1
|
Chihanga T, Vicente-Muñoz S, Ruiz-Torres S, Pal B, Sertorio M, Andreassen PR, Khoury R, Mehta P, Davies SM, Lane AN, Romick-Rosendale LE, Wells SI. Head and Neck Cancer Susceptibility and Metabolism in Fanconi Anemia. Cancers (Basel) 2022; 14:cancers14082040. [PMID: 35454946 PMCID: PMC9025423 DOI: 10.3390/cancers14082040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited, generally autosomal recessive syndrome, but it displays X-linked or dominant negative inheritance for certain genes. FA is characterized by a deficiency in DNA damage repair that results in bone marrow failure, and in an increased risk for various epithelial tumors, most commonly squamous cell carcinomas of the head and neck (HNSCC) and of the esophagus, anogenital tract and skin. Individuals with FA exhibit increased human papilloma virus (HPV) prevalence. Furthermore, a subset of anogenital squamous cell carcinomas (SCCs) in FA harbor HPV sequences and FA-deficient laboratory models reveal molecular crosstalk between HPV and FA proteins. However, a definitive role for HPV in HNSCC development in the FA patient population is unproven. Cellular metabolism plays an integral role in tissue homeostasis, and metabolic deregulation is a known hallmark of cancer progression that supports uncontrolled proliferation, tumor development and metastatic dissemination. The metabolic consequences of FA deficiency in keratinocytes and associated impact on the development of SCC in the FA population is poorly understood. Herein, we review the current literature on the metabolic consequences of FA deficiency and potential effects of resulting metabolic reprogramming on FA cancer phenotypes.
Collapse
Affiliation(s)
- Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Sara Vicente-Muñoz
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Bidisha Pal
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Mathieu Sertorio
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Ruby Khoury
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Parinda Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Lindsey E. Romick-Rosendale
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Susanne I. Wells
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
- Correspondence: ; Tel.: +1-513-636-5986
| |
Collapse
|
2
|
Wang S, Ding B, Cui M, Yan W, Xia Q, Meng D, Shen S, Xie S, Jin H, Zhang X. Fanconi Anemia Pathway Genes Advance Cervical Cancer via Immune Regulation and Cell Adhesion. Front Cell Dev Biol 2021; 9:734794. [PMID: 34869316 PMCID: PMC8634638 DOI: 10.3389/fcell.2021.734794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Fanconi anemia (FA) pathway is a typical and multienzyme-regulated DNA damage repairer that influences the occurrence and development of disease including cancers. Few comprehensive analyses were reported about the role of FA-related genes (FARGs) and their prognostic values in cancers. In this study, a comprehensive pan-cancer analysis on 79 FARGs was performed. According to the correlation analyses between HPV integration sites and FARGs, we found that FARGs played specific and critical roles in HPV-related cancers, especially in cervical cancer (CC). Based on this, a FARGs-associated prognostic risk score (FPS) model was constructed, and subsequently a nomogram model containing the FPS was developed with a good accuracy for CC overall survival (OS) and recurrence-free survival (RFS) outcome prediction. We also used the similar expression pattern of FARGs by consensus clustering analysis to separate the patients into three subgroups that exhibited significant differential OS but not RFS. Moreover, differential expressed genes (DEGs) between the two risk groups or three clusters were identified and immune pathways as well as cell adhesion processes were determined by functional enrichment analysis. Results indicated that FARGs might promote occurrence and development of CC by regulating the immune cells' infiltration and cell adhesion. In addition, through the machine learning models containing decision tree, random forest, naïve bayes, and support vector machine models, screening of important variables on CC prognosis, we finally determined that ZBTB32 and CENPS were the main elements affecting CC OS, while PALB2 and BRCA2 were for RFS. Kaplan-Meier analysis revealed that bivariate prediction of CC outcome was reliable. Our study systematically analyzed the prognostic prediction values of FARGs and demonstrated their potential mechanism in CC aggressiveness. Results provided perspective in FA pathway-associated modification and theoretical basis for CC clinical treatments.
Collapse
Affiliation(s)
- Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Mengjing Cui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qianqian Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dan Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Siyuan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hua Jin
- Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong, China
| |
Collapse
|
3
|
Visweswaran V, Jayamohanan H, Rajanbabu A, Pavithran K. Vulvar carcinoma in Fanconi Anaemia: A case report with review of literature. Gynecol Oncol Rep 2021; 37:100841. [PMID: 34401436 PMCID: PMC8347819 DOI: 10.1016/j.gore.2021.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/27/2022] Open
Abstract
Fanconi anaemia is a rare autosomal recessive disorder associated with bone marrow failure and congenital malformations. The impaired DNA repair pathways in Fanconi anaemia predispose patients to a high risk of cancers of squamous cell origin, particularly in the head and neck region. Cancers of the vagina and vulva are rare in Fanconi anaemia. Here, we report a case of a 44-year-old female with Fanconi anaemia who developed an ulcerated lesion on the clitoris that extended into the labia majora. A biopsy of the lesion showed well-differentiated squamous cell carcinoma. The patient was treated with wide local excision of the vulval lesion. The patient developed neutropenia post-procedure but recovered in one week time. We have followed up the patient regularly since the procedure. No further issues have been detected to date.
Collapse
Affiliation(s)
- Vysakh Visweswaran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Hridya Jayamohanan
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Anupama Rajanbabu
- Department of Gynaecologic Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Keechilat Pavithran
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| |
Collapse
|
4
|
Gandhi S, Nor Rashid N, Mohamad Razif MF, Othman S. Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells. Mol Biol Rep 2021; 48:5121-5133. [PMID: 34169395 DOI: 10.1007/s11033-021-06509-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcription factors required for cell cycle progression. In view of this, the current study was conducted to investigate the mechanism by which transfection with HPV16/18 E7 leads to the deregulation of the host cell cycle, altering the localisation of p130, and expression of differentiation genes in Human Keratinocytes (HaCaT) cells. Co-immunoprecipitation, Western blot analysis, immunofluorescence microscopy, flow cytometry, quantitative-Polymerase Chain Reaction (qPCR), and the inhibition of p130 by MG132 inhibitor were employed to investigate the loss of p130 and its disruption in HPV 16/18 E7-transfected HaCaT cells. The HPV16- and HPV18-transformed cells, known as CaSki and HeLa, respectively, were also used to complement the ectopic expressions of E7 in HaCaT cells. Normal keratinocytes displayed higher level of p130 expression than HPV-transformed cells. In addition, the immunofluorescence analysis revealed that both HPV 16/18 E7-transfected HaCaT and HPV-transformed cells exhibited higher level of cytoplasmic p130 compared to nuclear p130. A significant increase in the number of S/G2 phase cells in HPV-transformed cells was also recorded since E7 has been shown to stimulate proliferation through the deactivation of Retinoblastoma Protein (pRB)-dependent G1/S checkpoint. Furthermore, the findings recorded the down-regulation of keratinocyte differentiation markers, namely p130, keratin10, and involucrin. The proteasomal degradation of the exported p130 confirmed the cellular localisation pattern of p130, which was commonly observed in cancerous cells. The findings provide strong evidence that the localisation of nuclear p130 nuclear was disrupted by HPV16/18 E7 led to the deregulation of the cell cycle and the impairment of cellular differentiation ultimately lead to cellular transformation.
Collapse
Affiliation(s)
- Sivasangkary Gandhi
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Sauter SL, Zhang X, Romick-Rosendale L, Wells SI, Myers KC, Brusadelli MG, Poff CB, Brown DR, Panicker G, Unger ER, Mehta PA, Bleesing J, Davies SM, Butsch Kovacic M. Human Papillomavirus Oral- and Sero- Positivity in Fanconi Anemia. Cancers (Basel) 2021; 13:cancers13061368. [PMID: 33803570 PMCID: PMC8003090 DOI: 10.3390/cancers13061368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary People with Fanconi anemia (FA) are genetically susceptible to gynecological cancers and cancers of the head and neck. There are known associations between oral infection with human papillomavirus (HPV) and development of head and neck cancers. This study sought to measure how common oral HPV positivity is in a large sample of people with FA followed over 8 years, while also evaluating serum titers to ascertain natural exposure to HPV, and how well people with FA who were vaccinated responded to HPV vaccination. We found that oral HPV positivity is significantly higher in individuals with FA compared to family and unrelated controls, but that response to HPV vaccination between FA and controls is similar. Common risk factors associated with HPV in the general population did not predict oral DNA positivity in FA, unlike unrelated controls. Future mechanistic and vaccinations studies are needed to understand this phenomenon. Abstract High-risk human papillomavirus (HPV) is prevalent and known to cause 5% of all cancers worldwide. The rare, cancer prone Fanconi anemia (FA) population is characterized by a predisposition to both head and neck squamous cell carcinomas and gynecological cancers, but the role of HPV in these cancers remains unclear. Prompted by a patient-family advocacy organization, oral HPV and HPV serological studies were simultaneously undertaken. Oral DNA samples from 201 individuals with FA, 303 unaffected family members, and 107 unrelated controls were tested for 37 HPV types. Serum samples from 115 individuals with FA and 55 unrelated controls were tested for antibodies against 9 HPV types. Oral HPV prevalence was higher for individuals with FA (20%) versus their parents (13%; p = 0.07), siblings (8%, p = 0.01), and unrelated controls (6%, p ≤ 0.001). A FA diagnosis increased HPV positivity 4.84-fold (95% CI: 1.96–11.93) in adjusted models compared to unrelated controls. Common risk factors associated with HPV in the general population did not predict oral positivity in FA, unlike unrelated controls. Seropositivity and anti-HPV titers did not significantly differ in FA versus unrelated controls regardless of HPV vaccination status. We conclude that individuals with FA are uniquely susceptible to oral HPV independent of conventional risk factors.
