1
|
Tao H, Li L, Li H, Ma T, Zhu X, Cao J, Zhu Y, Zhu S, Li M. The anti-tumor effects of main component (benzethonium chloride) of butorphanol tartrate injection in non-small cell lung cancer. Sci Rep 2024; 14:30194. [PMID: 39632963 PMCID: PMC11618660 DOI: 10.1038/s41598-024-81912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality in the global population. The effective management of cancer-associated pain and anesthesia are critical aspects of comprehensive cancer treatment. However, the role and mechanism of anesthesia and analgesia-related drugs in tumors remain controversial. In this study, the efficacy of 16 commonly used analgesics and anesthetics against non-small cell lung cancer (NSCLC) was evaluated. Among the 16 examined injections, butorphanol tartrate injection significantly inhibited the proliferation of NSCLC cells and increased the sensitivity of the EGFR-TKI-resistant H1975 cell line to gefitinib. Benzethonium chloride (BC) is the main active antitumor ingredient of butorphanol tartrate injection. BC may regulate the cell cycle, apoptosis and EMT signaling pathways by modulating the P53 signaling pathway. Our study reveals the therapeutic value of butorphanol tartrate injection and BC in the treatment of NSCLC and provides a theoretical basis for comprehensive therapies for NSCLC.
Collapse
Affiliation(s)
- Honglei Tao
- Department of Anesthesiology, The First Affiliated Hospital, ZheJiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Lei Li
- Department of Anesthesiology, The First Affiliated Hospital, ZheJiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Affiliated People's Hospital of Ningbo University, Ningbo, 315201, Zhejiang, China
| | - Huiling Li
- Department of Anesthesiology, The First Affiliated Hospital, ZheJiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tingting Ma
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Xinping Zhu
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Jili Cao
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yongqiang Zhu
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, ZheJiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Mingqian Li
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
2
|
Gruszka R, Zakrzewski J, Nowosławska E, Grajkowska W, Zakrzewska M. Identification and validation of miRNA-target genes network in pediatric brain tumors. Sci Rep 2024; 14:17922. [PMID: 39095557 PMCID: PMC11297236 DOI: 10.1038/s41598-024-68945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Alterations in miRNA levels have been observed in various types of cancer, impacting numerous cellular processes and increasing their potential usefulness in combination therapies also in brain tumors. Recent advances in understanding the genetics and epigenetics of brain tumours point to new aberrations and associations, making it essential to continually update knowledge and classification. Here we conducted molecular analysis of 123 samples of childhood brain tumors (pilocytic astrocytoma, medulloblastoma, ependymoma), focusing on identification of genes that could potentially be regulated by crucial representatives of OncomiR-1: miR-17-5p and miR-20a-5p. On the basis of microarray gene expression analysis and qRTPCR profiling, we selected six (WEE1, CCND1, VEGFA, PTPRO, TP53INP1, BCL2L11) the most promising target genes for further experiments. The WEE1, CCND1, PTPRO, TP53INP1 genes showed increased expression levels in all tested entities with the lowest increase in the pilocytic astrocytoma compared to the ependymoma and medulloblastoma. The obtained results indicate a correlation between gene expression and the WHO grade and subtype. Furthermore, our analysis showed that the integration between genomic and epigenetic pathways should now point the way to further molecular research.
Collapse
Affiliation(s)
- Renata Gruszka
- Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Jakub Zakrzewski
- Faculty of Medicine, Medical University of Lodz, ul. Aleja T. Kosciuszki 4, 90-419, Lodz, Poland
| | - Emilia Nowosławska
- Department of Neurosurgery, Polish Mother Memorial Hospital Research Institute in Lodz, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Wiesława Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Magdalena Zakrzewska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-216, Lodz, Poland
| |
Collapse
|
3
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 inhibition represses melanoma cell growth and BRAF inhibitor resistance via upregulating SPARC expression. NAR Cancer 2024; 6:zcae018. [PMID: 38650694 PMCID: PMC11034028 DOI: 10.1093/narcan/zcae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), a conserved secreted glycoprotein, plays crucial roles in regulating various biological processes. SPARC is highly expressed and has profound implications in several cancer types, including melanoma. Understanding the mechanisms that govern SPARC expression in cancers has the potential to lead to improved cancer diagnosis, prognosis, treatment strategies, and patient outcomes. Here, we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression in melanoma cells. Depletion or inhibition of HDAC10 upregulates SPARC expression, whereas overexpression of HDAC10 downregulates it. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the state of acetylation of histone H3 at lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby fine-tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth primarily by activating AMPK signaling and inducing autophagy. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitization of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through indirect histone modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC.
Collapse
Affiliation(s)
- Hongbo Ling
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Yixuan Li
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Changmin Peng
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State Cancer Institute, The Penn State University, 400 University Drive, Hershey, PA 17033, USA
| | - Edward Seto
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
4
|
Piergentili R, Marinelli E, Cucinella G, Lopez A, Napoletano G, Gullo G, Zaami S. miR-125 in Breast Cancer Etiopathogenesis: An Emerging Role as a Biomarker in Differential Diagnosis, Regenerative Medicine, and the Challenges of Personalized Medicine. Noncoding RNA 2024; 10:16. [PMID: 38525735 PMCID: PMC10961778 DOI: 10.3390/ncrna10020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Breast Cancer (BC) is one of the most common cancer types worldwide, and it is characterized by a complex etiopathogenesis, resulting in an equally complex classification of subtypes. MicroRNA (miRNA or miR) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to tumor development and angiogenesis in different types of cancer. Recently, complex interactions among coding and non-coding RNA have been elucidated, further shedding light on the complexity of the roles these molecules fulfill in cancer formation. In this context, knowledge about the role of miR in BC has significantly improved, highlighting the deregulation of these molecules as additional factors influencing BC occurrence, development and classification. A considerable number of papers has been published over the past few years regarding the role of miR-125 in human pathology in general and in several types of cancer formation in particular. Interestingly, miR-125 family members have been recently linked to BC formation as well, and complex interactions (competing endogenous RNA networks, or ceRNET) between this molecule and target mRNA have been described. In this review, we summarize the state-of-the-art about research on this topic.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy;
| | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Alessandra Lopez
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| |
Collapse
|
5
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 blockade upregulates SPARC expression thereby repressing melanoma cell growth and BRAF inhibitor resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570182. [PMID: 38106051 PMCID: PMC10723323 DOI: 10.1101/2023.12.05.570182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secreted Protein Acidic and Rich in Cysteine (SPARC), a highly conserved secreted glycoprotein, is crucial for various bioprocesses. Here we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression. HDAC10 depletion or inhibition upregulates, while overexpression of HDAC10 downregulates, SPARC expression. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the acetylation state of histone H3 lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth, primarily by induction of autophagy via activation of AMPK signaling. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitivity of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through epigenetic modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC. Highlights HDAC10 is the primary HDAC member that tightly controls SPARC expression. HDAC10 coordinates with p300 in modulating the H3K27ac state at SPARC regulatory elements and the recruitment of BRD4 to these regions. HDAC10 depletion and resultant SPARC upregulation inhibit melanoma cell growth by inducing autophagy via activation of AMPK signaling.SPARC upregulation as a result of HDAC10 depletion resensitizes resistant cells to BRAF inhibitors.
Collapse
|
6
|
Omidi F, Shahbazi S, Reiisi S, Azhdari S, Karimzadeh MR. Glycyrrhizic acid enhances the anticancer activity of cisplatin in the human ovarian cancer cell line. Toxicol In Vitro 2023; 93:105687. [PMID: 37659683 DOI: 10.1016/j.tiv.2023.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
This study aimed to investigate the effects of glycyrrhizic acid (GL) on the anticancer activity of cisplatin in A2780 ovarian cancer cells. Cultured A2780 cells were treated with different concentrations of GL and cisplatin individually and in combination. The MTT assay, flow cytometry, wound-healing, and clonogenic assay, were used to determine cell viability, apoptosis, migration, and colony formation, respectively. The effects on superoxide dismutase (SOD) activity were also evaluated. QPCR was used to study the effects of individual and combined treatments with GL and cisplatin on the expression levels of migration genes (MMP2 and MMP9), and some apoptosis pathway genes (caspase-3, -8, -9, and BCL2). A synergistic effect was observed between GL and cisplatin (CI < 1). Combination therapy was significantly more effective in reducing cell viability, suppressing migration and colony formation, inducing apoptosis, and altering gene expression compared to single therapies. GL significantly increased SOD activity. The relative expression of caspase -3, -8, and - 9 increased significantly, and the expression levels of MMP2 and MMP9 decreased significantly in the treated cells. Our results indicate that GL enhances the anticancer activity of cisplatin in the A2780 cell line. Therefore, the combination of GL and cisplatin can be proposed as a promising therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Fereshteh Omidi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Shahrzad Shahbazi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
7
|
Jalalpour Choupanan M, Shahbazi S, Reiisi S. Naringenin in combination with quercetin/fisetin shows synergistic anti-proliferative and migration reduction effects in breast cancer cell lines. Mol Biol Rep 2023; 50:7489-7500. [PMID: 37480513 DOI: 10.1007/s11033-023-08664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/03/2023] [Indexed: 07/24/2023]
Abstract
INTRODUCTION & AIM Breast cancer is one of the most common cancers with a high mortality rate among women worldwide. Quercetin/fisetin and naringenin, three well-known flavonoids, have been used to fight against various cancers. The aim of the present study was to investigate the possible synergism of quercetin/fisetin with naringenin on MCF7 and MDA-MB-231 breast cancer cell lines. METHODS In this study, cultured MCF7 and MDA-MB-231 cells were treated with different concentrations of quercetin/fisetin individually and in combination with naringenin. MTT assay and scratch assay was employed to determine cell viability and migration respectively. Real-time PCR was used to study the expression level of apoptosis genes and miR-1275 (tumor suppressor miRNA) and mir-27a-3p (oncogenic miRNA). RESULTS A synergism effect of quercetin/fisetin and naringenin (CI < 1) was observed for both cell lines. Combination therapies were significantly more effective in cell growth reduction, migration suppression and apoptosis induction than single therapies. Gene expression analysis revealed the upregulation of miR-1275 and downregulation miR-27a-3p. CONCLUSION Our results indicate that quercetin/fisetin enhances the anti-proliferative and anti-migratory activities in combination with naringenin in MCF7 and MDA-MB-231 human breast cancer cell lines. Therefore, the combination of Que/Fis and Nar can be proposed as a promising therapeutic strategy for further investigations.
Collapse
Affiliation(s)
| | - Shahrzad Shahbazi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
8
|
Abstract
MicroRNAs (miRNAs) are key players in gene regulation that target specific mRNAs for degradation or translational repression. Each miRNA is synthesized as a miRNA duplex comprising two strands (5p and 3p). However, only one of the two strands becomes active and is selectively incorporated into the RNA-induced silencing complex in a process known as miRNA strand selection. Recently, significant progress has been made in understanding the factors and processes involved in strand selection. Here, we explore the selection and functionality of the miRNA star strand (either 5p or 3p), which is generally present in the cell at low levels compared to its partner strand and, historically, has been thought to possess no biological activity. We also highlight the concepts of miRNA arm switching and miRNA isomerism. Finally, we offer insights into the impact of aberrant strand selection on immunity and cancer. Leading us through this journey is miR-155, a well-established regulator of immunity and cancer, and the increasing evidence that its 3p strand plays a role in these arenas. Interestingly, the miR-155-5p/-3p ratio appears to vary dependent on the timing of the immune response, and the 3p strand seems to play a regulatory role upon its partner 5p strand.
