1
|
Meng S, Whitt AG, Eaton JW, Yaddanapudi K, Li C. The efficacy of an embryonic stem cell-based vaccine for lung cancer prevention depends on the undifferentiated state of the stem cells. Sci Rep 2024; 14:32127. [PMID: 39739089 PMCID: PMC11685895 DOI: 10.1038/s41598-024-83932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Based on the antigenic similarity between tumor cells and embryonic stem cells (ESCs), several recent studies report the use of intact murine ESCs or exosomes from murine ESCs as cancer vaccines. Since the capacity for self-renewal is one of the most specialized properties shared between ESCs and a subset of tumor cells, cancer stem cells (CSCs), we investigated whether the undifferentiated state of murine ESCs is essential for the prophylactic effectiveness of an ESC-based vaccine. The undifferentiated state of ES-D3, a murine ESC line, was essential for their anchorage-independent growth potential. Importantly, differentiation of ES-D3 cells decreased their efficacy in preventing the outgrowth of implanted lung tumors. Furthermore, the long-term cancer-preventive potential of this vaccine was also inhibited by the differentiation of these cells. To examine the antigenicity of the ESC-derived vaccine, we performed combined affinity chromatography shotgun immunoproteomic experiments to identify antigens specific to the whole-cell ES vaccine as well as to the ESC-derived exosome vaccine. Our data demonstrate that antibodies against several lung cancer-associated keratin members were enriched in the serum of vaccinated mice. In summary, these data suggest that the tumor-preventing efficacy of ESC-based vaccine is reliant on the differentiation properties of these stem cells.
Collapse
Affiliation(s)
- Shuhan Meng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Aaron G Whitt
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - John W Eaton
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Kavitha Yaddanapudi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
- Immuno-Oncology Program, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA.
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA.
| | - Chi Li
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
- Experimental Therapeutics Group, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
2
|
Deng H, Liu H, Yang G, Wang D, Luo Y, Li C, Qi Z, Liu Z, Wang P, Jia Y, Gao Y, Ding Y. ACT001 inhibited CD133 transcription by targeting and inducing Olig2 ubiquitination degradation. Oncogenesis 2023; 12:19. [PMID: 36990974 DOI: 10.1038/s41389-023-00462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Lung cancer is the most lethal malignancies with high aggressive and poor prognosis. Until now, the five-year survival rate has not been improved which brings serious challenge to human health. Lung cancer stem cells (LCSCs) serve as the root of cancer occurrence, progression, recurrence, and drug resistance. Therefore, effective anti-cancer agents and molecular mechanisms which could specifically eliminate LCSCs are urgently needed for drug design. In this article, we discovered Olig2 was overexpressed in clinical lung cancer tissues and acted as a transcription factor to regulate cancer stemness by regulating CD133 gene transcription. The results suggested Olig2 could be a promising target in anti-LCSCs therapy and new drugs targeted Olig2 may exhibit excellent clinical results. Furthermore, we verified ACT001, a guaianolide sesquiterpene lactone in phase II clinical trial with excellent glioma remission, inhibited cancer stemness by directly binding to Olig2 protein, inducing Olig2 ubiquitination degradation and inhibiting CD133 gene transcription. All these results suggested that Olig2 could be an excellent druggable target in anti-LCSCs therapy and lay a foundation for the further application of ACT001 in the treatment of lung cancer in clinical.
Collapse
Affiliation(s)
- Huiting Deng
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Hailin Liu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Guoyue Yang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Dandan Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Chenglong Li
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Zhenchang Qi
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Zhili Liu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Peng Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Yanfang Jia
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China.
| | - Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
3
|
Xu H, Zhao G, Lin J, Ye Q, Xiang J, Yan B. A combined preoperative red cell distribution width and carcinoembryonic antigen score contribute to prognosis prediction in stage I lung adenocarcinoma. World J Surg Oncol 2023; 21:56. [PMID: 36814297 PMCID: PMC9945661 DOI: 10.1186/s12957-023-02945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
AIMS Hematological markers that can be used for prognosis prediction for stage I lung adenocarcinoma (LUAD) are still lacking. Here, we examined the prognostic value of a combination of the red cell distribution width (RDW) and carcinoembryonic antigen (CEA), namely, the RDW-CEA score (RCS), in stage I LUAD. MATERIALS AND METHODS A retrospective study with 154 patients with stage I LUAD was conducted. Patients were divided into RCS 1 (decreased RDW and CEA), RCS 2 (decreased RDW and increased CEA, increased RDW and decreased CEA), and RCS 3 (increased RDW and CEA) subgroups based on the best optimal cutoff points of RDW and CEA for overall survival (OS). The differences in other clinicopathological parameters among RCS subgroups were calculated. Disease-free survival (DFS) and OS among these groups were determined by Kaplan-Meier analysis, and risk factors for outcome were calculated by a Cox proportional hazards model. RESULTS Seventy, 65, and 19 patients were assigned to the RCS 1, 2, and 3 subgroups, respectively. Patients ≥ 60 years (P < 0.001), male sex (P = 0.004), T2 stage (P = 0.004), and IB stage (P = 0.006) were more significant in the RCS 2 or 3 subgroups. The RCS had a good area under the curve (AUC) for predicting DFS (AUC = 0.81, P < 0.001) and OS (AUC = 0.93, P < 0.001). The DFS (log-rank = 33.26, P < 0.001) and OS (log-rank = 42.05, P < 0.001) were significantly different among RCS subgroups, with RCS 3 patients displaying the worst survival compared to RCS 1 or 2 patients. RCS 3 was also an independent risk factor for both DFS and OS. CONCLUSIONS RCS is a useful prognostic indicator in stage I LUAD patients, and RCS 3 patients have poorer survival. However, randomized controlled trials are needed to validate our findings in the future.
Collapse
Affiliation(s)
- Hengliang Xu
- Department of Thoracic Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan 572000 People’s Republic of China
| | - Guangqiang Zhao
- Department of Respiratory Medicine, Sanya Peoples’ Hospital, Sanya, Hainan 572000 People’s Republic of China
| | - Jixing Lin
- Department of Thoracic Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan 572000 People’s Republic of China
| | - Qianwen Ye
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya, Hainan 572000 People’s Republic of China
| | - Jia Xiang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya, Hainan 572000 People’s Republic of China
| | - Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya, Hainan, 572000, People's Republic of China.
| |
Collapse
|
4
|
Shu X, Chen M, Liu S, Yu L, Sun L, Sun L, Ran Y. Palladin promotes cancer stem cell-like properties in lung cancer by activating Wnt/Β-Catenin signaling. Cancer Med 2023; 12:4510-4520. [PMID: 36047666 PMCID: PMC9972019 DOI: 10.1002/cam4.5192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are responsible for drug resistance, cancer relapse, and metastasis. Here, we report the first analysis of Palladin expression and its impacts on stem cell-like properties in lung cancer. METHODS Tissue microarrays were used to investigate Palladin expression and its association with prognosis. Immunofluorescence (IF), flow fluorescence assay, and Western blot were performed to detect Palladin expression in 6 NSCLC cell lines. Cell phenotypes and drug resistance were evaluated. Xenograft models were constructed to confirm the role of Palladin in vivo. RESULTS By using the tissue microarrays, Palladin was identified to be highly expressed in the cytoplasm, specifically in the cytomembrane of NSCLC, and its high expression is associated with poor prognosis. Palladin is widely expressed and enriched in the sphere cells. The in vitro and in vivo studies showed that Palladin promoted stem cell-like properties, including cell viability, invasion, migration, self-renewal abilities, taxol resistance, and tumorigenicity. Western blot revealed that Palladin promoted the accumulation of β-catenin and activated Wnt/β-catenin signaling. Tissue microarrays analysis further confirmed the positive correlation between Palladin and β-catenin. Wnt/β-catenin pathway inhibitor blocked the Palladin-induced enhancement of sphere-forming. CONCLUSIONS Palladin might act as an oncogene by promoting CSCs-like properties and tumorigenicity of NSCLC cells via the Wnt/β-catenin signaling pathway. Besides, Palladin was identified to have the potential as a cell surface marker for LCSCs identification. These findings provide a possible target for developing putative agents targeted to LCSCs.
Collapse
Affiliation(s)
- Xiong Shu
- Laboratory of Molecular OrthopaedicsBeijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan HospitalBeijingP. R. China
| | - Meng Chen
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Shi‐Ya Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Long Yu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Li‐Xin Sun
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Li‐Chao Sun
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Yu‐Liang Ran
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| |
Collapse
|
5
|
Yang W, Liang Y, Zheng Y, Luo H, Yang X, Li F. Identification of Novel Multi-Omics Expression Landscapes and Meta-Analysis of Landscape-Based Competitive Endogenous RNA Networks in ALDH+ Lung Adenocarcinoma Stem Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9545609. [PMID: 36093399 PMCID: PMC9453044 DOI: 10.1155/2022/9545609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
ALDH+ H1975 lung adenocarcinoma stem cells (LSCs) are a rare cell population identified in lung adenocarcinoma (LUAD). LSCs can self-renew, drive tumor initiation, growth, metastasis, and recurrence and are also the predominant cause of poor prognosis due to their intrinsic resistance to drugs and chemotherapy. Consequently, LSCs are a promising target for LUAD therapy. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), exert many significant regulatory functions in the pathogenesis of human cancers, showing the necessity for a comprehensive understanding of the mechanisms that underlie lung carcinogenesis. Nonetheless, research on many known transcripts and messenger RNAs (mRNAs) has already generated new information. Unknown biomarkers in ncRNAs and systematic and comprehensive interrelation with unknown ncRNAs and mRNAs may provide further insights into the biology of LUAD. Herein, a set of novel ncRNAs that include miRNAs, lncRNAs, and circRNAs were identified, and differentially expressed patterns of ncRNAs and mRNAs in LSCs and ALDH-H1975 LUAD tumor cells (LTCs) were obtained using stringent bioinformatics pipelines. Through a meta-analysis of the identified landscapes, novel competitive endogenous RNA (ceRNA) networks were constructed to reveal the potential molecular mechanisms that regulate the hallmarks of LSCs and LTCs. This study presents a summary of novel ncRNAs and the fundamental roles of differentially expressed ncRNAs implicated in the activity of LSCs and LTCs. In addition, the study also provides a comprehensive resource for the future identification of diagnostic, therapeutic, and prognostic biomarkers in LUAD.
