1
|
Detchou D, Barrie U. Interleukin 6 and cancer resistance in glioblastoma multiforme. Neurosurg Rev 2024; 47:541. [PMID: 39231832 DOI: 10.1007/s10143-024-02783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Despite unprecedented survival in patients with glioblastoma (GB), the aggressive primary brain cancer remains largely incurable and its mechanisms of treatment resistance have gained particular attention. The cytokine interleukin 6 (IL-6) and its receptor weave through the hallmarks of malignant gliomas and may represent a key vulnerability to GB. Known for activating the STAT3 pathway in autocrine fashion, IL-6 is amplified in GB and has been recognized as a negative biomarker for GB prognosis, rendering it a putative target of novel GB therapies. While it has been recognized as a biologically active component of GB for three decades only with concurrent advances in understanding of complementary immunotherapy has the concept of targeting IL-6 for a human clinical trial gained scientific footing.
Collapse
Affiliation(s)
- Donald Detchou
- School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Umaru Barrie
- Department of Neurosurgery, New York University Grossman School of Medicine, New York City, NYC, USA
| |
Collapse
|
2
|
Yuan Z, Wang Y, Yang Y, Qin X. POLR1D silencing suppresses lung cancer cells proliferation and migration via inhibition of PI3K-Akt pathway. J Cardiothorac Surg 2024; 19:322. [PMID: 38844975 PMCID: PMC11155163 DOI: 10.1186/s13019-024-02791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/18/2024] [Indexed: 06/10/2024] Open
Abstract
AIM The most common type of cancer that leads to death worldwide is lung cancer. Despite significant surgery and chemotherapy improvements, lung cancer patient's survival rate is still poor. The RNA polymerase I subunit D (POLR1D) gene can induce various cancers. A current study reported that POLR1D plays a vital role in cancer prognosis. However, its biological function in the development of lung cancer remains unclear. METHODS Reverse transcription PCR (RT-PCR) measured the relative POLR1D protein expression level in lung cancer cell lines. Lung cancer cell proliferation, migration, and invasion were analyzed by performing cell counting kit-8 (CCK-8), and transwell. The phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K/AKT) signaling pathway-related protein expressions were examined by Western blotting assay. RESULTS POLR1D protein expression was elevated in lung cancer. Lung cancer cell loss-of-function tests showed that POLR1D silencing could attenuate cell viability both in SK-MES-1 and in H2170 cells. Furthermore, silencing POLR1D inhibited SK-MES-1 and H2170 cells proliferation, migration, and invasion. Moreover, SK-MES-1 and H2170 cells' migration and invasion capacity were potentially suppressed by the knockdown of POLR1D. The progression of multiple cancers has been implicated in the PI3K/AKT pathway. Here, we observed that POLR1D silencing suppressed lung cancer progression by inhibition of the PI3K-Akt pathway. CONCLUSIONS The study speculated that POLR1D might provide a new potential therapeutic possibility for treating lung cancer patients via targeting PI3K/AKT.
Collapse
Affiliation(s)
- Zhize Yuan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, No. 507, Zhengmin Road, Yangpu District, Shanghai, 200433, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, No. 507, Zhengmin Road, Yangpu District, Shanghai, 200433, China
| | - Xiong Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, No. 507, Zhengmin Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
3
|
Espinoza JA, Kanellis DC, Saproo S, Leal K, Martinez J, Bartek J, Lindström M. Chromatin damage generated by DNA intercalators leads to degradation of RNA Polymerase II. Nucleic Acids Res 2024; 52:4151-4166. [PMID: 38340348 PMCID: PMC11077059 DOI: 10.1093/nar/gkae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.
Collapse
Affiliation(s)
- Jaime A Espinoza
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Dimitris C Kanellis
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Sheetanshu Saproo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Karla Leal
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Johana Fernandez Martinez
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Jiri Bartek
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| |
Collapse
|
4
|
Priyadarshini N, Venkatarama Puppala N, Jayaprakash JP, Khandelia P, Sharma V, Mohannath G. Downregulation of ribosomal RNA (rRNA) genes in human head and neck squamous cell carcinoma (HNSCC) cells correlates with rDNA promoter hypermethylation. Gene 2023; 888:147793. [PMID: 37696422 DOI: 10.1016/j.gene.2023.147793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Eukaryotes carry hundreds of ribosomal RNA (rRNA) genes as tandem arrays, which generate rRNA for protein synthesis. Humans carry ∼ 400 rRNA gene copies and their expression is epigenetically regulated. Dysregulation of rRNA synthesis and ribosome biogenesis are characteristic features of cancers. Targeting aberrant rRNA expression for cancer therapy is being explored. Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancers globally. Using quantitative PCR and bisulfite sequencing, we show that rRNA genes are downregulated and their promoters are hypermethylated in HNSCC cell lines. These findings may have relevance for prognosis and diagnosis of HNSCC.