Collapse
Affiliation(s)
- Owen Dawson
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
9
|
Zuo J, Zhang Z, Li M, Yang Y, Zheng B, Wang P, Huang C, Zhou S. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role. Mol Cancer 2022; 21:30. [PMID: 35081965 PMCID: PMC8790843 DOI: 10.1186/s12943-021-01488-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/26/2021] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress (OS), characterized by the excessive accumulation of reactive oxygen species (ROS), is an emerging hallmark of cancer. Tumorigenesis and development driven by ROS require an aberrant redox homeostasis, that activates onco-signaling and avoids ROS-induced programmed death by orchestrating antioxidant systems. These processes are revealed to closely associate with noncoding RNAs (ncRNAs). On the basis of the available evidence, ncRNAs have been widely identified as multifarious modulators with the involvement of several key redox sensing pathways, such as NF-κB and Nrf2 signaling, therefore potentially becoming effective targets for cancer therapy. Furthermore, the vast majority of ncRNAs with property of easy detected in fluid samples (e.g., blood and urine) facilitate clinicians to monitor redox homeostasis, indicating a novel method for cancer diagnosis. Herein, focusing on carcinoma initiation, metastasis and chemoradiotherapy resistance, we aimed to discuss the ncRNAs-ROS network involved in cancer progression, and the potential clinical application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Yun Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| |
Collapse
|
10
|
Extracellular Vesicles Mediate Communication between Endothelial and Vascular Smooth Muscle Cells. Int J Mol Sci 2021; 23:ijms23010331. [PMID: 35008757 PMCID: PMC8745747 DOI: 10.3390/ijms23010331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
The recruitment of pericytes and vascular smooth muscle cells (SMCs) that enwrap endothelial cells (ECs) is a crucial process for vascular maturation and stabilization. Communication between these two cell types is crucial during vascular development and in maintaining vessel homeostasis. Extracellular vesicles (EVs) have emerged as a new communication tool involving the exchange of microRNAs between cells. In the present study, we searched for microRNAs that could be transferred via EVs from ECs to SMCs and vice versa. Thanks to a microRNA profiling experiment, we found that two microRNAs are more exported in each cell type in coculture experiments: while miR-539 is more secreted by ECs, miR-582 is more present in EVs from SMCs. Functional assays revealed that both microRNAs can modulate both cell-type phenotypes. We further identified miR-539 and miR-582 targets, in agreement with their respective cell functions. The results obtained in vivo in the neovascularization model suggest that miR-539 and miR-582 might cooperate to trigger the process of blood vessel coverage by smooth muscle cells in a mature plexus. Taken together, these results are the first to highlight the role of miR-539 and miR-582 in angiogenesis and communication between ECs and SMCs.
Collapse
|
11
|
Jin Y, Wang Z, He D, Zhu Y, Gong L, Xiao M, Chen X, Cao K. Analysis of Ferroptosis-Mediated Modification Patterns and Tumor Immune Microenvironment Characterization in Uveal Melanoma. Front Cell Dev Biol 2021; 9:685120. [PMID: 34386492 PMCID: PMC8353259 DOI: 10.3389/fcell.2021.685120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UVM) is an intraocular malignancy in adults in which approximately 50% of patients develop metastatic disease and have a poor prognosis. The need for immunotherapies has rapidly emerged, and recent research has yielded impressive results. Emerging evidence has implicated ferroptosis as a novel type of cell death that may mediate tumor-infiltrating immune cells to influence anticancer immunity. In this study, we first selected 11 ferroptosis regulators in UVM samples from the training set (TCGA and GSE84976 databases) by Cox analysis. We then divided these molecules into modules A and B based on the STRING database and used consensus clustering analysis to classify genes in both modules. According to the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), the results revealed that the clusters in module A were remarkably related to immune-related pathways. Next, we applied the ESTIMATE and CIBERSORT algorithms and found that these ferroptosis-related patterns may affect a proportion of TME infiltrating cells, thereby mediating the tumor immune environment. Additionally, to further develop the prognostic signatures based on the immune landscape, we established a six-gene-regulator prognostic model in the training set and successfully verified it in the validation set (GSE44295 and GSE27831). Subsequently, we identified the key molecules, including ABCC1, CHAC1, and GSS, which were associated with poor overall survival, progression-free survival, disease-specific survival, and progression-free interval. We constructed a competing endogenous RNA network to further elucidate the mechanisms, which consisted of 29 lncRNAs, 12 miRNAs, and 25 ferroptosis-related mRNAs. Our findings indicate that the ferroptosis-related genes may be suitable potential biomarkers to provide novel insights into UVM prognosis and decipher the underlying mechanisms in tumor microenvironment characterization.
Collapse
Affiliation(s)
- Yi Jin
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China.,Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Radiation Oncology, Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
12
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
13
|
Alcaraz LB, Mallavialle A, David T, Derocq D, Delolme F, Dieryckx C, Mollevi C, Boissière-Michot F, Simony-Lafontaine J, Du Manoir S, Huesgen PF, Overall CM, Tartare-Deckert S, Jacot W, Chardès T, Guiu S, Roger P, Reinheckel T, Moali C, Liaudet-Coopman E. A 9-kDa matricellular SPARC fragment released by cathepsin D exhibits pro-tumor activity in the triple-negative breast cancer microenvironment. Am J Cancer Res 2021; 11:6173-6192. [PMID: 33995652 PMCID: PMC8120228 DOI: 10.7150/thno.58254] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/20/2021] [Indexed: 12/26/2022] Open
Abstract
Rationale: Alternative therapeutic strategies based on tumor-specific molecular targets are urgently needed for triple-negative breast cancer (TNBC). The protease cathepsin D (cath-D) is a marker of poor prognosis in TNBC and a tumor-specific extracellular target for antibody-based therapy. The identification of cath-D substrates is crucial for the mechanistic understanding of its role in the TNBC microenvironment and future therapeutic developments. Methods: The cath-D substrate repertoire was investigated by N-Terminal Amine Isotopic Labeling of Substrates (TAILS)-based degradome analysis in a co-culture assay of TNBC cells and breast fibroblasts. Substrates were validated by amino-terminal oriented mass spectrometry of substrates (ATOMS). Cath-D and SPARC expression in TNBC was examined using an online transcriptomic survival analysis, tissue micro-arrays, TNBC cell lines, patient-derived xenografts (PDX), human TNBC samples, and mammary tumors from MMTV-PyMT Ctsd-/-knock-out mice. The biological role of SPARC and its fragments in TNBC were studied using immunohistochemistry and immunofluorescence analysis, gene expression knockdown, co-culture assays, western blot analysis, RT-quantitative PCR, adhesion assays, Transwell motility, trans-endothelial migration and invasion assays. Results: TAILS analysis showed that the matricellular protein SPARC is a substrate of extracellular cath-D. In vitro, cath-D induced limited proteolysis of SPARC C-terminal extracellular Ca2+ binding domain at acidic pH, leading to the production of SPARC fragments (34-, 27-, 16-, 9-, and 6-kDa). Similarly, cath-D secreted by TNBC cells cleaved fibroblast- and cancer cell-derived SPARC at the tumor pericellular acidic pH. SPARC cleavage also occurred in TNBC tumors. Among these fragments, only the 9-kDa SPARC fragment inhibited TNBC cell adhesion and spreading on fibronectin, and stimulated their migration, endothelial transmigration, and invasion. Conclusions: Our study establishes a novel crosstalk between proteases and matricellular proteins in the tumor microenvironment through limited SPARC proteolysis, revealing a novel targetable 9-kDa bioactive SPARC fragment for new TNBC treatments. Our study will pave the way for the development of strategies for targeting bioactive fragments from matricellular proteins in TNBC.
Collapse
|
14
|
Vogrinc D, Goričar K, Dolžan V. Genetic Variability in Molecular Pathways Implicated in Alzheimer's Disease: A Comprehensive Review. Front Aging Neurosci 2021; 13:646901. [PMID: 33815092 PMCID: PMC8012500 DOI: 10.3389/fnagi.2021.646901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting a significant part of the population. The majority of AD cases occur in the elderly with a typical age of onset of the disease above 65 years. AD presents a major burden for the healthcare system and since population is rapidly aging, the burden of the disease will increase in the future. However, no effective drug treatment for a full-blown disease has been developed to date. The genetic background of AD is extensively studied; numerous genome-wide association studies (GWAS) identified significant genes associated with increased risk of AD development. This review summarizes more than 100 risk loci. Many of them may serve as biomarkers of AD progression, even in the preclinical stage of the disease. Furthermore, we used GWAS data to identify key pathways of AD pathogenesis: cellular processes, metabolic processes, biological regulation, localization, transport, regulation of cellular processes, and neurological system processes. Gene clustering into molecular pathways can provide background for identification of novel molecular targets and may support the development of tailored and personalized treatment of AD.
Collapse
Affiliation(s)
| | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Wu H, Chu Y, Sun S, Li G, Xu S, Zhang X, Jiang Y, Gao S, Wang Q, Zhang J, Pang D. Hypoxia-Mediated Complement 1q Binding Protein Regulates Metastasis and Chemoresistance in Triple-Negative Breast Cancer and Modulates the PKC-NF-κB-VCAM-1 Signaling Pathway. Front Cell Dev Biol 2021; 9:607142. [PMID: 33708767 PMCID: PMC7940382 DOI: 10.3389/fcell.2021.607142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives Complement 1q binding protein (C1QBP/HABP1/p32/gC1qR) has been found to be overexpressed in triple-negative breast cancer (TNBC). However, the underlying mechanisms of high C1QBP expression and its role in TNBC remain largely unclear. Hypoxia is a tumor-associated microenvironment that promotes metastasis and paclitaxel (PTX) chemoresistance in tumor cells. In this study, we aimed to assess C1QBP expression and explore its role in hypoxia-related metastasis and chemoresistance in TNBC. Materials and Methods RNA-sequencing of TNBC cells under hypoxia was performed to identify C1QBP. The effect of hypoxia inducible factor 1 subunit alpha (HIF-1α) on C1QBP expression was investigated using chromatin immunoprecipitation (ChIP) assay. The role of C1QBP in mediating metastasis, chemoresistance to PTX, and regulation of metastasis-linked vascular cell adhesion molecule 1 (VCAM-1) expression were studied using in vitro and in vivo experiments. Clinical tissue microarrays were used to verify the correlation of C1QBP with the expression of HIF-1α, VCAM-1, and RELA proto-oncogene nuclear factor-kappa B subunit (P65). Results We found that hypoxia-induced HIF-1α upregulated C1QBP. The inhibition of C1QBP notably blocked metastasis of TNBC cells and increased their sensitivity to PTX under hypoxic conditions. Depletion of C1QBP decreased VCAM-1 expression by reducing the amount of P65 in the nucleus and suppressed the activation of hypoxia-induced protein kinase C-nuclear factor-kappa B (PKC-NF-κB) signaling.immunohistochemistry (IHC) staining of the tissue microarray showed positive correlations between the C1QBP level and those of HIF-1α, P65, and VCAM-1. Conclusion Targeting C1QBP along with PTX treatment might be a potential treatment for TNBC patients.