Collapse
Affiliation(s)
- Wei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518020, China
- Guangdong Engineering Technology Research Center of Stem cell and Cell Therapy, Shenzhen 518020, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China
| | - Yong Liang
- Shenzhen Xbiome Biotech Co., Ltd, Shenzhen 518057, China
| | - Yuanyuan Zheng
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518020, China
- Guangdong Engineering Technology Research Center of Stem cell and Cell Therapy, Shenzhen 518020, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China
| | - Haitao Luo
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518020, China
- Guangdong Engineering Technology Research Center of Stem cell and Cell Therapy, Shenzhen 518020, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China
| | - Xiaofei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518020, China
- Guangdong Engineering Technology Research Center of Stem cell and Cell Therapy, Shenzhen 518020, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518020, China
- Guangdong Engineering Technology Research Center of Stem cell and Cell Therapy, Shenzhen 518020, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen 518020, China
| |
Collapse
|
6
|
ΔNp63 regulates a common landscape of enhancer associated genes in non-small cell lung cancer. Nat Commun 2022; 13:614. [PMID: 35105868 PMCID: PMC8807845 DOI: 10.1038/s41467-022-28202-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Distinct lung stem cells give rise to lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). ΔNp63, the p53 family member and p63 isoform, guides the maturation of these stem cells through the regulation of their self-renewal and terminal differentiation; however, the underlying mechanistic role regulated by ∆Np63 in lung cancer development has remained elusive. By utilizing a ΔNp63-specific conditional knockout mouse model and xenograft models of LUAD and LUSC, we found that ∆Np63 promotes non-small cell lung cancer by maintaining the lung stem cells necessary for lung cancer cell initiation and progression in quiescence. ChIP-seq analysis of lung basal cells, alveolar type 2 (AT2) cells, and LUAD reveals robust ∆Np63 regulation of a common landscape of enhancers of cell identity genes. Importantly, one of these genes, BCL9L, is among the enhancer associated genes regulated by ∆Np63 in Kras-driven LUAD and mediates the oncogenic effects of ∆Np63 in both LUAD and LUSC. Accordingly, high BCL9L levels correlate with poor prognosis in LUAD patients. Taken together, our findings provide a unifying oncogenic role for ∆Np63 in both LUAD and LUSC through the regulation of a common landscape of enhancer associated genes. The mechanistic role regulated by the oncogene ∆Np63 in lung cancer development is currently unclear. Here, the authors show that ΔNp63 is pro-tumorigenic in lung adenocarcinoma as well as squamous cell carcinoma, and maintains lung cancer progenitor cells via regulation of super-enhancer-associated genes, including BCL9L
Collapse
|
7
|
Hsu MT, Wang YK, Tseng YJ. Exosomal Proteins and Lipids as Potential Biomarkers for Lung Cancer Diagnosis, Prognosis, and Treatment. Cancers (Basel) 2022; 14:cancers14030732. [PMID: 35158999 PMCID: PMC8833740 DOI: 10.3390/cancers14030732] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Exosomes (or extracellular vesicles) are known to mediate intercellular communication and to transmit molecular signals between cells. Molecules carried by exosomes have their own molecular roles in affecting surrounding and distant environment, as well as recipient cells. Molecular components of exosomes can be used as cancer biomarkers for diagnosis and prognosis, being promising therapeutic targets for the interruption of cellular signals. Therefore, the understanding of the molecular compositions and their functional indications of exosomes has the potential to help doctors to diagnose and monitor diseases and to allow researchers to design and develop potential targeted therapies. This review aims to provide a comprehensive protein and lipid characterization of lung cancer exosomes and to explore their molecular functions and mechanisms regulating physiological and pathological processes. This organization offers informative insight for lung cancer diagnosis and treatment. Abstract Exosomes participate in cell–cell communication by transferring molecular components between cells. Previous studies have shown that exosomal molecules derived from cancer cells and liquid biopsies can serve as biomarkers for cancer diagnosis and prognosis. The exploration of the molecules transferred by lung cancer-derived exosomes can advance the understanding of exosome-mediated signaling pathways and mechanisms. However, the molecular characterization and functional indications of exosomal proteins and lipids have not been comprehensively organized. This review thoroughly collected data concerning exosomal proteins and lipids from various lung cancer samples, including cancer cell lines and cancer patients. As potential diagnostic and prognostic biomarkers, exosomal proteins and lipids are available for clinical use in lung cancer. Potential therapeutic targets are mentioned for the future development of lung cancer therapy. Molecular functions implying their possible roles in exosome-mediated signaling are also discussed. Finally, we emphasized the importance and value of lung cancer stem cell-derived exosomes in lung cancer therapy. In summary, this review presents a comprehensive description of the protein and lipid composition and function of lung cancer-derived exosomes for lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Ming-Tsung Hsu
- Genome and Systems Biology Degree Program, College of Life Science, Academia Sinica and National Taiwan University, Taipei 106319, Taiwan;
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan;
| | - Yu-Ke Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan;
| | - Yufeng Jane Tseng
- Genome and Systems Biology Degree Program, College of Life Science, Academia Sinica and National Taiwan University, Taipei 106319, Taiwan;
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan;
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Bahmad HF, Daher D, Aljamal AA, Elajami MK, Oh KS, Alvarez Moreno JC, Delgado R, Suarez R, Zaldivar A, Azimi R, Castellano A, Sackstein R, Poppiti RJ. Repurposing of Anticancer Stem Cell Drugs in Brain Tumors. J Histochem Cytochem 2021; 69:749-773. [PMID: 34165342 PMCID: PMC8647630 DOI: 10.1369/00221554211025482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Brain tumors in adults may be infrequent when compared with other cancer etiologies, but they remain one of the deadliest with bleak survival rates. Current treatment modalities encompass surgical resection, chemotherapy, and radiotherapy. However, increasing resistance rates are being witnessed, and this has been attributed, in part, to cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells that reside within the tumor bulk and have the capacity for self-renewal and can differentiate and proliferate into multiple cell lineages. Studying those CSCs enables an increasing understanding of carcinogenesis, and targeting CSCs may overcome existing treatment resistance. One approach to weaponize new drugs is to target these CSCs through drug repurposing which entails using drugs, which are Food and Drug Administration-approved and safe for one defined disease, for a new indication. This approach serves to save both time and money that would otherwise be spent in designing a totally new therapy. In this review, we will illustrate drug repurposing strategies that have been used in brain tumors and then further elaborate on how these approaches, specifically those that target the resident CSCs, can help take the field of drug repurposing to a new level.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Darine Daher
- Faculty of Medicine, American University of
Beirut, Beirut, Lebanon
| | - Abed A. Aljamal
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Mohamad K. Elajami
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Kei Shing Oh
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Ruben Delgado
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Richard Suarez
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Ana Zaldivar
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Roshanak Azimi
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Amilcar Castellano
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Robert Sackstein
- Department of Translational Medicine,
Translational Glycobiology Institute, Herbert Wertheim College of Medicine,
Florida International University, Miami, Florida
| | - Robert J. Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
9
|
Therapeutic Targeting of Cancer Stem Cells in Lung, Head and Neck, and Bladder Cancers. Cancers (Basel) 2021; 13:cancers13205098. [PMID: 34680249 PMCID: PMC8534162 DOI: 10.3390/cancers13205098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Effective cancer treatment hinges upon overcoming therapeutic resistance mechanisms that allow for the continued proliferation of cancer cell subpopulations. Exposure to pharmacotherapy invariably leads to resistance as tumor cells with selected advantageous features evade destruction and alter the tumor composition. Cancer stem cells (CSCs) with features of plasticity that allow for regeneration and differentiation are particularly responsible for this phenomenon. Advances in tumor biology and molecular signaling have highlighted their role in neoplastic initiation, invasion, and maintenance. Novel strategies to direct therapy against these tumor cell subpopulations have the potential to dramatically alter tumor response and change the course of cancer care. Abstract Resistance to cancer therapy remains a significant obstacle in treating patients with various solid malignancies. Exposure to current chemotherapeutics and targeted agents invariably leads to therapy resistance, heralding the need for novel agents. Cancer stem cells (CSCs)—a subpopulation of tumor cells with capacities for self-renewal and multi-lineage differentiation—represent a pool of therapeutically resistant cells. CSCs often share physical and molecular characteristics with the stem cell population of the human body. It remains challenging to selectively target CSCs in therapeutically resistant tumors. The generation of CSCs and induction of therapeutic resistance can be attributed to several deregulated critical growth regulatory signaling pathways such as WNT/β-catenin, Notch, Hippo, and Hedgehog. Beyond growth regulatory pathways, CSCs also change the tumor microenvironment and resist endogenous immune attack. Thus, CSCs can interfere with each stage of carcinogenesis from malignant transformation to the onset of metastasis to tumor recurrence. A thorough review of novel targeted agents to act against CSCs is fundamental for advancing cancer treatment in the setting of both intrinsic and acquired resistance.
Collapse
|
10
|
Sánchez-Sánchez AV, García-España A, Sánchez-Gómez P, Font-de-Mora J, Merino M, Mullor JL. The Embryonic Key Pluripotent Factor NANOG Mediates Glioblastoma Cell Migration via the SDF1/CXCR4 Pathway. Int J Mol Sci 2021; 22:ijms221910620. [PMID: 34638956 PMCID: PMC8508935 DOI: 10.3390/ijms221910620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022] Open
Abstract
NANOG is a key transcription factor required for maintaining pluripotency of embryonic stem cells. Elevated NANOG expression levels have been reported in many types of human cancers, including lung, oral, prostate, stomach, breast, and brain. Several studies reported the correlation between NANOG expression and tumor metastasis, revealing itself as a powerful biomarker of poor prognosis. However, how NANOG regulates tumor progression is still not known. We previously showed in medaka fish that Nanog regulates primordial germ cell migration through Cxcr4b, a chemokine receptor known for its ability to promote migration and metastasis in human cancers. Therefore, we investigated the role of human NANOG in CXCR4-mediated cancer cell migration. Of note, we found that NANOG regulatory elements in the CXCR4 promoter are functionally conserved in medaka fish and humans, suggesting an evolutionary conserved regulatory axis. Moreover, CXCR4 expression requires NANOG in human glioblastoma cells. In addition, transwell assays demonstrated that NANOG regulates cancer cell migration through the SDF1/CXCR4 pathway. Altogether, our results uncover NANOG-CXCR4 as a novel pathway controlling cellular migration and support Nanog as a potential therapeutic target in the treatment of Nanog-dependent tumor progression.
Collapse
Affiliation(s)
- Ana Virginia Sánchez-Sánchez
- Bionos Biotech, SL, Biopolo Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (A.V.S.-S.); (M.M.)
| | - Antonio García-España
- Research Unit, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43005 Tarragona, Spain;
| | - Pilar Sánchez-Gómez
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Crtra/Majadahonda-Pozuelo, Km 2, Majadahonda, 28220 Madrid, Spain;
| | - Jaime Font-de-Mora
- Laboratory of Cellular and Molecular Biology, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain;
| | - Marián Merino
- Bionos Biotech, SL, Biopolo Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (A.V.S.-S.); (M.M.)
| | - José Luis Mullor
- Bionos Biotech, SL, Biopolo Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (A.V.S.-S.); (M.M.)
- Correspondence: ; Tel.: +34-961243219
| |
Collapse
|
11
|
Zheng M, Hu C, Wu M, Chin YE. Emerging role of SIRT2 in non-small cell lung cancer. Oncol Lett 2021; 22:731. [PMID: 34429771 PMCID: PMC8371967 DOI: 10.3892/ol.2021.12992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most devastating cancer types, accounting for >80% of lung cancer cases. The median relative survival time of patients with NSCLC is <1 year. Lysine acetylation is a major post-translational modification that is required for various biological processes, and abnormal protein acetylation is associated with various diseases, including NSCLC. Protein deacetylases are currently considered cancer permissive partly due to malignant cells being sensitive to deacetylase inhibition. Sirtuin 2 (SIRT2), a primarily cytosolic nicotinamide adenine dinucleotide-dependent class III protein deacetylase, has been shown to catalyze the removal of acetyl groups from a wide range of proteins, including tubulin, ribonucleotide reductase regulatory subunit M2 and glucose-6-phosphate dehydrogenase. In addition, SIRT2 is also known to possess lysine fatty deacylation activity. Physiologically, SIRT2 serves as a regulator of the cell cycle and of cellular metabolism. It has been shown to play important roles in proliferation, migration and invasion during carcinogenesis. It is notable that both oncogenic and tumor suppressive functions of SIRT2 have been described in NSCLC and other cancer types, suggesting a context-specific role of SIRT2 in cancer progression. In addition, inhibition of SIRT2 exhibits a broad anticancer effect, indicating its potential as a therapeutic for NSCLC tumors with high expression of SIRT2. However, due to the diverse molecular and genetic characteristics of NSCLC, the context-specific function of SIRT2 remains to be determined. The current review investigated the functions of SIRT2 during NSCLC progression with regard to its regulation of metabolism, stem cell-like features and autophagy.