Collapse
Affiliation(s)
- Neha Priyadarshini
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Navinchandra Venkatarama Puppala
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Jayasree Peroth Jayaprakash
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| |
Collapse
|
5
|
Huang X, Lu Z, Jiang X, Zhang Z, Yan K, Yu G. Single-cell RNA sequencing reveals distinct tumor microenvironment of ground glass nodules and solid nodules in lung adenocarcinoma. Front Cell Dev Biol 2023; 11:1198338. [PMID: 37745301 PMCID: PMC10513029 DOI: 10.3389/fcell.2023.1198338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: Lung adenocarcinoma (LUAD) is the most prevalent lung cancer. LUAD presents as ground glass nodules (GGN) and solid nodules (SN) in imaging studies. GGN is an early type of LUAD with good prognosis. However, SN exhibits a more malignant behavior than GGN, including worse pathological staging and tumor prognosis. The mechanism leading to the different malignancy levels of GGN and SN remains elusive. Methods: Three patients with GGN and three patients with SN diagnosed with early LUAD were enrolled. The tumor samples were digested to a single-cell suspension and analyzed using 10× Genomic Single-cell ribonucleic acid sequences (scRNA-seq) techniques. Results: A total of 15,902 cells were obtained and classified into nine major types. The tumor microenvironment (TME) was subsequently described in detail. ScRNA-seq revealed that ribosome-related pathways and cell adhesion played similar but distinct roles in the two groups. SN also had more active cell proliferation, enriched cell cycle regulatory pathways, and severe inflammatory responses. Conclusion: We observed changes in the cellular composition and transcriptomic profile of GGN and SN. The study improved the understanding of the underlying mechanisms of lung carcinogenesis and contributed to lung cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Guiping Yu
- Department of Cardiothoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| |
Collapse
|
6
|
McNamar R, Freeman E, Baylor KN, Fakhouri AM, Huang S, Knutson BA, Rothblum LI. PAF49: An RNA Polymerase I subunit essential for rDNA transcription and stabilization of PAF53. J Biol Chem 2023; 299:104951. [PMID: 37356716 PMCID: PMC10365956 DOI: 10.1016/j.jbc.2023.104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023] Open
Abstract
The application of genetic and biochemical techniques in yeast has informed our knowledge of transcription in mammalian cells. Such systems have allowed investigators to determine whether a gene was essential and to determine its function in rDNA transcription. However, there are significant differences in the nature of the transcription factors essential for transcription by Pol I in yeast and mammalian cells, and yeast RNA polymerase I contains 14 subunits while mammalian polymerase contains 13 subunits. We previously reported the adaptation of the auxin-dependent degron that enabled a combination of a "genetics-like" approach and biochemistry to study mammalian rDNA transcription. Using this system, we studied the mammalian orthologue of yeast RPA34.5, PAF49, and found that it is essential for rDNA transcription and cell division. The auxin-induced degradation of PAF49 induced nucleolar stress and the accumulation of P53. Interestingly, the auxin-induced degradation of AID-tagged PAF49 led to the degradation of its binding partner, PAF53, but not vice versa. A similar pattern of co-dependent expression was also found when we studied the non-essential, yeast orthologues. An analysis of the domains of PAF49 that are essential for rDNA transcription demonstrated a requirement for both the dimerization domain and an "arm" of PAF49 that interacts with PolR1B. Further, we demonstrate this interaction can be disrupted to inhibit Pol I transcription in normal and cancer cells which leads to the arrest of normal cells and cancer cell death. In summary, we have shown that both PAF53 and PAF49 are necessary for rDNA transcription and cell growth.