Collapse
Affiliation(s)
- Hao Wu
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yijun Chu
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shanshan Sun
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guozheng Li
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianyu Zhang
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yongdong Jiang
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Song Gao
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jian Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Da Pang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
16
|
Robinson CM, Talty A, Logue SE, Mnich K, Gorman AM, Samali A. An Emerging Role for the Unfolded Protein Response in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13020261. [PMID: 33445669 PMCID: PMC7828145 DOI: 10.3390/cancers13020261] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and one of the leading causes of cancer-associated deaths in the world. It is characterised by dismal response rates to conventional therapies. A major challenge in treatment strategies for PDAC is the presence of a dense stroma that surrounds the tumour cells, shielding them from treatment. This unique tumour microenvironment is fuelled by paracrine signalling between pancreatic cancer cells and supporting stromal cell types including the pancreatic stellate cells (PSC). While our molecular understanding of PDAC is improving, there remains a vital need to develop effective, targeted treatments. The unfolded protein response (UPR) is an elaborate signalling network that governs the cellular response to perturbed protein homeostasis in the endoplasmic reticulum (ER) lumen. There is growing evidence that the UPR is constitutively active in PDAC and may contribute to the disease progression and the acquisition of resistance to therapy. Given the importance of the tumour microenvironment and cytokine signalling in PDAC, and an emerging role for the UPR in shaping the tumour microenvironment and in the regulation of cytokines in other cancer types, this review explores the importance of the UPR in PDAC biology and its potential as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Claire M. Robinson
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Aaron Talty
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Susan E. Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Katarzyna Mnich
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Adrienne M. Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
- Correspondence:
| |
Collapse
|
17
|
Ouyang Z, Li G, Zhu H, Wang J, Qi T, Qu Q, Tu C, Qu J, Lu Q. Construction of a Five-Super-Enhancer-Associated-Genes Prognostic Model for Osteosarcoma Patients. Front Cell Dev Biol 2020; 8:598660. [PMID: 33195283 PMCID: PMC7661850 DOI: 10.3389/fcell.2020.598660] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma is a malignant tumor most commonly arising in children and adolescents and associated with poor prognosis. In recent years, some prognostic models have been constructed to assist clinicians in the treatment of osteosarcoma. However, the prognosis and treatment of patients with osteosarcoma remain unsatisfactory. Notably, super-enhancer (SE)-associated genes strongly promote the progression of osteosarcoma. In the present study, we constructed a novel effective prognostic model using SE-associated genes from osteosarcoma. Five SE-associated genes were initially screened through the least absolute shrinkage and selection operator (Lasso) penalized Cox regression, as well as univariate and multivariate Cox regression analyses. Meanwhile, a risk score model was constructed using the expression of these five genes. The excellent performance of the five-SE-associated-gene-based prognostic model was determined via time-dependent receiver operating characteristic (ROC) curves and Kaplan-Meier curves. Inferior outcome of overall survival (OS) was predicted in the high-risk group. A nomogram based on the polygenic risk score model was further established to validate the performance of the prognostic model. It showed that our prognostic model performed outstandingly in predicting 1-, 3-, and 5-year OS of patients with osteosarcoma. Meanwhile, these five genes also belonged to the hub genes associated with survival and necrosis of osteosarcoma according to the result of weighted gene co-expression network analysis based on the dataset of GSE39058. Therefore, we believe that the five-SE-associated-gene-based prognostic model established in this study can accurately predict the prognosis of patients with osteosarcoma and effectively assist clinicians in treating osteosarcoma in the future.
Collapse
Affiliation(s)
- Zhanbo Ouyang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
18
|
Zhou L, Zhang Z, Huang Z, Nice E, Zou B, Huang C. Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. MOLECULAR BIOMEDICINE 2020; 1:4. [PMID: 35006436 PMCID: PMC8603983 DOI: 10.1186/s43556-020-00004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most common disease worldwide, with complex changes and certain traits which have been described as “The Hallmarks of Cancer.” Despite increasing studies on in-depth investigation of these hallmarks, the molecular mechanisms associated with tumorigenesis have still not yet been fully defined. Recently, accumulating evidence supports the observation that microRNAs and long noncoding RNAs (lncRNAs), two main classes of noncoding RNAs (ncRNAs), regulate most cancer hallmarks through their binding with DNA, RNA or proteins, or encoding small peptides. Reactive oxygen species (ROS), the byproducts generated during metabolic processes, are known to regulate every step of tumorigenesis by acting as second messengers in cancer cells. The disturbance in ROS homeostasis leads to a specific pathological state termed “oxidative stress”, which plays essential roles in regulation of cancer progression. In addition, the interplay between oxidative stress and ncRNAs is found to regulate the expression of multiple genes and the activation of several signaling pathways involved in cancer hallmarks, revealing a potential mechanistic relationship involving ncRNAs, oxidative stress and cancer. In this review, we provide evidence that shows the essential role of ncRNAs and the interplay between oxidative stress and ncRNAs in regulating cancer hallmarks, which may expand our understanding of ncRNAs in the cancer development from the new perspective.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China. .,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China.
| |
Collapse
|
19
|
Li M, Li AQ, Zhou SL, Lv H, Wei P, Yang WT. RNA-binding protein MSI2 isoforms expression and regulation in progression of triple-negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:92. [PMID: 32448269 PMCID: PMC7245804 DOI: 10.1186/s13046-020-01587-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The RNA-binding protein Musashi-2 (MSI2) has been implicated in the tumorigenesis and tumor progression of some human cancers. MSI2 has also been reported to suppress tumor epithelial-to-mesenchymal transition (EMT) progression in breast cancer, and low MSI2 expression is associated with poor outcomes for breast cancer patients; however, the underlying mechanisms have not been fully investigated. This study investigated the expression and phenotypic functions of two major alternatively spliced MSI2 isoforms (MSI2a and MSI2b) and the potential molecular mechanisms involved in triple-negative breast cancer (TNBC) progression. METHODS The Illumina sequencing platform was used to analyze the mRNA transcriptomes of TNBC and normal tissues, while quantitative reverse transcription-polymerase chain reaction and immunohistochemistry validated MSI2 isoform expression in breast cancer tissues. The effects of MSI2a and MSI2b on TNBC cells were assayed in vitro and in vivo. RNA immunoprecipitation (RIP) and RNA sequencing were performed to identify the potential mRNA targets of MSI2a, and RIP and luciferase analyses were used to confirm the mRNA targets of MSI2. RESULTS MSI2 expression in TNBC tissues was significantly downregulated compared to that in normal tissues. In TNBC, MSI2a expression was associated with poor overall survival of patients. MSI2a overexpression in vitro and in vivo inhibited TNBC cell invasion as well as extracellular signal-regulated kinase 1/2 (ERK1/2) activity. However, MSI2b overexpression had no significant effects on TNBC cell migration. Mechanistically, MSI2a expression promoted TP53INP1 mRNA stability by its interaction with the 3'-untranslated region of TP53INP1 mRNA. Furthermore, TP53INP1 knockdown reversed MSI2a-induced suppression of TNBC cell invasion, whereas ectopic expression of TP53INP1 and inhibition of ERK1/2 activity blocked MSI2 knockdown-induced TNBC cell invasion. CONCLUSIONS The current study demonstrated that MSI2a is the predominant functional isoform of MSI2 proteins in TNBC, that its downregulation is associated with TNBC progression and poor prognosis and that MSI2a expression inhibited TNBC invasion by stabilizing TP53INP1 mRNA and inhibiting ERK1/2 activity. Overall, our study provides new insights into the isoform-specific roles of MSI2a and MSI2b in the tumor progression of TNBC, allowing for novel therapeutic strategies to be developed for TNBC.
Collapse
Affiliation(s)
- Ming Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - An-Qi Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Shu-Ling Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Institute of Pathology, Fudan University, Shanghai, China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. .,Institute of Pathology, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Yao LW, Wu LL, Zhang LH, Zhou W, Wu L, He K, Ren JC, Deng YC, Yang DM, Wang J, Mu GG, Xu M, Zhou J, Xiang GA, Ding QS, Yang YN, Yu HG. MFAP2 is overexpressed in gastric cancer and promotes motility via the MFAP2/integrin α5β1/FAK/ERK pathway. Oncogenesis 2020; 9:17. [PMID: 32054827 PMCID: PMC7018958 DOI: 10.1038/s41389-020-0198-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 12/23/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies and its prognosis is extremely poor. This study identifies a novel oncogene, microfibrillar-associated protein 2 (MFAP2) in GC. With integrative reanalysis of transcriptomic data, we found MFAP2 as a GC prognosis-related gene. And the aberrant expression of MFAP2 was explored in GC samples. Subsequent experiments indicated that silencing and exogenous MFAP2 could affect motility of cancer cells. The inhibition of silencing MFAP2 could be rescued by another FAK activator, fibronectin. This process is probably through affecting the activation of focal adhesion process via modulating ITGB1 and ITGA5. MFAP2 regulated integrin expression through ERK1/2 activation. Silencing MFAP2 by shRNA inhibited tumorigenicity and metastasis in nude mice. We also revealed that MFAP2 is a novel target of microRNA-29, and miR-29/MFAP2/integrin α5β1/FAK/ERK1/2 could be an important oncogenic pathway in GC progression. In conclusion, our data identified MFAP2 as a novel oncogene in GC and revealed that miR-29/MFAP2/integrin α5β1/FAK/ERK1/2 could be an important oncogenic pathway in GC progression.
Collapse
Affiliation(s)
- Li-Wen Yao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Lian-Lian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Li-Hui Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Wei Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Lu Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Ke He
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong, 510317, P.R. China.,Department of Biochemistry, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jia-Cai Ren
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Yun-Chao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Dong-Mei Yang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Jing Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Gang-Gang Mu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Ming Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Jie Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Guo-An Xiang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong, 510317, P.R. China
| | - Qian-Shan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China. .,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
| | - Yan-Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
| | - Hong-Gang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China. .,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
| |
Collapse
|
21
|
Yao J, Lin J, He L, Huang J, Liu Q. TNF-α/miR-155 axis induces the transformation of osteosarcoma cancer stem cells independent of TP53INP1. Gene 2019; 726:144224. [PMID: 31669646 DOI: 10.1016/j.gene.2019.144224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
MicroRNA-155 (miR-155) has been identified to be overexpressed in various human cancers including osteosarcoma. However, whether the up-regulation of miR-155 is associated with osteosarcoma cancer stem cells (CSCs) is not well understood. In the present study, we showed that miR-155 induced the acquisition of stem-like features in U2OS osteosarcoma cells by increasing the expression of both CSCs surface markers (CD24, CD90, CD133) and CSC-related transcriptional factors (Nanog, SOX2, Oct4, Bim-1). Inflammatory factor TNF-α upregulated the miR-155 expression in U2OS cells and formed a feedback regulatory loop with miR-155. Furthermore, TNF-α/miR-155 axis promoted the cell proliferation, invasion and epithelial-mesenchymal transition (EMT) process in a TP53INP1 independent manner. We also revealed that TNF-α/miR-155 axis induced osteosarcoma CSCs transformation via ERK signaling pathway. These results indicate a crucial role of miR-155 in the acquisition of osteosarcoma CSC phenotype and miR-155 may serve as a potential target in future osteosarcoma therapy.
Collapse
Affiliation(s)
- Jinzhi Yao
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Jianguang Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Lijiang He
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Jiemiao Huang
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Qiaoling Liu
- Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China.
| |
Collapse
|
22
|
Ye W, Liang F, Ying C, Zhang M, Feng D, Jiang X. Downregulation of microRNA-3934-5p induces apoptosis and inhibits the proliferation of neuroblastoma cells by targeting TP53INP1. Exp Ther Med 2019; 18:3729-3736. [PMID: 31616506 PMCID: PMC6781830 DOI: 10.3892/etm.2019.8007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 03/21/2019] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma is the most common pediatric extracranial solid tumour in the world. miRNAs are a group of endogenous small non-coding RNAs that act on target genes to serve critical roles in many biological processes. Presently, the expression and role of miR-3934-5p in neuroblastoma remains unclear. Therefore, the aim of the present study was to investigate the expression of miR-3934-5p in neuroblastoma tissues and cell lines and to assess the role of miR-3934-5p in neuroblastoma. In the current study, the results revealed that miR-3934-5p was significantly upregulated in neuroblastoma tissues and cell lines. The data also identified TP53INP1 as a direct target gene of miR-3934-5p, which was negatively regulated by miR-3934-5p. The present study further demonstrated that TP53INP1 was downregulated in both neuroblastoma tissues and cell lines. Furthermore, the results of the current study indicate that miR-3934-5p downregulation may induce apoptosis and inhibit neuroblastoma cell viability. However, these effects were reversed via TP53INP1-siRNA. Data from the current study indicates that the miR-3934-5p/TP53INP1 axis may be a novel therapeutic target for neuroblastoma treatment.