Collapse
Affiliation(s)
- Mengge Zheng
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| | - Changyong Hu
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| | - Meng Wu
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| | - Yue Eugene Chin
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
12
|
ALDH1 and SALL4 Expression in Cell Block Samples from Patients with Lung Adenocarcinoma and Malignant Pleural Effusion. Diagnostics (Basel) 2021; 11:diagnostics11081463. [PMID: 34441397 PMCID: PMC8394086 DOI: 10.3390/diagnostics11081463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural effusion (MPE) can accompany advanced lung adenocarcinoma. Recent studies suggest that MPE could contain a heterogeneous subpopulation of cells with stem-like properties, such as tumorigenicity and self-renewal, indicating that they could be the source of metastasis. Although previous studies analyzed the correlation between cancer stem cell (CSC) marker expression and clinical outcomes using lung cancer tissues, investigations regarding the association of MPE with CSC marker expression are limited. We performed immunohistochemistry to examine the expression of aldehyde dehydrogenase 1 (ALDH1) and Sal-like 4 (SALL4) in 46 cell block samples of MPE from patients with lung adenocarcinoma. ALDH1-positive and SALL4-positive cancer cells in MPE were detected in 30 (65.2%) and 21 samples (45.7%), respectively. Cluster formation was detected in 26 samples (56.5%). The number of clusters was significantly higher in ALDH1-positive/SALL4-negative samples. SALL4 expression was inversely correlated with the cluster ratio (r = −0.356) and positively associated with the Ki-67 index (r = 0.326), suggesting that MPE cells with high SALL4 expression comprised the proliferative subpopulation. In conclusion, we demonstrated that MPE contains an ALDH1-positive/SALL4-negative subpopulation exhibiting cluster formation and a SALL4-positive proliferative subpopulation.
Collapse
|
13
|
Zhang R, Liu P, Zhang X, Ye Y, Yu J. Lin28A promotes the proliferation and stemness of lung cancer cells via the activation of mitogen-activated protein kinase pathway dependent on microRNA let-7c. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:982. [PMID: 34277782 PMCID: PMC8267304 DOI: 10.21037/atm-21-2124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
Background Among patients with lung cancer, metastatic and relapsed cases account for the largest proportion of disease-associated deaths. Tumor metastasis and relapse are believed to originate from cancer stem cells (CSCs), which have the capacity to be highly proliferative and invasive. In our previous studies, we established a conditional basement membrane extract-based (BME-based) 3-dimensional (3D) culture system to mimic the tumor growth environment in vivo and further amplified lung cancer stem cells (LCSCs) in our system. However, the molecular mechanisms of LCSC amplification and development in our 3D culture system have not been fully uncovered. Method We established the conditional 3D culture system to amplify LCSCs in other lung cancer cell lines, followed by examining the expression of Lin28A and let-7 microRNAs in them. We also explored the expression of Lin28A and let-7 microRNAs in LCSCs from clinical lung cancer tissue samples and even analyzed the correlation of Lin28A/let-7c and patients’ survival outcomes. We further constructed A549 cells either knockdown of Lin28A or overexpression of let-7c, followed by investigating stemness marker gene expression, and stemness phenotypes including mammosphere culture, cell migration and invasion in vitro, as well as tumorigenicity in vivo. Results Here, we observed that Lin28A/let-7c was dysregulated in LCSCs in both the 3D culture system and lung cancer tissues. Further, the abnormal expression of Lin28A/let-7c was correlated with poor survival outcomes. Via the construction of A549 cells with let-7c over-expression, we found that let-7c inhibited the maintenance of LCSC properties, while the results of Lin28A knockdown showed that Lin28A played a critical role in the enrichment and proliferation of LCSCs via mitogen-activated protein kinase (MAPK) signaling pathway. Importantly, we found that LCSCs with knockdown of Lin28A or over-expression of let-7c exhibited inhibited carcinogenesis and disrupted expansion in vivo. Conclusions Our study uncovered the functions and mechanisms of the Lin28A/let-7c/MAPK signaling pathway in promoting the proliferation and cancer stemness of LCSCs, which might be a potential therapeutic target for reducing and even eliminating LCSCs in the future.
Collapse
Affiliation(s)
- Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
14
|
Guo Y, Wang G, Wang Z, Ding X, Qian L, Li Y, Ren Z, Liu P, Ma W, Li D, Li Y, Zhao Q, Lü J, Li Q, Wang Q, Yu Z. Reck-Notch1 Signaling Mediates miR-221/222 Regulation of Lung Cancer Stem Cells in NSCLC. Front Cell Dev Biol 2021; 9:663279. [PMID: 33959615 PMCID: PMC8093830 DOI: 10.3389/fcell.2021.663279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to the cancer initiation, metastasis and drug resistance in non-small cell lung cancer (NSCLC). Herein, we identified a miR-221/222 cluster as a novel regulator of CSCs in NSCLC. Targeted overexpression or knockdown of miR-221/222 in NSCLC cells revealed the essential roles of miR-221/222 in regulation of lung cancer cell proliferation, mammosphere formation, subpopulation of CD133+ CSCs and the expression of stemness genes including OCT4, NANOG and h-TERT. The in vivo animal study showed that overexpression of miR-221/222 significantly enhanced the capacity of lung cancer cells to develop tumor and grow faster, indicating the importance of miR-221/222 in tumorigenesis and tumor growth. Mechanistically, Reck was found to be a key direct target gene of miR-221/222 in NSCLC. Overexpression of miR-221/222 significantly suppressed Reck expression, activated Notch1 signaling and increased the level of NICD. As an activated form of Notch1, NICD leads to enhanced stemness in NSCLC cells. In addition, knockdown of Reck by siRNA not only mimicked miR-221/222 effects, but also demonstrated involvement of Reck in the miR-221/222-induced activation of Notch1 signaling, verifying the essential roles of the miR-221/222-Reck-Notch1 axis in regulating stemness of NSCLC cells. These findings uncover a novel mechanism by which lung CSCs are significantly manipulated by miR-221/222, and provide a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yuefan Guo
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongrui Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Ding
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Qian
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Jinzhou Medical University, School of Basic Medical, Jinzhou, China
| | - Ya Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Dalian Medical University, School of Basic Medical, Dalian, China
| | - Zhen Ren
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Dalian Medical University, School of Basic Medical, Dalian, China
| | - Pengfei Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjing Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qinchuan Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qinhong Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Gao YJ, Chen F, Zhang LJ. C1q-like 1 is frequently up-regulated in lung adenocarcinoma and contributes to the proliferation and invasion of tumor cells. J Chemother 2021; 33:476-485. [PMID: 33825671 DOI: 10.1080/1120009x.2021.1906035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study aims to investigate the effects of C1q-like 1 (C1QL1) on the growth and migration of lung adenocarcinoma (LUAD) cells and the underlying mechanism. The expression of C1QL1 in LUAD tissues and its prognostic value were analyzed using the data from The Cancer Genome Atlas (TCGA) database. To investigate the function of C1QL1, loss-of-function and gain-of-function assays were conducted in Calu-3 cells and LTEP-a-2 cells, respectively. Cell growth was evaluated by CCK-8 and colony formation assays. Transwell assays were performed to assess cell invasive and migratory abilities. qRT-PCR and Western blotting were performed to detect RNA and protein expression, respectively. Firstly, we found that C1QL1 was highly expressed and predicted poor outcomes in LUAD patients from TCGA database. Moreover, the mRNA and protein expression levels of C1QL1 were higher in LUAD cells than that in normal lung cells. Results of functional experiments illustrated that depletion of C1QL1 restrained the growth, invasion and migration of Calu-3 cells, meanwhile over-expression of C1QL1 presented the opposite results in LTEP-a-2 cells. Furthermore, we discovered that down-regulation of C1QL1 elevated the protein level of E-cadherin and reduced the protein levels of N-cadherin, Vimentin and Snail in Calu-3 cells, whereas over-expression of C1QL1 led to the opposite outcomes in LTEP-a-2 cells. Our data indicated that C1QL1 functioned as a crucial driver in LUAD cell growth and motility, which might be achieved by modulating epithelial-mesenchymal transition (EMT). These consequences are of important relevance for the design of therapeutic strategies for LUAD.
Collapse
Affiliation(s)
- Yu-Jun Gao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, China
| | - Feng Chen
- Department of Thoracic Surgery Ward, Shandong First Medical University Affiliated Tumor Hospital (Shandong Cancer Hospital and Institute, Shandong Tumor Hospital), Jinan, Shandong, China
| | - Lian-Jun Zhang
- Jinan Evidence Medicine Technology Development Center, Jinan, Shandong, China
| |
Collapse
|
16
|
Shu X, Cao KY, Liu HQ, Yu L, Sun LX, Yang ZH, Wu CA, Ran YL. Alpha-enolase (ENO1), identified as an antigen to monoclonal antibody 12C7, promotes the self-renewal and malignant phenotype of lung cancer stem cells by AMPK/mTOR pathway. Stem Cell Res Ther 2021; 12:119. [PMID: 33579362 PMCID: PMC7881626 DOI: 10.1186/s13287-021-02160-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tumor-associated antigens (TAAs) can be targeted in cancer therapy. We previously identified a monoclonal antibody (mAb) 12C7, which presented anti-tumor activity in lung cancer stem cells (LCSCs). Here, we aimed to identify the target antigen for 12C7 and confirm its role in LCSCs. METHODS Immunofluorescence was used for antigen localization. After targeted antigen purification by electrophoresis and immunoblot, the antigen was identified by LC-MALDI-TOF/TOF mass spectrometry, immunofluorescence, and immunoprecipitation. The overexpression or silence of ENO1 was induced by lentiviral transduction. Self-renewal, growth, and invasion of LCSCs were evaluated by sphere formation, colony formation, and invasion assay, respectively. High-throughput transcriptome sequencing (RNA-seq) and bioinformatics analysis were performed to analyze downstream targets and pathways of targeted antigen. RESULTS Targeted antigen showed a surface antigen expression pattern, and the 43-55 kDa protein band was identified as α-enolase (ENO1). Self-renewal, growth, and invasion abilities of LCSCs were remarkably inhibited by ENO1 downregulation, while enhanced by ENO1 upregulation. RNA-seq and bioinformatics analysis eventually screened 4 self-renewal-related and 6 invasion-related differentially expressed genes. GSEA analysis and qRT-PCR verified that ENO1 regulated self-renewal, invasion-related genes, and pathways. KEGG pathway analysis and immunoblot demonstrated that ENO1 inactivated AMPK pathway and activated mTOR pathway in LCSCs. CONCLUSIONS ENO1 is identified as a targeted antigen of mAb 12C7 and plays a pivotal role in facilitating self-renewal, growth, and invasion of LCSCs. These findings provide a potent therapeutic target for the stem cell therapy for lung cancer and have potential to improve the anti-tumor activity of 12C7.