Collapse
Affiliation(s)
- Rachel McNamar
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Emma Freeman
- Department of Cell and Development Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kairo N Baylor
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Aula M Fakhouri
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Sui Huang
- Department of Cell and Development Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Lawrence I Rothblum
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
7
|
Park SY, Seo D, Jeon EH, Park JY, Jang BC, Kim JI, Im SS, Lee JH, Kim S, Cho CH, Lee YH. RPL27 contributes to colorectal cancer proliferation and stemness via PLK1 signaling. Int J Oncol 2023; 63:93. [PMID: 37387446 PMCID: PMC10552708 DOI: 10.3892/ijo.2023.5541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Although expression of ribosomal protein L27 (RPL27) is upregulated in clinical colorectal cancer (CRC) tissue, to the best of our knowledge, the oncogenic role of RPL27 has not yet been defined. The present study aimed to investigate whether targeting RPL27 could alter CRC progression and determine whether RPL27 gains an extra‑ribosomal function during CRC development. Human CRC cell lines HCT116 and HT29 were transfected with RPL27‑specific small interfering RNA and proliferation was assessed in vitro and in vivo using proliferation assays, fluorescence‑activated cell sorting (FACS) and a xenograft mouse model. Furthermore, RNA sequencing, bioinformatic analysis and western blotting were conducted to explore the underlying mechanisms responsible for RPL27 silencing‑induced CRC phenotypical changes. Inhibiting RPL27 expression suppressed CRC cell proliferation and cell cycle progression and induced apoptotic cell death. Targeting RPL27 significantly inhibited growth of human CRC xenografts in nude mice. Notably, polo‑like kinase 1 (PLK1), which serves an important role in mitotic cell cycle progression and stemness, was downregulated in both HCT116 and HT29 cells following RPL27 silencing. RPL27 silencing reduced the levels of PLK1 protein and G2/M‑associated regulators such as phosphorylated cell division cycle 25C, CDK1 and cyclin B1. Silencing of RPL27 reduced the migration and invasion abilities and sphere‑forming capacity of the parental CRC cell population. In terms of phenotypical changes in cancer stem cells (CSCs), RPL27 silencing suppressed the sphere‑forming capacity of the isolated CD133+ CSC population, which was accompanied by decreased CD133 and PLK1 levels. Taken together, these findings indicated that RPL27 contributed to the promotion of CRC proliferation and stemness via PLK1 signaling and RPL27 may be a useful target in a next‑generation therapeutic strategy for both primary CRC treatment and metastasis prevention.
Collapse
Affiliation(s)
- So-Young Park
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Daekwan Seo
- Department of Bioinformatics, Psomagen Inc., Rockville, MD 20850, USA
| | - Eun-Hye Jeon
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Jee Young Park
- Department of Immunology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Chi Heum Cho
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Yun-Han Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| |
Collapse
|
8
|
Choudhary HB, Mandlik SK, Mandlik DS. Role of p53 suppression in the pathogenesis of hepatocellular carcinoma. World J Gastrointest Pathophysiol 2023; 14:46-70. [PMID: 37304923 PMCID: PMC10251250 DOI: 10.4291/wjgp.v14.i3.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023] Open
Abstract
In the world, hepatocellular carcinoma (HCC) is among the top 10 most prevalent malignancies. HCC formation has indeed been linked to numerous etiological factors, including alcohol usage, hepatitis viruses and liver cirrhosis. Among the most prevalent defects in a wide range of tumours, notably HCC, is the silencing of the p53 tumour suppressor gene. The control of the cell cycle and the preservation of gene function are both critically important functions of p53. In order to pinpoint the core mechanisms of HCC and find more efficient treatments, molecular research employing HCC tissues has been the main focus. Stimulated p53 triggers necessary reactions that achieve cell cycle arrest, genetic stability, DNA repair and the elimination of DNA-damaged cells’ responses to biological stressors (like oncogenes or DNA damage). To the contrary hand, the oncogene protein of the murine double minute 2 (MDM2) is a significant biological inhibitor of p53. MDM2 causes p53 protein degradation, which in turn adversely controls p53 function. Despite carrying wt-p53, the majority of HCCs show abnormalities in the p53-expressed apoptotic pathway. High p53 in-vivo expression might have two clinical impacts on HCC: (1) Increased levels of exogenous p53 protein cause tumour cells to undergo apoptosis by preventing cell growth through a number of biological pathways; and (2) Exogenous p53 makes HCC susceptible to various anticancer drugs. This review describes the functions and primary mechanisms of p53 in pathological mechanism, chemoresistance and therapeutic mechanisms of HCC.