Collapse
Affiliation(s)
- Wei Ye
- Department of Neurology, Jianou Municipal Hospital, Jianou, Fujian 353100, P.R. China
| | - Fulv Liang
- Department of Urology, The Third Hospital of Xiamen, Xiamen, Fujian 361000, P.R. China
| | - Chen Ying
- Department of Urology, Haicang Hospital of Xiamen, Xiamen, Fujian 361026, P.R. China
| | - Maolin Zhang
- Department of Surgery, Xiapu County Hospital, Xiapu County, Ningde, Fujian 355100, P.R. China
| | - Dongbo Feng
- Department of Sports Medicine, The Central Hospital of Yongzhou, Yongzhou, Hunan 425000, P.R. China
| | - Xinyu Jiang
- Department of General Surgery, Xiamen Maternity and Child Health Care Hospital, Xiamen, Fujian 361000, P.R. China
| |
Collapse
|
23
|
Xiao Y, Zhang H, Ma Q, Huang R, Lu J, Liang X, Liu X, Zhang Z, Yu L, Pang J, Zhou L, Liu T, Wu H, Liang Z. YAP1-mediated pancreatic stellate cell activation inhibits pancreatic cancer cell proliferation. Cancer Lett 2019; 462:51-60. [PMID: 31352078 DOI: 10.1016/j.canlet.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/09/2019] [Accepted: 07/20/2019] [Indexed: 12/11/2022]
Abstract
Pancreatic stellate cells (PSCs) are activated in pancreatic ductal adenocarcinoma (PDAC) and are responsible for dense desmoplastic stroma. Yes-associated protein 1 (YAP1) can induce cancer-associated fibroblast activation in liver and breast tumors, but its effect on PSCs is unknown. In the present study, we determined that YAP1 was highly expressed in the nuclei of PDAC-derived activated PSCs. RNAi-mediated or pharmacological inhibition of YAP1 led to PSC deactivation. In addition, YAP1 stimulated the expression of secreted protein acidic and cysteine rich (SPARC) in PSCs, which was inhibited by RUNX1. SPARC secreted from PSCs inhibited pancreatic cancer cell (PCC) proliferation. High expression of nuclear YAP1 in tumor stroma was significantly correlated with SPARC expression and fibrosis degree in human PDAC tissues. Our study revealed a critical role for YAP1 in the regulation of PSC activation and paracrine signaling. Our findings provide insights into a novel rationale for targeting YAP1 to reprogram the PDAC microenvironment.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinic Medicine, Tsinghua University, Beijing, PR China
| | - Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Qiang Ma
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Rui Huang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Junliang Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaolong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Xuguang Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Zhiwen Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Lianyuan Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Junyi Pang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Tonghua Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China.
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China.
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China; Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
24
|
Nishimoto M, Nishikawa S, Kondo N, Wanifuchi-Endo Y, Hato Y, Hisada T, Dong Y, Okuda K, Sugiura H, Kato H, Takahashi S, Toyama T. Prognostic impact of TP53INP1 gene expression in estrogen receptor α-positive breast cancer patients. Jpn J Clin Oncol 2019; 49:567-575. [PMID: 30855679 DOI: 10.1093/jjco/hyz029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Tumor protein 53-induced nuclear protein 1 (TP53INP1) is a key stress protein with tumor suppressor function. Several studies have demonstrated TP53INP1 downregulation in many cancers. In this study, we investigated the correlations of TP53INP1 mRNA expression in breast cancer tissues with prognosis and the correlations of microRNAs that regulate TP53INP1 expression in breast cancer patients with long follow-up. METHODS A total of 453 invasive breast cancer tissues were analyzed for TP53INP1 mRNA expression. We examined correlations of clinicopathological factors and expression levels of TP53INP1 mRNA in these samples. The expressions of miR-155, miR-569 and markers associated with tumor-initiating capacity were also analyzed. The median follow-up period was 9.0 years. RESULTS We found positive correlations between low expression of TP53INP1 mRNA and shorter disease-free survival and overall survival in breast cancer patients (P = 0.0002 and P < 0.0001, respectively), as well as in estrogen receptor α (ERα)-positive patients receiving adjuvant endocrine therapy (P = 0.01 and P = 0.0008, respectively). No correlations were found in ERα-negative patients. Low TP53INP1 mRNA levels positively correlated with higher grade and ERα-negativity. Multivariate analysis indicated that TP53INP1 mRNA level was an independent risk factor for overall survival both in overall breast cancer patients (hazard ratio, 2.13; 95% confidence interval, 1.17-3.92) and ERα-positive patients (hazard ratio, 2.34; 95% confidence interval, 1.18-4.64). CONCLUSIONS We show that low expression of TP53INP1 is an independent factor of poor prognosis in breast cancer patients, especially ERα-positive patients. TP53INP1 might be a promising candidate biomarker and therapeutic target in ERα-positive breast cancer patients.
Collapse
Affiliation(s)
- Mayumi Nishimoto
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Sayaka Nishikawa
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Naoto Kondo
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Yumi Wanifuchi-Endo
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Yukari Hato
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Tomoka Hisada
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Yu Dong
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Hiroshi Sugiura
- Department of Education and Research Center for Advanced Medicine, Nagoya City University Graduate School of Medical Sciences
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Tatsuya Toyama
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
25
|
SUMOylation Evoked by Oxidative Stress Reduced Lens Epithelial Cell Antioxidant Functions by Increasing the Stability and Transcription of TP53INP1 in Age-Related Cataracts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7898069. [PMID: 31281592 PMCID: PMC6590620 DOI: 10.1155/2019/7898069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/05/2019] [Indexed: 01/13/2023]
Abstract
Oxidative stress plays an important role in the pathogenesis of cataracts. Small ubiquitin-like modifier (SUMO) proteins have great effects on cell stress response. Previous studies have shown that TP53INP1 can arrest cell growth and induce apoptosis by modulating p53 transcriptional activity and that both TP53INP1 and p53 are substrates of SUMOylation. However, no previous research has studied the effect of SUMOylation on the oxidative stress response in cataracts. This is the first study to investigate the effect of SUMOylation of TP53INP1 in oxidative stress-induced lens epithelial cell injury and age-related cataract formation. We found that the oxidative stress-induced endogenous SUMOylation of TP53INP1 promoted human lens epithelial cell (holed) apoptosis and regulated hLEC antioxidant effects by increasing the stability and transcription of TP53INP1 in age-related cataracts. SUMO-1, SUMOylation, and TP53INP1 were upregulated in lens tissues affected by age-related cataracts. A SUMO-1-specific protease, SENP1, acted as an oxidative stress-sensitive target gene in hLECs. This study identified for the first time that TP53INP1 can be SUMOylated in vivo, that the SUMOylation of TP53INP1 is induced by oxidative stress, and that SUMOylation/deSUMOylation can affect the stability and transcription of TP53INP1 in hLECs.
Collapse
|
26
|
Panebianco C, Villani A, Pazienza V. High Levels of Prebiotic Resistant Starch in Diet Modulate Gene Expression and Metabolomic Profile in Pancreatic Cancer Xenograft Mice. Nutrients 2019; 11:nu11040709. [PMID: 30934731 PMCID: PMC6521226 DOI: 10.3390/nu11040709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer initiation and protection mainly derives from a systemic metabolic environment regulated by dietary patterns. Less is known about the impact of nutritional interventions in people with a diagnosis of cancer. The aim of our study was to investigate the effect of a diet rich in resistant starch (RS) on cell pathways modulation and metabolomic phenotype in pancreatic cancer xenograft mice. RNA-Seq experiments on tumor tissue showed that 25 genes resulted in dysregulated pancreatic cancer in mice fed with an RS diet, as compared to those fed with control diet. Moreover, in these two different mice groups, six serum metabolites were deregulated as detected by LC–MS analysis. A bioinformatic prediction analysis showed the involvement of the differentially expressed genes on insulin receptor signaling, circadian rhythm signaling, and cancer drug resistance among the three top canonical pathways, whilst cell death and survival, gene expression, and neurological disease were among the three top disease and biological functions. These findings shed light on the genomic and metabolic phenotype, contributing to the knowledge of the mechanisms through which RS may act as a potential supportive approach for enhancing the efficacy of existing cancer treatments.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| | - Annacandida Villani
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| | - Valerio Pazienza
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| |
Collapse
|
27
|
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019; 17:3. [PMID: 30602375 PMCID: PMC6317263 DOI: 10.1186/s12967-018-1760-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial effects for human health. Pasteurization of cow's milk protects thermolabile vitamins and other organic compounds including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40-120 nm, which are pivotal mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, common cancers (prostate, breast, liver, B-cells) as well as Parkinson's disease. Exosomes of pasteurized milk may represent new pathogens that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, 49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
28
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
29
|
Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli MM, Tavakkoly-Bazzaz J. Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: A new look at hallmarks of breast cancer. J Cell Physiol 2018; 234:10080-10100. [PMID: 30537129 DOI: 10.1002/jcp.27941] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most frequently occurring malignancy in women worldwide. Despite the substantial advancement in understanding the molecular mechanisms and management of BC, it remains the leading cause of cancer death in women. One of the main reasons for this obstacle is that we have not been able to find the Achilles heel for the BC as a highly heterogeneous disease. Accumulating evidence has revealed that noncoding RNAs (ncRNAs), play key roles in the development of BC; however, the involving of complex regulatory interactions between the different varieties of ncRNAs in the development of this cancer has been poorly understood. In the recent years, the newly discovered mechanism in the RNA world is "competing endogenous RNA (ceRNA)" which proposes regulatory dialogues between different RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). In the latest BC research, various studies have revealed that dysregulation of several ceRNA networks (ceRNETs) between these ncRNAs has fundamental roles in establishing the hallmarks of BC development. And it is thought that such a discovery could open a new window for a better understanding of the hidden aspects of breast tumors. Besides, it probably can provide new biomarkers and potential efficient therapeutic targets for BC. This review will discuss the existing body of knowledge regarding the key functions of ceRNETs and then highlights the emerging roles of some recently discovered ceRNETs in several hallmarks of BC. Moreover, we propose for the first time the "ceRnome" as a new term in the present article for RNA research.
