1
|
Saritas Erdogan S, Yilmaz AE, Kumbasar A. PIN1 is a novel interaction partner and a negative upstream regulator of the transcription factor NFIB. FEBS Lett 2024. [PMID: 39245791 DOI: 10.1002/1873-3468.15010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
NFIB is a transcription factor of the Nuclear Factor One (NFI) family that is essential for embryonic development. Post-translational control of NFIB or its upstream regulators have not been well characterized. Here, we show that PIN1 binds NFIB in a phosphorylation-dependent manner, via its WW domain. PIN1 interacts with the well-conserved N-terminal domains of all NFIs. Moreover, PIN1 attenuates the transcriptional activity of NFIB; this attenuation requires substrate binding by PIN1 but not its isomerase activity. Paradoxically, we found stabilization of NFIB by PIN1. We propose that PIN1 represses NFIB function not by regulating its abundance but by inducing a conformational change. These results identify NFIB as a novel PIN1 target and posit a role for PIN1 in post-translational regulation of NFIB and other NFIs.
Collapse
Affiliation(s)
| | - Ahmet Erdal Yilmaz
- Department of Molecular Biology and Genetics, Istanbul Technical University, Turkey
| | - Asli Kumbasar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Turkey
| |
Collapse
|
2
|
Hosseini Adarmanabadi SMH, Karami Gilavand H, Taherkhani A, Sadat Rafiei SK, Shahrokhi M, Faaliat S, Biabani M, Abil E, Ansari A, Sheikh Z, Poudineh M, Khalaji A, ShojaeiBaghini M, Koorangi A, Deravi N. Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neurosci Rep 2023; 14:1-20. [PMID: 36507190 PMCID: PMC9727645 DOI: 10.1016/j.ibneur.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Global and regional trends of population aging spotlight major public health concerns. As one of the most common adverse prognostic factors, advanced age is associated with a remarkable incidence risk of many non-communicable diseases, affecting major organ systems of the human body. Age-dependent factors and molecular processes can change the nervous system's normal function and lead to neurodegenerative disorders. Oxidative stress results from of a shift toward reactive oxygen species (ROS) production in the equilibrium between ROS generation and the antioxidant defense system. Oxidative stress and neuroinflammation caused by Amyloid-ß protein deposition in the human brain are the most likely pathogenesis of Alzheimer's disease (AD). Walnut extracts could reduce Amyloid-ß fibrillation and aggregation, indicating their beneficial effects on memory and cognition. Walnut can also improve movement disabilities in Parkinson's disease due to their antioxidant and neuroprotective effect by reducing ROS and nitric oxide (NO) generation and suppressing oxidative stress. It is noteworthy that Walnut compounds have potential antiproliferative effects on Glioblastoma (the most aggressive primary cerebral neoplasm). This effective therapeutic agent can stimulate apoptosis of glioma cells in response to oxidative stress, concurrent with preventing angiogenesis and migration of tumor cells, improving the quality of life and life expectancy of patients with glioblastoma. Antioxidant Phenolic compounds of the Walnut kernel could explain the significant anti-convulsion ability of Walnut to provide good prevention and treatment for epileptic seizures. Moreover, the anti-inflammatory effect of Walnut oil could be beneficial in treating multiple sclerosis. In this study, we review the pharmaceutical properties of Walnut in age-related neurological disorders.
Collapse
Affiliation(s)
| | - Helia Karami Gilavand
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Taherkhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Kiarash Sadat Rafiei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Faaliat
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Biabani
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elaheh Abil
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Akram Ansari
- Laboratory Science, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Zahra Sheikh
- Student Research Committee, School of medicine, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Mahdie ShojaeiBaghini
- Medical Informatics, Research Center, Institute for Futures Studies in Health, Kerman, Iran
| | - Amirhosein Koorangi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Aoyama S, Kido Y, Kanamoto M, Naito M, Nakanishi M, Kanna M, Yamamotoya T, Asano T, Nakatsu Y. Prolyl isomerase Pin1 promotes extracellular matrix production in hepatic stellate cells through regulating formation of the Smad3-TAZ complex. Exp Cell Res 2023; 425:113544. [PMID: 36906101 DOI: 10.1016/j.yexcr.2023.113544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Hepatic stellate cells (HSCs) produce extracellular matrixes (ECMs), such as collagen and fibronectin, in response to stimulation with transforming growth factor β (TGFβ). The massive ECM accumulation in the liver due to HSCs causes fibrosis which eventually leads to hepatic cirrhosis and hepatoma development. However, details of the mechanisms underlying continuous HSC activation are as yet poorly understood. We thus attempted to elucidate the role of Pin1, one of the prolyl isomerases, in the underlying mechanism(s), using the human HSC line LX-2. Treatment with Pin1 siRNAs markedly alleviated the TGFβ-induced expressions of ECM components such as collagen 1a1/2, smooth muscle actin and fibronectin at both the mRNA and the protein level. Pin1 inhibitors also decreased the expressions of fibrotic markers. In addition, it was revealed that Pin1 associates with Smad2/3/4, and that four Ser/Thr-Pro motifs in the linker domain of Smad3 are essential for binding with Pin1. Pin1 significantly regulated Smad-binding element transcriptional activity without affecting Smad3 phosphorylations or translocation. Importantly, both Yes-associated protein (YAP) and WW domain-containing transcription regulator (TAZ) also participate in ECM induction, and upregulate Smad3 activity rather than TEA domain transcriptional factor transcriptional activity. Although Smad3 interacts with both TAZ and YAP, Pin1 facilitates the Smad3 association with TAZ, but not that with YAP. In conclusion, Pin1 plays pivotal roles in ECM component productions in HSCs through regulation of the interaction between TAZ and Smad3, and Pin1 inhibitors may have the potential to ameliorate fibrotic diseases.
Collapse
Affiliation(s)
- Shunya Aoyama
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Yuri Kido
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Mayu Kanamoto
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Miki Naito
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Mikako Nakanishi
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Machi Kanna
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Takeshi Yamamotoya
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan.
| | - Yusuke Nakatsu
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima City, Hiroshima, Japan.
| |
Collapse
|
4
|
Malter JS. Pin1 and Alzheimer's disease. Transl Res 2023; 254:24-33. [PMID: 36162703 PMCID: PMC10111655 DOI: 10.1016/j.trsl.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) is an immense and growing public health crisis. Despite over 100 years of investigation, the etiology remains elusive and therapy ineffective. Despite current gaps in knowledge, recent studies have identified dysfunction or loss-of-function of Pin1, a unique cis-trans peptidyl prolyl isomerase, as an important step in AD pathogenesis. Here I review the functionality of Pin1 and its role in neurodegeneration.
Collapse
Affiliation(s)
- James S Malter
- Department of Pathology, UT Southwestern Medical Center, 5333 Harry Hines Blvd, Dallas, TX 75390.
| |
Collapse
|
5
|
Kanamoto M, Takahagi S, Aoyama S, Kido Y, Nakanishi M, Naito M, Kanna M, Yamamotoya T, Tanaka A, Hide M, Asano T, Nakatsu Y. The expression of prolyl isomerase Pin1 is expanded in the skin of patients with atopic dermatitis and facilitates
IL
‐33 expression in
HaCaT
cells. J Dermatol 2022; 50:462-471. [PMID: 37006202 DOI: 10.1111/1346-8138.16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
Atopic dermatitis (AD) is attributable to both a genetic predisposition and environmental factors. Among numerous cytokines involved in the pathogenesis of AD, interleukin-33 (IL-33), reportedly escaping exocytotically in response to a scratch, is abundantly expressed in the skin tissues of patients with AD and is postulated to induce inflammatory and autoimmune responses. In this study, we first demonstrated that peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (Pin1), a unique enzyme which isomerizes the proline residues of target proteins, is abundantly expressed in keratinocytes, and that the areas where it is present in the skin tissues of AD patients became expanded due to hyperkeratosis. Thus, we investigated the effects of Pin1 on the regulation of IL-33 expression using the human keratinocyte cell line HaCaT. Interestingly, silencing of the Pin1 gene or treatment with Pin1 inhibitors dramatically reduced IL-33 expressions in HaCaT cells, although Pin1 overexpression did not elevate it. Subsequently, we showed that Pin1 binds to STAT1 and the nuclear factor-kappaB (NF-κB) subunit p65. Silencing the Pin1 gene with small interfering RNAs significantly reduced the phosphorylation of p65, while no marked effects of Pin1 on the STAT1 pathway were detected. Thus, it is likely that Pin1 contributes to increased expression of IL-33 via the NF-κB subunit p65 in HaCaT cells, at least modestly. Nevertheless, further study is necessary to demonstrate the pathogenic roles of Pin1 and IL-33 in AD development.