Collapse
Affiliation(s)
- Sharon L. Sauter
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (S.L.S.); (X.Z.); (L.R.-R.); (S.I.W.); (K.C.M.); (M.G.B.); (C.B.P.); (P.A.M.); (J.B.); (S.M.D.)
| | - Xue Zhang
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (S.L.S.); (X.Z.); (L.R.-R.); (S.I.W.); (K.C.M.); (M.G.B.); (C.B.P.); (P.A.M.); (J.B.); (S.M.D.)
| | - Lindsey Romick-Rosendale
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (S.L.S.); (X.Z.); (L.R.-R.); (S.I.W.); (K.C.M.); (M.G.B.); (C.B.P.); (P.A.M.); (J.B.); (S.M.D.)
| | - Susanne I. Wells
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (S.L.S.); (X.Z.); (L.R.-R.); (S.I.W.); (K.C.M.); (M.G.B.); (C.B.P.); (P.A.M.); (J.B.); (S.M.D.)
| | - Kasiani C. Myers
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (S.L.S.); (X.Z.); (L.R.-R.); (S.I.W.); (K.C.M.); (M.G.B.); (C.B.P.); (P.A.M.); (J.B.); (S.M.D.)
| | - Marion G. Brusadelli
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (S.L.S.); (X.Z.); (L.R.-R.); (S.I.W.); (K.C.M.); (M.G.B.); (C.B.P.); (P.A.M.); (J.B.); (S.M.D.)
| | - Charles B. Poff
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (S.L.S.); (X.Z.); (L.R.-R.); (S.I.W.); (K.C.M.); (M.G.B.); (C.B.P.); (P.A.M.); (J.B.); (S.M.D.)
| | - Darron R. Brown
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Gitika Panicker
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (G.P.); (E.R.U.)
| | - Elizabeth R. Unger
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (G.P.); (E.R.U.)
| | - Parinda A. Mehta
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (S.L.S.); (X.Z.); (L.R.-R.); (S.I.W.); (K.C.M.); (M.G.B.); (C.B.P.); (P.A.M.); (J.B.); (S.M.D.)
| | - Jack Bleesing
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (S.L.S.); (X.Z.); (L.R.-R.); (S.I.W.); (K.C.M.); (M.G.B.); (C.B.P.); (P.A.M.); (J.B.); (S.M.D.)
| | - Stella M. Davies
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (S.L.S.); (X.Z.); (L.R.-R.); (S.I.W.); (K.C.M.); (M.G.B.); (C.B.P.); (P.A.M.); (J.B.); (S.M.D.)
| | - Melinda Butsch Kovacic
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (S.L.S.); (X.Z.); (L.R.-R.); (S.I.W.); (K.C.M.); (M.G.B.); (C.B.P.); (P.A.M.); (J.B.); (S.M.D.)
- Department of Rehabilitation, Exercise and Nutrition Sciences, University of Cincinnati College of Allied Health Sciences, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
6
|
Ruiz-Torres S, Brusadelli MG, Witte DP, Wikenheiser-Brokamp KA, Sauter S, Nelson AS, Sertorio M, Chlon TM, Lane A, Mehta PA, Myers KC, Bedard MC, Pal B, Supp DM, Lambert PF, Komurov K, Kovacic MB, Davies SM, Wells SI. Inherited DNA Repair Defects Disrupt the Structure and Function of Human Skin. Cell Stem Cell 2021; 28:424-435.e6. [PMID: 33232662 PMCID: PMC7935766 DOI: 10.1016/j.stem.2020.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/30/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Squamous cell carcinoma (SCC) is a global public health burden originating in epidermal stem and progenitor cells (ESPCs) of the skin and mucosa. To understand how genetic risk factors contribute to SCC, studies of ESPC biology are imperative. Children with Fanconi anemia (FA) are a paradigm for extreme SCC susceptibility caused by germline loss-of-function mutations in FA DNA repair pathway genes. To discover epidermal vulnerabilities, patient-derived pluripotent stem cells (PSCs) conditional for the FA pathway were differentiated into ESPCs and PSC-derived epidermal organotypic rafts (PSC-EORs). FA PSC-EORs harbored diminished cell-cell junctions and increased proliferation in the basal cell compartment. Furthermore, desmosome and hemidesmosome defects were identified in the skin of FA patients, and these translated into accelerated blistering following mechanically induced stress. Together, we demonstrate that a critical DNA repair pathway maintains the structure and function of human skin and provide 3D epidermal models wherein SCC prevention can now be explored.
Collapse
Affiliation(s)
- Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - David P Witte
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Sharon Sauter
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adam S Nelson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mathieu Sertorio
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Timothy M Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adam Lane
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Parinda A Mehta
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kasiani C Myers
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mary C Bedard
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bidisha Pal
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Research Department, Shriners Hospitals for Children, Cincinnati, OH 45229, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kakajan Komurov
- Division of Oncology Discovery, Champions Oncology, Inc., University Plaza Dr #307, Hackensack, NJ 07601, USA
| | - Melinda Butsch Kovacic
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Rehabilitative, Exercise, and Nutrition Sciences, University of Cincinnati College of Allied Health Sciences, Cincinnati, OH 45267, USA
| | - Stella M Davies
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
7
|
Benedetti F, Curreli S, Gallo RC, Zella D. Tampering of Viruses and Bacteria with Host DNA Repair: Implications for Cellular Transformation. Cancers (Basel) 2021; 13:E241. [PMID: 33440726 PMCID: PMC7826954 DOI: 10.3390/cancers13020241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
A reduced ability to properly repair DNA is linked to a variety of human diseases, which in almost all cases is associated with an increased probability of the development of cellular transformation and cancer. DNA damage, that ultimately can lead to mutations and genomic instability, is due to many factors, such as oxidative stress, metabolic disorders, viral and microbial pathogens, excess cellular proliferation and chemical factors. In this review, we examine the evidence connecting DNA damage and the mechanisms that viruses and bacteria have evolved to hamper the pathways dedicated to maintaining the integrity of genetic information, thus affecting the ability of their hosts to repair the damage(s). Uncovering new links between these important aspects of cancer biology might lead to the development of new targeted therapies in DNA-repair deficient cancers and improving the efficacy of existing therapies. Here we provide a comprehensive summary detailing the major mechanisms that viruses and bacteria associated with cancer employ to interfere with mechanisms of DNA repair. Comparing these mechanisms could ultimately help provide a common framework to better understand how certain microorganisms are involved in cellular transformation.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Sabrina Curreli
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
8
|
The Role of Ataxia Telangiectasia Mutant and Rad3-Related DNA Damage Response in Pathogenesis of Human Papillomavirus. Pathogens 2020; 9:pathogens9060506. [PMID: 32585979 PMCID: PMC7350315 DOI: 10.3390/pathogens9060506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) infection leads to a variety of benign lesions and malignant tumors such as cervical cancer and head and neck squamous cell carcinoma. Several HPV vaccines have been developed that can help to prevent cervical carcinoma, but these vaccines are only effective in individuals with no prior HPV infection. Thus, it is still important to understand the HPV life cycle and in particular the association of HPV with human pathogenesis. HPV production requires activation of the DNA damage response (DDR), which is a complex signaling network composed of multiple sensors, mediators, transducers, and effectors that safeguard cellular DNAs to maintain the host genome integrity. In this review, we focus on the roles of the ataxia telangiectasia mutant and Rad3-related (ATR) DNA damage response in HPV DNA replication. HPV can induce ATR expression and activate the ATR pathway. Inhibition of the ATR pathway results in suppression of HPV genome maintenance and amplification. The mechanisms underlying this could be through various molecular pathways such as checkpoint signaling and transcriptional regulation. In light of these findings, other downstream mechanisms of the ATR pathway need to be further investigated for better understanding HPV pathogenesis and developing novel ATR DDR-related inhibitors against HPV infection.
Collapse
|
9
|
van Harten AM, Poell JB, Buijze M, Brink A, Wells SI, René Leemans C, Wolthuis RMF, Brakenhoff RH. Characterization of a head and neck cancer-derived cell line panel confirms the distinct TP53-proficient copy number-silent subclass. Oral Oncol 2019; 98:53-61. [PMID: 31541927 PMCID: PMC7372097 DOI: 10.1016/j.oraloncology.2019.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/13/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Head and neck squamous cell carcinomas (HNSCC) arise in the mucosal lining of the upper aerodigestive tract. Risk factors are exogenous carcinogen exposure, human papillomavirus (HPV) infection, and genetic predisposition such as Fanconi anemia (FA). Clinically, tumors are stratified based on stage, site and HPV-status. The majority of HPV-positive and -negative HNSCC is characterized by frequent copy number (CN) changes and an abrogated p53-pathway. A third genetically-defined HPV-negative subclass of HNSCC is emerging: tumors that lack gross chromosomal changes (CN-silent), are mostly TP53-proficient, and have a relatively favorable prognosis. METHODS A representative panel of HPV-positive, HPV-negative and FA-HNSCC-derived cell lines was genetically characterized. RESULTS Despite apparent differences in etiology, FA-HNSCC cell lines show comparable genetic alterations as sporadic non-FA-HNSCC-derived cell lines. Furthermore, we identified a near diploid CN-silent HPV-negative HNSCC line: VU-SCC-040. Molecular characterization uncovers the absence of TP53 mutations, a functional p53-pathway and a CASP8 mutation. TP53 gene knockout using CRISPR-Cas9 resulted in resistance to MDM2 inhibition. Whereas p53-status is often proposed as a predictive biomarker for treatment response, TP53-knockout did not change sensitivity to cisplatin, Chk1 and Wee1 inhibition. Additionally, 84 CN-silent tumors were identified in the HNSCC PanCancer cohort and shown to be enriched for female gender, HRAS and CASP8 mutations. CONCLUSION FA-derived HNSCC cell lines share comparable CN-profiles and mutation patterns as sporadic HPV-negative HNSCC. In contrast, a subclass of CN-silent, HPV-negative and TP53 wild-type HNSCC separates from the majority of HNSCC tumors. We show that VU-SCC-040 is a HNSCC cell model representative of this subclass.