Collapse
Affiliation(s)
- Rasoul Abdollahzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Masoumeh Sepahvand
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Endocrinology and Metabolism Molecular Cellular Sciences Institute, Metabolic Disorders Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Wang Y, Sun H, Zhang D, Fan D, Zhang Y, Dong X, Liu S, Yang Z, Ni C, Li Y, Liu F, Zhao X. TP53INP1 inhibits hypoxia-induced vasculogenic mimicry formation via the ROS/snail signalling axis in breast cancer. J Cell Mol Med 2018; 22:3475-3488. [PMID: 29655255 PMCID: PMC6010892 DOI: 10.1111/jcmm.13625] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/05/2018] [Indexed: 12/28/2022] Open
Abstract
Tumour protein p53‐inducible nuclear protein 1 (TP53INP1) is a tumour suppressor associated with malignant tumour metastasis. Vasculogenic mimicry (VM) is a new tumour vascular supply pattern that significantly influences tumour metastasis and contributes to a poor prognosis. However, the molecular mechanism of the relationship between TP53INP1 and breast cancer VM formation is unknown. Here, we explored the underlying mechanism by which TP53INP1 regulates VM formation in vitro and in vivo. High TP53INP1 expression was not only negatively correlated with a poor prognosis but also had a negative relationship with VE‐cadherin, HIF‐1α and Snail expression. TP53INP1 overexpression inhibited breast cancer invasion, migration, epithelial‐mesenchymal transition (EMT) and VM formation; conversely, TP53INP1 down‐regulation promoted these processes in vitro by functional experiments and Western blot analysis. We established a hypoxia model induced by CoCl2 and assessed the effects of TP53INP1 on hypoxia‐induced EMT and VM formation. In addition, we confirmed that a reactive oxygen species (ROS)‐mediated signalling pathway participated in TP53INP1‐mediated VM formation. Together, our results show that TP53INP1 inhibits hypoxia‐induced EMT and VM formation via the ROS/GSK‐3β/Snail pathway in breast cancer, which offers new insights into breast cancer clinical therapy.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Huizhi Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Dan Fan
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Shiqi Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Zhao Yang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Chunsheng Ni
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Zheng L, Li X, Chou J, Xiang C, Guo Q, Zhang Z, Guo X, Gao L, Xing Y, Xi T. StarD13 3'-untranslated region functions as a ceRNA for TP53INP1 in prohibiting migration and invasion of breast cancer cells by regulating miR-125b activity. Eur J Cell Biol 2017; 97:23-31. [PMID: 29146309 DOI: 10.1016/j.ejcb.2017.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/21/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022] Open
Abstract
Competitive endogenous messenger RNA (ceRNA) affects transcription of other RNA molecules by competitively binding common microRNAs. Previous studies have shown that TP53INP1 functions as a suppressor in tumor metastasis. Our study elucidated StarD13 messenger RNA as a ceRNA in regulating migration and invasion of breast cancer cells. MicroRNA-125b was identified to induce metastasis of MCF-7 cells and bind with both StarD13 3'UTR and TP53INP1 3'UTR. Therefore, a ceRNA interaction between StarD13 and TP53INP1 mediated by competitively binding to miR-125b was indicated. Importantly, a microRNA-125b binding site at 4546-4560 nt on StarD13 was verified more vital for this ceRNA interaction. Indirectly regulation of SPARC in inducing metastasis of breast cancer cells by StarD13 via competitively binding with TP53INP1 was further confirmed. In conclusion, our findings demonstrate a ceRNA regulatory network which could give a better understanding of metastatic mechanisms of breast cancer.
Collapse
Affiliation(s)
- Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjiang Chou
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Chenxi Xiang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Qianqian Guo
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiting Zhang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Xinwei Guo
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Lanlan Gao
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Xing
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
32
|
Cai Q, Zeng S, Dai X, Wu J, Ma W. miR-504 promotes tumour growth and metastasis in human osteosarcoma by targeting TP53INP1. Oncol Rep 2017; 38:2993-3000. [PMID: 29048685 DOI: 10.3892/or.2017.5983] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/04/2017] [Indexed: 11/06/2022] Open
Abstract
An increasing number of studies have demonstrated that microRNAs participate in the development of osteosarcoma by acting as tumour suppressor or tumour-promoting genes. We investigated the role of miR-504 in the growth and metastasis of osteosarcoma. The expression of miR-504 in clinical osteosarcoma samples was higher than that in the adjacent normal tissue and correlated with tumour size and clinical stage. Tumour protein p53-inducible nuclear protein 1 (TP53INP1) was downregulated in the clinical osteosarcoma samples compared with the adjacent normal tissues and was consistently correlated with the clinical stage. The results of dual-luciferase reporter assay and western blot analysis demonstrated that the TP53INP1 gene is a direct target of miR-504. Altogether, the Cell Counting Kit-8 (CCK-8), the colony formation, the flow cytometry and the Transwell assay results demonstrated that miR-504 promoted osteosarcoma cell growth and metastasis in vitro. P73, P21, Bax, cleaved-caspase-3 and secreted protein acidic and rich in cysteine (SPARC) were associated with the suppressive role of miR-504/TP53INP1. The overexpression of miR-504 in osteosarcoma xenografts enhanced the tumour growth and increased the metastatic burden. Collectively, these results revealed that TP53INP1 is a target gene of miR-504 and that miR-504 enhances osteosarcoma growth and promotes distant metastases by targeting TP53INP1. Thus, miR-504/TP53INP1 may be associated with osteosarcoma size and clinical stage.
Collapse
Affiliation(s)
- Qingchun Cai
- Department of Orthopaedics, First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sixiang Zeng
- Department of Orthopaedics, First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xing Dai
- Department of Orthopaedics, First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Junlong Wu
- Department of Orthopaedics, First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Ma
- Department of Orthopaedics, First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
33
|
Klingenberg M, Matsuda A, Diederichs S, Patel T. Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J Hepatol 2017; 67:603-618. [PMID: 28438689 DOI: 10.1016/j.jhep.2017.04.009] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
The majority of the human genome is not translated into proteins but can be transcribed into RNA. Even though the resulting non-coding RNAs (ncRNAs) do not encode for proteins, they contribute to diseases such as cancer. Here, we review examples of the functions of ncRNAs in liver cancer and their potential use for the detection and treatment of liver cancer.
Collapse
Affiliation(s)
- Marcel Klingenberg
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany
| | - Akiko Matsuda
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
34
|
Wang XF, Lin X, Li DY, Zhou R, Greenbaum J, Chen YC, Zeng CP, Peng LP, Wu KH, Ao ZX, Lu JM, Guo YF, Shen J, Deng HW. Linking Alzheimer's disease and type 2 diabetes: Novel shared susceptibility genes detected by cFDR approach. J Neurol Sci 2017; 380:262-272. [PMID: 28870582 DOI: 10.1016/j.jns.2017.07.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/29/2017] [Accepted: 07/28/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Both type 2 diabetes (T2D) and Alzheimer's disease (AD) occur commonly in the aging populations and T2D has been considered as an important risk factor for AD. The heritability of both diseases is estimated to be over 50%. However, common pleiotropic single-nucleotide polymorphisms (SNPs)/loci have not been well-defined. The aim of this study is to analyze two large public accessible GWAS datasets to identify novel common genetic loci for T2D and/or AD. METHODS AND MATERIALS The recently developed novel conditional false discovery rate (cFDR) approach was used to analyze the summary GWAS datasets from International Genomics of Alzheimer's Project (IGAP) and Diabetes Genetics Replication And Meta-analysis (DIAGRAM) to identify novel susceptibility genes for AD and T2D. RESULTS We identified 78 SNPs (including 58 novel SNPs) that were associated with AD in Europeans conditional on T2D (cFDR<0.05). 66 T2D SNPs (including 40 novel SNPs) were identified by conditioning on SNPs association with AD (cFDR<0.05). A conjunction-cFDR (ccFDR) analysis detected 8 pleiotropic SNPs with a significance threshold of ccFDR<0.05 for both AD and T2D, of which 5 SNPs (rs6982393, rs4734295, rs7812465, rs10510109, rs2421016) were novel findings. Furthermore, among the 8 SNPs annotated at 6 different genes, 3 corresponding genes TP53INP1, TOMM40 and C8orf38 were related to mitochondrial dysfunction, critically involved in oxidative stress, which potentially contribute to the etiology of both AD and T2D. CONCLUSION Our study provided evidence for shared genetic loci between T2D and AD in European subjects by using cFDR and ccFDR analyses. These results may provide novel insight into the etiology and potential therapeutic targets of T2D and/or AD.
Collapse
Affiliation(s)
- Xia-Fang Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Ding-You Li
- Department of Gastroenterology, Children's Mercy Kansas City, University of Missouri Kansas City School of Medicine, Kansas City MO 64108, USA
| | - Rou Zhou
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Jonathan Greenbaum
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yuan-Cheng Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Chun-Ping Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Lin-Ping Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Ke-Hao Wu
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zeng-Xin Ao
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Jun-Min Lu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Yan-Fang Guo
- Institute of Bioinformatics, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Hong-Wen Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China; Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
35
|
Ng KY, Chan LH, Chai S, Tong M, Guan XY, Lee NP, Yuan Y, Xie D, Lee TK, Dusetti NJ, Carrier A, Ma S. TP53INP1 Downregulation Activates a p73-Dependent DUSP10/ERK Signaling Pathway to Promote Metastasis of Hepatocellular Carcinoma. Cancer Res 2017; 77:4602-4612. [PMID: 28674078 DOI: 10.1158/0008-5472.can-16-3456] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/26/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022]
Abstract
Identifying critical factors involved in the metastatic progression of hepatocellular carcinoma (HCC) may offer important therapeutic opportunities. Here, we report that the proapoptotic stress response factor TP53INP1 is often selectively downregulated in advanced stage IV and metastatic human HCC tumors. Mechanistic investigations revealed that TP53INP1 downregulation in early-stage HCC cells promoted metastasis via DUSP10 phosphatase-mediated activation of the ERK pathway. The DUSP10 promoter included putative binding sites for p73 directly implicated in modulation by TP53INP1. Overall, our findings show how TP53INP1 plays a critical role in limiting the progression of early-stage HCC, with implications for developing new therapeutic strategies to attack metastatic HCC. Cancer Res; 77(17); 4602-12. ©2017 AACR.
Collapse
Affiliation(s)
- Kai-Yu Ng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Lok-Hei Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Stella Chai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Man Tong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong.,State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Nikki P Lee
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Yunfei Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Nelson J Dusetti
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Alice Carrier
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Stephanie Ma
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong. .,State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
36
|
Feygenzon V, Loewenstein S, Lubezky N, Pasmanic-Chor M, Sher O, Klausner JM, Lahat G. Unique cellular interactions between pancreatic cancer cells and the omentum. PLoS One 2017. [PMID: 28632775 PMCID: PMC5478139 DOI: 10.1371/journal.pone.0179862] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer is a common cause of cancer-related mortality. Omental spread is frequent and usually represents an ominous event, leading to patient death. Omental metastasis has been studied in ovarian cancer, but data on its role in pancreatic cancer are relatively scarce and the molecular biology of this process has yet to be explored. We prepared tissue explants from human omental fat, and used conditioned medium from the explants for various in vitro and in vivo experiments designed to evaluate pancreatic cancer development, growth, and survival. Mass spectrometry identified the fat secretome, and mRNA array identified specific fat-induced molecular alternations in tumor cells. Omental fat increased pancreatic cancer cellular growth, migration, invasion, and chemoresistance. We identified diverse potential molecules secreted by the omentum, which are associated with various pro-tumorigenic biological processes. Our mRNA array identified specific omental-induced molecular alternations that are associated with cancer progression and metastasis. Omental fat increased the expression of transcription factors, mRNA of extracellular matrix proteins, and adhesion molecules. In support with our in vitro data, in vivo experiments demonstrated an increased pancreatic cancer tumor growth rate of PANC-1 cells co-cultured for 24 hours with human omental fat conditioned medium. Our results provide novel data on the role of omental tissue in omental metastases of pancreatic cancer. They imply that omental fat secreted factors induce cellular reprogramming of pancreatic cancer cells, resulting in increased tumor aggressiveness. Understanding the mechanisms of omental metastases may enable us to discover new potential targets for therapy.