Collapse
Affiliation(s)
- Xiong Shu
- Laboratory of Molecular Orthopaedics, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, No. 31 Xinjiekou E Road, Xicheng, Beijing, 100035, People's Republic of China
| | - Kai-Yue Cao
- Department of Pathology, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Hui-Qi Liu
- Department of Basic Medical Science, Medical School of Qinghai University, Xining, People's Republic of China
| | - Long Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021, People's Republic of China
| | - Li-Xin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021, People's Republic of China
| | - Zhi-Hua Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021, People's Republic of China
| | - Cheng-Ai Wu
- Laboratory of Molecular Orthopaedics, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, No. 31 Xinjiekou E Road, Xicheng, Beijing, 100035, People's Republic of China.
| | - Yu-Liang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021, People's Republic of China.
| |
Collapse
|
17
|
Tian C, Lang T, Qiu J, Han K, Zhou L, Min D, Zhang Z, Qi D. SKP1 promotes YAP-mediated colorectal cancer stemness via suppressing RASSF1. Cancer Cell Int 2020; 20:579. [PMID: 33292299 PMCID: PMC7713163 DOI: 10.1186/s12935-020-01683-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) have been recognized as an important drug target, however, the underlying mechanisms have not been fully understood. SKP1 is a traditional drug target for cancer therapy, while, whether SKP1 promotes colorectal cancer (CRC) stem cells (CRC-SCs) and the underlying mechanisms have remained elusive. METHODS Human CRC cell lines and primary human CRC cells were used in this study. Gene manipulation was performed by lentivirus system. The mRNA and protein levels of target genes were examined by qRT-PCR and western blot. The sphere-forming and in vitro migration capacities were determined by sphere formation and transwell assay. The self-renewal was determined by limiting dilution assay. The tumorigenicity and metastasis of cancer cells were examined by xenograft model. The promoter activity was examined by luciferase reporter assay. Nuclear run-on and Chromatin immunoprecipitation-PCR (ChIP-PCR) assay were employed to examine the transcription and protein-DNA interaction. Co-immunoprecipitation assay was used to test protein-protein interaction. The relationship between gene expression and survival was analyzed by Kaplan-meier analysis. The correlation between two genes was analyzed by Spearman analysis. Data are represented as mean ± SD and the significance was determined by Student's t test. RESULTS SKP1 was upregulated in CRC-SCs and predicted poor prognosis of colon cancer patients. Overexpression of SKP1 promoted the stemness of CRC cells reflected by increased sphere-forming, migration and self-renewal capacities as well as the expression of CSCs markers. In contrast, SKP1 depletion produced the opposite effects. SKP1 strengthened YAP activity and knockdown of YAP abolished the effect of SKP1 on the stemness of CRC cells. SKP1 suppressed RASSF1 at both mRNA and protein level. Overexpression of RASSF1 abolished the effect of SKP1 on YAP activity and CRC stemness. CONCLUSION Our results demonstrated that SKP1 suppresses RASSF1 at both mRNA and protein level, attenuates Hippo signaling, activates YAP, and thereby promoting the stemness of CRC cells.
Collapse
Affiliation(s)
- Cong Tian
- Department of Medical Oncology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China
- Department of Medical Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, Chongqing, People's Republic of China
| | - Jiangfeng Qiu
- Department of Gastrointestinal Surgery, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Kun Han
- Department of Medical Oncology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China
- Department of Medical Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China
| | - Lei Zhou
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS, Tower Block Level 7, Singapore, 119228, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, 8 College Road, Singapore, 169867, Singapore
| | - Daliu Min
- Department of Medical Oncology, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China
- Department of Medical Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China
| | - Zhiqi Zhang
- Department of General Surgery, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital East Campus, No. 222 Huan Hu Xi San Road, Pudong New Area, Shanghai, 201306, People's Republic of China.
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, People's Republic of China.
| | - Dachuan Qi
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
18
|
Lindner DJ, Wildey G, Parker Y, Dowlati A, Stark GR, De S. CBL0137 increases the targeting efficacy of Rovalpituzumab tesirine against tumour-initiating cells in small cell lung cancer. Br J Cancer 2020; 124:893-895. [PMID: 33257843 PMCID: PMC7921085 DOI: 10.1038/s41416-020-01192-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/07/2020] [Accepted: 11/05/2020] [Indexed: 11/11/2022] Open
Abstract
Small cell lung cancer (SCLC) is characterised by high relapse rates. Tumour-initiating cells (TICs) are responsible for drug resistance and recurrence of cancer. Rovalpituzumab tesirine (Rova-T), a potent humanised antibody–drug conjugate, selectively targets delta-like protein 3, which is highly expressed in SCLC TICs. The experimental drug CBL0137 (CBL) inhibits the histone chaperone FACT (facilitates chromatin transcription), which is required for the expression of transcription factors that are essential for TIC maintenance. Rova-T and CBL each target SCLC TICs as single agents. However, acquired or intrinsic resistance to single agents is a major problem in cancer. Therefore, we investigated the potential effect of combining Rova-T and CBL in SCLC to eradicate TICs more effectively. Our preclinical studies report a novel and highly translatable therapeutic strategy of dual targeting TICs using Rova-T in combination with CBL to potentially increase survival of SCLC patients.
Collapse
Affiliation(s)
- Daniel J Lindner
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Gary Wildey
- University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Yvonne Parker
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Afshin Dowlati
- University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - George R Stark
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Sarmishtha De
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
19
|
Camacho-Alonso F, Gómez-Albentosa T, Oñate-Sánchez RE, Tudela-Mulero MR, Sánchez-Siles M, Gómez-García FJ, Guerrero-Sánchez Y. In Vitro Study of Synergic Effect of Cisplatin and Low Molecular Weight Heparin on Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:549412. [PMID: 33312942 PMCID: PMC7708346 DOI: 10.3389/fonc.2020.549412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives To evaluate the possible synergic effect of cisplatin and low molecular weight heparin (LMWH) on oral squamous cell carcinoma (OSCC). Materials and Methods Cisplatin and enoxaparin sodium, alone or in combination, were administered at doses of 1, 2, 4, 8 and 10 µM and 0.1, 0.5, 1, 5, 10, 50, and 100 µg/ml, respectively, to the H357 human OSCC line. The effects on cell viability and apoptosis were evaluated after 24, 48, and 72 h and on cell migration after 18 and 24 h. Results 10 µM concentration of cisplatin produced the greatest decrease in cell viability, with significant differences at 24 (p=0.009), 48 (p=0.001) and 72 h (p = 0.003); the 100 µg/ml dose of enoxaparin produced the greatest decrease in cell viability but without significant differences (p>0.05). When different concentrations of cisplatin and enoxaparin were combined, it was found that 100 µg/ml enoxaparin sodium produced the greatest synergic effect on cell viability reduction. In analyses of apoptosis and cell migration, it was found that the combination of cisplatin at 8 or 10 μM and 100 μg/ml enoxaparin produced a higher rate of apoptosis at 24, 48, and 72 h and a greater reduction in cell migration at 18 and 24 h. Conclusions A combination of cisplatin and enoxaparin sodium shows a synergic effect that reduces cell viability and cell migration capacity and increases the apoptosis of human OSCC cells. Clinical relevance Enoxaparin may be beneficial in chemotherapy for patients with OSCC; this finding requires further clinical and laboratory investigation.
Collapse
Affiliation(s)
| | | | - R E Oñate-Sánchez
- Department of Dentistry for Special Patients, University of Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|
20
|
Han P, Yang H, Li X, Wu J, Wang P, Liu D, Xiao G, Sun X, Ren H. Identification of a Novel Cancer Stemness-Associated ceRNA Axis in Lung Adenocarcinoma via Stemness Indices Analysis. Oncol Res 2020; 28:715-729. [PMID: 33106209 PMCID: PMC8420898 DOI: 10.3727/096504020x16037124605559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to identify a novel cancer stemness-related ceRNA regulatory axis in lung adenocarcinoma (LUAD) via weighted gene coexpression network analysis of a stemness index. The RNA sequencing expression profiles of 513 cancer samples and 60 normal samples were obtained from the TCGA database. Differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs) were identified with R software. Functional enrichment analysis was conducted using DAVID 6.8. The ceRNA network was constructed via multiple bioinformatics analyses, and the correlations between possible ceRNAs and prognosis were analyzed using Kaplan–Meier plots. WGCNA was then applied to distinguish key genes related to the mRNA expression-based stemness index (mRNAsi) in LUAD. After combining the weighted gene coexpression and ceRNA networks, a novel ceRNA regulatory axis was identified, and its biological functions were explored in vitro and vivo. In total, 1,825 DElncRNAs, 291 DEmiRNAs, and 3,742 DEmRNAs were identified. Functional enrichment analysis revealed that the DEmRNAs might be associated with LUAD onset and progression. The ceRNA network was constructed with 14 lncRNAs, 10 miRNAs, and 52 mRNAs. Kaplan–Meier analysis identified 2 DEmiRNAs, 5 DElncRNAs, and 41 DEmRNAs with remarkable prognostic power. One gene (MFAP4) in the ceRNA network was found to be closely related to mRNAsi by using WGCNA. Functional investigation further confirmed that the C8orf34-as1/miR-671-5p/MFAP4 regulatory axis has important functions in LUAD cell migration and stemness. This study provides a deeper understanding of the lncRNA–miRNA–mRNA ceRNA network and, more importantly, reveals a novel ceRNA regulatory axis, which may provide new insights into novel molecular therapeutic targets for inhibiting LUAD stem characteristics.
Collapse
Affiliation(s)
- Pihua Han
- The Second Department of Thoracic Surgery, Cancer Center, the First Affiliated Hospital of Xian Jiaotong UniversityXianP.R. China
| | - Haiming Yang
- Department of Breast Surgery, Wei Nan Central HospitalWei NanP.R. China
| | - Xiang Li
- The Second Department of Thoracic Surgery, Cancer Center, the First Affiliated Hospital of Xian Jiaotong UniversityXianP.R. China
| | - Jie Wu
- The Second Department of Thoracic Surgery, Cancer Center, the First Affiliated Hospital of Xian Jiaotong UniversityXianP.R. China
| | - Peili Wang
- Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouP.R. China
| | - Dapeng Liu
- The Second Department of Thoracic Surgery, Cancer Center, the First Affiliated Hospital of Xian Jiaotong UniversityXianP.R. China
| | - Guodong Xiao
- Department of Oncology, the First Affiliated Hospital of Zhengzhou UniversityZhengzhouP.R. China
| | - Xin Sun
- The Second Department of Thoracic Surgery, Cancer Center, the First Affiliated Hospital of Xian Jiaotong UniversityXianP.R. China
| | - Hong Ren
- The Second Department of Thoracic Surgery, Cancer Center, the First Affiliated Hospital of Xian Jiaotong UniversityXianP.R. China
| |
Collapse
|
21
|
Identification of Sca-1 +Abcg1 + bronchioalveolar epithelial cells as the origin of lung adenocarcinoma in Gprc5a-knockout mouse model through the interaction between lung progenitor AT2 and Lgr5 cells. Oncogene 2020; 39:3754-3773. [PMID: 32157214 PMCID: PMC7190569 DOI: 10.1038/s41388-020-1251-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
The reason for the reduced efficacy of lung cancer therapy is the existence of lung cancer stem cells (CSCs). Targeting CSCs results in evolved phenotypes with increased malignancy, leading to therapy failure. Here, we propose a new therapeutic strategy: investigating the “transitional” cells that represent the stage between normal lung stem cells and lung CSCs. Identifying and targeting the key molecule that drives carcinogenesis to inhibit or reverse this process would thus provide new perspectives for early diagnosis and intervention in lung cancer. We used Gprc5a-knockout (KO) mice, the first animal model of spontaneous lung adenocarcinoma established by the deletion of a single lung tumor suppressor gene. We investigated the interaction of lung progenitor cells AT2 with Lgr5 cells in the generation of CSCs and related signaling mechanism. In the present study, using Gprc5a-KO mice, we found the initiator Sca-1+Abcg1+ subset with a CSC-like phenotype within the lung progenitor AT2 cell population in mice that had not yet developed tumors. We confirmed the self-renewal and tumor initiation capacities of this subset in vitro, in vivo, and clinical samples. Mechanistically, we found that the generation of Sca-1+Abcg1+ cells was associated with an interaction between AT2 and Lgr5 cells and the subsequent activation of the ECM1-α6β4-ABCG1 axis. Importantly, Sca-1+Abcg1+ and SPA+ABCG1+ cells specifically existed in the small bronchioles of Gprc5a-KO mice and patients with pneumonia, respectively. Thus, the present study unveiled a new kind of lung cancer-initiating cells (LCICs) and provided potential markers for the early diagnosis of lung cancer.