Collapse
Affiliation(s)
- Mayu Kanamoto
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
- Department of Dermatology, Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Shunsuke Takahagi
- Department of Dermatology, Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Shunya Aoyama
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Yuri Kido
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Mikako Nakanishi
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Miki Naito
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Machi Kanna
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Takeshi Yamamotoya
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Akio Tanaka
- Department of Dermatology, Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
| | - Michihiro Hide
- Department of Dermatology, Institute of Biomedical & Health Sciences Hiroshima University Hiroshima Japan
- Department of Dermatology Hiroshima Citizens Hospital Hiroshima Japan
| | - Tomoichiro Asano
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Yusuke Nakatsu
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| |
Collapse
|
6
|
Lin K, Gao W, Chen N, Yang S, Wang H, Wang R, Xie F, Meng J, Lam EWF, Li S, Cheng W, Chen P, Wu H, Yan J, Jin D, Jin B. Chronic Inflammation Pathway NF-κB Cooperates with Epigenetic Reprogramming to Drive the Malignant Progression of Glioblastoma. Int J Biol Sci 2022; 18:5770-5786. [PMID: 36263173 PMCID: PMC9576505 DOI: 10.7150/ijbs.73749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/18/2022] [Indexed: 01/12/2023] Open
Abstract
Without an effective strategy for targeted therapy, glioblastoma is still incurable with a median survival of only 15 months. Both chronic inflammation and epigenetic reprogramming are hallmarks of cancer. However, the mechanisms and consequences of their cooperation in glioblastoma remain unknown. Here, we discover that chronic inflammation governs H3K27me3 reprogramming in glioblastoma through the canonical NF-κB pathway to target EZH2. Being a crucial mediator of chronic inflammation, the canonical NF-κB signalling specifically directs the expression and redistribution of H3K27me3 but not H3K4me3, H3K9me3 and H3K36me3. Using RNA-seq screening to focus on genes encoding methyltransferases and demethylases of histone, we identify EZH2 as a key methyltransferase to control inflammation-triggered epigenetic reprogramming in gliomagenesis. Mechanistically, NF-κB selectively drives the expression of EZH2 by activating its transcription, consequently resulting in a global change in H3K27me3 expression and distribution. Furthermore, we find that co-activation of NF-κB and EZH2 confers the poorest clinical outcome, and that the risk for glioblastoma can be accurately molecularly stratified by NF-κB and EZH2. It is notable that NF-κB can potentially cooperate with EZH2 in more than one way, and most importantly, we demonstrate a Synergistic effect of cancer cells induced by combinatory inhibition of NF-κB and EZH2, which both are frequently over-activated in glioblastoma. In summary, we uncover a functional cooperation between chronic inflammation and epigenetic reprogramming in glioblastoma, combined targeting of which by inhibitors guaranteed in safety and availability furnishes a potent strategy for effective treatment of this fatal disease.
Collapse
Affiliation(s)
- Kefeng Lin
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Wenli Gao
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Ning Chen
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Shuyao Yang
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Han Wang
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Ran Wang
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Fang Xie
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China.,Department of Hematology; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology, Second Hospital of Dalian Medical University, Dalian 116044, China
| | - Jiaqi Meng
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China.,Boao International Hospital, Shanghai University of Traditional Chinese Medicine, Qionghai 571734, Hainan, China
| | - Eric W.-F. Lam
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Suyi Li
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Wei Cheng
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Puxiang Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Hongjin Wu
- Boao International Hospital, Shanghai University of Traditional Chinese Medicine, Qionghai 571734, Hainan, China
| | - Jinsong Yan
- Department of Hematology; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology, Second Hospital of Dalian Medical University, Dalian 116044, China.,✉ Corresponding authors: Bilian Jin (), Di Jin () or Jinsong Yan ()
| | - Di Jin
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China.,✉ Corresponding authors: Bilian Jin (), Di Jin () or Jinsong Yan ()
| | - Bilian Jin
- Institute of Cancer Stem Cell; Liaoning Key Laboratory of Nucleic Acid Biology, Dalian Medical University, Dalian 116044, Liaoning, China.,✉ Corresponding authors: Bilian Jin (), Di Jin () or Jinsong Yan ()
| |
Collapse
|
7
|
Relitti N, Saraswati AP, Carullo G, Papa A, Monti A, Benedetti R, Passaro E, Brogi S, Calderone V, Butini S, Gemma S, Altucci L, Campiani G, Doti N. Design and Synthesis of New Oligopeptidic Parvulin Inhibitors. ChemMedChem 2022; 17:e202200050. [PMID: 35357776 PMCID: PMC9321596 DOI: 10.1002/cmdc.202200050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Indexed: 11/12/2022]
Abstract
Pin1 catalyzes the cis-trans isomerization of pThr-Pro or pSer-Pro amide bonds of different proteins involved in several physio/pathological processes. In this framework, recent research activity is directed towards the identification of new selective Pin1 inhibitors. Here, we developed a set ( 5a - p ) of peptide-based Pin1 inhibitors. Direct-binding experiments allowed the identification of the peptide-based inhibitor 5k as a potent ligand of Pin1. Notably, 5k binds Pin1 with a higher affinity compared to Pin4. The comparative analysis of molecular models of Pin1 and Pin4 with the selected compound, gave a rational explanation of the biochemical activity, and pinpointed the chemical elements that, if opportunely modified, may further improve inhibitory potency, pharmacological properties and selectivity of future peptide-based Parvulin inhibitors. Since 5k showed a limited cell penetration and no antiproliferative activity, it was conjugated to a polyarginine stretch, known to promote cell penetration of peptides, to obtain R8-5k derivative, which displayed an anti-proliferative effect on cancer cell lines compared to non-tumor cells. The effect of R8 on cell proliferation was also investigated. This work doubts the application of the R8 strategy for the development of cell penetrating antiproliferative peptides since it is not inert.
Collapse
Affiliation(s)
- Nicola Relitti
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | | | - Gabriele Carullo
- University of Siena: Universita degli Studi di Siena, DBCF, 2, Aldo Moro, 53100 Siena Italy, 53100, Siena, ITALY
| | - Alessandro Papa
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | | | - Rosaria Benedetti
- University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli, Medicine, ITALY
| | - Eugenia Passaro
- University of Pisa Department of Pharmaceutical Sciences: Universita degli Studi di Pisa Dipartimento di Farmacia, Pharmacy, ITALY
| | - Simone Brogi
- University of Pisa Department of Pharmaceutical Sciences: Universita degli Studi di Pisa Dipartimento di Farmacia, Pharmacy, ITALY
| | - Vincenzo Calderone
- University of Pisa Department of Pharmaceutical Sciences: Universita degli Studi di Pisa Dipartimento di Farmacia, Pharmacy, ITALY
| | - Stefania Butini
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | - Sandra Gemma
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | - Lucia Altucci
- University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli, Medicine, ITALY
| | - Giuseppe Campiani
- Universita degli Studi di Siena, Dipartimento di Biotecnologie, Via Aldo Moro 2, 53100, Siena, ITALY
| | - Nunzianna Doti
- CNR: Consiglio Nazionale delle Ricerche, Bioimaging, ITALY
| |
Collapse
|
8
|
Uddin MS, Kabir MT, Mamun AA, Sarwar MS, Nasrin F, Emran TB, Alanazi IS, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM. Natural Small Molecules Targeting NF-κB Signaling in Glioblastoma. Front Pharmacol 2021; 12:703761. [PMID: 34512336 PMCID: PMC8429794 DOI: 10.3389/fphar.2021.703761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that regulates various genes that mediate various cellular activities, including propagation, differentiation, motility, and survival. Abnormal activation of NF-κB is a common incidence in several cancers. Glioblastoma multiforme (GBM) is the most aggressive brain cancer described by high cellular heterogeneity and almost unavoidable relapse following surgery and resistance to traditional therapy. In GBM, NF-κB is abnormally activated by various stimuli. Its function has been associated with different processes, including regulation of cancer cells with stem-like phenotypes, invasion of cancer cells, and radiotherapy resistance identification of mesenchymal cells. Even though multimodal therapeutic approaches such as surgery, radiation therapy, and chemotherapeutic drugs are used for treating GBM, however; the estimated mortality rate for GBM patients is around 1 year. Therefore, it is necessary to find out new therapeutic approaches for treating GBM. Many studies are focusing on therapeutics having less adverse effects owing to the failure of conventional chemotherapy and targeted agents. Several studies of compounds suggested the involvement of NF-κB signaling pathways in the growth and development of a tumor and GBM cell apoptosis. In this review, we highlight the involvement of NF-κB signaling in the molecular understanding of GBM and natural compounds targeting NF-κB signaling.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Fatema Nasrin
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, QLD, Australia.,School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Ibtesam S Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
9
|
Targeting Pin1 for Modulation of Cell Motility and Cancer Therapy. Biomedicines 2021; 9:biomedicines9040359. [PMID: 33807199 PMCID: PMC8065645 DOI: 10.3390/biomedicines9040359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/09/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which leads to changes in protein conformation and function. Pin1 is widely overexpressed in cancers and plays an important role in tumorigenesis. Mounting evidence has revealed that targeting Pin1 is a potential therapeutic approach for various cancers by inhibiting cell proliferation, reducing metastasis, and maintaining genome stability. In this review, we summarize the underlying mechanisms of Pin1-mediated upregulation of oncogenes and downregulation of tumor suppressors in cancer development. Furthermore, we also discuss the multiple roles of Pin1 in cancer hallmarks and examine Pin1 as a desirable pharmaceutical target for cancer therapy. We also summarize the recent progress of Pin1-targeted small-molecule compounds for anticancer activity.
Collapse
|
10
|
Gao X, Jiang Y, Li Y. Inhibitory effect of miR-140-5p on doxorubicin resistance of hepatocellular carcinoma. Exp Ther Med 2021; 21:507. [PMID: 33791016 PMCID: PMC8005744 DOI: 10.3892/etm.2021.9938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 01/05/2021] [Indexed: 12/09/2022] Open
Abstract
To investigate the role of microRNA (miR)-140-5p in doxorubicin (DOX) sensitivity in hepatocellular carcinoma, miR-140-5p and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) expression was first evaluated in hepatocellular carcinoma tissues using starBase. Next, in vitro experiments were performed. Cell line expression of miR-140-5p and PIN1 expression was detected by reverse transcription polymerase chain reaction. Cell viability and proliferation were determined by the Cell Counting Kit-8 and EdU assays. The relationship between miR-140-5p and PIN1 was evaluated by TargetScan and a luciferase reporter system. Western blotting was used to detect the expression of PIN1. It was observed that miR-140-5p was downregulated in hepatocellular carcinoma tissues and cell lines compared with normal samples in HCC or normal liver cells. Gain-of-function experiments revealed that miR-140-5p mimics were able to enhance DOX sensitivity of hepatocellular carcinoma cells. Further studies revealed that PIN1 was a target gene of miR-140-5p. Suppression of PIN1 led to higher DOX sensitivity in hepatocellular carcinoma cells. Finally, when comparing a PIN1-siRNA alone group and a PIN1-siRNA plus miR-140-5p inhibitor group, there was no significant difference in cell viability. Furthermore, miR-140-5p mimics did not reduce the sensitivity of PIN1mut plasmid to DOX in HUH7 and SNU449 cells. The present study demonstrated that miR-140-5p could enhance DOX sensitivity in hepatocellular carcinoma cells by targeting PIN1.