Collapse
Affiliation(s)
- Valerya Feygenzon
- Sackler School of Medicine, The Nicholas and Elizabeth Cathedra of Experimental Surgery, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Loewenstein
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- * E-mail:
| | - Nir Lubezky
- Sackler School of Medicine, The Nicholas and Elizabeth Cathedra of Experimental Surgery, Tel Aviv University, Tel Aviv, Israel
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Osnat Sher
- Sackler School of Medicine, The Nicholas and Elizabeth Cathedra of Experimental Surgery, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Joseph M. Klausner
- Sackler School of Medicine, The Nicholas and Elizabeth Cathedra of Experimental Surgery, Tel Aviv University, Tel Aviv, Israel
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Guy Lahat
- Sackler School of Medicine, The Nicholas and Elizabeth Cathedra of Experimental Surgery, Tel Aviv University, Tel Aviv, Israel
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
37
|
DNA Methylation Targets Influenced by Bisphenol A and/or Genistein Are Associated with Survival Outcomes in Breast Cancer Patients. Genes (Basel) 2017; 8:genes8050144. [PMID: 28505145 PMCID: PMC5448018 DOI: 10.3390/genes8050144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/25/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022] Open
Abstract
Early postnatal exposures to Bisphenol A (BPA) and genistein (GEN) have been reported to predispose for and against mammary cancer, respectively, in adult rats. Since the changes in cancer susceptibility occurs in the absence of the original chemical exposure, we have investigated the potential of epigenetics to account for these changes. DNA methylation studies reveal that prepubertal BPA exposure alters signaling pathways that contribute to carcinogenesis. Prepubertal exposure to GEN and BPA + GEN revealed pathways involved in maintenance of cellular function, indicating that the presence of GEN either reduces or counters some of the alterations caused by the carcinogenic properties of BPA. We subsequently evaluated the potential of epigenetic changes in the rat mammary tissues to predict survival in breast cancer patients via the Cancer Genomic Atlas (TCGA). We identified 12 genes that showed strong predictive values for long-term survival in estrogen receptor positive patients. Importantly, two genes associated with improved long term survival, HPSE and RPS9, were identified to be hypomethylated in mammary glands of rats exposed prepuberally to GEN or to GEN + BPA respectively, reinforcing the suggested cancer suppressive properties of GEN.
Collapse
|
38
|
The relationship between SPARC expression in primary tumor and metastatic lymph node of resected pancreatic cancer patients and patients' survival. Hepatobiliary Pancreat Dis Int 2017; 16:104-109. [PMID: 28119265 DOI: 10.1016/s1499-3872(16)60168-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Previous researches in pancreatic cancer demonstrated a negative correlation between secreted protein acidic and rich in cysteine (SPARC) expression in primary tumor and survival, but not for SPARC expression in lymph node. In the present study, we aimed to evaluate the SPARC expression in various types of tissues and its impact on patients' prognosis. METHODS The expression of SPARC was examined by immunohistochemistry in resected pancreatic cancer specimens. Kaplan-Meier analyses and Cox proportional hazards regression were applied to assess the mortality risk. RESULTS A total of 222 tissue samples from 73 patients were collected to evaluate the SPARC expression, which included 73 paired primary tumor and adjacent normal tissues, 38 paired metastatic and normal lymph nodes. The proportion of positive SPARC expression in metastatic lymph node was high (32/38), whereas in normal lymph node it was negative (0/38). Positive SPARC expression in primary tumor cells was associated with a significantly decreased overall survival (P=0.007) and disease-free survival (P=0.003), whereas in other types of tissues it did not show a predictive role for prognosis. Univariate and multivariate analyses both confirmed this significance. CONCLUSION SPARC can serve a dual function role as both predictor for prognosis and potentially biomarker for lymph node metastasis in resected pancreatic cancer patients.
Collapse
|
39
|
Deng Y, Li AM, Zhao XM, Song ZJ, Liu SD. Downregulation of tumor protein 53-inducible nuclear protein 1 expression in hepatocellular carcinoma correlates with poor prognosis. Oncol Lett 2016; 13:1228-1234. [PMID: 28454239 PMCID: PMC5403351 DOI: 10.3892/ol.2016.5537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/07/2016] [Indexed: 01/12/2023] Open
Abstract
The expression of tumor protein 53-inducible nuclear protein 1 (TP53INP1) is upregulated in certain cancers and downregulated in others. However, its expression in hepatocellular carcinoma (HCC) is not clear. The present study aimed to investigate the expression and prognostic value of TP53INP1 and its association with clinicopathological parameters in HCC. TP53INP1 expression in HCC tissue samples was examined via immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction. Expression was categorized as high or low. The correlations of TP53INP1 expression with clinical characteristics and patients' prognoses were determined. TP53INP1 was frequently decreased in HCC tissues compared with adjacent non-tumorous liver tissues. This decreased expression was significantly associated with American Joint Committee on Cancer stage (P=0.014) and vascular invasion (P=0.024). Kaplan-Meier analysis further revealed that recurrence-free survival (RFS) (P=0.001) and overall survival (OS) (P=0.002) were significantly worse among patients with low TP53INP1 expression than among those with high TP53INP1 expression. In addition, multivariate analyses revealed that TP53INP1 was an independent predictor of OS [hazard ratio (HR)=2.680, 95% confidence interval (CI)=1.087–6.608, P=0.032) and RFS (HR=2.284, 95% CI=1.157–4.511, P=0.017). In conclusion, the expression of TP53INP1 was decreased in HCC, and TP53INP1 downregulation was an independent predictor of poor prognosis in patients with HCC.
Collapse
Affiliation(s)
- Yan Deng
- Department of Gastroenterology, Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Gastroenterology, Haicang Hospital, Xiamen, Fujian 361000, P.R. China
| | - Ai-Min Li
- Department of Gastroenterology, Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xin-Mei Zhao
- Department of Gastroenterology, Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhang-Juan Song
- Department of Gastroenterology, Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Si-De Liu
- Department of Gastroenterology, Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
40
|
Impact of SPARC expression on outcome in patients with advanced pancreatic cancer not receiving nab-paclitaxel: a pooled analysis from prospective clinical and translational trials. Br J Cancer 2016; 115:1520-1529. [PMID: 27802454 PMCID: PMC5155356 DOI: 10.1038/bjc.2016.355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Conflicting results on the role of secreted protein acidic and rich in cysteins (SPARC) expression have been reported in resected pancreatic ductal adenocarcinoma (PDAC), and its prognostic and/or predictive role in advanced PDAC (aPDAC) has not been extensively investigated yet. This study was designed to evaluate SPARC expression as a biomarker in aPDAC patients (pts) not receiving nab-paclitaxel. METHODS Using immunohistochemistry, we examined the stromal as well as the tumoral (i.e., cytoplasmic) SPARC expression in tumour tissue (primary tumours and metastases) of 134 aPDAC pts participating in completed prospective clinical and biomarker trials. The SPARC expression levels were correlated to the pts' clinicopathological parameters and survival times. RESULTS Sixty-seven per cent of the analysed tumours showed high stromal SPARC expression, which was not associated with overall survival (OS, median 9.1 vs 7.6 months, P=0.316). A positive cytoplasmic SPARC expression was detected in 55% of the tumours and correlated significantly with inferior progression-free survival (PFS, 6.2 vs 8.6 months, P=0.004) and OS (7.8 vs 8.4 months, P=0.032). This association was strongest for pts, where primary tumour tissue was examined (PFS: 6.7 vs 10.8 months, P=0.004; OS: 7.9 vs 11.9 months, P=0.030), whereas no significant correlation was detected for pts, where only metastatic tissue was available (PFS: 5.8 vs 6.6 months, P=0.502; OS: 7.0 vs 7.8 months, P=0.452). In pts receiving gemcitabine-based chemotherapy cytoplasmic SPARC expression was significantly associated with an inferior PFS and OS (PFS: 6.2 vs 9.2 months, P=0.002; OS 7.3 vs 9.9 months, P=0.012), whereas no such association was detected for stromal SPARC expression or for pts receiving fluoropyrimidine-based chemotherapy. CONCLUSION We identified cytoplasmic SPARC expression in the primary tumour as a biomarker associated with inferior PFS and OS in aPDAC. Cytoplasmic SPARC expression may furthermore act as a negative predictive biomarker in pts treated with gemcitabine-based chemotherapy.
Collapse
|
41
|
Hawa Z, Haque I, Ghosh A, Banerjee S, Harris L, Banerjee SK. The miRacle in Pancreatic Cancer by miRNAs: Tiny Angels or Devils in Disease Progression. Int J Mol Sci 2016; 17:E809. [PMID: 27240340 PMCID: PMC4926343 DOI: 10.3390/ijms17060809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/04/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with increasing incidence and high mortality. Surgical resection is the only potentially curative treatment of patients with PDAC. Because of the late presentation of the disease, about 20 percent of patients are candidates for this treatment. The average survival of resected patients is between 12 and 20 months, with a high probability of relapse. Standard chemo and radiation therapies do not offer significant improvement of the survival of these patients. Furthermore, novel treatment options aimed at targeting oncogenes or growth factors in pancreatic cancer have proved unsuccessful. Thereby, identifying new biomarkers that can detect early stages of this disease is of critical importance. Among these biomarkers, microRNAs (miRNAs) have supplied a profitable recourse and become an attractive focus of research in PDAC. MiRNAs regulate many genes involved in the development of PDAC through mRNA degradation or translation inhibition. The possibility of intervention in the molecular mechanisms of miRNAs regulation could begin a new generation of PDAC therapies. This review summarizes the reports describing miRNAs involvement in cellular processes involving pancreatic carcinogenesis and their utility in diagnosis, survival and therapeutic potential in pancreatic cancer.
Collapse
Affiliation(s)
- Zuhair Hawa
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
- Division of Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
- Division of Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
- Division of Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| | - LaCoiya Harris
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
- Division of Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA.
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66205, USA.
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| |
Collapse
|
42
|
Seillier M, Pouyet L, N'Guessan P, Nollet M, Capo F, Guillaumond F, Peyta L, Dumas JF, Varrault A, Bertrand G, Bonnafous S, Tran A, Meur G, Marchetti P, Ravier MA, Dalle S, Gual P, Muller D, Rutter GA, Servais S, Iovanna JL, Carrier A. Defects in mitophagy promote redox-driven metabolic syndrome in the absence of TP53INP1. EMBO Mol Med 2016; 7:802-18. [PMID: 25828351 PMCID: PMC4459819 DOI: 10.15252/emmm.201404318] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The metabolic syndrome covers metabolic abnormalities including obesity and type 2 diabetes (T2D). T2D is characterized by insulin resistance resulting from both environmental and genetic factors. A genome-wide association study (GWAS) published in 2010 identified TP53INP1 as a new T2D susceptibility locus, but a pathological mechanism was not identified. In this work, we show that mice lacking TP53INP1 are prone to redox-driven obesity and insulin resistance. Furthermore, we demonstrate that the reactive oxygen species increase in TP53INP1-deficient cells results from accumulation of defective mitochondria associated with impaired PINK/PARKIN mitophagy. This chronic oxidative stress also favors accumulation of lipid droplets. Taken together, our data provide evidence that the GWAS-identified TP53INP1 gene prevents metabolic syndrome, through a mechanism involving prevention of oxidative stress by mitochondrial homeostasis regulation. In conclusion, this study highlights TP53INP1 as a molecular regulator of redox-driven metabolic syndrome and provides a new preclinical mouse model for metabolic syndrome clinical research.