Collapse
|
22
|
Dual disruption of aldehyde dehydrogenases 1 and 3 promotes functional changes in the glutathione redox system and enhances chemosensitivity in nonsmall cell lung cancer. Oncogene 2020; 39:2756-2771. [PMID: 32015486 PMCID: PMC7098886 DOI: 10.1038/s41388-020-1184-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) are multifunctional enzymes that oxidize diverse endogenous and exogenous aldehydes. We conducted a meta-analysis based on The Cancer Genome Atlas and Gene Expression Omnibus data and detected genetic alterations in ALDH1A1, ALDH1A3, or ALDH3A1, 86% of which were gene amplification or mRNA upregulation, in 31% of nonsmall cell lung cancers (NSCLCs). The expression of these isoenzymes impacted chemoresistance and shortened survival times in patients. We hypothesized that these enzymes provide an oxidative advantage for the persistence of NSCLC. To test this hypothesis, we used genetic and pharmacological approaches with DIMATE, an irreversible inhibitor of ALDH1/3. DIMATE showed cytotoxicity in 73% of NSCLC cell lines tested and demonstrated antitumor activity in orthotopic xenografts via hydroxynonenal-protein adduct accumulation, GSTO1-mediated depletion of glutathione and increased H2O2. Consistent with this result, ALDH1/3 disruption synergized with ROS-inducing agents or glutathione synthesis inhibitors to trigger cell death. In lung cancer xenografts with high to moderate cisplatin resistance, combination treatment with DIMATE promoted strong synergistic responses with tumor regression. These results indicate that NSCLCs with increased expression of ALDH1A1, ALDH1A3, or ALDH3A1 may be targeted by strategies involving inhibitors of these isoenzymes as monotherapy or in combination with chemotherapy to overcome patient-specific drug resistance.
Collapse
|
23
|
Zhu H, Hu Y, Zeng C, Chang L, Ge F, Wang W, Yan F, Zhao Q, Cao J, Ying M, Gu Y, Zheng L, He Q, Yang B. The SIRT2-mediated deacetylation of AKR1C1 is required for suppressing its pro-metastasis function in Non-Small Cell Lung Cancer. Am J Cancer Res 2020; 10:2188-2200. [PMID: 32104503 PMCID: PMC7019158 DOI: 10.7150/thno.39151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Aldo-keto reductase family 1 member C1 (AKR1C1) promotes malignancy of Non-Small Cell Lung Cancer (NSCLC) by activating Signal Transducer and Activator of Transcription 3 (STAT3) pathway. However, how the pro-metastatic functions of AKR1C1 are switched on/off remains unknown. Methods: Immunoprecipitation and LC-MS/MS analyses were performed to identify the acetylation on AKR1C1 protein, and the functional analyses (in vitro and in vivo) were performed to depict the contribution of acetylation to the pro-metastatic effects of AKR1C1. Results: Here we report that acetylated AKR1C1 on two lysine residues K185 & K201 is critical to its pro-metastatic role. The acetylation modification has no impact on the canonical enzymatic activity of AKR1C1, while it is required for the interaction between AKR1C1 to STAT3, which triggers the downstream transduction events, ultimately mobilizing cells. Importantly, the deacetylase Sirtuin 2 (SIRT2) is capable of deacetylating AKR1C1, inhibiting the transactivation of STAT3 target genes, thus suppressing the migration of cells. Conclusion: Acetylation on Lysines 185 and 201 of AKR1C1 dictates its pro-metastatic potential both in vitro and in vivo, and the reverting of acetylation by Sirtuin 2 provides potential therapeutic targets for treatment against metastatic NSCLC patients with high AKR1C1 expression.
Collapse
|
24
|
Song S, Li Y, Zhang K, Zhang X, Huang Y, Xu M, Li S, Guan X, Yang T, Liu Z, Jiang J, Luo Y, Lan Y. Cancer Stem Cells of Diffuse Large B Cell Lymphoma Are Not Enriched in the CD45 +CD19 - cells but in the ALDH high Cells. J Cancer 2020; 11:142-152. [PMID: 31892981 PMCID: PMC6930399 DOI: 10.7150/jca.35000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Although the existence of cancer stem cells (CSCs) has been suggested in diffuse large B cell lymphoma (DLBCL), there is still no definitive marker. CD45+CD19- has been regarded as a potential marker of CSCs in mantle cell lymphoma (MCL). So, we explored the role of CD45+CD19- in DLBCL. However, both CD45+CD19- cells and CD45+CD19+ cells did not generate tumors until more than 100,000 cells were inoculated in NOD/SCID mice, even CD45+CD19+ cells generated more and larger tumors, as well as the soft agar colony formation in vitro; The aldehyde dehydrogenase (ALDH) activity was also identified in this study. Only 1,500 ALDHhigh cells were enough to generate tumors in mice while the same number of ALDH- cells were not. Moreover, both groups formed tumors when more cells were inoculated, but ALDHhigh cells formed more and larger tumors. The similar result was obtained in vitro clonogenicity experiments. OCT4, SOX2, Nanog, and ABCG2 genes did not show any difference in CD45+CD19+, CD45+CD19-, ALDHhigh and ALDH- cells. Taken together, CSCs are not enriched in the CD45+CD19- cells but in the ALDHhigh cells in DLBCL cell lines.
Collapse
Affiliation(s)
- Shupeng Song
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Yongguo Li
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Kaili Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Xi Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Yanxin Huang
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Mingyan Xu
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Shuangxing Li
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Xue Guan
- Animal experimental center, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Tao Yang
- Instrument Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150000, Hei Longjiang, China
| | - Zhiyu Liu
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Jie Jiang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Science, Chinese Academy of Medical Science and Peking Union Medical College, Beijing,10005, China
| | - Yinghua Lan
- Department of Infectious Disease, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Hei Longjiang, China
| |
Collapse
|
25
|
Ryu YJ, Choe JY, Lee K, Ahn SH. Clinical prognostic significance of cancer stem cell markers in patients with papillary thyroid carcinoma. Oncol Lett 2019; 19:343-349. [PMID: 31897146 PMCID: PMC6924097 DOI: 10.3892/ol.2019.11087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent development of the cancer stem cell (CSC) model has been heralded as a new era in thyroid cancer research. The aim of this study was to evaluate the presence of CD44+ and CD24− tumor cells in papillary thyroid carcinoma (PTC) as markers of aggressiveness and poor prognosis. Patients with PTC, who underwent successful surgical resections between January 2003 and December 2012 at a single tertiary hospital, were included in this study. Tissue arrays were prepared from 454 primary tumor tissues. Immunohistochemistry (IHC) was performed to detect the CSC markers CD24 and CD44 on the tissue arrays. IHC was graded using a semi-quantitative histology scoring system based on the extent and intensity of staining. Subsequently, the association between IHC results and clinicopathological characteristics and recurrence-free survival (RFS) was analyzed. In 454 patients, 39 cases recurred during the 70-month median follow-up period, with some patients exhibiting multiple sites of relapse. The results of a Kaplan-Meier survival analysis and univariate log-rank test demonstrated that sex (P=0.008), age (P=0.002), cN1b, defined as metastasis to unilateral, bilateral, or contralateral neck lymph nodes or retropharyngeal lymph nodes (P<0.001), pN1, defined as pathologically proven lymph node metastasis >5 (P<0.001), tumor size >2 cm (P<0.001), extrathyroidal extension (P=0.001) and CD24− (P<0.001) were prognostic factors for RFS. CSC marker combinations (CD44+/CD24−) also exhibited statistical significance in the log-rank test. In conclusion, expression of the CSC markers CD44+ and CD24− in PTC tissue samples was associated with RFS. The combination of CD44+ and CD24− exhibited a statistically significant negative association with RFS and a strong association with gross extra-thyroidal extension.
Collapse
Affiliation(s)
- Yoon-Jong Ryu
- Department of Otorhinolaryngology, Kangwon National University School of Medicine, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji-Young Choe
- Department of Pathology, Hallym University Sacred Heart Hospital, Anyang, Gyeonggi 14068, Republic of Korea
| | - Kyoungyul Lee
- Department of Pathology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Republic of Korea
| | - Soon-Hyun Ahn
- Department of Otorhinolaryngology, Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
26
|
Perusina Lanfranca M, Thompson JK, Bednar F, Halbrook C, Lyssiotis C, Levi B, Frankel TL. Metabolism and epigenetics of pancreatic cancer stem cells. Semin Cancer Biol 2019; 57:19-26. [PMID: 30273655 PMCID: PMC6438777 DOI: 10.1016/j.semcancer.2018.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic Cancer (PDA) is an aggressive malignancy characterized by early spread and a high mortality. Current studies suggest that a subpopulation of cells exist within tumors, cancer stem cell (CSC), which are capable of self-renewal and give rise to unique progeny which form the major neoplastic cellular component of tumors. While CSCs constitute a small cellular subpopulation within the tumor, their resistance to chemotherapy and radiation make them an important therapeutic target for eradication. Along with distinctive phenotypic properties, CSCs possess a unique metabolic plasticity allowing them to rapidly respond and adapt to environmental changes. These cells and their progeny also display a significantly altered epigenetic state with distinctive patterns of DNA methylation. Several mechanisms of cross-talk between epigenetic and metabolic pathways in PDA exist which ultimately contribute to the observed cellular plasticity and enhanced tumorigenesis. In this review we discuss various examples of this metabolic-epigenetic interplay and how it may constitute a new avenue for therapy specifically targeting CSCs in PDA.