Collapse
Affiliation(s)
- Xiaojie Gao
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Zhejiang 310005, P.R. China
| | - Yan Jiang
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yingying Li
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Zhejiang 310005, P.R. China
| |
Collapse
|
11
|
Anticancer Mechanism of Curcumin on Human Glioblastoma. Nutrients 2021; 13:nu13030950. [PMID: 33809462 PMCID: PMC7998496 DOI: 10.3390/nu13030950] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor and accounts for most adult brain tumors. Current available treatment options for GBM are multimodal, which include surgical resection, radiation, and chemotherapy. Despite the significant advances in diagnostic and therapeutic approaches, GBM remains largely resistant to treatment, with a poor median survival rate between 12 and 18 months. With increasing drug resistance, the introduction of phytochemicals into current GBM treatment has become a potential strategy to combat GBM. Phytochemicals possess multifarious bioactivities with multitarget sites and comparatively marginal toxicity. Among them, curcumin is the most studied compound described as a potential anticancer agent due to its multi-targeted signaling/molecular pathways properties. Curcumin possesses the ability to modulate the core pathways involved in GBM cell proliferation, apoptosis, cell cycle arrest, autophagy, paraptosis, oxidative stress, and tumor cell motility. This review discusses curcumin’s anticancer mechanism through modulation of Rb, p53, MAPK, P13K/Akt, JAK/STAT, Shh, and NF-κB pathways, which are commonly involved and dysregulated in preclinical and clinical GBM models. In addition, limitation issues such as bioavailability, pharmacokinetics perspectives strategies, and clinical trials were discussed.
Collapse
|
12
|
Li J, Mo C, Guo Y, Zhang B, Feng X, Si Q, Wu X, Zhao Z, Gong L, He D, Shao J. Roles of peptidyl-prolyl isomerase Pin1 in disease pathogenesis. Theranostics 2021; 11:3348-3358. [PMID: 33537091 PMCID: PMC7847688 DOI: 10.7150/thno.45889] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
Pin1 belongs to the peptidyl-prolyl cis-trans isomerases (PPIases) superfamily and catalyzes the cis-trans conversion of proline in target substrates to modulate diverse cellular functions including cell cycle progression, cell motility, and apoptosis. Dysregulation of Pin1 has wide-ranging influences on the fate of cells; therefore, it is closely related to the occurrence and development of various diseases. This review summarizes the current knowledge of Pin1 in disease pathogenesis.
Collapse
Affiliation(s)
- Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Chunfen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yifan Guo
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Bowen Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Xiao Feng
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Qiuyue Si
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xiaobo Wu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Zhe Zhao
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Lixin Gong
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dan He
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Jichun Shao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Effects of co-administration of rapamycin and evening primrose/hemp seed oil supplement on immunologic factors and cell membrane fatty acids in experimental autoimmune encephalomyelitis. Gene 2020; 759:144987. [PMID: 32712065 DOI: 10.1016/j.gene.2020.144987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The immune response is influenced by the administration of omega-3 polyunsaturated fatty acids (PUFA). Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE) are affected by PUFA. The combination of evening primrose/hemp seed oil (EPO/HSO) has essential fatty acids (EFAs) for human optimal health due to the favorable ratio of omega-6/omega-3 and antioxidantal properties. The study was conducted to evaluate the effects of EPO/HSO on improving the membrane fatty acids composition of spleen and blood cells and immunologic factors in compared to rapamycin (RAPA) in the EAE model. METHODS AND MATERIALS Chronic-EAE was induced by induction of MOG in C57BL/6J mice (female, age: 6-8 weeks, weight 18-21). Mice were assigned to 5 groups (6/group) to evaluate the therapeutic effects of EPO/HSO supplement in comparison with rapamycin: A group; EPO/HSO + RAPA, B group; RAPA, C group; EPO/HSO. Results were compared to two control groups (EAE and naive). The fatty acid profile of the spleen and blood cell membrane was evaluated. Real-time-polymerase chain reaction was used for the evaluate the genes expression levels of interleukin (IL) -4, IL-5, and IL-13 in lymphocytes. Also, IL-4 of serum was evaluated by enzyme-linked immunosorbent assay (ELISA). RESULTS Our findings indicated that EPO/HSO therapy significantly increased the percentage of essential fatty acids in cell membrane of the spleen and blood. The relative expression of IL-4, IL-5, and IL-13 genes in lymphocytes and serum level of IL-4 was significantly increased in the HSO/EPO treated group versus other groups. CONCLUSION These results point to potential therapeutic effects on the repair of the structure of cell membranes and suppression of inflammation by EPO/HSO in EAE.
Collapse
|
14
|
Deficiency of microRNA-628-5p promotes the progression of gastric cancer by upregulating PIN1. Cell Death Dis 2020; 11:559. [PMID: 32703934 PMCID: PMC7378826 DOI: 10.1038/s41419-020-02766-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023]
Abstract
Gastric cancer is one of the most common cancer and is the second leading cause of cancer-related mortality in the world. PIN1, belonging to peptidyl-prolyl cis-trans isomerase family, uniquely catalyzes the structural transformation of phosphorylated Ser/Thr-Pro motif. It's high expressed in most cancers and promotes their progression. However, the mechanism of PIN1 high expression and its function in gastric cancer progression are still unclear. In this research, we revealed that PIN1 not only promotes the proliferation and colony formation of gastric cancer, but also increases its migration and invasion. The PIN1 expression in metastasis lesion is usually higher than the corresponding primary site. Inhibiting PIN1 by shRNA suppresses the progression of gastric cancer significantly. Besides, we demonstrated that miR-628-5p is a novel PIN1-targeted microRNA, and the expression of miR-628-5p is negatively correlated with PIN1 in gastric cancer. Exogenous expression of miR-628-5p inhibits the progression of gastric cancer that revered by restoring PIN1 expression. However, miR-628-5p is downregulated in majority of gastric cancer tissue especially in metastasis lesion. The lower miR-628-5p level indicates poorer prognosis. In summary, our study demonstrated that deficient miR-628-5p expression facilitates the expression of PIN1, and consequently promotes the progression of gastric cancer.
Collapse
|
15
|
Yuan F, Xie JL, Liu KY, Shan JL, Sun YG, Ying WG. Xanthan gum protects temporomandibular chondrocytes from IL‑1β through Pin1/NF‑κB signaling pathway. Mol Med Rep 2020; 22:1129-1136. [PMID: 32626995 PMCID: PMC7339445 DOI: 10.3892/mmr.2020.11233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/26/2020] [Indexed: 11/09/2022] Open
Abstract
Temporomandibular disorder (TMD) is a complicated and multi-factorial disease related to inflammation and cartilage destruction. Intra-articular injection of xanthan gum (XG) has been demonstrated to protect the joint cartilage and reduce osteoarthritis progression. However, the role and mechanism of XG in TMD is still unclear. In the present study, chondrocytes were isolated from rats and identified by immunofluorescence. Cells were stimulated by XG or interleukin (IL)-1β. Cell viability was analyzed by MTT assay. Tumor necrosis factor α (TNF-α) and IL-6 levels were determined by ELISA. The expression of monocyte chemoattractive protein-1 (MCP-1), inducible nitric oxide synthase (iNOS), collagens, matrix metalloproteinases (MMPs), peptidyl-prolyl isomerase 1 (Pin1) and phosphorylated nuclear factor κB (NF-κB) p65 (p-p65) was analyzed by quantitative PCR or western blotting. MMP activity was assessed by gelatin zymography. Compared with the control, XG treatment partially reversed the IL-1β-reduced cell viability. In addition, IL-1β stimulation increased inflammatory cytokine expression, including TNF-α, IL-6 secretion, MCP-1 and iNOS expression, whereas XG treatment reduced the expression of these inflammatory cytokines compared with that of the IL-1β-stimulated cells. Additionally, XG increased the expression of collagen, but reduced MMP expression and activity as compared with that in the IL-1β group. In addition, XG treatment prevented the IL-1β-increased Pin1 and p-p65 expression. These data suggested that XG reduced the expression of inflammatory cytokines and may maintain the balance between collagens and MMPs partially through the Pin1/NF-κB signaling pathway in IL-1β-stimulated temporomandibular chondrocytes. Therefore, XG may be useful in the treatment of TMD.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Prosthodontics, East Branch, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Jian-Li Xie
- Department of Prosthodontics, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Ke-Yin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250001, P.R. China
| | - Jian-Liang Shan
- Department of Prosthodontics, Shungeng Branch, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Yu-Gang Sun
- Department of Prosthodontics, Shungeng Branch, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Wang-Gui Ying
- Department of Prosthodontics, Shungeng Branch, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| |
Collapse
|
16
|
Sun Q, Fan G, Zhuo Q, Dai W, Ye Z, Ji S, Xu W, Liu W, Hu Q, Zhang Z, Liu M, Yu X, Xu X, Qin Y. Pin1 promotes pancreatic cancer progression and metastasis by activation of NF-κB-IL-18 feedback loop. Cell Prolif 2020; 53:e12816. [PMID: 32347623 PMCID: PMC7260075 DOI: 10.1111/cpr.12816] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives Accumulated evidence suggests that Pin1 contributes to oncogenesis of diverse cancers. However, the underlying mechanism of oncogenic function of Pin1 in PDAC requires further exploration. Materials and Methods IHC was performed using PDAC tissues. Western blot, PCR, immunofluorescence and transwell were performed using cell lines. GSEA were applied for possible downstream pathways. ChIP assay and dual luciferase were used for assessment of transcriptional activity. Results Both Pin1 and IL‐18 levels are increased in primary PDAC tissues and that their levels are positively correlated. High expression of IL‐18 is a predictor of poor prognoses. Pin1 promoted pancreatic cancer cell proliferation and motility by increasing IL‐18 expression, while Pin1 knockdown also inhibited the tumour‐promoting effect of IL‐18. Both Pin1 and IL‐18 could enhance the NFκB activity in pancreatic cancer cells. When bound to the p65 protein, Pin1 promoted p65 phosphorylation and its nuclear translocation. In the nucleus, Pin1 and p65 simultaneously bound to the IL‐18 promoter and enhanced IL‐18 transcription. In addition, recruitment of p65 to the IL‐18 promoter was decreased in Pin1‐silenced cells. Conclusions Our study improves the understanding of Pin1 in tumour‐promoting inflammation in PDAC, which is a hallmark of cancer; Pin1 interacted with p65 in PDAC and enhanced NF‐κB signalling and downstream transcriptional activation of IL‐18, with increased IL‐18 continuously activating NF‐κB signalling, which then forms a positive feedback loop.