Collapse
Affiliation(s)
- Marion Seillier
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Laurent Pouyet
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Prudence N'Guessan
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Marie Nollet
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Florence Capo
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Fabienne Guillaumond
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Laure Peyta
- Inserm, U1069 Nutrition, Croissance et Cancer (N2C), Tours, France
| | | | - Annie Varrault
- CNRS, UMR5203, Inserm, U661 Universités de Montpellier 1 & 2, IGF, Montpellier, France
| | - Gyslaine Bertrand
- CNRS, UMR5203, Inserm, U661 Universités de Montpellier 1 & 2, IGF, Montpellier, France
| | - Stéphanie Bonnafous
- Inserm, U1065, C3M Team 8 "Hepatic Complications in Obesity", Nice, France Université de Nice-Sophia-Antipolis, Nice, France Centre Hospitalier Universitaire de Nice, Pôle Digestif Hôpital L'Archet, Nice, France
| | - Albert Tran
- Inserm, U1065, C3M Team 8 "Hepatic Complications in Obesity", Nice, France Université de Nice-Sophia-Antipolis, Nice, France Centre Hospitalier Universitaire de Nice, Pôle Digestif Hôpital L'Archet, Nice, France
| | - Gargi Meur
- Cell Biology, Department of Medicine, Imperial College, London, UK
| | - Piero Marchetti
- Islet Cell Laboratory, University of Pisa - Cisanello Hospital, Pisa, Italy
| | - Magalie A Ravier
- CNRS, UMR5203, Inserm, U661 Universités de Montpellier 1 & 2, IGF, Montpellier, France
| | - Stéphane Dalle
- CNRS, UMR5203, Inserm, U661 Universités de Montpellier 1 & 2, IGF, Montpellier, France
| | - Philippe Gual
- Inserm, U1065, C3M Team 8 "Hepatic Complications in Obesity", Nice, France Université de Nice-Sophia-Antipolis, Nice, France Centre Hospitalier Universitaire de Nice, Pôle Digestif Hôpital L'Archet, Nice, France
| | - Dany Muller
- CNRS, UMR5203, Inserm, U661 Universités de Montpellier 1 & 2, IGF, Montpellier, France
| | - Guy A Rutter
- Cell Biology, Department of Medicine, Imperial College, London, UK
| | - Stéphane Servais
- Inserm, U1069 Nutrition, Croissance et Cancer (N2C), Tours, France
| | - Juan L Iovanna
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| | - Alice Carrier
- Inserm, U1068, CRCM, Marseille, France Institut Paoli-Calmettes, Marseille, France Aix-Marseille Université, Marseille, France CNRS, UMR7258, CRCM, Marseille, France
| |
Collapse
|
43
|
Saadi H, Seillier M, Carrier A. The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis. Biochimie 2015. [PMID: 26225460 DOI: 10.1016/j.biochi.2015.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the recent years, we have provided evidence that Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) is a key stress protein with antioxidant-associated tumor suppressive function. The TP53INP1 gene, which is highly conserved in mammals, is over-expressed during stress responses including inflammation. This gene encodes two protein isoforms with nuclear or cytoplasmic subcellular localization depending on the context. TP53INP1 contributes to stress responses, thus preventing stress-induced dysfunctions leading to pathologies such as cancer. Two major mechanisms by which TP53INP1 functions have been unveiled. First, in the nucleus, TP53INP1 was shown to regulate the transcriptional activity of p53 and p73 by direct interaction, and to mediate the antioxidant activity of p53. Second, independently of p53, TP53INP1 contributes to autophagy and more particularly mitophagy through direct interaction with molecular actors of autophagy. TP53INP1 is thus required for the homeostasis of the mitochondrial compartment, and is therefore involved in the regulation of energetic metabolism. Finally, the antioxidant function of TP53INP1 stems from the control of mitochondrial reactive oxygen species production. In conclusion, TP53INP1 is a multifaceted protein endowed with multiple functions, including metabolic regulation, as is its main functional partner p53.
Collapse
Affiliation(s)
- Houda Saadi
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Marion Seillier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France
| | - Alice Carrier
- Inserm, U1068, CRCM, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille Université, UM 105, Marseille, F-13284, France; CNRS, UMR7258, CRCM, Marseille, F-13009, France.
| |
Collapse
|
44
|
Abstract
Human T-cell leukemia virus (HTLV)-1 is a human retrovirus and the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a fatal malignancy of CD4/CD25+ T lymphocytes. In recent years, cellular as well as virus-encoded microRNA (miRNA) have been shown to deregulate signaling pathways to favor virus life cycle. HTLV-1 does not encode miRNA, but several studies have demonstrated that cellular miRNA expression is affected in infected cells. Distinct mechanisms such as transcriptional, epigenetic or interference with miRNA processing machinery have been involved. This article reviews the current knowledge of the role of cellular microRNAs in virus infection, replication, immune escape and pathogenesis of HTLV-1.
Collapse
|
45
|
LI AODI, QU XIUJUAN, LI ZHI, QU JINGLEI, SONG NA, MA YANJU, LIU YUNPENG. Secreted protein acidic and rich in cysteine antagonizes bufalin-induced apoptosis in gastric cancer cells. Mol Med Rep 2015; 12:2926-32. [DOI: 10.3892/mmr.2015.3676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 08/14/2014] [Indexed: 11/06/2022] Open
|
46
|
Genomic profiling guides the choice of molecular targeted therapy of pancreatic cancer. Cancer Lett 2015; 363:1-6. [PMID: 25890222 DOI: 10.1016/j.canlet.2015.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer has the worst five-year survival rate of all malignancies due to its aggressive progression and resistance to therapy. Current therapies are limited to gemcitabine-based chemotherapeutics, surgery, and radiation. The current trend toward "personalized genomic medicine" has the potential to improve the treatment options for pancreatic cancer. Gene identification and genetic alterations like single nucleotide polymorphisms and mutations will allow physicians to predict the efficacy and toxicity of drugs, which could help diagnose pancreatic cancer, guide neoadjuvant or adjuvant treatment, and evaluate patients' prognosis. This article reviews the multifaceted roles of genomics and pharmacogenomics in pancreatic cancer.
Collapse
|
47
|
Liu F, Kong X, Lv L, Gao J. TGF-β1 acts through miR-155 to down-regulate TP53INP1 in promoting epithelial-mesenchymal transition and cancer stem cell phenotypes. Cancer Lett 2015; 359:288-98. [PMID: 25633840 DOI: 10.1016/j.canlet.2015.01.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 12/14/2022]
Abstract
It has been shown that acquisition of epithelial-mesenchymal transition (EMT) and induction of cancer stem cell (CSC)-like properties contribute to metastasis of cancers in many studies; however, the molecular mechanisms underlying EMT and CSC phenotypes in liver cancer cells remain to be elucidated. MiR-155 is an important microRNA associated with tumour progression. Here, we report that miR-155 regulates not only the epithelial-mesenchymal transition but also the stem-like transition in liver cancer cells. Utilizing quantitative RT-PCR, we found that the expression of miR-155 is positively related to the levels of CD90, CD133 and Oct4 in enriched spheres. Up-regulated miR-155 significantly increases the population of stem-like CSCs among liver cancer cells and the ability to form tumour spheres. Additionally, miR-155 overexpression in cells significantly increases cell motility and invasion, as well as the epithelial-mesenchymal transition process. Conversely, suppression of miR-155 in cells had an opposite effect, which was partially rescued by the down-regulation of TP53INP1. Collectively, miR-155 promotes liver cancer cell EMT and CSCs, in part, via silencing TP53INP1. In addition, we found that TGF-β1 indirectly regulates TP53INP1 expression via miR-155 in liver cancer cells. Taken together, our findings suggest that miR-155 regulates TP53INP1 expression, to induce the epithelial-mesenchymal transition and acquisition of a stem cell phenotype.
Collapse
Affiliation(s)
- Fengchao Liu
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xin Kong
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lin Lv
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jian Gao
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
48
|
Liu F, Kong X, Lv L, Gao J. MiR-155 targets TP53INP1 to regulate liver cancer stem cell acquisition and self-renewal. FEBS Lett 2015; 589:500-6. [PMID: 25601564 DOI: 10.1016/j.febslet.2015.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
Abstract
In liver cancer, miR-155 up-regulation can regulate cancer-cell invasion. However, whether miR-155 expression is associated with liver cancer stem cells (CSCs) remains unknown. Here, we show that miR-155 expression is up-regulated in tumor spheres. Knock-down of miR-155 resulted in suppression of tumor sphere formation, through a decrease in the proportion of CD90(+) and CD133(+) CSCs and in the expression of Oct4, whereas miR-155 overexpression had the opposite effect. TP53INP1 was determined to be involved in the CSCs-like properties that were regulated by miR-155. Thus, miR-155 may play an important role in promoting the generation of stem cell-like cells and their self-renewal by targeting the gene TP53INP1.
Collapse
Affiliation(s)
- Fengchao Liu
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xin Kong
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lin Lv
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jian Gao
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
49
|
Sjoquist KM, Chin VT, Chantrill LA, O’Connor C, Hemmings C, Chang DK, Chou A, Pajic M, Johns AL, Nagrial AM, Biankin AV, Yip D. Personalising pancreas cancer treatment: When tissue is the issue. World J Gastroenterol 2014; 20:7849-63. [PMID: 24976722 PMCID: PMC4069313 DOI: 10.3748/wjg.v20.i24.7849] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/15/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
The treatment of advanced pancreatic cancer has not moved much beyond single agent gemcitabine until recently when protocols such as FOLFIRINOX (fluorouracil, leucovorin, irinotecan and oxaliplatin) and nab-paclitaxel-gemcitabine have demonstrated some improved outcomes. Advances in technology especially in massively parallel genome sequencing has progressed our understanding of the biology of pancreatic cancer especially the candidate signalling pathways that are involved in tumourogenesis and disease course. This has allowed identification of potentially actionable mutations that may be targeted by new biological agents. The heterogeneity of pancreatic cancer makes tumour tissue collection important with the aim of being able to personalise therapies for the individual as opposed to a one size fits all approach to treatment of the condition. This paper reviews the developments in this area of translational research and the ongoing clinical studies that will attempt to move this into the everyday oncology practice.