Collapse
Affiliation(s)
| | - J K Thompson
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - F Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - C Halbrook
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States; Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - C Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States; Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - B Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - T L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
27
|
Self-targeted knockdown of CD44 improves cisplatin sensitivity of chemoresistant non-small cell lung cancer cells. Cancer Chemother Pharmacol 2018; 83:399-410. [DOI: 10.1007/s00280-018-3737-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/25/2018] [Indexed: 02/07/2023]
|
28
|
Ooki A, Dinalankara W, Marchionni L, Tsay JCJ, Goparaju C, Maleki Z, Rom WN, Pass HI, Hoque MO. Epigenetically regulated PAX6 drives cancer cells toward a stem-like state via GLI-SOX2 signaling axis in lung adenocarcinoma. Oncogene 2018; 37:5967-5981. [PMID: 29980786 PMCID: PMC6226336 DOI: 10.1038/s41388-018-0373-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/09/2018] [Accepted: 05/26/2018] [Indexed: 12/25/2022]
Abstract
It remains unclear whether PAX6 acts as a crucial transcription factor for lung cancer stem cell (CSC) traits. We demonstrate that PAX6 acts as an oncogene responsible for induction of cancer stemness properties in lung adenocarcinoma (LUAD). Mechanistically, PAX6 promotes GLI transcription, resulting in SOX2 upregulation directly by the binding of GLI to the proximal promoter region of the SOX2 gene. The overexpressed SOX2 enhances the expression of key pluripotent factors (OCT4 and NANOG) and suppresses differentiation lineage factors (HOPX and NKX2-1), driving cancer cells toward a stem-like state. In contrast, in the differentiated non-CSCs, PAX6 is transcriptionally silenced by its promoter methylation. In human lung cancer tissues, the positive linear correlations of PAX6 expression with GLI and SOX2 expression and its negative correlations with HOPX and NKX2-1 expression were observed. Therapeutically, the blockade of the PAX6-GLI-SOX2 signaling axis elicits a long-lasting therapeutic efficacy by limiting CSC expansion following chemotherapy. Furthermore, a methylation panel including the PAX6 gene yielded a sensitivity of 79.1% and specificity of 83.3% for cancer detection using serum DNA from stage IA LUAD. Our findings provide a rationale for targeting the PAX6-GLI-SOX2 signaling axis with chemotherapy as an effective therapeutic strategy and support the clinical utility of PAX6 gene promoter methylation as a biomarker for early lung cancer detection.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Wikum Dinalankara
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Jun-Chieh J Tsay
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Chandra Goparaju
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University of Medicine, New York, NY, 10016, USA
| | - Zahra Maleki
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - William N Rom
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Harvey I Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University of Medicine, New York, NY, 10016, USA
| | - Mohammad O Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
29
|
Götte M, Kovalszky I. Extracellular matrix functions in lung cancer. Matrix Biol 2018; 73:105-121. [DOI: 10.1016/j.matbio.2018.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
30
|
Du W, Ni L, Liu B, Wei Y, Lv Y, Qiang S, Dong J, Liu X. Upregulation of SALL4 by EGFR activation regulates the stemness of CD44-positive lung cancer. Oncogenesis 2018; 7:36. [PMID: 29691367 PMCID: PMC5915399 DOI: 10.1038/s41389-018-0045-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022] Open
Abstract
The transcriptional factor SALL4, an important stem cell regulator, is expressed in hematopoietic stem cells and various malignancies, but its role in EGFR-mutated NSCLCs has not been studied yet. Here, we report that the expression of Sal-like protein 4 (SALL4), was significantly higher in EGFR mutated lung tumors than in non-tumor tissue. SALL4-high lung cancer patients had poorer prognosis after surgery than SALL4-low patients. The expression of SALL4 could be induced by the activation of EGFR through the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The knockdown of SALL4 expression could suppress spheroid formation and the expression of lung cancer stem cell marker CD44. More interestingly, the knockdown of SALL4 expression could suppress the migration, invasion, and metastasis of the lung cancer cells and significantly increase the sensitivity of EGFR mutated cells to Erlotinib. These results suggest that SALL4 may be a novel potential therapeutic target for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Wenjing Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lan Ni
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yubao Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Sujing Qiang
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China. .,The Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Xijun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China. .,The Institutes of Integrative Medicine, Fudan University, Shanghai, China. .,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
De S, Lindner DJ, Coleman CJ, Wildey G, Dowlati A, Stark GR. The FACT inhibitor CBL0137 Synergizes with Cisplatin in Small-Cell Lung Cancer by Increasing NOTCH1 Expression and Targeting Tumor-Initiating Cells. Cancer Res 2018; 78:2396-2406. [PMID: 29440145 DOI: 10.1158/0008-5472.can-17-1920] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/05/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
Abstract
Traditional treatments of small-cell lung cancer (SCLC) with cisplatin, a standard-of-care therapy, spare the tumor-initiating cells (TIC) that mediate drug resistance. Here we report a novel therapeutic strategy that preferentially targets TICs in SCLC, in which cisplatin is combined with CBL0137, an inhibitor of the histone chaperone facilitates chromatin transcription (FACT), which is highly expressed in TICs. Combination of cisplatin and CBL0137 killed patient-derived and murine SCLC cell lines synergistically. In response to CBL0137 alone, TICs were more sensitive than non-TICs, in part, because CBL0137 increased expression of the tumor suppressor NOTCH1 by abrogating the binding of negative regulator SP3 to the NOTCH1 promoter, and in part because treatment decreased the high expression of stem cell transcription factors. The combination of cisplatin and CBL0137 greatly reduced the growth of a patient-derived xenograft in mice and also the growth of a syngeneic mouse SCLC tumor. Thus, CBL0137 can be a highly effective drug against SCLC, especially in combination with cisplatin.Significance: These findings reveal a novel therapeutic regimen for SCLC, combining cisplatin with an inhibitor that preferentially targets tumor-initiating cells. Cancer Res; 78(9); 2396-406. ©2018 AACR.
Collapse
Affiliation(s)
- Sarmishtha De
- Department of Cancer Biology. Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.
| | - Daniel J Lindner
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio
| | - Claire J Coleman
- Department of Cancer Biology. Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Gary Wildey
- University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Afshin Dowlati
- University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - George R Stark
- Department of Cancer Biology. Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.
| |
Collapse
|
32
|
Di Martile M, Desideri M, De Luca T, Gabellini C, Buglioni S, Eramo A, Sette G, Milella M, Rotili D, Mai A, Carradori S, Secci D, De Maria R, Del Bufalo D, Trisciuoglio D. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells. Oncotarget 2017; 7:11332-48. [PMID: 26870991 PMCID: PMC4905477 DOI: 10.18632/oncotarget.7238] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/23/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) play an important role in tumor initiation, progression, therapeutic failure and tumor relapse. In this study, we evaluated the efficacy of the thiazole derivative 3-methylcyclopentylidene-[4-(4′-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6), a novel pCAF and Gcn5 histone acetyltransferase inhibitor, as a small molecule that preferentially targets lung cancer stem-like cells (LCSCs) derived from non-small cell lung cancer (NSCLC) patients. Notably, although CPTH6 inhibits the growth of both LCSC and NSCLC cell lines, LCSCs exhibit greater growth inhibition than established NSCLC cells. Growth inhibitory effect of CPTH6 in LCSC lines is primarily due to apoptosis induction. Of note, differentiated progeny of LCSC lines is more resistant to CPTH6 in terms of loss of cell viability and reduction of protein acetylation, when compared to their undifferentiated counterparts. Interestingly, in LCSC lines CPTH6 treatment is also associated with a reduction of stemness markers. By using different HAT inhibitors we provide clear evidence that inhibition of HAT confers a strong preferential inhibitory effect on cell viability of undifferentiated LCSC lines when compared to their differentiated progeny. In vivo, CPTH6 is able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Strikingly, the ability of CPTH6 to inhibit tubulin acetylation is also confirmed in vivo. Overall, our studies propose histone acetyltransferase inhibition as an attractive target for cancer therapy of NSCLC.
Collapse
Affiliation(s)
- Marta Di Martile
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Marianna Desideri
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Teresa De Luca
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Gabellini
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Adriana Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Sette
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Milella
- Clinical and Experimental Oncology Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, 'Sapienza' University, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, 'Sapienza' University, Rome, Italy.,Pasteur Institute, Cenci Bolognetti Foundation, 'Sapienza' University, Rome, Italy
| | - Simone Carradori
- Department of Drug Chemistry and Technologies, 'Sapienza' University, Rome, Italy
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, 'Sapienza' University, Rome, Italy
| | - Ruggero De Maria
- Scientific Director, Regina Elena National Cancer Institute, Rome, Italy
| | - Donatella Del Bufalo
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Trisciuoglio
- Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
33
|
Wei H, Liang F, Cheng W, Zhou R, Wu X, Feng Y, Wang Y. The mechanisms for lung cancer risk of PM 2.5 : Induction of epithelial-mesenchymal transition and cancer stem cell properties in human non-small cell lung cancer cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2341-2351. [PMID: 28846189 DOI: 10.1002/tox.22437] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/06/2017] [Accepted: 05/14/2017] [Indexed: 05/20/2023]
Abstract
Fine particulate matter (PM2.5 ) is a major component of air pollutions that are closely associated with increased risk of lung cancer. However, the role of PM2.5 in the etiology of lung cancer is largely unknown. In this study, we performed acute (24 hours) and chronic (five passages) exposure models to investigate the carcinogenetic mechanisms of PM2.5 by targeting the induction of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) properties in human non-small cell lung cancer cell line A549. We found that both acute and chronic PM2.5 exposure enhanced cell migration and invasion, decreased mRNA expression of epithelial markers and increased mRNA expression of mesenchymal markers. Chronic PM2.5 exposure further induced notable EMT morphology and CSC properties, indicating the developing process of cell malignant behaviors from acute to chronic PM2.5 exposure. CSC properties induced by chronic PM2.5 exposure characterized with increased cell-surface markers (CD44, ABCG2), self-renewal genes (SOX2 and OCT4), side population cells and neoplastic capacity. Furthermore, the levels of three stemness-associated microRNAs, Let-7a, miR-16 and miR-34a, were found to be significantly downregulated by chronic PM2.5 exposure, with microarray data analysis from TCGA database showing their lower expression in human lung adenocarcinoma tissues than that in the adjacent normal lung tissues. These data revealed that the induction of EMT and CSC properties were involved in the lung cancer risk of PM2.5 , and implicated CSC properties and related microRNAs as possible biomarkers for carcinogenicity prediction of PM2.5 .
Collapse
Affiliation(s)
- Hongying Wei
- The Ninth People Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Fan Liang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ren Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaomeng Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Wang
- The Ninth People Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai, 200092, China
| |
Collapse
|
34
|
Non-invasive approaches for lung cancer diagnosis. Indian J Thorac Cardiovasc Surg 2017. [DOI: 10.1007/s12055-017-0600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
35
|
Zhou Q, Dai J, Chen T, Dada LA, Zhang X, Zhang W, DeCamp MM, Winn RA, Sznajder JI, Zhou G. Downregulation of PKCζ/Pard3/Pard6b is responsible for lung adenocarcinoma cell EMT and invasion. Cell Signal 2017; 38:49-59. [PMID: 28652146 PMCID: PMC5555371 DOI: 10.1016/j.cellsig.2017.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
Atypical protein kinase C ζ (PKCζ) forms an apico-basal polarity complex with Partitioning Defective (Pard) 3 and Pard6 to regulate normal epithelial cell apico-basolateral polarization. The dissociation of the PKCζ/Pard3/Pard6 complex is essential for the disassembly of the tight/adherens junction and epithelial-mesenchymal transition (EMT) that is critical for tumor spreading. Loss of cell polarity and epithelial organization is strongly correlated with malignancy and tumor progression in some other cancer types. However, it is unclear whether the PKCζ/Pard3/Pard6 complex plays a role in the progression of non-small-cell lung cancer (NSCLC). We found that hypoxia downregulated the PKCζ/Pard3/Pard6 complex, correlating with induction of lung cancer cell migration and invasion. Silencing of the PKCζ/Pard3/Pard6 polarity complex components induced lung cancer cell EMT, invasion, and colonization in vivo. Suppression of Pard3 was associated with altered expression of genes regulating wound healing, cell apoptosis/death and cell motility, and particularly upregulation of MAP3K1 and fibronectin which are known to contribute to lung cancer progression. Human lung adenocarcinoma tissues expressed less Pard6b and PKCζ than the adjacent normal tissues and in experimental mouse lung adenocarcinoma, the levels of Pard3 and PKCζ were also decreased. In addition, we showed that a methylation locus in the gene body of Pard3 is positively associated with the expression of Pard3 and that methylation of the Pard3 gene increased cellular sensitivity to carboplatin, a common chemotherapy drug. Suppression of Pard3 increased chemoresistance in lung cancer cells. Together, these results suggest that reduced expression of PKCζ/Pard3/Pard6 contributes to NSCLC EMT, invasion, and chemoresistance.