Collapse
Affiliation(s)
- Anne M van Harten
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, the Netherlands
| | - Jos B Poell
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, the Netherlands
| | - Marijke Buijze
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, the Netherlands
| | - Arjen Brink
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, the Netherlands
| | - Susanne I Wells
- Division of Pediatric Hematology/Oncology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, the Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Section Tumor Biology, Cancer Center Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Zhang X, Fisher R, Shields D, Hou W, Franicola D, Wang H, Epperly MW, Rigatti L, Greenberger JS. Malignant Transformation of Fanconi Anemia Complementation Group D2-deficient ( Fancd2 -/-) Hematopoietic Progenitor Cells by a Single HPV16 Oncogene. In Vivo 2019; 33:303-311. [PMID: 30804107 DOI: 10.21873/invivo.11476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/29/2018] [Accepted: 01/11/2019] [Indexed: 01/30/2023]
Abstract
AIM To demonstrate that Fanconi anemia complementation group D2-deficient (Fancd2-/-) hematopoietic progenitor cell lines can be transformed by transfection with a plasmid containing either the E6 or E7 oncogene of human papillomavirus (HPV) to generate malignant plasmacytoma-inducing cell lines. MATERIALS AND METHODS In order to determine whether a single HPV type 16 (HPV16) oncogene induced malignant transformation, Fancd2-/- and Fancd2+/+ interleukin 3 (IL3)-dependent hematopoietic progenitor cell lines were transfected with plasmids containing E6 or E7 oncogene, or control empty plasmid. RESULTS Fancd2-/- but not Fancd2+/+ cells were transformed into malignant IL3-independent cells by both E6, and E7 oncogenes, but not by empty plasmid. Hematopoietic cell lines and tumors induced by Fancd2-/- E6 and Fancd2-/- E7 cell lines were positive for each respective HPV RNA and protein. CONCLUSION A single HPV16 oncogene is adequate to produce malignant transformation of Fancd2-/- hematopoietic cells.
Collapse
Affiliation(s)
- Xichen Zhang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Darcy Franicola
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Lora Rigatti
- Department of Veterinary Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.
| |
Collapse
|
11
|
Khanal S, Galloway DA. High-risk human papillomavirus oncogenes disrupt the Fanconi anemia DNA repair pathway by impairing localization and de-ubiquitination of FancD2. PLoS Pathog 2019; 15:e1007442. [PMID: 30818369 PMCID: PMC6413947 DOI: 10.1371/journal.ppat.1007442] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/12/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
Persistent expression of high-risk HPV oncogenes is necessary for the development of anogenital and oropharyngeal cancers. Here, we show that E6/E7 expressing cells are hypersensitive to DNA crosslinking agent cisplatin and have defects in repairing DNA interstrand crosslinks (ICL). Importantly, we elucidate how E6/E7 attenuate the Fanconi anemia (FA) DNA crosslink repair pathway. Though E6/E7 activated the pathway by increasing FancD2 monoubiquitination and foci formation, they inhibited the completion of the repair by multiple mechanisms. E6/E7 impaired FancD2 colocalization with double-strand breaks (DSB), which subsequently hindered the recruitment of the downstream protein Rad51 to DSB in E6 cells. Further, E6 expression caused delayed FancD2 de-ubiquitination, an important process for effective ICL repair. Delayed FancD2 de-ubiquitination was associated with the increased chromatin retention of FancD2 hindering USP1 de-ubiquitinating activity, and persistently activated ATR/CHK-1/pS565 FancI signaling. E6 mediated p53 degradation did not hamper the cell cycle specific process of FancD2 modifications but abrogated repair by disrupting FancD2 de-ubiquitination. Further, E6 reduced the expression and foci formation of Palb2, which is a repair protein downstream of FancD2. These findings uncover unique mechanisms by which HPV oncogenes contribute to genomic instability and the response to cisplatin therapies.
Collapse
Affiliation(s)
- Sujita Khanal
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Denise A. Galloway
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
12
|
Trisno SL, Philo KED, McCracken KW, Catá EM, Ruiz-Torres S, Rankin SA, Han L, Nasr T, Chaturvedi P, Rothenberg ME, Mandegar MA, Wells SI, Zorn AM, Wells JM. Esophageal Organoids from Human Pluripotent Stem Cells Delineate Sox2 Functions during Esophageal Specification. Cell Stem Cell 2018; 23:501-515.e7. [PMID: 30244869 DOI: 10.1016/j.stem.2018.08.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/24/2018] [Accepted: 08/15/2018] [Indexed: 01/20/2023]
Abstract
Tracheal and esophageal disorders are prevalent in humans and difficult to accurately model in mice. We therefore established a three-dimensional organoid model of esophageal development through directed differentiation of human pluripotent stem cells. Sequential manipulation of bone morphogenic protein (BMP), Wnt, and RA signaling pathways was required to pattern definitive endoderm into foregut, anterior foregut (AFG), and dorsal AFG spheroids. Dorsal AFG spheroids grown in a 3D matrix formed human esophageal organoids (HEOs), and HEO cells could be transitioned into two-dimensional cultures and grown as esophageal organotypic rafts. In both configurations, esophageal tissues had proliferative basal progenitors and a differentiated stratified squamous epithelium. Using HEO cultures to model human esophageal birth defects, we identified that Sox2 promotes esophageal specification in part through repressing Wnt signaling in dorsal AFG and promoting survival. Consistently, Sox2 ablation in mice causes esophageal agenesis. Thus, HEOs present a powerful platform for modeling human pathologies and tissue engineering.
Collapse
Affiliation(s)
- Stephen L Trisno
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine E D Philo
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kyle W McCracken
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Emily M Catá
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lu Han
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Talia Nasr
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M Wells
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
13
|
Nuovo GJ, de Andrade CV, Wells SI, Brusadelli M, Nicol AF. New biomarkers of human papillomavirus infection in acute cervical intraepithelial neoplasia. Ann Diagn Pathol 2018; 36:21-27. [PMID: 29966832 DOI: 10.1016/j.anndiagpath.2018.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 11/28/2022]
Abstract
Acute human papillomavirus (HPV) infection of the cervix (cervical intraepithelial neoplasia, CIN) is marked by high copy episomal viral DNA and L1/L2 capsid protein expression (productive infection) in the cells towards the surface that facilitate sexual viral transmission. Viral DNA is low copy and not associated with viral capsid protein expression in the less differentiated lower part of the CIN (nonproductive infection). The purpose of this study was to examine the host response in these two areas. Serial section and co-localization analyses demonstrated that in 29/33 (88%) of cases the NF-κB pathway was activated and localized to the suprabasal nonproductively infected cells in the CIN lesions. There was a concomitant increased expression of importin-β, exportin-5, Mcl1, p16, Ki67 and cFLIP in 32/33 (96%) of CIN lesions that likewise localized primarily to the nonproductively infected cells. Only Ki67 and exportin-5 were expressed, though much less so, in the adjacent, normal squamous epithelia. The viral proteins E1^E4 and L1 were localized to productively infected cells whereas E6/E7 protein/RNA was rarely present in early CIN. It is concluded that the host viral response to acute cervical HPV infection includes strong increased expression of proteins besides p16 and Ki67. These include importin-β, exportin-5, Mcl1, and cFLIP in cells with low copy and relatively quiescent viral DNA that, in turn, may serve as new biomarkers of this disease.
Collapse
Affiliation(s)
- Gerard J Nuovo
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States of America; Phylogeny Laboratory, Powell, OH, United States of America.
| | - Cecilia Vianna de Andrade
- National Institute of Health of Women, Children, and Adolescents, Fernandes Figueira - IFF-FIOCRUZ, Rio de Janeiro, Brazil
| | - Susanne I Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, United States of America; University of Cincinnati, Cincinnati, OH, United States of America
| | - Marion Brusadelli
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, United States of America; University of Cincinnati, Cincinnati, OH, United States of America
| | - Alcina F Nicol
- National Institute of Infectious Diseases Evandro Chagas - INI-Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Risk of Human Papillomavirus Infection in Cancer-Prone Individuals: What We Know. Viruses 2018; 10:v10010047. [PMID: 29361695 PMCID: PMC5795460 DOI: 10.3390/v10010047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
Human papillomavirus (HPV) infections cause a significant proportion of cancers worldwide, predominantly squamous cell carcinomas (SCC) of the mucosas and skin. High-risk HPV types are associated with SCCs of the anogenital and oropharyngeal tract. HPV oncogene activities and the biology of SCCs have been intensely studied in laboratory models and humans. What remains largely unknown are host tissue and immune-related factors that determine an individual's susceptibility to infection and/or carcinogenesis. Such susceptibility factors could serve to identify those at greatest risk and spark individually tailored HPV and SCC prevention efforts. Fanconi anemia (FA) is an inherited DNA repair disorder that is in part characterized by extreme susceptibility to SCCs. An increased prevalence of HPV has been reported in affected individuals, and molecular and functional connections between FA, SCC, and HPV were established in laboratory models. However, the presence of HPV in some human FA tumors is controversial, and the extent of the etiological connections remains to be established. Herein, we discuss cellular, immunological, and phenotypic features of FA, placed into the context of HPV pathogenesis. The goal is to highlight this orphan disease as a unique model system to uncover host genetic and molecular HPV features, as well as SCC susceptibility factors.
Collapse
|
15
|
Spriggs CC, Laimins LA. Human Papillomavirus and the DNA Damage Response: Exploiting Host Repair Pathways for Viral Replication. Viruses 2017; 9:E232. [PMID: 28820495 PMCID: PMC5580489 DOI: 10.3390/v9080232] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
High-risk human papillomaviruses (HPVs) are the causative agents of cervical and other genital cancers. In addition, HPV infections are associated with the development of many oropharyngeal cancers. HPVs activate and repress a number of host cellular pathways to promote their viral life cycles, including those of the DNA damage response. High-risk HPVs activate the ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) DNA damage repair pathways, which are essential for viral replication (particularly differentiation-dependent genome amplification). These DNA repair pathways are critical in maintaining host genomic integrity and stability and are often dysregulated or mutated in human cancers. Understanding how these pathways contribute to HPV replication and transformation may lead to the identification of new therapeutic targets for the treatment of existing HPV infections.