Collapse
Affiliation(s)
- Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Weixing Dai
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| |
Collapse
|
17
|
Pu W, Zheng Y, Peng Y. Prolyl Isomerase Pin1 in Human Cancer: Function, Mechanism, and Significance. Front Cell Dev Biol 2020; 8:168. [PMID: 32296699 PMCID: PMC7136398 DOI: 10.3389/fcell.2020.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/29/2020] [Indexed: 02/05/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is an evolutionally conserved and unique enzyme that specifically catalyzes the cis-trans isomerization of phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif and, subsequently, induces the conformational change of its substrates. Mounting evidence has demonstrated that Pin1 is widely overexpressed and/or overactivated in cancer, exerting a critical influence on tumor initiation and progression via regulation of the biological activity, protein degradation, or nucleus-cytoplasmic distribution of its substrates. Moreover, Pin1 participates in the cancer hallmarks through activating some oncogenes and growth enhancers, or inactivating some tumor suppressors and growth inhibitors, suggesting that Pin1 could be an attractive target for cancer therapy. In this review, we summarize the findings on the dysregulation, mechanisms, and biological functions of Pin1 in cancer cells, and also discuss the significance and potential applications of Pin1 dysregulation in human cancer.
Collapse
Affiliation(s)
- Wenchen Pu
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuanyuan Zheng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
18
|
Hu X, Chen LF. Pinning Down the Transcription: A Role for Peptidyl-Prolyl cis-trans Isomerase Pin1 in Gene Expression. Front Cell Dev Biol 2020; 8:179. [PMID: 32266261 PMCID: PMC7100383 DOI: 10.3389/fcell.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Pin1 is a peptidyl-prolyl cis-trans isomerase that specifically binds to a phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif and catalyzes the cis-trans isomerization of proline imidic peptide bond, resulting in conformational change of its substrates. Pin1 regulates many biological processes and is also involved in the development of human diseases, like cancer and neurological diseases. Many Pin1 substrates are transcription factors and transcription regulators, including RNA polymerase II (RNAPII) and factors associated with transcription initiation, elongation, termination and post-transcription mRNA decay. By changing the stability, subcellular localization, protein-protein or protein-DNA/RNA interactions of these transcription related proteins, Pin1 modulates the transcription of many genes related to cell proliferation, differentiation, apoptosis and immune response. Here, we will discuss how Pin regulates the properties of these transcription relevant factors for effective gene expression and how Pin1-mediated transcription contributes to the diverse pathophysiological functions of Pin1.
Collapse
Affiliation(s)
- Xiangming Hu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
19
|
Yu JH, Im CY, Min SH. Function of PIN1 in Cancer Development and Its Inhibitors as Cancer Therapeutics. Front Cell Dev Biol 2020; 8:120. [PMID: 32258027 PMCID: PMC7089927 DOI: 10.3389/fcell.2020.00120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Peptidyl-prolyl isomerase (PIN1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which results in the alteration of protein structure, function, and stability. The altered structure and function of these phosphorylated proteins regulated by PIN1 are closely related to cancer development. PIN1 is highly expressed in human cancers and promotes cancer as well as cancer stem cells by breaking the balance of oncogenes and tumor suppressors. In this review, we discuss the roles of PIN1 in cancer and PIN1-targeted small-molecule compounds.
Collapse
Affiliation(s)
- Ji Hoon Yu
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| | - Chun Young Im
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| | - Sang-Hyun Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| |
Collapse
|
20
|
Pin1 Plays Essential Roles in NASH Development by Modulating Multiple Target Proteins. Cells 2019; 8:cells8121545. [PMID: 31795496 PMCID: PMC6952946 DOI: 10.3390/cells8121545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Pin1 is one of the three known prolyl-isomerase types and its hepatic expression level is markedly enhanced in the obese state. Pin1 plays critical roles in favoring the exacerbation of both lipid accumulation and fibrotic change accompanying inflammation. Indeed, Pin1-deficient mice are highly resistant to non-alcoholic steatohepatitis (NASH) development by either a high-fat diet or methionine-choline-deficient diet feeding. The processes of NASH development can basically be separated into lipid accumulation and subsequent fibrotic change with inflammation. In this review, we outline the molecular mechanisms by which increased Pin1 promotes both of these phases of NASH. The target proteins of Pin1 involved in lipid accumulation include insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase 1 (ACC1), while the p60 of the NF-kB complex and transforming growth factor β (TGF-β) pathway appear to be involved in the fibrotic process accelerated by Pin1. Interestingly, Pin1 deficiency does not cause abnormalities in liver size, appearance or function. Therefore, we consider the inhibition of increased Pin1 to be a promising approach to treating NASH and preventing hepatic fibrosis.
Collapse
|
21
|
Nakada S, Kuboki S, Nojima H, Yoshitomi H, Furukawa K, Takayashiki T, Takano S, Miyazaki M, Ohtsuka M. Roles of Pin1 as a Key Molecule for EMT Induction by Activation of STAT3 and NF-κB in Human Gallbladder Cancer. Ann Surg Oncol 2019; 26:907-917. [PMID: 30610554 DOI: 10.1245/s10434-018-07132-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite developments in multidisciplinary treatment, the prognosis for advanced gallbladder cancer (GBC) still is poor because of its rapid progression. Epithelial-mesenchymal transition (EMT) plays a central role in promoting tumor invasion and metastasis in malignancies thorough signal transducer and activator of transcription-3 (STAT3) and nuclear factor κB (NF-κB) activation. Whereas Pin1 mediates STAT3 and NF-κB activation, the involvement of Pin1 in GBC progression is unclear. METHODS Factors regulating Pin1-related STAT3 and NF-κB activation were evaluated using surgical specimens collected from 76 GBC patients, GBC cells, and orthotopic GBC xenograft mice. RESULTS In the patients with GBC, high Pin1 expression in GBC was associated with aggressive tumor invasion and increased tumor metastasis, and was an independent factor for a poor prognosis. Pin1 expression was correlated with phosphorylation of STAT3(Ser727) and NF-κB-p65(Ser276), thereby activating STAT3 and NF-κB in GBC. Pin1-mediated STAT3 and NF-κB activation induced EMT in GBC. When Pin1 knockdown was performed in GBC cells, the phosphorylation of STAT3(Ser727) and NF-κB-p65(Ser276) was inhibited, and STAT3 and NF-κB activation was suppressed. Inactivation of STAT3 and NF-κB in Pin1-depleted cells decreased snail and zeb-2 expression, thereby reducing the rate of mesenchymal-like cells, suggesting that EMT was inhibited in GBC cells. PiB, a Pin1-specific inhibitor, inhibited EMT and reduced tumor cell invasion by inactivating STAT3 and NF-κB in vitro. Moreover, PiB treatment inhibited lymph node metastasis and intrahepatic metastasis in orthotopic GBC xenograft tumor in vivo. CONCLUSIONS Pin1 accelerates GBC invasion and metastasis by activating STAT3 and NF-κB. Therefore, Pin1 inhibition by PiB is an excellent therapy for GBC by safely inhibiting its metastasis.
Collapse
Affiliation(s)
- Shinichiro Nakada
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Hiroyuki Nojima
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
22
|
Celastrol strongly inhibits proliferation, migration and cancer stem cell properties through suppression of Pin1 in ovarian cancer cells. Eur J Pharmacol 2019; 842:146-156. [DOI: 10.1016/j.ejphar.2018.10.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022]
|
23
|
The Multiple Roles of Peptidyl Prolyl Isomerases in Brain Cancer. Biomolecules 2018; 8:biom8040112. [PMID: 30314361 PMCID: PMC6316532 DOI: 10.3390/biom8040112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Peptidyl prolyl isomerases (PPIases) are broadly expressed enzymes that accelerate the cis-trans isomerization of proline peptide bonds. The most extensively studied PPIase family member is protein interacting with never in mitosis A1 (PIN1), which isomerizes phosphorylated serine/threonine–proline bonds. By catalyzing this specific cis-trans isomerization, PIN1 can alter the structure of its target proteins and modulate their activities in a number of different ways. Many proteins are targets of proline-directed phosphorylation and thus PIN1-mediated isomerization of proline bonds represents an important step in the regulation of a variety of cellular mechanisms. Numerous other proteins in addition to PIN1 are endowed with PPIase activity. These include other members of the parvulin family to which PIN1 belongs, such as PIN4, as well as several cyclophilins and FK506-binding proteins. Unlike PIN1, however, these other PPIases do not isomerize phosphorylated serine/threonine–proline bonds and have different substrate specificities. PIN1 and other PPIases are overexpressed in many types of cancer and have been implicated in various oncogenic processes. This review will discuss studies providing evidence for multiple roles of PIN1 and other PPIases in glioblastoma and medulloblastoma, the most frequent adult and pediatric primary brain tumors.