Collapse
Affiliation(s)
- Qiyuan Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jingbo Dai
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Tianji Chen
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xu Zhang
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Malcolm M DeCamp
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert A Winn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guofei Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Liu P, Zhang R, Yu W, Ye Y, Cheng Y, Han L, Dong L, Chen Y, Wei X, Yu J. FGF1 and IGF1-conditioned 3D culture system promoted the amplification and cancer stemness of lung cancer cells. Biomaterials 2017; 149:63-76. [PMID: 29017078 DOI: 10.1016/j.biomaterials.2017.09.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Lung cancer stem cells (LCSCs) are considered as the cellular origins of metastasis and relapse of lung cancer. However, routine two-dimensional culture system (2D-culture) hardly mimics the growth and functions of LCSCs in vivo and therefore significantly decreases the stemness activity of LCSCs. In this study, we constructed a special BME-based three-dimensional culture system (3D-culture) to amplify LCSCs in human lung adenocarcinoma cell line A549 cells and found 3D-culture promoted the enrichment and amplification of LCSCs in A549 cells displaying higher proliferation potential and invasion activity, but lower apoptosis. The expression and secretion levels of FGF1 and IGF1 were dramatically elevated in 3D-culture compared to 2D-culture. After growing in FGF1 and IGF1-conditioned 3D-culture, the proportion of LCSCs with specific stemness phenotypes in A549 cells significantly increased compared to that in conventional 3D suspension culture system. Further results indicated that FGF1 and IGF1 promoted the amplification and cancer stemness of LCSCs dependent on MAPK signaling pathway. Our data firstly established a growth factors-conditioned 3D-culture for LCSCs and demonstrated the effects of FGF1 and IGF1 in promoting the enrichment and amplification of LCSCs which might provide a feasible cell model in vitro for both mechanism study and translational research on lung cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanan Cheng
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Li Dong
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yongzi Chen
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiyin Wei
- Public Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China.
| |
Collapse
|
37
|
Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells. Sci Rep 2017; 7:12317. [PMID: 28951614 PMCID: PMC5615065 DOI: 10.1038/s41598-017-12017-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/01/2017] [Indexed: 12/23/2022] Open
Abstract
In the present study, we successfully generated lung cancer stem cell (CSC)-like cells by introducing a small set of transcription factors into a lung cancer cell line. In addition to properties that are conventionally referred to as CSC properties, the lung induced CSCs exhibited the ability to form lung cancer-like tissues in vitro with vascular cells and mesenchymal stem cells, which showed structures and immunohistological patterns that were similar to human lung cancer tissues. We named them “lung cancer organoids”. We found that interleukin-6 (IL-6), which was expressed in the lung induced CSCs, facilitates the formation of lung cancer organoids via the conversion of mesenchymal stem cells into alpha-smooth muscle actin (αSMA)-positive cells. Interestingly, the combination of anti-IL-6 antibody and cisplatin could destroy the lung cancer organoids, while cisplatin alone could not. Furthermore, IL-6 mRNA-positive cancer cells were found in clinical lung cancer samples. These results suggest that IL-6 could be a novel therapeutic target in lung cancer.
Collapse
|
38
|
MiR-410 induces stemness by inhibiting Gsk3β but upregulating β-catenin in non-small cells lung cancer. Oncotarget 2017; 8:11356-11371. [PMID: 28076327 PMCID: PMC5355270 DOI: 10.18632/oncotarget.14529] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/27/2016] [Indexed: 02/05/2023] Open
Abstract
Our previous research indicated miR-410 played a critical role in promoting the tumorigenesis and development of NSCLC (non-small cells lung cancer). MiR-410 has been recently reported to be crucial for development and differentiation of embryonic stem cells. But it remains elusive whether miR-410 stimulates the stemness of cancer until now. Herein, we identify miR-410 induces the stemness and is associated with the progression of NSCLC. We demonstrate miR-410 increases the levels of stem cells marker Sox2, Oct4, Nanog, CXCR4 as well as lung cancer stem cells surface marker CD44 and CD166. MiR-410 promotes stem cells-like properties such as proliferation, sphere formation, metastasis and chemoresistance. Moreover, Gsk3β is directly targeted and post-transcriptionally downregulated by miR-410. Also, the expression levels of miR-410 and Gsk3β may be correlated to clinicopathological differentiation in NSCLC tumor specimens. Additionally, we demonstrate miR-410 induces stemness through inhibiting Gsk3β but increasing Sox2, Oct4, Nanog and CXCR4, which binds to β-catenin signaling. In conclusion, our findings identify the miR-410/Gsk3β/β-catenin signaling axis is a novel molecular circuit in inducing stemness of NSCLC.
Collapse
|
39
|
Fang LZ, Zhang JQ, Liu L, Fu WP, Shu JK, Feng JG, Liang X. Silencing of Btbd7 Inhibited Epithelial-Mesenchymal Transition and Chemoresistance in CD133 + Lung Carcinoma A549 Cells. Oncol Res 2017; 25:819-829. [PMID: 27983936 PMCID: PMC7841122 DOI: 10.3727/096504016x14772349843854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cancer stem cells (CSCs) are responsible for tumorigenesis and recurrence, so targeting CSCs is an effective method to potentially cure cancer. BTB/POZ domain-containing protein 7 (Btbd7) has been found in various cancers, including lung cancer and liver cancer, but the role of Btbd7 in non-small cell lung cancer (NSCLC), CSC self-renewal, and chemoresistance is still unknown. Therefore, in this study we found that the ratio of tumor sphere formation and stem cell transcription factors in CD133+ cells was dramatically enhanced compared to parental cells, which indicated successful sorting of CD133+ cells from A549. Meanwhile, Btbd7 and the markers of the epithelial-mesenchymal transition (EMT) process were more highly expressed in CD133+ cells than in parental cells. Silencing of Btbd7 significantly inhibited the self-renewal and EMT process in CD133+ cells. Furthermore, we found that downregulation of Btbd7 promoted cell apoptosis and increased the sensitivity to paclitaxel in CD133+ and parental cells. In conclusion, our results suggest that Btbd7 is a promising agent for the inhibition of survival and chemoresistance of cancer stem-like cells of NSCLC, which may act as an important therapeutic target in NSCLC.
Collapse
|
40
|
Cortes-Dericks L, Schmid RA. CD44 and its ligand hyaluronan as potential biomarkers in malignant pleural mesothelioma: evidence and perspectives. Respir Res 2017; 18:58. [PMID: 28403901 PMCID: PMC5389171 DOI: 10.1186/s12931-017-0546-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and highly drug resistant tumor arising from the mesothelial surfaces of the lung pleura. The standard method to confirm MPM is the tedious, time-consuming cytological examination of cancer biopsy. Biomarkers that are detectable in pleural effusion or patient serum are reasonable options to provide a faster and noninvasive diagnostic approach. As yet, the current biomarkers for MPM lack specificity and sensitivity to discriminate this neoplasm from other lung tumors. CD44, a multifunctional surface receptor has been implicated in tumor progression in different cancers including MPM. The interaction of CD44 with its ligand, hyaluronan (HA) has demonstrated an important role in modulating cell proliferation and invasiveness in MPM. In particular, the high expression levels of these molecules have shown diagnostic relevance in MPM. This review will summarize the biology and diagnostic implication of CD44 and HA as well as the interaction of both molecules in MPM that will demonstrate their potential as biomarkers. Augmentation of the current markers in MPM may lead to an earlier diagnosis and management of this disease.
Collapse
Affiliation(s)
- Lourdes Cortes-Dericks
- Department of Clinical Research, Division of General Thoracic Surgery, University Hospital Berne, Berne, Switzerland.
| | - Ralph Alexander Schmid
- Department of Clinical Research, Division of General Thoracic Surgery, University Hospital Berne, Berne, Switzerland
| |
Collapse
|
41
|
Engineering cancer stem-like cells from normal human lung epithelial cells. PLoS One 2017; 12:e0175147. [PMID: 28380052 PMCID: PMC5381922 DOI: 10.1371/journal.pone.0175147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/21/2017] [Indexed: 01/20/2023] Open
Abstract
It has been proposed that a subpopulation of tumour cells with stem cell-like characteristics, known as cancer stem cells (CSCs), drives tumour initiation and generates tumour heterogeneity, thus leading to cancer metastasis, recurrence, and drug resistance. Although there has been substantial progress in CSC research into many solid tumour types, an understanding of the biology of CSCs in lung cancer remains elusive, mainly because of their heterogeneous origins and high plasticity. Here, we demonstrate that engineered lung cancer cells derived from normal human airway basal epithelial cells possessed CSC-like characteristics in terms of multilineage differentiation potential and strong tumour-initiating ability. Moreover, we established an in vitro 3D culture system that allowed the in vivo differentiation process of the CSC-like cells to be recapitulated. This engineered CSC model provides valuable opportunities for studying the biology of CSCs and for exploring and evaluating novel therapeutic approaches and targets in lung CSCs.
Collapse
|
42
|
Ninsontia C, Phiboonchaiyanan PP, Kiratipaiboon C, Chanvorachote P. Zinc suppresses stem cell properties of lung cancer cells through protein kinase C-mediated β-catenin degradation. Am J Physiol Cell Physiol 2017; 312:C487-C499. [DOI: 10.1152/ajpcell.00173.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
Abstract
Highly tumorigenic cancer stem cells (CSCs) residing in most cancers are responsible for cancer progression and treatment failure. Zinc is an element regulator of several cell functions; however, its role in regulation of stem cell program in lung cancer has not been demonstrated. The present study reveals for the first time that zinc can suppress stem cell properties of lung cancer cells. Such findings were proved in different lung cancer cell lines (H460, H23, and H292) and it was found that CSC markers (CD133 and ALDH1A1), stem cell-associated transcription factors (Oct4, Nanog, and Sox-2), and the ability to form tumor spheroid were dramatically suppressed by zinc treatments. Zinc was found to activate protein kinase C-α (PKCα) that further phosphorylated and mediated β-catenin degradation through the ubiquitin-proteasomal pathway. Zinc was found to increase the β-catenin-ubiquitin complex, which can be inhibited by a specific PKC inhibitor, bisindolylmaleimide I. Using specific reactive oxygen species detection and antioxidants, we have demonstrated that superoxide anions generated by zinc are a key upstream mechanism for PKCα activation leading to the subsequent suppression of stem cell features of lung cancer. Zinc increased cellular superoxide anions and the addition of superoxide anion scavenger prevented the activation of PKCα and β-catenin degradation. These findings indicate a novel role for zinc regulation in the PKCα/β-catenin pathway and explain an important mechanism for controlling of stem cell program in lung cancer cells.
Collapse
Affiliation(s)
- Chuanpit Ninsontia
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and
- Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Preeyaporn Plaimee Phiboonchaiyanan
- Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chayanin Kiratipaiboon
- Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and
- Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
43
|
PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Sci Rep 2017; 7:43013. [PMID: 28220839 PMCID: PMC5318947 DOI: 10.1038/srep43013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022] Open
Abstract
Combined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoproteomic profile modification(s) in response to combined MEK/mTOR inhibition in PTEN-loss contexts and identified JAK1/STAT3 activation as a potential mediator of synergistic interactions. Overall, our results show that PTEN-loss is a crucial determinant of synergistic interactions between MAPK and PI3K pathway inhibitors, potentially exploitable for the selection of cancer patients at the highest chance of benefit from combined therapeutic strategies.