Collapse
Affiliation(s)
- Chelsey C Spriggs
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| | - Laimonis A Laimins
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| |
Collapse
|
16
|
FANCD2 Binds Human Papillomavirus Genomes and Associates with a Distinct Set of DNA Repair Proteins to Regulate Viral Replication. mBio 2017; 8:mBio.02340-16. [PMID: 28196964 PMCID: PMC5312087 DOI: 10.1128/mbio.02340-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The life cycle of human papillomavirus (HPV) is dependent on the differentiation state of its host cell. HPV genomes are maintained as low-copy episomes in basal epithelial cells and amplified to thousands of copies per cell in differentiated layers. Replication of high-risk HPVs requires the activation of the ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) DNA repair pathways. The Fanconi anemia (FA) pathway is a part of the DNA damage response and mediates cross talk between the ATM and ATR pathways. Our studies show that HPV activates the FA pathway, leading to the accumulation of a key regulatory protein, FANCD2, in large nuclear foci. These HPV-dependent foci colocalize with a distinct population of DNA repair proteins, including ATM components γH2AX and BRCA1, but infrequently with p-SMC1, which is required for viral genome amplification in differentiated cells. Furthermore, FANCD2 is found at viral replication foci, where it is preferentially recruited to viral genomes compared to cellular chromosomes and is required for maintenance of HPV episomes in undifferentiated cells. These findings identify FANCD2 as an important regulator of HPV replication and provide insight into the role of the DNA damage response in the differentiation-dependent life cycle of HPV.IMPORTANCE High-risk human papillomaviruses (HPVs) are the etiological agents of cervical cancer and are linked to the development of many other anogenital and oropharyngeal cancers. Identification of host cellular pathways involved in regulating the viral life cycle may be helpful in identifying treatments for HPV lesions. Mutations in genes of the Fanconi anemia (FA) DNA repair pathway lead to genomic instability in patients and a predisposition to HPV-associated malignancies. Our studies demonstrate that FA pathway component FANCD2 is recruited to HPV DNA, associates with members of the ATM DNA repair pathway, and is essential for the maintenance of viral episomes in basal epithelial cells. Disruption of the FA pathway may result in increased integration events and a higher incidence of HPV-related cancer. Our study identifies new links between HPV and the FA pathway that may help to identify new therapeutic targets for the treatment of existing HPV infections and cancers.
Collapse
|
17
|
Ebens CL, MacMillan ML, Wagner JE. Hematopoietic cell transplantation in Fanconi anemia: current evidence, challenges and recommendations. Expert Rev Hematol 2017; 10:81-97. [PMID: 27929686 PMCID: PMC6089510 DOI: 10.1080/17474086.2016.1268048] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hematopoietic cell transplantation for Fanconi Anemia (FA) has improved dramatically over the past 40 years. With an enhanced understanding of the intrinsic DNA-repair defect and pathophysiology of hematopoietic failure and leukemogenesis, sequential changes to conditioning and graft engineering have significantly improved the expectation of survival after allogeneic hematopoietic cell transplantation (alloHCT) with incidence of graft failure decreased from 35% to <10% and acute graft-versus-host disease (GVHD) from >40% to <10%. Today, five-year overall survival exceeds 90% in younger FA patients with bone marrow failure but remains about 50% in those with hematologic malignancy. Areas covered: We review the evolution of alloHCT contributing to decreased rates of transplant related complications; highlight current challenges including poorer outcomes in cases of clonal hematologic disorders, alloHCT impact on endocrine function and intrinsic FA risk of epithelial malignancies; and describe investigational therapies for prevention and treatment of the hematologic manifestations of FA. Expert commentary: Current methods allow for excellent survival following alloHCT for FA associated BMF irrespective of donor hematopoietic cell source. Alternative curative approaches, such as gene therapy, are being explored to eliminate the risks of GVHD and minimize therapy-related adverse effects.
Collapse
Affiliation(s)
- Christen L Ebens
- a Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics , University of Minnesota Medical School , Minneapolis , MN , USA
| | - Margaret L MacMillan
- a Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics , University of Minnesota Medical School , Minneapolis , MN , USA
| | - John E Wagner
- a Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics , University of Minnesota Medical School , Minneapolis , MN , USA
| |
Collapse
|
18
|
Zhang X, Hou W, Epperly MW, Rigatti L, Wang H, Franicola D, Sivanathan A, Greenberger JS. Evolution of malignant plasmacytoma cell lines from K14E7 Fancd2-/- mouse long-term bone marrow cultures. Oncotarget 2016; 7:68449-68472. [PMID: 27637088 PMCID: PMC5356567 DOI: 10.18632/oncotarget.12036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022] Open
Abstract
We tested the effect of expression of the Human Papilloma Virus (HPV E7) oncogene on hematopoiesis in long-term bone marrow cultures (LTBMCs) derived from K14E7 (FVB) Fancd2-/- (129/Sv), K14E7 Fancd2+/+, Fancd2-/-, and control (FVB X 129/Sv) Fl mice. K14E7 Fancd2-/- and Fancd2-/- LTBMCs showed decreased duration of production of total nonadherent hematopoietic cells and progenitors forming day 7 and day 14 multilineage CFU-GEMM colonies in secondary cultures (7 wks and 8 wks respectively) compared to cultures from K14E7 Fancd2+/+ (17 wks) or control mice (18 wks) p < 0.0001. Marrow stromal cell lines derived from both K14E7 Fancd2-/- and Fancd2-/- cultures were radiosensitive, as were IL-3 dependent hematopoietic progenitor cell lines derived from K14E7 Fancd2-/- cultures. In contrast, Fancd2-/- mouse hematopoietic progenitor cell lines and fresh marrow were radioresistant. K14E7 Fancd2-/- mouse freshly explanted bone marrow expressed no detectable K14 or E7; however, LTBMCs produced K14 positive factor-independent (FI) clonal malignant plasmacytoma forming cell lines in which E7 was detected in the nucleus with p53 and Rb. Transfection of an E6/E7 plasmid into Fancd2-/-, but not control Fancd2+/+ IL-3 dependent hematopoietic progenitor cell lines, increased cloning efficiency, cell growth, and induced malignant cell lines. Therefore, the altered radiobiology of hematopoietic progenitor cells and malignant transformation in vitro by K14E7 expression in cells of the Fancd2-/- genotype suggests a potential role of HPV in hematopoietic malignancies in FA patients.
Collapse
Affiliation(s)
- Xichen Zhang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| | - Wen Hou
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| | - Lora Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, 15260 PA, USA
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| | - Darcy Franicola
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| | - Aranee Sivanathan
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| |
Collapse
|
19
|
Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice. mBio 2016; 7:mBio.00628-16. [PMID: 27190216 PMCID: PMC4895109 DOI: 10.1128/mbio.00628-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. IMPORTANCE : Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an accumulation of DNA damage. We hypothesize, therefore, that DNA damage induced by HPV leads to an accumulation of mutations in patients with FA deficiency and that such mutations allow HPV-driven cancers to become independent of the viral oncogenes. Consistent with this hypothesis, we found that cervical cancers arising in HPV16 transgenic mice with FA deficiency frequently escape from dependency on the HPV16 oncogene that drove its development. Our report provides further support for vaccination of FA patients against HPVs and argues for the need to define mutational profiles of SCCs arising in FA patients in order to inform precision medicine-based approaches to treating these patients.
Collapse
|
20
|
Romick-Rosendale LE, Hoskins EE, Privette Vinnedge LM, Foglesong GD, Brusadelli MG, Potter SS, Komurov K, Brugmann SA, Lambert PF, Kimple RJ, Virts EL, Hanenberg H, Gillison ML, Wells SI. Defects in the Fanconi Anemia Pathway in Head and Neck Cancer Cells Stimulate Tumor Cell Invasion through DNA-PK and Rac1 Signaling. Clin Cancer Res 2015; 22:2062-73. [PMID: 26603260 DOI: 10.1158/1078-0432.ccr-15-2209] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/10/2015] [Indexed: 01/12/2023]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) remains a devastating disease, and Fanconi anemia (FA) gene mutations and transcriptional repression are common. Invasive tumor behavior is associated with poor outcome, but relevant pathways triggering invasion are poorly understood. There is a significant need to improve our understanding of genetic pathways and molecular mechanisms driving advanced tumor phenotypes, to develop tailored therapies. Here we sought to investigate the phenotypic and molecular consequences of FA pathway loss in HNSCC cells. EXPERIMENTAL DESIGN Using sporadic HNSCC cell lines with and without FA gene knockdown, we sought to characterize the phenotypic and molecular consequences of FA deficiency. FA pathway inactivation was confirmed by the detection of classic hallmarks of FA following exposure to DNA cross-linkers. Cells were subjected to RNA sequencing with qRT-PCR validation, followed by cellular adhesion and invasion assays in the presence and absence of DNA-dependent protein kinase (DNA-PK) and Rac1 inhibitors. RESULTS We demonstrate that FA loss in HNSCC cells leads to cytoskeletal reorganization and invasive tumor cell behavior in the absence of proliferative gains. We further demonstrate that cellular invasion following FA loss is mediated, at least in part, through NHEJ-associated DNA-PK and downstream Rac1 GTPase activity. CONCLUSIONS These findings demonstrate that FA loss stimulates HNSCC cell motility and invasion, and implicate a targetable DNA-PK/Rac1 signaling axis in advanced tumor phenotypes.