Collapse
|
24
|
Pyo JS, Son BK, Oh IH. Cytoplasmic Pin1 expression is correlated with poor prognosis in colorectal cancer. Pathol Res Pract 2018; 214:1848-1853. [PMID: 30244946 DOI: 10.1016/j.prp.2018.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study was to determine the clinicopathological significance and prognostic role of Pin1 expression and subcellular localization in colorectal cancer (CRC). METHODS The Pin1 expression, as well as cytoplasmic and nuclear localization, was investigated using immunohistochemistry in 265 human CRC tissues. The impact of subcellular localization of Pin1 on clinicopathological significance and prognosis in CRC was evaluated. RESULTS Pin1 was expressed in 164 of 265 CRCs (61.9%). Pin1 expression was not significantly correlated with any clinicopathological parameters. However, Pin1 expression was significantly correlated with worse overall and recurrence-free survivals (P = 0.002 and P = 0.001, respectively). CRCs with only nuclear Pin1 expression showed no difference in survival compared to CRCs with no Pin1 expression. Over half (51.7%, 137/265) of the CRCs had any cytoplasmic Pin1 expression, and 26.8% (71/265) had both cytoplasmic and nuclear expression. Cytoplasmic Pin1 expression was more frequent than only nuclear or no Pin1 expression in cases with vascular invasion and distant metastasis. Cytoplasmic Pin1 expression was significantly correlated with worse overall and recurrence-free survivals (P < 0.001 and P < 0.001, respectively). CONCLUSION Taken together, our results indicated different prognostic roles of subcellular Pin1expression in CRC. Cytoplasmic expression of Pin1, with or without nuclear expression, is an important factor in predicting aggressive tumor behavior and worse prognosis.
Collapse
Affiliation(s)
- Jung-Soo Pyo
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Byoung Kwan Son
- Department of Internal Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul, Republic of Korea.
| | - Il Hwan Oh
- Department of Internal Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Prolyl isomerase Pin1: a promoter of cancer and a target for therapy. Cell Death Dis 2018; 9:883. [PMID: 30158600 PMCID: PMC6115400 DOI: 10.1038/s41419-018-0844-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
Abstract
Pin1 is the only known peptidyl-prolyl cis–trans isomerase (PPIase) that specifically recognizes and isomerizes the phosphorylated Serine/Threonine-Proline (pSer/Thr-Pro) motif. The Pin1-mediated structural transformation posttranslationally regulates the biofunctions of multiple proteins. Pin1 is involved in many cellular processes, the aberrance of which lead to both degenerative and neoplastic diseases. Pin1 is highly expressed in the majority of cancers and its deficiency significantly suppresses cancer progression. According to the ground-breaking summaries by Hanahan D and Weinberg RA, the hallmarks of cancer comprise ten biological capabilities. Multiple researches illuminated that Pin1 contributes to these aberrant behaviors of cancer via promoting various cancer-driving pathways. This review summarized the detailed mechanisms of Pin1 in different cancer capabilities and certain Pin1-targeted small-molecule compounds that exhibit anticancer activities, expecting to facilitate anticancer therapies by targeting Pin1.
Collapse
|
26
|
Chen M, Xia Y, Tan Y, Jiang G, Jin H, Chen Y. Downregulation of microRNA-370 in esophageal squamous-cell carcinoma is associated with cancer progression and promotes cancer cell proliferation via upregulating PIN1. Gene 2018; 661:68-77. [PMID: 29605603 DOI: 10.1016/j.gene.2018.03.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/03/2023]
Abstract
PIN1 is a peptidyl-prolyl cis/trans isomerase (PPIase) that controls cell fate by regulating multiple signal transduction pathways and is found to be overexpressed in a variety of malignant tumors. Herein, we found the expression of PIN1 is up-regulated while miRNA-370 (miR-370) down-regulated in both esophageal squamous-cell carcinoma (ESCC) tissues and cells. Transfection of miR-370 can significantly decrease PIN1 expression in targeting ESCC cells. Overexpression of miR-370 can induce decreased cell proliferation and cell cycle arrest, as well as increased apoptosis in ESCC cells, while this function can be significantly prevented by co-transfection of PIN1. Further experimental results demonstrated that β-catenin, cyclin D1, and caspase activation might be involved in miR-370/PIN1 induced growth inhibition and apoptosis. Besides, low miR-370 and high PIN1 expression significantly correlated with tumor diameter, poor differentiation, tumor invasion and lymph node metastasis in patients diagnosed with ESCC. In conclusion, downregulation of miR-370 in ESCC is associated with cancer progression and promotes cancer cell proliferation via upregulating PIN1, which might be a potential therapeutic target and adverse prognostic factor in the clinic.
Collapse
Affiliation(s)
- Mingzhi Chen
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, PR China; Department of Thoracic and Cardiovascular Surgery, Yixing People's Hospital affiliated to Jiangsu University, 75 Tongzhen Road, Yixing, Jiangsu Province 214200, PR China
| | - Yang Xia
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, PR China
| | - Yongfei Tan
- Department of Thoracic and Cardiovascular Surgery, Yixing People's Hospital affiliated to Jiangsu University, 75 Tongzhen Road, Yixing, Jiangsu Province 214200, PR China
| | - Guojun Jiang
- Department of Thoracic and Cardiovascular Surgery, Yixing People's Hospital affiliated to Jiangsu University, 75 Tongzhen Road, Yixing, Jiangsu Province 214200, PR China
| | - Hai Jin
- Department of Thoracic Surgery, Changhai Hospital affiliated to the Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, PR China.
| |
Collapse
|
27
|
Liang ES, Cheng W, Yang RX, Bai WW, Liu X, Zhao YX. Peptidyl-prolyl isomerase Pin1 deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation in ApoE -/- mice. J Mol Cell Cardiol 2017; 114:334-344. [PMID: 29269260 DOI: 10.1016/j.yjmcc.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/29/2017] [Accepted: 12/17/2017] [Indexed: 11/25/2022]
Abstract
Peptidyl-prolyl isomerase Pin1 has been reported to be associated with endothelial dysfunction. However, the role of smooth muscle Pin1 in the vascular system remains unclear. Here, we examined the potential function of Pin1 in smooth muscle cells (SMCs) and its contribution to abdominal aortic aneurysm (AAA) pathogenesis. The level of Pin1 expression was found to be elevated in human AAA tissues and mainly localized to SMCs. We constructed smooth muscle-specific Pin1 knockout mice to explore the role of this protein in AAA formation and to elucidate the underlying mechanisms. AAA formation and elastin degradation were hindered by Pin1 depletion in the angiotensin II-induced mouse model. Pin1 depletion reversed the angiotensin II-induced pro-inflammatory and synthetic SMC phenotype switching via the nuclear factor (NF)-κB p65/Klf4 axis. Moreover, Pin1 depletion inhibited the angiotensin II-induced matrix metalloprotease activities. Mechanically, Pin1 deficiency destabilized NF-κB p65 by promoting its polyubiquitylation. Further, we found STAT1/3 bound to the Pin1 promoter, revealing that activation of STAT1/3 was responsible for the increased expression of Pin1 under angiotensin II stimulation. Thus, these results suggest that Pin1 regulates pro-inflammatory and synthetic SMC phenotype switching and could be a novel therapeutic target to limit AAA pathogenesis.
Collapse
Affiliation(s)
- Er-Shun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wen Cheng
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Rui-Xue Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wen-Wu Bai
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yu-Xia Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
28
|
Wang J, Liu K, Wang XF, Sun DJ. Juglone reduces growth and migration of U251 glioblastoma cells and disrupts angiogenesis. Oncol Rep 2017; 38:1959-1966. [PMID: 28791366 PMCID: PMC5652942 DOI: 10.3892/or.2017.5878] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/21/2017] [Indexed: 01/11/2023] Open
Abstract
Accumulating data show that prolylisomerase (Pin1) is overexpressed in human glioblastoma multiforme (GBM) specimens. Therefore, Pin1 inhibitors should be investigated as a new chemotherapeutic drug that may enhance the clinical management of human gliomas. Recently, juglone, a Pin1 inhibitor, was shown to exhibit potent anticancer activity in various tumor cells, but its role in human glioma cells remains unknown. In the present study, we determined if juglone exerts antitumor effects in the U251 human glioma cell line and investigated its potential underlying molecular mechanisms. Cell survival, apoptosis, migration, angiogenesis and molecular targets were identified with multiple detection techniques including the MTT cell proliferation assay, dual acridine orange/ethidium bromide staining, electron microscopy, Transwell migration assay, chick chorioallantoic membrane assay, quantitative real-time polymerase chain reaction and immunoblotting. The results showed that 5–20 µM juglone markedly suppressed cell proliferation, induced apoptosis, and enhanced caspase-3 activity in U251 cells in a dose- and time-dependent manner. Moreover, juglone inhibited cell migration and the formation of new blood vessels. At the molecular level, juglone markedly suppressed Pin1 levels in a time-dependent manner. TGF-β1/Smad signaling, a critical upstream regulator of miR-21, was also suppressed by juglone. Moreover, the transient overexpression of Pin1 reversed its antitumor effects in U251 cells and inhibited juglone-mediated changes to the TGF-β1/miR-21 signaling pathway. These findings suggest that juglone inhibits cell growth by causing apoptosis, thereby inhibiting the migration of U251 glioma cells and disrupting angiogenesis; and that Pin1 is a critical target for juglones antitumor activity. The present study provides evidence that juglone has in vitro efficacy against glioma. Therefore, additional studies are warranted to examine the clinical potential of juglone in human gliomas.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Ke Liu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xiao-Feng Wang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Dian-Jun Sun
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
29
|
Soubannier V, Stifani S. NF-κB Signalling in Glioblastoma. Biomedicines 2017; 5:biomedicines5020029. [PMID: 28598356 PMCID: PMC5489815 DOI: 10.3390/biomedicines5020029] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor regulating a wide array of genes mediating numerous cellular processes such as proliferation, differentiation, motility and survival, to name a few. Aberrant activation of NF-κB is a frequent event in numerous cancers, including glioblastoma, the most common and lethal form of brain tumours of glial cell origin (collectively termed gliomas). Glioblastoma is characterized by high cellular heterogeneity, resistance to therapy and almost inevitable recurrence after surgery and treatment. NF-κB is aberrantly activated in response to a variety of stimuli in glioblastoma, where its activity has been implicated in processes ranging from maintenance of cancer stem-like cells, stimulation of cancer cell invasion, promotion of mesenchymal identity, and resistance to radiotherapy. This review examines the mechanisms of NF-κB activation in glioblastoma, the involvement of NF-κB in several mechanisms underlying glioblastoma propagation, and discusses some of the important questions of future research into the roles of NF-κB in glioblastoma.
Collapse
Affiliation(s)
- Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada.