Collapse
|
50
|
Escott-Price V, Bellenguez C, Wang LS, Choi SH, Harold D, Jones L, Holmans P, Gerrish A, Vedernikov A, Richards A, DeStefano AL, Lambert JC, Ibrahim-Verbaas CA, Naj AC, Sims R, Jun G, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thornton-Wells TA, Denning N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF, Schmidt H, Kunkle B, Dunstan ML, Vronskaya M, Johnson AD, Ruiz A, Bihoreau MT, Reitz C, Pasquier F, Hollingworth P, Hanon O, Fitzpatrick AL, Buxbaum JD, Campion D, Crane PK, Baldwin C, Becker T, Gudnason V, Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S, Letenneur L, Hernández I, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate AM, Fiévet N, Huentelman MJ, Gill M, Brown K, Kamboh MI, Keller L, Barberger-Gateau P, McGuinness B, Larson EB, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, George-Hyslop PS, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossù P, Spalletta G, Proitsi P, Collinge J, Sorbi S, Garcia FS, Fox NC, Hardy J, Naranjo MCD, Bosco P, Clarke R, Brayne C, Galimberti D, Scarpini E, Bonuccelli U, Mancuso M, Siciliano G, Moebus S, Mecocci P, Zompo MD, Maier W, Hampel H, Pilotto A, Frank-García A, Panza F, Solfrizzi V, Caffarra P, Nacmias B, Perry W, Mayhaus M, Lannfelt L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I, Owen MJ, Faber KM, Jonsson PV, Combarros O, O'Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH, Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RFAG, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA, Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JSK, Boerwinkle E, Riemenschneider M, Boada M, Hiltunen M, Martin ER, Schmidt R, Rujescu D, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nöthen MM, Graff C, Psaty BM, Haines JL, Lathrop M, Pericak-Vance MA, Launer LJ, Van Broeckhoven C, Farrer LA, van Duijn CM, Ramirez A, Seshadri S, Schellenberg GD, Amouyel P, Williams J. Gene-wide analysis detects two new susceptibility genes for Alzheimer's disease. PLoS One 2014; 9:e94661. [PMID: 24922517 PMCID: PMC4055488 DOI: 10.1371/journal.pone.0094661] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/17/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. PRINCIPAL FINDINGS In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10-6) and 14 (IGHV1-67 p = 7.9×10-8) which indexed novel susceptibility loci. SIGNIFICANCE The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
Collapse
Affiliation(s)
- Valentina Escott-Price
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Céline Bellenguez
- Inserm U744, Lille, France
- Université Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Seung-Hoan Choi
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Denise Harold
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Lesley Jones
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Peter Holmans
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Amy Gerrish
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Alexey Vedernikov
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Alexander Richards
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Anita L. DeStefano
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Jean-Charles Lambert
- Inserm U744, Lille, France
- Université Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Carla A. Ibrahim-Verbaas
- Department of Epidemiology and Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Adam C. Naj
- Department of Biostatistics and Epidemiology and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca Sims
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Gyungah Jun
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Gary W. Beecham
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, Florida, United States of America
| | - Benjamin Grenier-Boley
- Inserm U744, Lille, France
- Université Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Giancarlo Russo
- Functional Genomics Center Zurich, ETH/University of Zurich, Zurich, Switzerland
| | - Tricia A. Thornton-Wells
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nicola Denning
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Albert V. Smith
- University of Iceland, Faculty of Medicine, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Vincent Chouraki
- Inserm U744, Lille, France
- Université Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Charlene Thomas
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - M. Arfan Ikram
- Departments of Epidemiology, Neurology and Radiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Aging, Leiden, The Netherlands
| | - Diana Zelenika
- Centre National de Genotypage, Institut Genomique, Commissariat à l'énergie Atomique, Evry, France
| | - Badri N. Vardarajan
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, United States of America
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University New York, New York, United States of America
- Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, New York, United States of America
| | | | - Chiao-Feng Lin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Helena Schmidt
- Institute for Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Brian Kunkle
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
| | - Melanie L. Dunstan
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Maria Vronskaya
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | | | - Andrew D. Johnson
- NHLBI Cardiovascular Epidemiology and Human Genomics Branch, The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Agustin Ruiz
- Memory Clinic of Fundació ACE. Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Marie-Thérèse Bihoreau
- Centre National de Genotypage, Institut Genomique, Commissariat à l'énergie Atomique, Evry, France
| | - Christiane Reitz
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University New York, New York, United States of America
- Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, New York, United States of America
| | - Florence Pasquier
- Université Lille 2, Lille, France
- CNR-MAJ, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Paul Hollingworth
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Olivier Hanon
- University Paris Descartes, Sorbonne Paris V, Broca Hospital, Geriatrics department, Paris, France
| | - Annette L. Fitzpatrick
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Departments of Epidemiology and Global Health, University of Washington, Seattle, Washington, United States of America
| | - Joseph D. Buxbaum
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
- Departments of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Dominique Campion
- CNR-MAJ, Inserm U1079, Rouen University Hospital, 76031 France, Rouen, France
| | - Paul K. Crane
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Clinton Baldwin
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Tim Becker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, and Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Vilmundur Gudnason
- University of Iceland, Faculty of Medicine, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Carlos Cruchaga
- Department of Psychiatry and Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David Craig
- Ageing Group, Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Claudine Berr
- INSERM U1061, Faculty of Medicine, Hôpital La Colombière, Montpellier, France
| | - Oscar L. Lopez
- Departments of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Philip L. De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology & Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Boston, Massachusetts, United States of America
| | - Vincent Deramecourt
- Université Lille 2, Lille, France
- CNR-MAJ, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Janet A. Johnston
- Ageing Group, Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Denis Evans
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Simon Lovestone
- King's College London, Institute of Psychiatry, Department of Neuroscience, De Crespigny Park, Denmark Hill, London, United Kingom
| | - Luc Letenneur
- Inserm U897, Victor Segalen University, F-33076, Bordeaux, France
| | - Isabel Hernández
- Memory Clinic of Fundació ACE. Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - David C. Rubinsztein
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Alison M. Goate
- Department of Psychiatry and Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nathalie Fiévet
- Inserm U744, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Matthew J. Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Michael Gill
- Discipline of Psychiatry, Trinity College, Dublin, Ireland
| | - Kristelle Brown
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - M. Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lina Keller
- Aging Reasearch Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Pascale Barberger-Gateau
- King's College London, Institute of Psychiatry, Department of Neuroscience, De Crespigny Park, Denmark Hill, London, United Kingom
| | - Bernadette McGuinness
- Ageing Group, Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Eric B. Larson
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health, Seattle, Washington, United States of America
| | - Amanda J. Myers
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Carole Dufouil
- Inserm U897, Victor Segalen University, F-33076, Bordeaux, France
| | - Stephen Todd
- Ageing Group, Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - David Wallon
- CNR-MAJ, Inserm U1079, Rouen University Hospital, 76031 France, Rouen, France
| | - Seth Love
- University of Bristol Institute of Clinical Neurosciences, School of Clinical Sciences, Frenchay Hospital, Bristol, United Kingdom
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - John Gallacher
- Institute of Primary Care and Public Health, Cardiff University, Neuadd Meirionnydd, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Cambridge Institute for Medical Research and Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jordi Clarimon
- Neurology Department. IIB Sant Pau. Sant Pau Hospital. Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Alberto Lleo
- Neurology Department. IIB Sant Pau. Sant Pau Hospital. Universitat Autònoma de Barcelona, Barcelona, Spain
- Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Anthony Bayer
- Institute of Primary Care and Public Health, Cardiff University, Neuadd Meirionnydd, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
| | - Lei Yu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Magda Tsolaki
- 3rd Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paola Bossù
- Clinical and Behavioral Neurology, Fondazione Santa Lucia, Roma, Italy
| | | | - Petra Proitsi
- King's College London, Institute of Psychiatry, Department of Neuroscience, De Crespigny Park, Denmark Hill, London, United Kingom
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Sandro Sorbi
- NEUROFARBA Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- Centro di Ricerca, Trasferimento e Alta Formazione DENOTHE, University of Florence, Florence, Italy
| | | | - Nick C. Fox
- Dementia Research Center, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - John Hardy
- Department of Molecular Neuroscience and Reta Lilla Weston Laboratories, Institute of Neurology, London, United Kingdom
| | | | - Paolo Bosco
- IRCCS Associazione Oasi Maria SS, Troina, Italy
| | - Robert Clarke
- Oxford Healthy Aging Project (OHAP), Clinical Trial Service Unit, University of Oxford, Oxford, United Kingdom
| | - Carol Brayne
- Cognitive Function and Ageing Study (CFAS), Institute of Public Health, University of Cambridge, Cambridge, United Kingdom
| | - Daniela Galimberti
- University of Milan, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Elio Scarpini
- University of Milan, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | | | | | | | - Susanne Moebus
- Urban Epidemiology, Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Maria Del Zompo
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Germany and German Center for Neurodegenerative Diseases (DZNE, Bonn), Bonn, Germany
| | - Harald Hampel
- Department of Psychiatry, University of Frankfurt am Main, Frankfurt am Main, Germany (H.H.)
- Department of Psychiatry, Ludwig-Maximilians University, Munich, Germany
| | - Alberto Pilotto
- Gerontology and Geriatrics Research Laboratory, I.R.C.C.S. Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Ana Frank-García
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM); Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria “Hospital la Paz” (IdIPaz), Madrid, Spain
| | - Francesco Panza
- Department of Geriatrics,Center for Aging Brain,University of Bari, Bari, Italy
| | - Vincenzo Solfrizzi
- Department of Geriatrics,Center for Aging Brain,University of Bari, Bari, Italy
| | - Paolo Caffarra
- Department of Neuroscience-University of Parma, Parma, Italy
- Center for Cognitive Disorders AUSL, Parma, Italy
| | - Benedetta Nacmias
- NEUROFARBA Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- Centro di Ricerca, Trasferimento e Alta Formazione DENOTHE, University of Florence, Florence, Italy
| | - William Perry
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, Florida, United States of America
| | - Manuel Mayhaus
- Department Of Psychiatry, University Hospital, Saarland, Germany
| | - Lars Lannfelt
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Sabrina Pichler
- Department Of Psychiatry, University Hospital, Saarland, Germany
| | | | - Martin Ingelsson
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Duane Beekly
- National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, United States of America
| | | | - Fanggeng Zou
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Steven G. Younkin
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
| | | | - Kara L. Hamilton-Nelson
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
| | - Wei Gu
- Department of Psychiatry, University Hospital, Saarland, Germany
| | - Cristina Razquin
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, University of Navarra School of Medicine, Pamplona, Spain
| | - Pau Pastor
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, University of Navarra School of Medicine, Pamplona, Spain
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Mateo
- Neurology Service and CIBERNED, "Marqués de Valdecilla" University Hospital (University of Cantabria and IFIMAV), Santander, Spain
| | - Michael J. Owen
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Kelley M. Faber
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, United States of America
| | - Palmi V. Jonsson
- University of Iceland, Faculty of Medicine, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Onofre Combarros
- Neurology Service and CIBERNED, "Marqués de Valdecilla" University Hospital (University of Cantabria and IFIMAV), Santander, Spain
| | - Michael C. O'Donovan
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Laura B. Cantwell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Deborah Blacker
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Simon Mead
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Thomas H. Mosley
- Department of Medicine (Geriatrics), University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - David A. Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Tamara B. Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute of Health, Bethesda, Maryland, United States of America
| | - Laura Fratiglioni
- Aging Research Center, Department Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Department Geriatric Medicine, Genetics Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Clive Holmes
- Division of Clinical Neurosciences, School of Medicine, University of Southampton, Southampton, United Kingdom
| | - Renee F. A. G. de Bruijn
- Departments of Neurology and Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Peter Passmore
- Ageing Group, Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Thomas J. Montine
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Karolien Bettens
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Alexis Brice
- INSERM UMR_S975-CNRS UMR 7225, Université Pierre et Marie Curie, Centre de recherche de l'Institut du Cerveau et de la Moëlle épinière-CRICM, Hôpital de la Salpêtrière, Paris France
- AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Kevin Morgan
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, United States of America
| | - Walter A. Kukull
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Didier Hannequin
- CNR-MAJ, Inserm U1079, Rouen University Hospital, 76031 France, Rouen, France
| | - John F. Powell
- King's College London, Institute of Psychiatry, Department of Neuroscience, De Crespigny Park, Denmark Hill, London, United Kingom
| | - Michael A. Nalls
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Karen Ritchie
- INSERM U1061, Faculty of Medicine, Hôpital La Colombière, Montpellier, France
- Imperial College, London, United Kingdom
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genetics Center and Div. of Epidemiology, University of Texas Health Sciences Center at Houston, Houston, Texas, United States of America
| | | | - Mercè Boada
- Memory Clinic of Fundació ACE. Institut Català de Neurociències Aplicades, Barcelona, Spain
- Hospital Universitari Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona. (VHIR-UAB), Barcelona, Spain
| | - Mikko Hiltunen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Eden R. Martin
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, Florida, United States of America
| | | | - Dan Rujescu
- Department of Psychiatry, Ludwig-Maximilians University, Munich, Germany
| | - Jean-François Dartigues
- Inserm U897, Victor Segalen University, F-33076, Bordeaux, France
- Centre de Mémoire de Ressources et de Recherche de Bordeaux, CHU de Bordeaux, Bordeaux, France
| | - Richard Mayeux
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University New York, New York, United States of America
- Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, New York, United States of America
| | | | - Albert Hofman
- Departments of Epidemiology, Neurology and Radiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Aging, Leiden, The Netherlands
| | - Markus M. Nöthen
- Institute of Human Genetics, Department of Genomics, Life and Brain Center, University of Bonn, and German Center for Neurodegenerative Diseases (DZNE, Bonn), Bonn, Germany
| | - Caroline Graff
- Department Geriatric Medicine, Genetics Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, KIADRC, Stockholm, Sweden
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, United States of America
| | - Jonathan L. Haines
- Vanderbilt Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mark Lathrop
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Fondation Jean Dausset- CEPH, Paris, France
- McGill University and Génome Québec Innovation Centre, Montreal, Canada
| | - Margaret A. Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, Florida, United States of America
| | - Lenore J. Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute of Health, Bethesda, Maryland, United States of America
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Lindsay A. Farrer
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Cornelia M. van Duijn
- Netherlands Consortium for Healthy Aging, Leiden, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Center for Medical Systems Biology, Leiden, The Netherlands
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy and Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Philippe Amouyel
- Inserm U744, Lille, France
- Université Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
- CNR-MAJ, Centre Hospitalier Régional Universitaire de Lille, Lille, France
- Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Julie Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|