Collapse
Affiliation(s)
| | - Elizabeth E Hoskins
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa M Privette Vinnedge
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Grant D Foglesong
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marion G Brusadelli
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kakajan Komurov
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Elizabeth L Virts
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Helmut Hanenberg
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana. Department of Otorhinolaryngology, Heinrich Heine University, Duesseldorf, Germany. Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maura L Gillison
- Internal Medicine-Hematology & Oncology, Comprehensive Cancer Center, The Ohio State, University College of Medicine, Columbus, Ohio
| | - Susanne I Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
21
|
Kutler DI, Patel KR, Auerbach AD, Kennedy J, Lach FP, Sanborn E, Cohen MA, Kuhel WI, Smogorzewska A. Natural history and management of Fanconi anemia patients with head and neck cancer: A 10-year follow-up. Laryngoscope 2015; 126:870-9. [PMID: 26484938 DOI: 10.1002/lary.25726] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVES/HYPOTHESIS To describe the management and outcomes of Fanconi anemia (FA) patients with head and neck squamous cell carcinoma. STUDY DESIGN Cohort study. METHODS Demographic information, prognostic factors, therapeutic management, and survival outcomes for FA patients enrolled in the International Fanconi Anemia Registry who developed head and neck squamous cell carcinoma (HNSCC) were analyzed. RESULTS Thirty-five FA patients were diagnosed with HNSCC at a mean age of 32 years. The most common site of primary cancer was the oral cavity (26 of 35, 74%). Thirty patients underwent surgical resection of the cancer. Sixteen patients received radiation therapy with an average radiation dose of 5,050 cGy. The most common toxicities were high-grade mucositis (9 of 16, 56%), hematologic abnormalities (8 of 16, 50%), and dysphagia (8 of 16, 50%). Three patients received conventional chemotherapy and had significant complications, whereas three patients who received targeted chemotherapy with cetuximab had fewer toxicities. The 5-year overall survival rate was 39%, with a cause-specific survival rate of 47%. CONCLUSIONS Fanconi anemia patients have a high risk of developing aggressive HNSCC at an early age. Fanconi anemia patients can tolerate complex ablative and reconstructive surgeries, but careful postoperative care is required to reduce morbidity. The treatment of FA-associated HNSCC is difficult secondary to the poor tolerance of radiation and chemotherapy. However, radiation should be used for high-risk cancers due to the poor survival in these patients. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- David I Kutler
- Department of Otolaryngology-Head and Neck Surgery, New York Presbyterian Hospital/Weill Cornell Medical College, New York, New York, U.S.A
| | - Krupa R Patel
- Weill Cornell Medical College, The Rockefeller University, New York, New York, U.S.A
| | - Arleen D Auerbach
- Program in Human Genetics and Hematology, The Rockefeller University, New York, New York, U.S.A
| | - Jennifer Kennedy
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, U.S.A
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, U.S.A
| | - Erica Sanborn
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, U.S.A
| | - Marc A Cohen
- Department of Otolaryngology-Head and Neck Surgery, New York Presbyterian Hospital/Weill Cornell Medical College, New York, New York, U.S.A
| | - William I Kuhel
- Department of Otolaryngology-Head and Neck Surgery, New York Presbyterian Hospital/Weill Cornell Medical College, New York, New York, U.S.A
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, U.S.A
| |
Collapse
|
22
|
Fisher C. Recent Insights into the Control of Human Papillomavirus (HPV) Genome Stability, Loss, and Degradation. J Clin Med 2015; 4:204-30. [PMID: 25798290 PMCID: PMC4366058 DOI: 10.3390/jcm4020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most human papillomavirus (HPV) antiviral strategies have focused upon inhibiting viral DNA replication, but it is increasingly apparent that viral DNA levels can be chemically controlled by approaches that promote its instability. HPVs and other DNA viruses have a tenuous relationship with their hosts. They must replicate and hide from the DNA damage response (DDR) and innate immune systems, which serve to protect cells from foreign or “non-self” DNA, and yet they draft these same systems to support their life cycles. DNA binding antiviral agents promoting massive viral DNA instability and elimination are reviewed. Mechanistic studies of these agents have identified genetic antiviral enhancers and repressors, antiviral sensitizers, and host cell elements that protect and stabilize HPV genomes. Viral DNA degradation appears to be an important means of controlling HPV DNA levels in some cases, but the underlying mechanisms remain poorly understood. These findings may prove useful not only for understanding viral DNA persistence but only in devising future antiviral strategies.
Collapse
Affiliation(s)
- Chris Fisher
- NanoVir, 4717 Campus, Kalamazoo, MI 49008, USA; ; Tel.: +1-269-372-3261
| |
Collapse
|
23
|
Sauter SL, Wells SI, Zhang X, Hoskins EE, Davies SM, Myers KC, Mueller R, Panicker G, Unger ER, Sivaprasad U, Brown DR, Mehta PA, Butsch Kovacic M. Oral human papillomavirus is common in individuals with Fanconi anemia. Cancer Epidemiol Biomarkers Prev 2015; 24:864-72. [PMID: 25809863 DOI: 10.1158/1055-9965.epi-15-0097-t] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Fanconi anemia is a rare genetic disorder resulting in a loss of function of the Fanconi anemia-related DNA repair pathway. Individuals with Fanconi anemia are predisposed to some cancers, including oropharyngeal and gynecologic cancers, with known associations with human papillomavirus (HPV) in the general population. As individuals with Fanconi anemia respond poorly to chemotherapy and radiation, prevention of cancer is critical. METHODS To determine whether individuals with Fanconi anemia are particularly susceptible to oral HPV infection, we analyzed survey-based risk factor data and tested DNA isolated from oral rinses from 126 individuals with Fanconi anemia and 162 unaffected first-degree family members for 37 HPV types. RESULTS Fourteen individuals (11.1%) with Fanconi anemia tested positive, significantly more (P = 0.003) than family members (2.5%). While HPV prevalence was even higher for sexually active individuals with Fanconi anemia (17.7% vs. 2.4% in family; P = 0.003), HPV positivity also tended to be higher in the sexually inactive (8.7% in Fanconi anemia vs. 2.9% in siblings). Indeed, having Fanconi anemia increased HPV positivity 4.9-fold (95% CI, 1.6-15.4) considering age and sexual experience, but did not differ by other potential risk factors. CONCLUSION Our studies suggest that oral HPV is more common in individuals with Fanconi anemia. It will be essential to continue to explore associations between risk factors and immune dysfunction on HPV incidence and persistence over time. IMPACT HPV vaccination should be emphasized in those with Fanconi anemia as a first step to prevent oropharyngeal cancers, although additional studies are needed to determine whether the level of protection it offers in this population is adequate.
Collapse
Affiliation(s)
- Sharon L Sauter
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Susanne I Wells
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Xue Zhang
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Elizabeth E Hoskins
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Stella M Davies
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Kasiani C Myers
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Robin Mueller
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Gitika Panicker
- Chronic Viral Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Elizabeth R Unger
- Chronic Viral Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Umasundari Sivaprasad
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Darron R Brown
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Parinda A Mehta
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Melinda Butsch Kovacic
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
24
|
Liu GB, Chen J, Wu ZH, Zhao KN. Association of human papillomavirus with Fanconi anemia promotes carcinogenesis in Fanconi anemia patients. Rev Med Virol 2015; 25:345-53. [PMID: 25776992 DOI: 10.1002/rmv.1834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/22/2022]
Abstract
Fanconi anemia (FA) is a rare recessive disorder associated with chromosomal fragility. FA patients are at very high risk of cancers, especially head and neck squamous cell carcinomas and squamous cell carcinomas caused by infection of human papillomaviruses (HPVs). By integrating into the host genome, HPV oncogenes E6 and E7 drive the genomic instability to promote DNA damage and gene mutations necessary for carcinogenesis in FA patients. Furthermore, E6 and E7 oncoproteins not only inhibit p53 and retinoblastoma but also impair the FANC/BRCA signaling pathway to prevent DNA damage repair and alter multiple signals including cell-cycle checkpoints, telomere function, cell proliferation, and interference of the host immune system leading to cancer development in FA patients. In this review, we summarize recent advances in unraveling the molecular mechanisms of FA susceptibility to HPV-induced cancers, which facilitate rational preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Guang Bin Liu
- School of Health and Wellbeing, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, Toowoomba, Australia
| | - Jiezhong Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.,Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Zhan He Wu
- Western Sydney Genomic Diagnosis, The Children's Hospital at Westmead, Sydney, Australia
| | - Kong-Nan Zhao
- Institute of Molecular Virology and Immunology, Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Centre for Kidney Disease Research-Venomics Research, The University of Queensland School of Medicine, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
25
|
Adams AK, Hallenbeck GE, Casper KA, Patil YJ, Wilson KM, Kimple RJ, Lambert PF, Witte DP, Xiao W, Gillison ML, Wikenheiser-Brokamp KA, Wise-Draper TM, Wells SI. DEK promotes HPV-positive and -negative head and neck cancer cell proliferation. Oncogene 2015; 34:868-77. [PMID: 24608431 PMCID: PMC4160430 DOI: 10.1038/onc.2014.15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, and patient outcomes using current treatments remain poor. Tumor development is etiologically associated with tobacco or alcohol use and/or human papillomavirus (HPV) infection. HPV-positive HNSCCs, which frequently harbor wild-type p53, carry a more favorable prognosis and are a biologically distinct subgroup when compared with their HPV-negative counterparts. HPV E7 induces expression of the human DEK gene, both in vitro and in vivo. In keratinocytes, DEK overexpression is sufficient for causing oncogenic phenotypes in the absence of E7. Conversely, DEK loss results in cell death in HPV-positive cervical cancer cells at least in part through p53 activation, and Dek knockout mice are relatively resistant to the development of chemically induced skin papillomas. Despite the established oncogenic role of DEK in HPV-associated cervical cancer cell lines and keratinocytes, a functional role of DEK has not yet been explored in HNSCC. Using an established transgenic mouse model of HPV16 E7-induced HNSCC, we demonstrate that Dek is required for optimal proliferation of E7-transgenic epidermal cells and for the growth of HNSCC tumors. Importantly, these studies also demonstrate that DEK protein is universally upregulated in both HPV-positive and -negative human HNSCC tumors relative to adjacent normal tissue. Furthermore, DEK knockdown inhibited the proliferation of HPV-positive and -negative HNSCC cells, establishing a functional role for DEK in human disease. Mechanistic studies reveal that attenuated HNSCC cell growth in response to DEK loss was associated with reduced expression of the oncogenic p53 family member, ΔNp63. Exogenous ΔNp63 expression rescued the proliferative defect in the absence of DEK, thereby establishing a functional DEK-ΔNp63 oncogenic pathway that promotes HNSCC. Taken together, our data demonstrate that DEK stimulates HNSCC cellular growth and identify ΔNp63 as a novel DEK effector.
Collapse
Affiliation(s)
- Allie K. Adams
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Grace E. Hallenbeck
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Keith A. Casper
- Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Yash J. Patil
- Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Keith M. Wilson
- Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Randall J. Kimple
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David P. Witte
- Division of Pathology & Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Weihong Xiao
- Viral Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Maura L. Gillison
- Viral Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Kathryn A. Wikenheiser-Brokamp
- Pathology & Laboratory Medicine and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center/University of Cincinnati, Cincinnati, OH, USA
| | - Trisha M. Wise-Draper
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Hematology/Oncology, University Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - Susanne I. Wells
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
26
|
Skin and mucosal human papillomavirus seroprevalence in persons with Fanconi Anemia. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:413-20. [PMID: 25651924 DOI: 10.1128/cvi.00665-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Persons with Fanconi anemia (FA) are at risk for human papillomavirus (HPV)-associated cancers; however, their natural HPV exposure and infection rates are unknown as is the adequacy with which they mount antibodies to HPV vaccination. This study aimed to determine, in 62 persons with FA, the seroprevalence of skin and mucosal HPV types, the seroprevalence in individuals self-reporting a history of HPV vaccination, and the factors associated with HPV seropositivity. A bead Luminex assay was used to determine seropositivity for HPV1, -2, and -4 (low-risk skin), -6 and -11 (low-risk mucosal, included in one HPV vaccine), -16 and -18 (high-risk mucosal, included in both HPV vaccines), and -52 and -58 (high-risk mucosal). Health- and behavior-related questionnaires were completed. Type-specific seroprevalence estimates and participant characteristics associated with seroprevalence were calculated; 48% reported HPV vaccination. Type-specific seropositivity in unvaccinated persons ranged from 7 to 21% for skin HPV types and 7 to 38% for mucosal HPV types. Among the unvaccinated participants, adults versus children demonstrated increased HPV1, -6, -16, and -58 seroprevalence of 45% versus 6%, 64% versus 22%, 64% versus 17%, and 36% versus 0%, respectively (all P < 0.05). The vaccinated participants versus the nonvaccinated participants demonstrated increased seroprevalence of HPV6, -11, -16, and -18 of 92% versus 38%, 92% versus 24%, 96% versus 34%, and 75% versus 7%, respectively (all P < 0.0001). Our data demonstrate that the unvaccinated participants had serologic evidence of prior skin and mucosal HPV infections and that seroprevalence increased among adults; in self-reported vaccinees, seroprevalence of HPV vaccine types was 75 to 96%.
