish a new cell-free system to study the regulation, initiation, and processing of mRNA transcripts.
Collapse
Affiliation(s)
- John K Barrows
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - David T Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
45
|
Kuhn TM, Capelson M. Nuclear Pore Proteins in Regulation of Chromatin State. Cells 2019; 8:cells8111414. [PMID: 31717499 PMCID: PMC6912232 DOI: 10.3390/cells8111414] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
Nuclear pore complexes (NPCs) are canonically known to regulate nucleocytoplasmic transport. However, research efforts over the last decade have demonstrated that NPCs and their constituent nucleoporins (Nups) also interact with the genome and perform important roles in regulation of gene expression. It has become increasingly clear that many Nups execute these roles specifically through regulation of chromatin state, whether through interactions with histone modifiers and downstream changes in post-translational histone modifications, or through relationships with chromatin-remodeling proteins that can result in physical changes in nucleosome occupancy and chromatin compaction. This review focuses on these findings, highlighting the functional connection between NPCs/Nups and regulation of chromatin structure, and how this connection can manifest in regulation of transcription.
Collapse
|
46
|
Pessina F, Giavazzi F, Yin Y, Gioia U, Vitelli V, Galbiati A, Barozzi S, Garre M, Oldani A, Flaus A, Cerbino R, Parazzoli D, Rothenberg E, d'Adda di Fagagna F. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat Cell Biol 2019; 21:1286-1299. [PMID: 31570834 PMCID: PMC6859070 DOI: 10.1038/s41556-019-0392-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
Damage-induced long non-coding RNAs (dilncRNA) synthesized at DNA double-strand breaks (DSBs) by RNA polymerase II are necessary for DNA-damage-response (DDR) focus formation. We demonstrate that induction of DSBs results in the assembly of functional promoters that include a complete RNA polymerase II preinitiation complex, MED1 and CDK9. Absence or inactivation of these factors causes a reduction in DDR foci both in vivo and in an in vitro system that reconstitutes DDR events on nucleosomes. We also show that dilncRNAs drive molecular crowding of DDR proteins, such as 53BP1, into foci that exhibit liquid-liquid phase-separation condensate properties. We propose that the assembly of DSB-induced transcriptional promoters drives RNA synthesis, which stimulates phase separation of DDR factors in the shape of foci.
Collapse
Affiliation(s)
- Fabio Pessina
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Ubaldo Gioia
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valerio Vitelli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Sara Barozzi
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Amanda Oldani
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Andrew Flaus
- Centre for Chromosome Biology, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Roberto Cerbino
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Italy
| | - Dario Parazzoli
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
47
|
Kuhn TM, Pascual-Garcia P, Gozalo A, Little SC, Capelson M. Chromatin targeting of nuclear pore proteins induces chromatin decondensation. J Cell Biol 2019; 218:2945-2961. [PMID: 31366666 PMCID: PMC6719443 DOI: 10.1083/jcb.201807139] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 04/05/2019] [Accepted: 07/08/2019] [Indexed: 12/03/2022] Open
Abstract
Nuclear pore complexes have emerged in recent years as chromatin-binding nuclear scaffolds, able to influence target gene expression. However, how nucleoporins (Nups) exert this control remains poorly understood. Here we show that ectopically tethering Drosophila Nups, especially Sec13, to chromatin is sufficient to induce chromatin decondensation. This decondensation is mediated through chromatin-remodeling complex PBAP, as PBAP is both robustly recruited by Sec13 and required for Sec13-induced decondensation. This phenomenon is not correlated with localization of the target locus to the nuclear periphery, but is correlated with robust recruitment of Nup Elys. Furthermore, we identified a biochemical interaction between endogenous Sec13 and Elys with PBAP, and a role for endogenous Elys in global as well as gene-specific chromatin decompaction. Together, these findings reveal a functional role and mechanism for specific nuclear pore components in promoting an open chromatin state.