Collapse
Affiliation(s)
- Heena B Choudhary
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Deepa S Mandlik
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| |
Collapse
|
9
|
Watt KE, Macintosh J, Bernard G, Trainor PA. RNA Polymerases I and III in development and disease. Semin Cell Dev Biol 2023; 136:49-63. [PMID: 35422389 PMCID: PMC9550887 DOI: 10.1016/j.semcdb.2022.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Ribosomes are macromolecular machines that are globally required for the translation of all proteins in all cells. Ribosome biogenesis, which is essential for cell growth, proliferation and survival, commences with transcription of a variety of RNAs by RNA Polymerases I and III. RNA Polymerase I (Pol I) transcribes ribosomal RNA (rRNA), while RNA Polymerase III (Pol III) transcribes 5S ribosomal RNA and transfer RNAs (tRNA) in addition to a wide variety of small non-coding RNAs. Interestingly, despite their global importance, disruptions in Pol I and Pol III function result in tissue-specific developmental disorders, with craniofacial anomalies and leukodystrophy/neurodegenerative disease being among the most prevalent. Furthermore, pathogenic variants in genes encoding subunits shared between Pol I and Pol III give rise to distinct syndromes depending on whether Pol I or Pol III function is disrupted. In this review, we discuss the global roles of Pol I and III transcription, the consequences of disruptions in Pol I and III transcription, disorders arising from pathogenic variants in Pol I and Pol III subunits, and mechanisms underpinning their tissue-specific phenotypes.
Collapse
Affiliation(s)
- Kristin En Watt
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julia Macintosh
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada; Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada.
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
10
|
Xu G, Wu Y, Xiao T, Qi F, Fan L, Zhang S, Zhou J, He Y, Gao X, Zeng H, Li Y, Zhang Z. Multiomics approach reveals the ubiquitination-specific processes hijacked by SARS-CoV-2. Signal Transduct Target Ther 2022; 7:312. [PMID: 36071039 PMCID: PMC9449932 DOI: 10.1038/s41392-022-01156-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/21/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a global pandemic that seriously threatens health and socioeconomic development, but the existed antiviral drugs and vaccines still cannot yet halt the spread of the epidemic. Therefore, a comprehensive and profound understanding of the pathogenesis of SARS-CoV-2 is urgently needed to explore effective therapeutic targets. Here, we conducted a multiomics study of SARS-CoV-2-infected lung epithelial cells, including transcriptomic, proteomic, and ubiquitinomic. Multiomics analysis showed that SARS-CoV-2-infected lung epithelial cells activated strong innate immune response, including interferon and inflammatory responses. Ubiquitinomic further reveals the underlying mechanism of SARS-CoV-2 disrupting the host innate immune response. In addition, SARS-CoV-2 proteins were found to be ubiquitinated during infection despite the fact that SARS-CoV-2 itself didn't code any E3 ligase, and that ubiquitination at three sites on the Spike protein could significantly enhance viral infection. Further screening of the E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) library revealed four E3 ligases influencing SARS-CoV-2 infection, thus providing several new antiviral targets. This multiomics combined with high-throughput screening study reveals that SARS-CoV-2 not only modulates innate immunity, but also promotes viral infection, by hijacking ubiquitination-specific processes, highlighting potential antiviral and anti-inflammation targets.
Collapse
Affiliation(s)
- Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Yezi Wu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Tongyang Xiao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Lujie Fan
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Shengyuan Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Jian Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Yanhua He
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, 200433, Shanghai, China
| | - Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Hongxiang Zeng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Yunfei Li
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China. .,Guangdong Key laboratory for anti-infection Drug Quality Evaluation, 518112, Shenzhen, Guangdong Province, China. .,Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, Guangdong Province, China.