Collapse
|
27
|
Lombardi AJ, Hoskins EE, Foglesong GD, Wikenheiser-Brokamp KA, Wiesmüller L, Hanenberg H, Andreassen PR, Jacobs AJ, Olson SB, Keeble WW, Hays LE, Wells SI. Acquisition of Relative Interstrand Crosslinker Resistance and PARP Inhibitor Sensitivity in Fanconi Anemia Head and Neck Cancers. Clin Cancer Res 2015; 21:1962-72. [PMID: 25609062 DOI: 10.1158/1078-0432.ccr-14-2616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/28/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE Fanconi anemia is an inherited disorder associated with a constitutional defect in the Fanconi anemia DNA repair machinery that is essential for resolution of DNA interstrand crosslinks. Individuals with Fanconi anemia are predisposed to formation of head and neck squamous cell carcinomas (HNSCC) at a young age. Prognosis is poor, partly due to patient intolerance of chemotherapy and radiation requiring dose reduction, which may lead to early recurrence of disease. EXPERIMENTAL DESIGN Using HNSCC cell lines derived from the tumors of patients with Fanconi anemia, and murine HNSCC cell lines derived from the tumors of wild-type and Fancc(-/-) mice, we sought to define Fanconi anemia-dependent chemosensitivity and DNA repair characteristics. We utilized DNA repair reporter assays to explore the preference of Fanconi anemia HNSCC cells for non-homologous end joining (NHEJ). RESULTS Surprisingly, interstrand crosslinker (ICL) sensitivity was not necessarily Fanconi anemia-dependent in human or murine cell systems. Our results suggest that the increased Ku-dependent NHEJ that is expected in Fanconi anemia cells did not mediate relative ICL resistance. ICL exposure resulted in increased DNA damage sensing and repair by PARP in Fanconi anemia-deficient cells. Moreover, human and murine Fanconi anemia HNSCC cells were sensitive to PARP inhibition, and sensitivity of human cells was attenuated by Fanconi anemia gene complementation. CONCLUSIONS The observed reliance upon PARP-mediated mechanisms reveals a means by which Fanconi anemia HNSCCs can acquire relative resistance to the ICL-based chemotherapy that is a foundation of HNSCC treatment, as well as a potential target for overcoming chemoresistance in the chemosensitive individual.
Collapse
Affiliation(s)
- Anne J Lombardi
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Elizabeth E Hoskins
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Grant D Foglesong
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kathryn A Wikenheiser-Brokamp
- Pathology and Laboratory Medicine and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynaecology, University of Ulm, Ulm, Germany
| | - Helmut Hanenberg
- Department of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana. Department of Otorhinolaryngology (ENT/HNO), Heinrich Heine University School of Medicine, Duesseldorf, Germany
| | - Paul R Andreassen
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Allison J Jacobs
- Department of Hematology/Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon. Portland VA Medical Center, Portland, Oregon
| | - Susan B Olson
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Winifred W Keeble
- Department of Hematology/Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon. Portland VA Medical Center, Portland, Oregon
| | - Laura E Hays
- Department of Hematology/Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon. Portland VA Medical Center, Portland, Oregon.
| | - Susanne I Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
28
|
Sirák I, Šinkorová Z, Šenkeříková M, Špaček J, Laco J, Vošmiková H, John S, Petera J. Hypersensitivity to chemoradiation in FANCA carrier with cervical carcinoma-A case report and review of the literature. Rep Pract Oncol Radiother 2014; 20:309-15. [PMID: 26109920 DOI: 10.1016/j.rpor.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/01/2014] [Accepted: 11/17/2014] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Compared to Fanconi anemia (FA) patients with homozygous defective two-alleles inheritance, there is a scarce or no evidence on one defective allele FANCA carriers, with respect to their cancer incidence, clinical and in vitro radiosensitivity and chemosensitivity. On that account, we report a case of a 30-year old FANCA mutation carrier woman with uterine cervix adenocarcinoma who was treated with chemoradiotherapy, in which unexpected acute toxicity and fatal late morbidity occured. METHODS We also report the results of an in vitro test for radiosensitivity, immunohistochemical examination with FANCA staining and human papillomavirus genotypization, and a review of the literature for FA carrier patients with respect to cancer incidence, clinical and in vitro response to chemo/radiotherapy, options of early heterozygosity detection, and methods of in vitro prediction of hypersensitivity to oncologic treatment. CONCLUSION Although there are no standard guidelines for management of FA carriers with malignancies and reports about chemo- or radiosensitivity in this population are scarce; patients with FA-A heterozygosity may have a high rate of complications from chemo/radiotherapy. Up to now, an optimum method for the prediction of radiosensitivity and the best parameter has not been found. Clinical radioresponsiveness is unpredictable in FA carriers and there is a pressing need of new rapid and predictive in vitro assays of radiation responses. Until then, the treatment of FA carriers with malignancies should be individualized, with respect to potential hypersensitivity to ionizing radiation or cross-linking agents.
Collapse
Affiliation(s)
- Igor Sirák
- Department of Oncology and Radiotherapy, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Zuzana Šinkorová
- Department of Radiobiology, Faculty of Health Sciences, University of Defence in Brno, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Mária Šenkeříková
- Department of Medical Genetics, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Jiří Špaček
- Department of Gynecology and Obstetrics, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Hana Vošmiková
- The Fingerland Department of Pathology, Charles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Stanislav John
- Department of Oncology and Radiotherapy, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Jiří Petera
- Department of Oncology and Radiotherapy, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| |
Collapse
|
29
|
High-risk human papillomavirus E6 protein promotes reprogramming of Fanconi anemia patient cells through repression of p53 but does not allow for sustained growth of induced pluripotent stem cells. J Virol 2014; 88:11315-26. [PMID: 25031356 DOI: 10.1128/jvi.01533-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED DNA repair plays a crucial role in embryonic and somatic stem cell biology and cell reprogramming. The Fanconi anemia (FA) pathway, which promotes error-free repair of DNA double-strand breaks, is required for somatic cell reprogramming to induced pluripotent stem cells (iPSC). Thus, cells from Fanconi anemia patients, which lack this critical pathway, fail to be reprogrammed to iPSC under standard conditions unless the defective FA gene is complemented. In this study, we utilized the oncogenes of high-risk human papillomavirus 16 (HPV16) to overcome the resistance of FA patient cells to reprogramming. We found that E6, but not E7, recovers FA iPSC colony formation and, furthermore, that p53 inhibition is necessary and sufficient for this activity. The iPSC colonies resulting from each of these approaches stained positive for alkaline phosphatase, NANOG, and Tra-1-60, indicating that they were fully reprogrammed into pluripotent cells. However, FA iPSC were incapable of outgrowth into stable iPSC lines regardless of p53 suppression, whereas their FA-complemented counterparts grew efficiently. Thus, we conclude that the FA pathway is required for the growth of iPSC beyond reprogramming and that p53-independent mechanisms are involved. IMPORTANCE A novel approach is described whereby HPV oncogenes are used as tools to uncover DNA repair-related molecular mechanisms affecting somatic cell reprogramming. The findings indicate that p53-dependent mechanisms block FA cells from reprogramming but also uncover a previously unrecognized defect in FA iPSC proliferation independent of p53.
Collapse
|
30
|
Schrader KA, Stratton KL, Murali R, Laitman Y, Cavallone L, Offit L, Wen YH, Thomas T, Shah S, Rau-Murthy R, Manschreck C, Salo-Mullen E, Otegbeye E, Corines M, Zhang L, Norton L, Hudis C, Klein RJ, Kauff ND, Robson M, Stadler ZK, Haber DA, Lipkin SM, Friedman E, Foulkes WD, Altshuler D, Vijai J, Offit K. Genome Sequencing of Multiple Primary Tumors Reveals a Novel PALB2 Variant. J Clin Oncol 2014; 34:e61-7. [PMID: 24982446 DOI: 10.1200/jco.2013.50.0272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | - Yael Laitman
- Chaim Sheba Medical Center, Tel-Hashomer, and Tel Aviv University, Tel-Aviv, Israel
| | - Luca Cavallone
- Lady Davis Institute, Jewish General Hospital, Montreal, Québec, Canada
| | - Lily Offit
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Tinu Thomas
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sohela Shah
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | - Ebun Otegbeye
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Liying Zhang
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Larry Norton
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Noah D Kauff
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark Robson
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Daniel A Haber
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA; and Howard Hughes Medical Institute, Chevy Chase, MD
| | | | - Eitan Friedman
- Chaim Sheba Medical Center, Tel-Hashomer, and Tel Aviv University, Tel-Aviv, Israel
| | - William D Foulkes
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Québec, Canada
| | - David Altshuler
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Joseph Vijai
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kenneth Offit
- Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
31
|
Park JW, Shin MK, Lambert PF. High incidence of female reproductive tract cancers in FA-deficient HPV16-transgenic mice correlates with E7's induction of DNA damage response, an activity mediated by E7's inactivation of pocket proteins. Oncogene 2014; 33:3383-91. [PMID: 24013229 PMCID: PMC3999289 DOI: 10.1038/onc.2013.327] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/13/2013] [Accepted: 06/24/2013] [Indexed: 12/16/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by defects in a DNA damage repair system, the FA pathway. FA patients frequently develop squamous cell carcinoma (SCC) at sites that are associated with human papillomavirus (HPV)-driven cancer including the female reproductive tract. To assess experimentally whether FA deficiency increases susceptibility to HPV-associated cervical/vaginal cancer, we monitored cancer incidence in the female lower reproductive tract of FA-deficient mice expressing HPV16 oncogenes, E6 and/or E7. FA deficiency specifically increased the incidence of cancers in mice expressing E7; but this effect was not observed in mice just expressing E6. We also observed that E7, but not E6, induced DNA damage as scored by induction of γ-H2AX and 53BP1 (p53 binding protein 1) nuclear foci, and this induction was heightened in FA-deficient tissue. Finally, we discovered that this induction of DNA damage responses was recapitulated in mice deficient in expression of 'pocket' proteins, pRb, p107 and p130, which are established targets of E7. Our findings support the hypothesis that E7 induces cancer by causing DNA damage at least in part through the inactivation of pocket proteins. This hypothesis explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer.