Collapse
|
44
|
Roy S, Lu K, Nayak MK, Bhuniya A, Ghosh T, Kundu S, Ghosh S, Baral R, Dasgupta PS, Basu S. Activation of D2 Dopamine Receptors in CD133+ve Cancer Stem Cells in Non-small Cell Lung Carcinoma Inhibits Proliferation, Clonogenic Ability, and Invasiveness of These Cells. J Biol Chem 2016; 292:435-445. [PMID: 27920206 DOI: 10.1074/jbc.m116.748970] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/03/2016] [Indexed: 12/22/2022] Open
Abstract
Lung carcinoma is the leading cause of cancer-related death worldwide, and among this cancer, non-small cell lung carcinoma (NSCLC) comprises the majority of cases. Furthermore, recurrence and metastasis of NSCLC correlate well with CD133+ve tumor cells, a small population of tumor cells that have been designated as cancer stem cells (CSC). We have demonstrated for the first time high expression of D2 dopamine (DA) receptors in CD133+ve adenocarcinoma NSCLC cells. Also, activation of D2 DA receptors in these cells significantly inhibited their proliferation, clonogenic ability, and invasiveness by suppressing extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT, as well as down-regulation of octamer-binding transcription factor 4 (Oct-4) expression and matrix metalloproteinase-9 (MMP-9) secretion by these cells. These results are of significance as D2 DA agonists that are already in clinical use for treatment of other diseases may be useful in combination with conventional chemotherapy and radiotherapy for better management of NSCLC patients by targeting both tumor cells and stem cell compartments in the tumor mass.
Collapse
Affiliation(s)
- Soumyabrata Roy
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Kai Lu
- the Department of Pathology, Ohio State University, Columbus, Ohio 43210
| | - Mukti Kant Nayak
- the Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Avishek Bhuniya
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Tithi Ghosh
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Suman Kundu
- the Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata 700032, India, and
| | - Sarbari Ghosh
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Rathindranath Baral
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Partha Sarathi Dasgupta
- From the Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata 700026, India,
| | - Sujit Basu
- the Department of Pathology, Ohio State University, Columbus, Ohio 43210, .,the Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
45
|
Kim M, Suh YA, Oh JH, Lee BR, Kim J, Jang SJ. KIF3A binds to β-arrestin for suppressing Wnt/β-catenin signalling independently of primary cilia in lung cancer. Sci Rep 2016; 6:32770. [PMID: 27596264 PMCID: PMC5011747 DOI: 10.1038/srep32770] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/15/2016] [Indexed: 02/08/2023] Open
Abstract
Aberrant Wnt/β-catenin signalling is implicated in the progression of several human cancers, including non-small cell lung cancer (NSCLC). However, mutations in Wnt/β-catenin pathway components are uncommon in NSCLC, and their epigenetic control remains unclear. Here, we show that KIF3A, a member of the kinesin-2 family, plays a role in suppressing Wnt/β-catenin signalling in NSCLC cells. KIF3A knockdown increases both β-catenin levels and transcriptional activity with concomitant promotion of malignant potential, such as increased proliferation and migration and upregulation of stemness markers. Because KIF3A binds β-arrestin, KIF3A depletion allows β-arrestin to form a complex with DVL2 and axin, stabilizing β-catenin. Although primary cilia, whose biogenesis requires KIF3A, are thought to restrain the Wnt response, pharmacological inhibition of ciliogenesis failed to increase β-catenin activity in NSCLC cells. A correlation between KIF3A loss and a poorer NSCLC prognosis as well as β-catenin and cyclin D1 upregulation further suggests that KIF3A suppresses Wnt/β-catenin signalling and tumourigenesis in NSCLC.
Collapse
Affiliation(s)
- Minsuh Kim
- Biomedical science and engineering interdisciplinary program, KAIST, Daejeon, South Korea.,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Young-Ah Suh
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ju-Hee Oh
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Bo Ra Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Joon Kim
- Biomedical science and engineering interdisciplinary program, KAIST, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, KAIST, Daejeon, South Korea
| | - Se Jin Jang
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Asan Center for Cancer Genome Discovery, Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
46
|
Genetic Variation in CD166 Gene and Its Association with Bladder Cancer Risk in North Indian Population. Indian J Clin Biochem 2016; 32:292-300. [PMID: 28811688 DOI: 10.1007/s12291-016-0606-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/13/2016] [Indexed: 01/01/2023]
Abstract
Adhesion molecules play a key role in cancer progression and tumorigenesis. Genetic polymorphism of adhesion molecules may alter the normal functioning thereby leading to bladder cancer susceptibility. Hence we aimed to evaluate three SNPs of CD166 gene (CD166rs6437585 C/T, CD166rs10511244 C/T, and CD166rs1157 A/G) in bladder cancer patients and normal controls of North Indian population. A total of 270 healthy controls and 240 confirmed bladder cancer patients were recruited for this study. Three SNPs of CD166 gene viz. CD166rs6437585 C/T, CD166rs10511244 C/T, and CD166rs1157 A/G were selected for this study. CD166rs6437585 C/T and CD166rs10511244 C/T were genotyped by Taqman allelic discrimination assay and CD166rs1157 A/G was genotyped by PCR-RFLP. The statistical analysis was done using the SPSS software, version 16.0 (SPSS, Chicago, IL), and p < 0.05 was considered statistically significant. Haplotypic analysis was done by using SNP analyzer version 1.2A. CD166rs6437585 C/T and CD166rs10511244 C/T showed significant association with reduced risk in bladder cancer while CD166rs1157 A/G showed significant high risk along with association at genotypic and allelic levels. Haplotypic analysis showed 1.8-folds risk in CCG combination, whereas CTA and TCG showed significant association with reduced risk. Further stratification on the basis of smoking, tumor grade/stage and BGC therapy revealed no association of these three polymorphic sites of CD166. Our study suggests that CD166rs6437585 C/T and CD166rs10511244 C/T are predictive for the reduced risk of bladder cancer, whereas CD166rs1157 A/G had shown significant association with high risk of bladder cancer in North Indians. This somehow suggests that CD166rs1157 A/G can be used as a marker for risk prediction of bladder cancer.
Collapse
|
47
|
Barnawi R, Al-Khaldi S, Majed Sleiman G, Sarkar A, Al-Dhfyan A, Al-Mohanna F, Ghebeh H, Al-Alwan M. Fascin Is Critical for the Maintenance of Breast Cancer Stem Cell Pool Predominantly via the Activation of the Notch Self-Renewal Pathway. Stem Cells 2016; 34:2799-2813. [DOI: 10.1002/stem.2473] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Rayanah Barnawi
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - Samiyah Al-Khaldi
- National Genome Center, King Abdulaziz City for Sciences and Technology; Riyadh Saudi Arabia
| | | | - Abdullah Sarkar
- Collage of Medicine; Al-Faisal University; Riyadh Saudi Arabia
| | - Abdullah Al-Dhfyan
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - Falah Al-Mohanna
- Department of Comparative Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - Hazem Ghebeh
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
- Collage of Medicine; Al-Faisal University; Riyadh Saudi Arabia
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
- Collage of Medicine; Al-Faisal University; Riyadh Saudi Arabia
| |
Collapse
|
48
|
Vicari L, Colarossi C, Giuffrida D, De Maria R, Memeo L. Cancer stem cells as a potential therapeutic target in thyroid carcinoma. Oncol Lett 2016; 12:2254-2260. [PMID: 27698787 DOI: 10.3892/ol.2016.4936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023] Open
Abstract
A number of studies have indicated that tumor growth and proliferation is dependent on a small subset of cells, defined as cancer stem cells (CSCs). CSCs have the capability to self-renew, and are involved with cancer propagation, relapse and metastatic dissemination. CSCs have been isolated from numerous tissues, including normal and cancerous thyroid tissue. A regulatory network of signaling pathways and microRNAs (miRNAs) control the properties of CSCs. Differentiated thyroid carcinoma is the most common type of endocrine cancer, with an increasing incidence. Anaplastic thyroid carcinoma is the most rare type of endocrine cancer; however, it also exhibits the highest mortality rate among thyroid malignancies, with an extremely short survival time. Thyroid CSCs are invasive and highly resistant to conventional therapies, including radiotherapy and chemotherapy, which results in disease relapse even when the primary lesion has been eradicated. Therefore, targeting thyroid CSCs may represent an effective treatment strategy against aggressive neoplasms, including recurrent and radioresistant tumors. The present review summarizes the current literature regarding thyroid CSCs and discusses therapeutic strategies that target these cells, with a focus on the function of self-renewal pathways and miRNAs. Elucidation of the mechanisms that regulate CSC growth and survival may improve novel therapeutic approaches for treatment-resistant thyroid cancers.
Collapse
Affiliation(s)
- Luisa Vicari
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | | | - Lorenzo Memeo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy; Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| |
Collapse
|
49
|
Sung WJ, Kim H, Park KK. The biological role of epithelial-mesenchymal transition in lung cancer (Review). Oncol Rep 2016; 36:1199-206. [PMID: 27460444 DOI: 10.3892/or.2016.4964] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells gradually transform into mesenchymal-like cells losing their epithelial functionality and characteristics. EMT is thought to be involved in the pathogenesis of numerous lung diseases ranging from developmental disorders and fibrotic tissue remodeling to lung cancer. Lung cancer is the most lethal form of cancer worldwide, and despite significant therapeutic improvements, the patient survival rate still remains low. Activation of EMT endows invasive and metastatic properties upon cancer cells that favor successful colonization of distal target organs. The present review provides a brief insight into the mechanism and biological assessment methods of EMT in lung cancer and summarizes the recent literature highlighting the controversial experimental data and conclusions.
Collapse
Affiliation(s)
- Woo Jung Sung
- Department of Pathology, Catholic University of Daegu College of Medicine, Nam-gu, Daegu 42472, Republic of Korea
| | - Hongtae Kim
- Department of Anatomy, Catholic University of Daegu College of Medicine, Nam-gu, Daegu 42472, Republic of Korea
| | - Kwan-Kyu Park
- Department of Pathology, Catholic University of Daegu College of Medicine, Nam-gu, Daegu 42472, Republic of Korea
| |
Collapse
|
50
|
Abstract
Lung cancer remains a major cause of cancer-related deaths worldwide with unfavourable prognosis mainly due to the late stage of disease at presentation. High incidence and disease recurrence rates are a fact despite advances in treatment. Ongoing experimental and clinical observations suggest that the malignant phenotype in lung cancer is sustained by lung cancer stem cells (CSCs) which are putative stem cells situated throughout the airways that have the potential of initiating lung cancer formation. These cells share the common characteristic of increased proliferation and differentiation, long life span and resistance to chemotherapy and radiation therapy. This review summarises the current knowledge on their characteristics and phenotype.
Collapse
Affiliation(s)
- Georgia Hardavella
- 1 Department of Respiratory Medicine and Allergy, King's College, London, UK ; 2 Department of Respiratory Medicine, King's College Hospital, London, UK
| | - Rachel George
- 1 Department of Respiratory Medicine and Allergy, King's College, London, UK ; 2 Department of Respiratory Medicine, King's College Hospital, London, UK
| | - Tariq Sethi
- 1 Department of Respiratory Medicine and Allergy, King's College, London, UK ; 2 Department of Respiratory Medicine, King's College Hospital, London, UK
| |
Collapse
|