| |
Collapse
|
11
|
Stallaert W, Taylor SR, Kedziora KM, Taylor CD, Sobon HK, Young CL, Limas JC, Varblow Holloway J, Johnson MS, Cook JG, Purvis JE. The molecular architecture of cell cycle arrest. Mol Syst Biol 2022; 18:e11087. [PMID: 36161508 PMCID: PMC9511499 DOI: 10.15252/msb.202211087] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
The cellular decision governing the transition between proliferative and arrested states is crucial to the development and function of every tissue. While the molecular mechanisms that regulate the proliferative cell cycle are well established, we know comparatively little about what happens to cells as they diverge into cell cycle arrest. We performed hyperplexed imaging of 47 cell cycle effectors to obtain a map of the molecular architecture that governs cell cycle exit and progression into reversible ("quiescent") and irreversible ("senescent") arrest states. Using this map, we found multiple points of divergence from the proliferative cell cycle; identified stress-specific states of arrest; and resolved the molecular mechanisms governing these fate decisions, which we validated by single-cell, time-lapse imaging. Notably, we found that cells can exit into senescence from either G1 or G2; however, both subpopulations converge onto a single senescent state with a G1-like molecular signature. Cells can escape from this "irreversible" arrest state through the upregulation of G1 cyclins. This map provides a more comprehensive understanding of the overall organization of cell proliferation and arrest.
Collapse
Affiliation(s)
- Wayne Stallaert
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Present address:
Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | - Sovanny R Taylor
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Katarzyna M Kedziora
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Bioinformatics and Analytics Research Collaborative (BARC)University of North Carolina at Chapel HillChapel HillNCUSA
| | - Colin D Taylor
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Holly K Sobon
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Catherine L Young
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Juanita C Limas
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Jonah Varblow Holloway
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Martha S Johnson
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Jeanette Gowen Cook
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Department of PharmacologyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Jeremy E Purvis
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- Computational Medicine ProgramUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
12
|
Falcon KT, Watt KEN, Dash S, Zhao R, Sakai D, Moore EL, Fitriasari S, Childers M, Sardiu ME, Swanson S, Tsuchiya D, Unruh J, Bugarinovic G, Li L, Shiang R, Achilleos A, Dixon J, Dixon MJ, Trainor PA. Dynamic regulation and requirement for ribosomal RNA transcription during mammalian development. Proc Natl Acad Sci U S A 2022; 119:e2116974119. [PMID: 35881792 PMCID: PMC9351356 DOI: 10.1073/pnas.2116974119] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies, which frequently affect craniofacial development. Here, we describe a cellular and molecular mechanism underlying the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCCs), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCCs particularly sensitive to rRNA synthesis defects. Consistent with this model, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which leads to p53 protein accumulation, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbate the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins syndrome and Acrofacial Dysostosis-Cincinnati type. Mechanistically, we demonstrate that diminished rRNA synthesis causes an imbalance between rRNA and ribosomal proteins. This leads to increased binding of ribosomal proteins Rpl5 and Rpl11 to Mdm2 and concomitantly diminished binding between Mdm2 and p53. Altogether, our results demonstrate a dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of congenital craniofacial disorders.
Collapse
Affiliation(s)
- Karla T. Falcon
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | - Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Daisuke Sakai
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Biology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Emma L. Moore
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | | | - Mihaela E. Sardiu
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160
| | - Selene Swanson
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - George Bugarinovic
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305
| | - Lin Li
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23284
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23284
| | - Annita Achilleos
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia 2408, Cyprus
| | - Jill Dixon
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Michael J. Dixon
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
13
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
14
|
Dash S, Trainor PA. Nucleolin loss of function leads to aberrant Fibroblast Growth Factor signaling and craniofacial anomalies. Development 2022; 149:dev200349. [PMID: 35762670 PMCID: PMC9270975 DOI: 10.1242/dev.200349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