Collapse
Affiliation(s)
- Jung Wook Park
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, U.S.A
| | - Myeong-Kyun Shin
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, U.S.A
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, U.S.A
| |
Collapse
|
32
|
Manipulation of cellular DNA damage repair machinery facilitates propagation of human papillomaviruses. Semin Cancer Biol 2014; 26:30-42. [PMID: 24412279 DOI: 10.1016/j.semcancer.2013.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 01/08/2023]
Abstract
In general, the interplay among viruses and DNA damage repair (DDR) pathways can be divided based on whether the interaction promotes or inhibits the viral lifecycle. The propagation of human papillomaviruses is both promoted and inhibited by DDR proteins. As a result, HPV proteins both activate repair pathways, such as the ATM and ATR pathways, and inhibit other pathways, most notably the p53 signaling pathway. Indeed, the role of HPV proteins, with regard to the DDR pathways, can be divided into two broad categories. The first set of viral proteins, HPV E1 and E2 activate a DNA damage response and recruit repair proteins to viral replication centers, where these proteins are likely usurped to replicate the viral genome. Because the activation of the DDR response typically elicits a cell cycle arrest that would impeded the viral lifecycle, the second set of HPV proteins, HPV E6 and E7, prevents the DDR response from pausing cell cycle progression or inducing apoptosis. This review provides a detailed account of the interactions among HPV proteins and DDR proteins that facilitate HPV propagation.
Collapse
|
33
|
Edwards TG, Vidmar TJ, Koeller K, Bashkin JK, Fisher C. DNA damage repair genes controlling human papillomavirus (HPV) episome levels under conditions of stability and extreme instability. PLoS One 2013; 8:e75406. [PMID: 24098381 PMCID: PMC3788802 DOI: 10.1371/journal.pone.0075406] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/14/2013] [Indexed: 01/08/2023] Open
Abstract
DNA damage response (DDR) genes and pathways controlling the stability of HPV episomal DNA are reported here. We set out to understand the mechanism by which a DNA-binding, N-methylpyrrole-imidazole hairpin polyamide (PA25) acts to cause the dramatic loss of HPV DNA from cells. Southern blots revealed that PA25 alters HPV episomes within 5 hours of treatment. Gene expression arrays identified numerous DDR genes that were specifically altered in HPV16 episome-containing cells (W12E) by PA25, but not in HPV-negative (C33A) cells or in cells with integrated HPV16 (SiHa). A siRNA screen of 240 DDR genes was then conducted to identify enhancers and repressors of PA25 activity. Serendipitously, the screen also identified many novel genes, such as TDP1 and TDP2, regulating normal HPV episome stability. MRN and 9-1-1 complexes emerged as important for PA25-mediated episome destruction and were selected for follow-up studies. Mre11, along with other homologous recombination and dsDNA break repair genes, was among the highly significant PA25 repressors. The Mre11 inhibitor Mirin was found to sensitize HPV episomes to PA25 resulting in a ∼5-fold reduction of the PA25 IC50. A novel assay that couples end-labeling of DNA to Q-PCR showed that PA25 causes strand breaks within HPV DNA, and that Mirin greatly enhances this activity. The 9-1-1 complex member Rad9, a representative PA25 enhancer, was transiently phosphorylated in response to PA25 treatment suggesting that it has a role in detecting and signaling episome damage by PA25 to the cell. These results establish that DNA-targeted compounds enter cells and specifically target the HPV episome. This action leads to the activation of numerous DDR pathways and the massive elimination of episomal DNA from cells. Our findings demonstrate that viral episomes can be targeted for elimination from cells by minor groove binding agents, and implicate DDR pathways as important mediators of this process.
Collapse
Affiliation(s)
| | - Thomas J. Vidmar
- BioStat Consultants, Portage, Michigan, United States of America
| | - Kevin Koeller
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
| | - James K. Bashkin
- NanoVir, Kalamazoo, Michigan, United States of America
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
| | - Chris Fisher
- NanoVir, Kalamazoo, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins. PLoS One 2013; 8:e75056. [PMID: 24086435 PMCID: PMC3781031 DOI: 10.1371/journal.pone.0075056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/06/2013] [Indexed: 11/19/2022] Open
Abstract
Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6's oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7's induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs.
Collapse
|
35
|
FANCD2 activates transcription of TAp63 and suppresses tumorigenesis. Mol Cell 2013; 50:908-18. [PMID: 23806336 DOI: 10.1016/j.molcel.2013.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/21/2013] [Accepted: 05/15/2013] [Indexed: 01/26/2023]
Abstract
Fanconi anemia (FA) is a rare genetic disorder characterized by an increased susceptibility to squamous cell cancers. Fifteen FA genes are known, and the encoded proteins cooperate in a common DNA repair pathway. A critical step is the monoubiquitination of the FANCD2 protein, and cells from most FA patients are deficient in this step. How monoubiquitinated FANCD2 suppresses squamous cell cancers is unknown. Here we show that Fancd2-deficient mice are prone to Ras-oncogene-driven skin carcinogenesis, while Usp1-deficient mice, expressing elevated cellular levels of Fancd2-Ub, are resistant to skin tumors. Moreover, Fancd2-Ub activates the transcription of the tumor suppressor TAp63, thereby promoting cellular senescence and blocking skin tumorigenesis. For FA patients, the reduction of FANCD2-Ub and TAp63 protein levels may account for their susceptibility to squamous cell neoplasia. Taken together, Usp1 inhibition may be a useful strategy for upregulating TAp63 and preventing or treating squamous cell cancers in the general non-FA population.
Collapse
|
36
|
Sakakibara N, Chen D, McBride AA. Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells. PLoS Pathog 2013; 9:e1003321. [PMID: 23853576 PMCID: PMC3701714 DOI: 10.1371/journal.ppat.1003321] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Nozomi Sakakibara
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Dan Chen
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Alison A. McBride
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Chow LT, Broker TR. Human papillomavirus infections: warts or cancer? Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a012997. [PMID: 23685995 DOI: 10.1101/cshperspect.a012997] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human papillomaviruses (HPVs) are prevalent pathogens of mucosal and cutaneous epithelia. Productive infections of squamous epithelia lead to benign hyperproliferative warts, condylomata, or papillomas. Persistent infections of the anogenital mucosa by high-risk HPV genotypes 16 and 18 and closely related types can infrequently progress to high-grade intraepithelial neoplasias, carcinomas-in-situ, and invasive cancers in women and men. HPV-16 is also associated with a fraction of head and neck cancers. We discuss the interactions of the mucosotropic HPVs with the host regulatory proteins and pathways that lead to benign coexistence and enable HPV DNA amplification or, alternatively, to cancers that no longer support viral production.
Collapse
Affiliation(s)
- Louise T Chow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | |
Collapse
|
38
|
Romick-Rosendale LE, Lui VWY, Grandis JR, Wells SI. The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 2013; 743-744:78-88. [PMID: 23333482 DOI: 10.1016/j.mrfmmm.2013.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today's bone marrow failure treatments on tomorrow's solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility.
Collapse
Affiliation(s)
- Lindsey E Romick-Rosendale
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Vivian W Y Lui
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Susanne I Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
39
|
Turnell AS, Grand RJ. DNA viruses and the cellular DNA-damage response. J Gen Virol 2012; 93:2076-2097. [PMID: 22855786 DOI: 10.1099/vir.0.044412-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is clear that a number of host-cell factors facilitate virus replication and, conversely, a number of other factors possess inherent antiviral activity. Research, particularly over the last decade or so, has revealed that there is a complex inter-relationship between viral infection and the host-cell DNA-damage response and repair pathways. There is now a realization that viruses can selectively activate and/or repress specific components of these host-cell pathways in a temporally coordinated manner, in order to promote virus replication. Thus, some viruses, such as simian virus 40, require active DNA-repair pathways for optimal virus replication, whereas others, such as adenovirus, go to considerable lengths to inactivate some pathways. Although there is ever-increasing molecular insight into how viruses interact with host-cell damage pathways, the precise molecular roles of these pathways in virus life cycles is not well understood. The object of this review is to consider how DNA viruses have evolved to manage the function of three principal DNA damage-response pathways controlled by the three phosphoinositide 3-kinase (PI3K)-related protein kinases ATM, ATR and DNA-PK and to explore further how virus interactions with these pathways promote virus replication.
Collapse
Affiliation(s)
- Andrew S Turnell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roger J Grand
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
40
|
Abstract
High-risk human papillomaviruses (HPVs) deregulate epidermal differentiation and cause anogenital and head and neck squamous cell carcinomas (SCCs). The E7 gene is considered the predominant viral oncogene and drives proliferation and genome instability. While the implementation of routine screens has greatly reduced the incidence of cervical cancers which are almost exclusively HPV positive, the proportion of HPV-positive head and neck SCCs is on the rise. High levels of HPV oncogene expression and genome load are linked to disease progression, but genetic risk factors that regulate oncogene abundance and/or genome amplification remain poorly understood. Fanconi anemia (FA) is a genome instability syndrome characterized at least in part by extreme susceptibility to SCCs. FA results from mutations in one of 15 genes in the FA pathway, whose protein products assemble in the nucleus and play important roles in DNA damage repair. We report here that loss of FA pathway components FANCA and FANCD2 stimulates E7 protein accumulation in human keratinocytes and causes increased epithelial proliferation and basal cell layer expansion in the HPV-positive epidermis. Additionally, FANCD2 loss stimulates HPV genome amplification in differentiating cells, demonstrating that the intact FA pathway functions to restrict the HPV life cycle. These findings raise the possibility that FA genes suppress HPV infection and disease and suggest possible mechanism(s) for reported associations of HPV with an FA cohort in Brazil and for allelic variation of FA genes with HPV persistence in the general population.