Collapse
Affiliation(s)
- Terra M Kuhn
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| | - Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| | - Alejandro Gozalo
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| | - Shawn C Little
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| | - Maya Capelson
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
48
|
Buchwalter A, Kaneshiro JM, Hetzer MW. Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet 2019; 20:39-50. [PMID: 30356165 DOI: 10.1038/s41576-018-0063-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The genome is packaged and organized nonrandomly within the 3D space of the nucleus to promote efficient gene expression and to faithfully maintain silencing of heterochromatin. The genome is enclosed within the nucleus by the nuclear envelope membrane, which contains a set of proteins that actively participate in chromatin organization and gene regulation. Technological advances are providing views of genome organization at unprecedented resolution and are beginning to reveal the ways that cells co-opt the structures of the nuclear periphery for nuclear organization and gene regulation. These genome regulatory roles of proteins of the nuclear periphery have important influences on development, disease and ageing.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.,Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jeanae M Kaneshiro
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
49
|
Zierhut C, Yamaguchi N, Paredes M, Luo JD, Carroll T, Funabiki H. The Cytoplasmic DNA Sensor cGAS Promotes Mitotic Cell Death. Cell 2019; 178:302-315.e23. [PMID: 31299200 PMCID: PMC6693521 DOI: 10.1016/j.cell.2019.05.035] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/21/2019] [Accepted: 05/20/2019] [Indexed: 01/07/2023]
Abstract
Pathogenic and other cytoplasmic DNAs activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to induce inflammation via transcriptional activation by IRF3 and nuclear factor κB (NF-κB), but the functional consequences of exposing cGAS to chromosomes upon mitotic nuclear envelope breakdown are unknown. Here, we show that nucleosomes competitively inhibit DNA-dependent cGAS activation and that the cGAS-STING pathway is not effectively activated during normal mitosis. However, during mitotic arrest, low level cGAS-dependent IRF3 phosphorylation slowly accumulates without triggering inflammation. Phosphorylated IRF3, independently of its DNA-binding domain, stimulates apoptosis through alleviating Bcl-xL-dependent suppression of mitochondrial outer membrane permeabilization. We propose that slow accumulation of phosphorylated IRF3, normally not sufficient for inducing inflammation, can trigger transcription-independent induction of apoptosis upon mitotic aberrations. Accordingly, expression of cGAS and IRF3 in cancer cells makes mouse xenograft tumors responsive to the anti-mitotic agent Taxol. The Cancer Genome Atlas (TCGA) datasets for non-small cell lung cancer patients also suggest an effect of cGAS expression on taxane response.
Collapse
Affiliation(s)
- Christian Zierhut
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Maria Paredes
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
50
|
Nuclear formation induced by DNA-conjugated beads in living fertilised mouse egg. Sci Rep 2019; 9:8461. [PMID: 31186495 PMCID: PMC6560220 DOI: 10.1038/s41598-019-44941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/17/2019] [Indexed: 11/08/2022] Open
Abstract
Reformation of a functional nucleus at the end of mitosis is crucial for normal cellular activity. Reconstitution approaches using artificial beads in frog egg extracts have clarified the molecules required for nuclear formation in vitro. However, the spatiotemporal regulation of these components, which is required for the formation of a functional nucleus in living embryos, remains unknown. Here we demonstrate that exogenous DNA introduced in the form of DNA-conjugated beads induces the assembly of an artificial nucleus in living mouse cleavage-stage embryos. Live-cell imaging and immunofluorescence studies revealed that core histones and regulator of chromosome condensation 1 (RCC1) assembled on the DNA, suggesting that nucleosomes were formed. Electron microscopy showed that double-membrane structures, partly extended from annulate lamellae, formed around the beads. Nuclear pore complex-like structures indistinguishable from those of native nuclei were also formed, suggesting that this membranous structure resembled the normal nuclear envelope (NE). However, the reconstituted NE had no nuclear import activity, probably because of the absence of Ras-related nuclear protein (Ran). Thus, DNA is necessary for NE reassembly in mouse embryos but is insufficient to form a functional nucleus. This approach provides a new tool to examine factors of interest and their spatiotemporal regulation in nuclear formation.
Collapse
|