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada.
| |
Collapse
|
30
|
Prolyl isomerase PIN1 regulates the stability, transcriptional activity and oncogenic potential of BRD4. Oncogene 2017; 36:5177-5188. [PMID: 28481868 PMCID: PMC5589477 DOI: 10.1038/onc.2017.137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/23/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
BRD4 has emerged as an important factor in tumorigenesis by promoting the transcription of genes involved in cancer development. However, how BRD4 is regulated in cancer cells remains largely unknown. Here, we report that the stability and functions of BRD4 are positively regulated by prolyl-isomerase PIN1 in gastric cancer cells. PIN1 directly binds to phosphorylated threonine (T) 204 of BRD4 as revealed by peptide binding and crystallographic studies and enhances BRD4’s stability by inhibiting its ubiquitination. PIN1 also catalyses the isomerization of proline 205 of BRD4 and induces its conformational change, which promotes its interaction with CDK9 and increases BRD4’s transcriptional activity. Substitution of BRD4 with PIN1 binding-defective BRD4-T204A mutant in gastric cancer cells reduces BRD4’s stability, attenuates BRD4-mediated gene expression by impairing its interaction with CDK9, and suppresses gastric cancer cell proliferation, migration and invasion, and tumor formation. Our results identify BRD4 as a new target of PIN1 and suggest that interfering with their interaction could be a potential therapeutic approach for cancer treatment.
Collapse
|
31
|
MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep 2017; 7:45915. [PMID: 28383568 PMCID: PMC5382892 DOI: 10.1038/srep45915] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/06/2017] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer related-death. As a major common regulator of numerous cancer-driving pathways and a unique therapeutic target, the prolyl isomerase Pin1 is overexpressed in a majority of HCCs, whereas the mechanism underlying Pin1 overexpression remains elusive. Here we find that miR-140-5p inhibits HCC by directly targeting Pin1 to block multiple cancer-driving pathways. Bioinformatics analysis, miRNA binding and functional assays identify that miR-140-5p directly interacts with the 3′UTR of Pin1 and inhibits Pin1 translation. Furthermore, like stable Pin1 knockdown, moderate overexpression of miR-140-5p not only eliminates Pin1, but also inhibits cells growth and metastasis. Importantly, these effects of miR-140-5p are largely rescued by reconstitution of Pin1. Moreover, miR-140-5p inhibits multiple Pin1-dependent cancer pathways and suppresses tumor growth in mice. The clinical significance of these findings has been substantiated by the demonstrations that miR-140-5p is frequently down-regulated and inversely correlated with Pin1 overexpression in HCC tissues and cell lines. Given prevalent miR-140-5p downregulation in other cancers and major impact of Pin1 overexpression on activating numerous cancer-driving pathways including global miRNA downregulation, the miR-140-5p/Pin1 axis may play a major role in tumorigenesis and offer promising therapeutic targets for HCC and other cancers.
Collapse
|
32
|
Xu T, Zhang H, Park SS, Venneti S, Kuick R, Ha K, Michael LE, Santi M, Uchida C, Uchida T, Srinivasan A, Olson JM, Dlugosz AA, Camelo-Piragua S, Rual JF. Loss of Pin1 Suppresses Hedgehog-Driven Medulloblastoma Tumorigenesis. Neoplasia 2017; 19:216-225. [PMID: 28167297 PMCID: PMC5293723 DOI: 10.1016/j.neo.2017.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/09/2017] [Indexed: 01/30/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Therapeutic approaches to medulloblastoma (combination of surgery, radiotherapy, and chemotherapy) have led to significant improvements, but these are achieved at a high cost to quality of life. Alternative therapeutic approaches are needed. Genetic mutations leading to the activation of the Hedgehog pathway drive tumorigenesis in ~30% of medulloblastoma. In a yeast two-hybrid proteomic screen, we discovered a novel interaction between GLI1, a key transcription factor for the mediation of Hedgehog signals, and PIN1, a peptidylprolyl cis/trans isomerase that regulates the postphosphorylation fate of its targets. The GLI1/PIN1 interaction was validated by reciprocal pulldowns using epitope-tagged proteins in HEK293T cells as well as by co-immunoprecipiations of the endogenous proteins in a medulloblastoma cell line. Our results support a molecular model in which PIN1 promotes GLI1 protein abundance, thus contributing to the positive regulation of Hedgehog signals. Most importantly, in vivo functional analyses of Pin1 in the GFAP-tTA;TRE-SmoA1 mouse model of Hedgehog-driven medulloblastoma demonstrate that the loss of Pin1 impairs tumor development and dramatically increases survival. In summary, the discovery of the GLI1/PIN1 interaction uncovers PIN1 as a novel therapeutic target in Hedgehog-driven medulloblastoma tumorigenesis.
Collapse
Affiliation(s)
- Tao Xu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Honglai Zhang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sung-Soo Park
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sriram Venneti
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rork Kuick
- Center for Cancer Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kimberly Ha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lowell Evan Michael
- Departments of Dermatology and Cell & Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Mariarita Santi
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chiyoko Uchida
- Department of Human Development and Culture, Fukushima University, Fukushima, 960-1296, Japan
| | - Takafumi Uchida
- Department of Molecular Cell Science, Tohoku University, Sendai 981-8555, Japan
| | - Ashok Srinivasan
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - James M Olson
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrzej A Dlugosz
- Departments of Dermatology and Cell & Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Sandra Camelo-Piragua
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Jean-François Rual
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Sajadimajd S, Yazdanparast R. Sensitizing effect of juglone is mediated by down regulation of Notch1 signaling pathway in trastuzumab-resistant SKBR3 cells. Apoptosis 2017; 22:135-144. [PMID: 27770268 DOI: 10.1007/s10495-016-1291-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Trastuzumab (Herceptin) monoclonal antibody directed against HER2 receptor has been administered as a treatment for metastatic HER2 positive breast cancer. The problematic issue in treatment of HER2 positive breast cancer cells is commonly the induction of resistance to trastuzumab which might be due to modulation of some vital signaling elements such as Notch1 and Pin1. In this study, we were aimed to investigate whether the cross talk between pin1 and Notch1 has a role in this event. Our results indicated that the expression level of Pin1 in resistant SKBR3 cells increased by about twofold relative to sensitive SKBR3 cells. Besides, Pin1 inhibition via juglone reduced the extent of proliferation, colony formation and migration capacity of resistant SKBR3 cells. In addition, despite a feed forward loop between Notch1 and Pin1 in sensitive SKBR3 cells, inhibition of Notch1 cleavage in resistant SKBR3 cells did not affect pin1 level whereas pin1 inhibition by juglone reduced the level of Hes1, p-Akt and increased the cellular content of Numb. Therefore, we concluded that pin1 inhibition could be considered as a promising sensitizing strategy to weaken trastuzumab resistance.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran.
| |
Collapse
|
34
|
The role of Pin1 in the development and treatment of cancer. Arch Pharm Res 2016; 39:1609-1620. [PMID: 27572155 DOI: 10.1007/s12272-016-0821-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation and post-phosphorylation events regulate many cellular signaling pathways. Peptidyl-prolyl isomerase (Pin1) is the only peptidyl-prolyl cis/trans isomerase that interacts with numerous oncogenic or tumor suppressive phosphorylated proteins, causes conformational changes in target proteins, and eventually regulates the activities of such proteins. These alterations in activity play a pivotal role in tumorigenesis. Since Pin1 is overexpressed and/or activated in various types of cancers, and the dysregulation of proline-directed phosphorylation contributes to tumorigenesis, Pin1 represents an attractive target for cancer therapy. This review will describe the role of Pin1 in cancer and the current status of Pin1 inhibitor development.
Collapse
|
35
|
Rajbhandari R, McFarland BC, Patel A, Gerigk M, Gray GK, Fehling SC, Bredel M, Berbari NF, Kim H, Marks MP, Meares GP, Sinha T, Chuang J, Benveniste EN, Nozell SE. Loss of tumor suppressive microRNA-31 enhances TRADD/NF-κB signaling in glioblastoma. Oncotarget 2016; 6:17805-16. [PMID: 26164206 PMCID: PMC4627347 DOI: 10.18632/oncotarget.4596] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/09/2023] Open
Abstract
Glioblastomas (GBMs) are deadly tumors of the central nervous system. Most GBM exhibit homozygous deletions of the CDKN2A and CDKN2B tumor suppressors at 9p21.3, although loss of CDKN2A/B alone is insufficient to drive gliomagenesis. MIR31HG, which encodes microRNA-31 (miR-31), is a novel non-coding tumor suppressor positioned adjacent to CDKN2A/B at 9p21.3. We have determined that miR-31 expression is compromised in >72% of all GBM, and for patients, this predicts significantly shortened survival times independent of CDKN2A/B status. We show that miR-31 inhibits NF-κB signaling by targeting TRADD, its upstream activator. Moreover, upon reintroduction, miR-31 significantly reduces tumor burden and lengthens survival times in animal models. As such, our work identifies loss of miR-31 as a novel non-coding tumor-driving event in GBM.