Collapse
|
41
|
Jiang M, Imperiale MJ. Design stars: how small DNA viruses remodel the host nucleus. Future Virol 2012; 7:445-459. [PMID: 22754587 DOI: 10.2217/fvl.12.38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Numerous host components are encountered by viruses during the infection process. While some of these host structures are left unchanged, others may go through dramatic remodeling processes. In this review, we summarize these host changes that occur during small DNA virus infections, with a focus on host nuclear components and pathways. Although these viruses differ significantly in their genome structures and infectious pathways, there are common nuclear targets that are altered by various viral factors. Accumulating evidence suggests that these nuclear remodeling processes are often essential for productive viral infections and/or viral-induced transformation. Understanding the complex interactions between viruses and these host structures and pathways will help to build a more integrated network of how the virus completes its life cycle and point toward the design of novel therapeutic regimens that either prevent harmful viral infections or employ viruses as nontraditional treatment options or molecular tools.
Collapse
Affiliation(s)
- Mengxi Jiang
- Department of Microbiology & Immunology, & Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
42
|
Constantinou A. Rescue of replication failure by Fanconi anaemia proteins. Chromosoma 2011; 121:21-36. [PMID: 22057367 PMCID: PMC3260432 DOI: 10.1007/s00412-011-0349-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 01/23/2023]
Abstract
Chromosomal aberrations are often associated with incomplete genome duplication, for instance at common fragile sites, or as a consequence of chemical alterations in the DNA template that block replication forks. Studies of the cancer-prone disease Fanconi anaemia (FA) have provided important insights into the resolution of replication problems. The repair of interstrand DNA crosslinks induced by chemotherapy drugs is coupled with DNA replication and controlled by FA proteins. We discuss here the recent discovery of new FA-associated proteins and the development of new tractable repair systems that have dramatically improved our understanding of crosslink repair. We focus also on how FA proteins protect against replication failure in the context of fragile sites and on the identification of reactive metabolites that account for the development of Fanconi anaemia symptoms.
Collapse
Affiliation(s)
- Angelos Constantinou
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
43
|
Santegoets LA, Baars RV, Terlou A, Heijmans-Antonissen C, Swagemakers SM, van der Spek PJ, Ewing PC, Beurden MV, van der Meijden WI, Helmerhorst TJ, Blok LJ. Different DNA damage and cell cycle checkpoint control in low- and high-risk human papillomavirus infections of the vulva. Int J Cancer 2011; 130:2874-85. [DOI: 10.1002/ijc.26345] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/18/2011] [Indexed: 12/11/2022]
|
44
|
de Araujo MR, Rubira-Bullen IRF, Santos CF, Dionísio TJ, Bonfim CMS, De Marco L, Gillio-Tos A, Merletti F. High prevalence of oral human papillomavirus infection in Fanconi's anemia patients. Oral Dis 2011; 17:572-6. [PMID: 21332606 DOI: 10.1111/j.1601-0825.2011.01803.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Fanconi's anemia (FA) is a rare recessive genetic disorder characterized by bone marrow failure, developmental and congenital abnormalities, which frequently evolves to aplastic anemia and neoplasias, primarily acute leukemia and head-neck carcinomas. Risk of malignancies increases after hematopoietic stem cell transplantation (HSCT), and the role of human papillomavirus (HPV) in FA carcinogenesis have been proposed. OBJECTIVE To investigate prevalence of oral HPV in FA patients without oral malignant lesions. MATERIALS AND METHODS After oral examination, 76 subjects without detectable oral malignant lesions were included and classified in four groups: 20 FA submitted to HSCT (I), 22 FA not submitted to HSCT (II), 18 severe aplastic anemia (SAA) submitted to HSCT (III) and 16 healthy subjects (IV). Liquid-based cytology sampling, HPV screening by polymerase chain reaction and genotyping by reverse hybridization were performed. RESULTS The HPV detection rates were: group I 35%, group II 27.3%, group III 38% and group IV 6.25%. Prevalence of high risk HPV types, mainly HPV16, was detected. Compared with control group, suggestions for increased likelihood of being HPV infected in SAA (OR = 9.55, 95% CI: 1.01-125.41) and FA patients submitted to HSCT (OR = 8.08, 0.83-72.29) emerged. CONCLUSION Patients without oral malignant lesions submitted to HSCT, have high prevalence of oral HPV. HPV screening and close follow up should be considered in these patients.
Collapse
Affiliation(s)
- M R de Araujo
- Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Korzeniewski N, Spardy N, Duensing A, Duensing S. Genomic instability and cancer: lessons learned from human papillomaviruses. Cancer Lett 2010; 305:113-22. [PMID: 21075512 DOI: 10.1016/j.canlet.2010.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 09/29/2010] [Accepted: 10/14/2010] [Indexed: 02/08/2023]
Abstract
High-risk HPV E6 and E7 oncoproteins cooperate to subvert critical host cell cycle checkpoint control mechanisms in order to promote viral genome replication. This results not only in aberrant proliferation but also in host cellular changes that can promote genomic instability. The HPV-16 E7 oncoprotein was found to induce centrosome abnormalities thereby disrupting mitotic fidelity and increasing the risk for chromosome missegregation and aneuploidy. In addition, expression of the high-risk HPV E7 oncoprotein stimulates DNA replication stress as a potential source of DNA breakage and structural chromosomal instability. Proliferation of genomically unstable cells is sustained by several mechanisms including the accelerated degradation of claspin by HPV-16 E7 and the degradation of p53 by the high-risk HPV E6 oncoprotein. These results highlight the oncogenic potential of aberrant proliferation and opens new avenues for prevention of malignant progression, not only in HPV-associated cervical cancer but also in non-virally associated malignancies with disrupted cell cycle checkpoint control mechanisms.
Collapse
Affiliation(s)
- Nina Korzeniewski
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
46
|
Brohem CA, Cardeal LBDS, Tiago M, Soengas MS, Barros SBDM, Maria-Engler SS. Artificial skin in perspective: concepts and applications. Pigment Cell Melanoma Res 2010; 24:35-50. [PMID: 21029393 DOI: 10.1111/j.1755-148x.2010.00786.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Skin, the largest organ of the human body, is organized into an elaborate layered structure consisting mainly of the outermost epidermis and the underlying dermis. A subcutaneous adipose-storing hypodermis layer and various appendages such as hair follicles, sweat glands, sebaceous glands, nerves, lymphatics, and blood vessels are also present in the skin. These multiple components of the skin ensure survival by carrying out critical functions such as protection, thermoregulation, excretion, absorption, metabolic functions, sensation, evaporation management, and aesthetics. The study of how these biological functions are performed is critical to our understanding of basic skin biology such as regulation of pigmentation and wound repair. Impairment of any of these functions may lead to pathogenic alterations, including skin cancers. Therefore, the development of genetically controlled and well characterized skin models can have important implications, not only for scientists and physicians, but also for manufacturers, consumers, governing regulatory boards and animal welfare organizations. As cells making up human skin tissue grow within an organized three-dimensional (3D) matrix surrounded by neighboring cells, standard monolayer (2D) cell cultures do not recapitulate the physiological architecture of the skin. Several types of human skin recombinants, also called artificial skin, that provide this critical 3D structure have now been reconstructed in vitro. This review contemplates the use of these organotypic skin models in different applications, including substitutes to animal testing.
Collapse
Affiliation(s)
- Carla A Brohem
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Bagnyukova TV, Serebriiskii IG, Zhou Y, Hopper-Borge EA, Golemis EA, Astsaturov I. Chemotherapy and signaling: How can targeted therapies supercharge cytotoxic agents? Cancer Biol Ther 2010; 10:839-53. [PMID: 20935499 PMCID: PMC3012138 DOI: 10.4161/cbt.10.9.13738] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 08/02/2010] [Indexed: 12/19/2022] Open
Abstract
In recent years, oncologists have begun to conclude that chemotherapy has reached a plateau of efficacy as a primary treatment modality, even if toxicity can be effectively controlled. Emerging specific inhibitors of signaling and metabolic pathways (i.e., targeted agents) contrast with traditional chemotherapy drugs in that the latter primarily interfere with the DNA biosynthesis and the cell replication machinery. In an attempt to improve on the efficacy, combination of targeted drugs with conventional chemotherapeutics has become a routine way of testing multiple new agents in early phase clinical trials. This review discusses the recent advances including integrative systematic biology and RNAi approaches to counteract the chemotherapy resistance and to buttress the selectivity, efficacy and personalization of anti-cancer drug therapy.
Collapse
|
48
|
Park JW, Pitot HC, Strati K, Spardy N, Duensing S, Grompe M, Lambert PF. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res 2010; 70:9959-68. [PMID: 20935219 DOI: 10.1158/0008-5472.can-10-1291] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Patients with the rare genetic disease, Fanconi anemia (FA), are highly susceptible to squamous cell carcinomas arising at multiple anatomic sites including the head and neck region. Human papillomaviruses (HPVs), particularly HPV16, are associated with ∼20% of head and neck squamous cell carcinomas (HNSCCs) in the general population. Some but not other investigators have reported that HNSCCs in FA patients are much more frequently positive for HPV. In addition, studies have demonstrated an interaction between the HPV16 E7 oncoprotein and the FA pathway, a DNA damage response pathway deficient in FA patients. On the basis of these studies, it was hypothesized that the FA pathway contributes to repair of DNA damage induced by HPV16 E7, providing one explanation for why FA patients are predisposed to HPV-associated HNSCCs. To determine the importance of the FA pathway in modulating the oncogenic abilities of E7, we crossed K14E7 transgenic (K14E7) and fancD2 knockout mice (FancD2(-/-)) to establish K14E7/FancD2(-/-) and K14E7/FancD2(+/+) mice and monitored their susceptibility to HNSCC when treated with a chemical carcinogen. K14E7/FancD2(-/-) mice had a significantly higher incidence of HNSCC compared with K14E7/FancD2(+/+) mice. This difference correlated with an increased proliferative index and the increase in expression of biomarkers that are used to assess levels of DNA damage. These animal studies support the hypotheses that FA patients have increased susceptibility to HPV-associated cancer and that the FA DNA damage response pathway normally attenuates the oncogenic potential of HPV16 E7.
Collapse
Affiliation(s)
- Jung Wook Park
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|