Collapse
Affiliation(s)
- Rajani Rajbhandari
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Braden C McFarland
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ashish Patel
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Magda Gerigk
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - G Kenneth Gray
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samuel C Fehling
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Markus Bredel
- Radiation Oncology at the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicolas F Berbari
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hyunsoo Kim
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Margaret P Marks
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gordon P Meares
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tanvi Sinha
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey Chuang
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Etty N Benveniste
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Susan E Nozell
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
36
|
Shinoda K, Kuboki S, Shimizu H, Ohtsuka M, Kato A, Yoshitomi H, Furukawa K, Miyazaki M. Pin1 facilitates NF-κB activation and promotes tumour progression in human hepatocellular carcinoma. Br J Cancer 2015; 113:1323-31. [PMID: 26461058 PMCID: PMC4815797 DOI: 10.1038/bjc.2015.272] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/14/2015] [Accepted: 07/01/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND NF-κB promotes HCC progression; however, therapies targeting NF-κB are not used due to severe adverse reactions. Pin1 is reported to induce tumour progression in vitro. However, the role of Pin1 in HCC is unclear. Moreover, little is known about the mechanism of Pin1-mediated NF-κB activation. METHODS Fresh surgical specimens were collected from 144 HCC patients. Pin1 and NF-κB-p65 expression was evaluated by immunohistochemistry and western blotting. NF-κB activation was assessed by EMSA. RESULTS Pin1 was increased in HCC compared to adjacent liver tissue. The multivariate analysis revealed that high Pin1 expression was an independent factor for poor prognosis. In HCC with high Pin1 expression, tumour size was larger and portal vein invasion was increased. Pin1 expression was correlated with phosphorylated (p-) NF-κB-p65(Thr254) and p-NF-κB-p65(Ser276), and thereby NF-κB activation. Pin1-induced NF-κB activation accelerated cell cycle progression, induced angiogenesis, and inhibited apoptosis. Pin1 knockdown in HCC cells inhibited the phosphorylation of NF-κB-p65(Ser276), and reduced NF-κB activation, which resulted in inhibiting tumour cell progression. When HCC cells were treated with the Pin1 inhibitors, p-NF-κB-p65(Ser276) expression and NF-κB activation was reduced, and cell proliferation was inhibited. CONCLUSIONS Pin1 is associated with aggressive tumour progression and poor prognosis in HCC by mediating NF-κB activation.
Collapse
Affiliation(s)
- Kimio Shinoda
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Hiroaki Shimizu
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Atsushi Kato
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| |
Collapse
|
37
|
Cahill KE, Morshed RA, Yamini B. Nuclear factor-κB in glioblastoma: insights into regulators and targeted therapy. Neuro Oncol 2015; 18:329-39. [PMID: 26534766 DOI: 10.1093/neuonc/nov265] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/24/2015] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a ubiquitous transcription factor that regulates multiple aspects of cancer formation, growth, and treatment response. Glioblastoma (GBM), the most common primary malignant tumor of the central nervous system, is characterized by molecular heterogeneity, resistance to therapy, and high NF-κB activity. In this review, we examine the mechanisms by which oncogenic pathways active in GBM impinge on the NF-κB system, discuss the role of NF-κB signaling in regulating the phenotypic properties that promote GBM and, finally, review the components of the NF-κB pathway that have been targeted for treatment in both preclinical studies and clinical trials. While a direct role for NF-κB in gliomagenesis has not been reported, the importance of this transcription factor in the overall malignant phenotype suggests that more rational and specific targeting of NF-κB-dependent pathways can make a significant contribution to the management of GBM.
Collapse
Affiliation(s)
- Kirk E Cahill
- Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, Illinois
| | - Ramin A Morshed
- Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, Illinois
| | - Bakhtiar Yamini
- Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, Illinois
| |
Collapse
|
38
|
Atabay KD, Yildiz MT, Avsar T, Karabay A, Kiliç T. Knockdown of Pin1 leads to reduced angiogenic potential and tumorigenicity in glioblastoma cells. Oncol Lett 2015; 10:2385-2389. [PMID: 26622856 DOI: 10.3892/ol.2015.3512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/30/2015] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma is the most common and most aggressive type of primary brain tumor. Current approaches in the treatment of glioblastoma are not effective enough to increase patient survival or prevent recurrence following surgery. Consequently, the search for potential drug targets is ongoing. Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1), an isomerase that is overexpressed in various tumors, has become an attractive molecule in cancer research. Pin1 has been reported to regulate proteins involved in essential cellular pathways that mediate cell proliferation, cell cycle progression, differentiation and apoptosis, by altering their stability and function. The results of the present study revealed that knockdown of Pin1 in glioblastoma cells using RNA interference or the selective Pin1 inhibitor, juglone, suppressed the tumorigenic features by reducing cell growth, migration and angiogenic potential. Furthermore, knockdown of Pin1 decreased the levels of vascular endothelial growth factor and matrix metallopeptidase 9, and also triggered apoptosis. Due to the fundamental roles of Pin1 in promoting tumorigenesis, Pin1 inhibitory molecules, including juglone, or alternative synthetic derivatives hold potential for the development of clinical countermeasures against glioblastoma.
Collapse
Affiliation(s)
- Kutay Deniz Atabay
- Prof. Dr. Peter Black Laboratory of Molecular Neurosurgery, Institute of Neurological Sciences, Marmara University, Istanbul, Turkey ; Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Mehmet Taha Yildiz
- Prof. Dr. Peter Black Laboratory of Molecular Neurosurgery, Institute of Neurological Sciences, Marmara University, Istanbul, Turkey ; Department of Biology, Faculty of Arts and Science, Fatih University, Istanbul, Turkey
| | - Timucin Avsar
- Prof. Dr. Peter Black Laboratory of Molecular Neurosurgery, Institute of Neurological Sciences, Marmara University, Istanbul, Turkey ; Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Türker Kiliç
- Prof. Dr. Peter Black Laboratory of Molecular Neurosurgery, Institute of Neurological Sciences, Marmara University, Istanbul, Turkey ; Department of Neurosurgery, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
39
|
Shen ZJ, Malter JS. Regulation of AU-Rich Element RNA Binding Proteins by Phosphorylation and the Prolyl Isomerase Pin1. Biomolecules 2015; 5:412-34. [PMID: 25874604 PMCID: PMC4496679 DOI: 10.3390/biom5020412] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 01/19/2023] Open
Abstract
The accumulation of 3' untranslated region (3'-UTR), AU-rich element (ARE) containing mRNAs, are predominantly controlled at the post-transcriptional level. Regulation appears to rely on a variable and dynamic interaction between mRNA target and ARE-specific binding proteins (AUBPs). The AUBP-ARE mRNA recognition is directed by multiple intracellular signals that are predominantly targeted at the AUBPs. These include (but are unlikely limited to) methylation, acetylation, phosphorylation, ubiquitination and isomerization. These regulatory events ultimately affect ARE mRNA location, abundance, translation and stability. In this review, we describe recent advances in our understanding of phosphorylation and its impact on conformation of the AUBPs, interaction with ARE mRNAs and highlight the role of Pin1 mediated prolyl cis-trans isomerization in these biological process.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8548, USA.
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8548, USA.
| |
Collapse
|
40
|
Mantovani F, Zannini A, Rustighi A, Del Sal G. Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships. Biochim Biophys Acta Gen Subj 2015; 1850:2048-60. [PMID: 25641576 DOI: 10.1016/j.bbagen.2015.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. SCOPE OF REVIEW p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. MAJOR CONCLUSIONS The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. GENERAL SIGNIFICANCE The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets.
Collapse
Affiliation(s)
- Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Alessandro Zannini
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Alessandra Rustighi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy.
| |
Collapse
|
41
|
Ye CG, Liu L, Chen GG, Tang XL, He Z, He ML, Lai PBS. ZBP-89 reduces histone deacetylase 3 by degrading IkappaB in the presence of Pin1. J Transl Med 2015; 13:23. [PMID: 25623232 PMCID: PMC4311446 DOI: 10.1186/s12967-015-0382-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 01/07/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Histone deacetylase 3 (HDAC3) is overexpressed in cancers and its inhibition enhances anti-tumor chemotherapy. ZBP-89, a transcription factor, can induce pro-apoptotic Bak and reduce HDAC3 but the mechanism is unknown. Pin1, a molecular switch that determines the fate of phosphoproteins, is known to interact with HDAC3. The aim of this study was to investigate the mechanism how ZBP-89 downregulated HDAC3. METHODS In this study, liver cells, Pin1-knockout Pin1(-/-) and Pin1 wild-typed Pin(+/+) cells were used to explore how ZBP-89 reduced HDAC3. The overexpression of ZBP-89 was achieved by infecting cells with Ad-ZBP-89, an adenoviral construct containing ZBP-89 gene. The role of NF-κB was determined using CAY10576, MG132 and SN50, the former two being inhibitors of IκB degradation and SN50 being an inhibitor of p65/p50 translocation. A xenograft tumor model was used to confirm the in vitro data. RESULTS ZBP-89 reduced HDAC3, and it could form a complex with IκB and induce IκB phosphorylation to inhibit IκB. Furthermore, ZBP-89-mediated HDAC3 reduction was suppressed by IκB degradation inhibitors CAY10576 and MG132 but not by p65/p50 translocation inhibitor SN50, indicating that IκB decrease rather than the elevated activity of NF-κB contributed to HDAC3 reduction. ZBP-89-mediated HDAC3 or IκB reduction was significantly less obvious in Pin1(-/-) cells compared with Pin1(+/+) cells. In Ad-ZBP-89-infected Pin1(+/+) cancer cells, Pin1 siRNA increased HDAC3 but decreased Bak, compared with cells without ZBP-89 infection. These findings indicate that Pin1 participates in ZBP-89-mediated HDAC3 downregulation and Bak upregulation. The cell culture result was confirmed by in vivo mouse tumor model experiments. CONCLUSIONS ZBP-89 attenuates HDAC3 by increasing IκB degradation. Such attenuation is independent of NF-κB activity but partially depends on Pin1. The novel pathway identified may help generate new anti-cancer strategy by targeting HDAC3 and its related molecules.
Collapse
Affiliation(s)
- Cai Guo Ye
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, NT, P. R. China. .,Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, P. R. China. .,Sino-America Cancer Research Institute, The Guangdong Medical College, Dongguan, Guangdong province, P R China.
| | - Liping Liu
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, P. R. China. .,Department of Hepatobiliary and Pancreas Surgery, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong Province, China.
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, NT, P. R. China. .,Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, P. R. China.
| | - Xiao Lin Tang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, P. R. China.
| | - Zhiwei He
- Sino-America Cancer Research Institute, The Guangdong Medical College, Dongguan, Guangdong province, P R China.
| | - Ming-Liang He
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, NT, P. R. China.
| | - Paul B S Lai
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, NT, P. R. China.
| |
Collapse
|
42
|
KSHV reactivation and novel implications of protein isomerization on lytic switch control. Viruses 2015; 7:72-109. [PMID: 25588053 PMCID: PMC4306829 DOI: 10.3390/v7010072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 12/26/2022] Open
Abstract
In Kaposi’s sarcoma-associated herpesvirus (KSHV) oncogenesis, both latency and reactivation are hypothesized to potentiate tumor growth. The KSHV Rta protein is the lytic switch for reactivation. Rta transactivates essential genes via interactions with cofactors such as the cellular RBP-Jk and Oct-1 proteins, and the viral Mta protein. Given that robust viral reactivation would facilitate antiviral responses and culminate in host cell lysis, regulation of Rta’s expression and function is a major determinant of the latent-lytic balance and the fate of infected cells. Our lab recently showed that Rta transactivation requires the cellular peptidyl-prolyl cis/trans isomerase Pin1. Our data suggest that proline‑directed phosphorylation regulates Rta by licensing binding to Pin1. Despite Pin1’s ability to stimulate Rta transactivation, unchecked Pin1 activity inhibited virus production. Dysregulation of Pin1 is implicated in human cancers, and KSHV is the latest virus known to co-opt Pin1 function. We propose that Pin1 is a molecular timer that can regulate the balance between viral lytic gene expression and host cell lysis. Intriguing scenarios for Pin1’s underlying activities, and the potential broader significance for isomerization of Rta and reactivation, are highlighted.
Collapse
|
43
|
Abstract
FBW7 (F-box and WD repeat domain-containing 7) or Fbxw7 is a tumor suppressor, which promotes the ubiquitination and subsequent degradation of numerous oncoproteins including Mcl-1, Cyclin E, Notch, c- Jun, and c-Myc. In turn, FBW7 is regulated by multiple upstream factors including p53, C/EBP-δ, EBP2, Pin1, Hes-5 and Numb4 as well as by microRNAs such as miR-223, miR-27a, miR-25, and miR-129-5p. Given that the Fbw7 tumor suppressor is frequently inactivated or deleted in various human cancers, targeting FBW7 regulators is a promising anti-cancer therapeutic strategy.
Collapse
|
44
|
Cho YA, Jue SS, Bae WJ, Heo SH, Shin SI, Kwon IK, Lee SC, Kim EC. PIN1 inhibition suppresses osteoclast differentiation and inflammatory responses. J Dent Res 2014; 94:371-80. [PMID: 25512367 DOI: 10.1177/0022034514563335] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inflammatory responses and osteoclast differentiation play pivotal roles in the pathogenesis of osteolytic bone diseases such as periodontitis. Although overexpression or inhibition of peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1) offers a possible therapeutic strategy for chronic inflammatory diseases, the role of PIN1 in periodontal disease is unclear. The aim of the present study was to evaluate PIN1 expression in periodontitis patients as well as the effects of PIN1 inhibition by juglone or PIN1 small-interfering RNA (siRNA) and of PIN1 overexpression using a recombinant adenovirus encoding PIN1 (Ad-PIN1) on the inflammatory response and osteoclastic differentiation in lipopolysaccharide (LPS)- and nicotine-stimulated human periodontal ligament cells (PDLCs). PIN1 was up-regulated in chronically inflamed PDLCs from periodontitis patients and in LPS- and nicotine-exposed PDLCs. Inhibition of PIN1 by juglone or knockdown of PIN1 gene expression by siRNA markedly attenuated LPS- and nicotine-stimulated prostaglandin E2 (PGE2) and nitric oxide (NO) production, as well as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, whereas PIN1 overexpression by Ad-PIN1 increased it. LPS- and nicotine-induced nuclear factor (NF)-κB activation was blocked by juglone and PIN1 siRNA but increased by Ad-PIN1. Conditioned medium prepared from LPS- and nicotine-treated PDLCs increased the number of tartrate-resistant acid phosphatase-stained osteoclasts and osteoclast-specific gene expression. These responses were blocked by PIN1 inhibition and silencing but stimulated by Ad-PIN1. Furthermore, juglone and PIN1 siRNA inhibited LPS- and nicotine-induced osteoclastogenic cytokine expression in PDLCs. This study is the first to demonstrate that PIN1 inhibition exhibits anti-inflammatory effects and blocks osteoclastic differentiation in LPS- and nicotine-treated PDLCs. PIN1 inhibition may be a therapeutic strategy for inflammatory osteolysis in periodontal disease.
Collapse
Affiliation(s)
- Y-A Cho
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - S-S Jue
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - W-J Bae
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - S-H Heo
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - S-I Shin
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - I-K Kwon
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - S-C Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - E-C Kim
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Gray GK, McFarland BC, Nozell SE, Benveniste EN. NF-κB and STAT3 in glioblastoma: therapeutic targets coming of age. Expert Rev Neurother 2014; 14:1293-306. [PMID: 25262780 DOI: 10.1586/14737175.2014.964211] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since we last addressed the roles of NF-κB and JAK/STAT3 signaling in glioblastoma (GBM) 5 years ago, tremendous strides have been made in the understanding of these two pathways in glioma biology. Contributing to prosurvival mechanisms, cancer stem cell maintenance and treatment resistance, both NF-κB and STAT3 have been characterized as major drivers of GBM. In this review, we address general improvements in the molecular understanding of GBM, the structure of NF-κB and STAT3 signaling, the ways in which these pathways contribute to GBM and advances in preclinical and clinical targeting of these two signaling cascades.
Collapse
Affiliation(s)
- G Kenneth Gray
- Department of Cell, Developmental and Integrative Biology, 1900 University Blvd, THT 926A, University of Alabama at Birmingham, Birmingham, AL, 35294-0006, USA
| | | | | | | |
Collapse
|
46
|
Sorrentino G, Comel A, Mantovani F, Del Sal G. Regulation of mitochondrial apoptosis by Pin1 in cancer and neurodegeneration. Mitochondrion 2014; 19 Pt A:88-96. [PMID: 25132079 DOI: 10.1016/j.mito.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/15/2022]
Abstract
Mitochondria are sensitive and efficient organelles that regulate essential biological processes including: energy metabolism, decoding and transduction of intracellular signals, and balance between cell death and survival. Of note, dysfunctions in mitochondrial physiology are a general hallmark of cancer cells, leading to transformation-related features such as altered cellular metabolism, survival under stress conditions and reduced apoptotic response to chemotherapy. Mitochondrial apoptosis is a finely regulated process that derives from activation of multiple signaling networks. A crucial biochemical requirement for transducing pro-apoptotic stimuli is represented by kinase-dependent phosphorylation cascades. In this context a pivotal role is played by the prolyl-isomerase Pin1, which translates Ser/Thr-Pro phosphorylation into conformational changes able to modify the activities of its substrates. In this review we will discuss the impact of Pin1 in regulating various aspects of apoptosis in different biological contexts with particular emphasis on cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Anna Comel
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy.
| |
Collapse
|
47
|
Paneni F, Costantino S, Castello L, Battista R, Capretti G, Chiandotto S, D'Amario D, Scavone G, Villano A, Rustighi A, Crea F, Pitocco D, Lanza G, Volpe M, Del Sal G, Lüscher TF, Cosentino F. Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes. Eur Heart J 2014; 36:817-28. [DOI: 10.1093/eurheartj/ehu179] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/31/2014] [Indexed: 12/26/2022] Open
|
48
|
Xu HR, Xu ZF, Sun YL, Han JJ, Li ZJ. The -842G/C polymorphisms of PIN1 contributes to cancer risk: a meta-analysis of 10 case-control studies. PLoS One 2013; 8:e71516. [PMID: 24013949 PMCID: PMC3754937 DOI: 10.1371/journal.pone.0071516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/30/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) plays an important role in cancer development. The relationship between PIN1 -842G/C (rs2233678) polymorphism and cancer risk was inconclusive according to published literature. METHODOLOGY/PRINCIPAL FINDINGS A literature search, up to February 2013, was carried out using PubMed, EMBASE and the China National Knowledge Infrastructure (CNKI) database. A total of 10 case-control studies including 4619 cases and 4661 controls contributed to the quantitative analysis. Odds ratio (OR) and 95% confidence intervals (95% CI) were used to assess the strength of association. Overall, individuals with the variant CG (OR = 0.728, 95% CI: 0.585,0.906; Pheterogeneity<0.01) and CG/CC (OR = 0.731, 95% CI: 0.602,0.888; Pheterogeneity<0.01) genotypes were associated with a significantly reduced cancer risk compared with those with wild GG genotype. Sub-group analysis revealed that the variant CG (OR = 0.635, 95% CI: 0.548,0.735; Pheterogeneity = 0.240) and CG/CC (OR = 0.645, 95% CI: 0.559,0.744, Pheterogeneity = 0.258) genotypes still showed an reduced risk of cancer in Asians; while no significant association was observed in Caucasians (CG vs.GG: OR = 0.926, 95% CI: 0.572,1.499, Pheterogeneity<0.01; CG/CC vs. GG: OR = 0.892, 95% CI: 0.589,1.353; Pheterogeneity<0.01). Furthermore, sensitivity analysis confirmed the stability of results. Begg's funnel plot and Egger's test did not reveal any publication bias. CONCLUSIONS This meta-analysis suggests that the PIN1 -842G/C polymorphism is associated with a significantly reduced risk of cancer, especially in Asian populations.
Collapse
Affiliation(s)
- Hui-Rong Xu
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zhong-Fa Xu
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Yan-Lai Sun
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Jian-Jun Han
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zeng-Jun Li
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Science, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
49
|
Ghaffari SH, Momeny M, Bashash D, Mirzaei R, Ghavamzadeh A, Alimoghaddam K. Cytotoxic effect of arsenic trioxide on acute promyelocytic leukemia cells through suppression of NFkβ-dependent induction of hTERT due to down-regulation of Pin1 transcription. Hematology 2013; 17:198-206. [DOI: 10.1179/1607845412y.0000000008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Seyed H. Ghaffari
- Department of HematologyOncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Department of HematologyOncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of HematologyOncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; and Department of Hematology, Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roohollah Mirzaei
- Department of HematologyOncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Department of HematologyOncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Department of HematologyOncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
The long pentraxin PTX3 as a correlate of cancer-related inflammation and prognosis of malignancy in gliomas. J Neuroimmunol 2013; 260:99-106. [DOI: 10.1016/j.jneuroim.2013.04.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 02/01/2023]
|