Ribosomal RNA (rRNA) transcription and ribosome biogenesis are global processes required for growth and proliferation of all cells, yet perturbation of these processes in vertebrates leads to tissue-specific defects termed ribosomopathies. Mutations in rRNA transcription and processing proteins often lead to craniofacial anomalies; however, the cellular and molecular reasons for these defects are poorly understood. Therefore, we examined the function of the most abundant nucleolar phosphoprotein, Nucleolin (Ncl), in vertebrate development. ncl mutant (ncl-/-) zebrafish present with craniofacial anomalies such as mandibulofacial hypoplasia. We observed that ncl-/- mutants exhibited decreased rRNA synthesis and p53-dependent apoptosis, consistent with a role in ribosome biogenesis. However, we found that Nucleolin also performs functions not associated with ribosome biogenesis. We discovered that the half-life of fgf8a mRNA was reduced in ncl-/- mutants, which perturbed Fgf signaling, resulting in misregulated Sox9a-mediated chondrogenesis and Runx2-mediated osteogenesis. Consistent with this model, exogenous FGF8 treatment significantly rescued the cranioskeletal phenotype in ncl-/- zebrafish, suggesting that Nucleolin regulates osteochondroprogenitor differentiation. Our work has therefore uncovered tissue-specific functions for Nucleolin in rRNA transcription and post-transcriptional regulation of growth factor signaling during embryonic craniofacial development.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death Differ 2022; 29:972-982. [PMID: 35444234 PMCID: PMC9090812 DOI: 10.1038/s41418-022-00999-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/05/2023] Open
Abstract
Despite several decades of intense research focused on understanding function(s) and disease-associated malfunction of p53, there is no sign of any “mid-life crisis” in this rapidly advancing area of biomedicine. Firmly established as the hub of cellular stress responses and tumor suppressor targeted in most malignancies, p53’s many talents continue to surprise us, providing not only fresh insights into cell and organismal biology, but also new avenues to cancer treatment. Among the most fruitful lines of p53 research in recent years have been the discoveries revealing the multifaceted roles of p53-centered pathways in the fundamental processes of DNA replication and ribosome biogenesis (RiBi), along with cellular responses to replication and RiBi stresses, two intertwined areas of cell (patho)physiology that we discuss in this review. Here, we first provide concise introductory notes on the canonical roles of p53, the key interacting proteins, downstream targets and post-translational modifications involved in p53 regulation. We then highlight the emerging involvement of p53 as a key component of the DNA replication Fork Speed Regulatory Network and the mechanistic links of p53 with cellular checkpoint responses to replication stress (RS), the driving force of cancer-associated genomic instability. Next, the tantalizing, yet still rather foggy functional crosstalk between replication and RiBi (nucleolar) stresses is considered, followed by the more defined involvement of p53-mediated monitoring of the multistep process of RiBi, including the latest updates on the RPL5/RPL11/5 S rRNA-MDM2-p53-mediated Impaired Ribosome Biogenesis Checkpoint (IRBC) pathway and its involvement in tumorigenesis. The diverse defects of RiBi and IRBC that predispose and/or contribute to severe human pathologies including developmental syndromes and cancer are then outlined, along with examples of promising small-molecule-based strategies to therapeutically target the RS- and particularly RiBi- stress-tolerance mechanisms to which cancer cells are addicted due to their aberrant DNA replication, repair, and proteo-synthesis demands. ![]()
Collapse
|
16
|
Szaflarski W, Leśniczak-Staszak M, Sowiński M, Ojha S, Aulas A, Dave D, Malla S, Anderson P, Ivanov P, Lyons SM. Early rRNA processing is a stress-dependent regulatory event whose inhibition maintains nucleolar integrity. Nucleic Acids Res 2022; 50:1033-1051. [PMID: 34928368 PMCID: PMC8789083 DOI: 10.1093/nar/gkab1231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 01/20/2023] Open
Abstract
The production of ribosomes is an energy-intensive process owing to the intricacy of these massive macromolecular machines. Each human ribosome contains 80 ribosomal proteins and four non-coding RNAs. Accurate assembly requires precise regulation of protein and RNA subunits. In response to stress, the integrated stress response (ISR) rapidly inhibits global translation. How rRNA is coordinately regulated with the rapid inhibition of ribosomal protein synthesis is not known. Here, we show that stress specifically inhibits the first step of rRNA processing. Unprocessed rRNA is stored within the nucleolus, and when stress resolves, it re-enters the ribosome biogenesis pathway. Retention of unprocessed rRNA within the nucleolus aids in the maintenance of this organelle. This response is independent of the ISR or inhibition of cellular translation but is independently regulated. Failure to coordinately control ribosomal protein translation and rRNA production results in nucleolar fragmentation. Our study unveils how the rapid translational shut-off in response to stress coordinates with rRNA synthesis production to maintain nucleolar integrity.
Collapse
Affiliation(s)
- Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mateusz Sowiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
- The Genome Science Institute, Boston University School of Medicine, Boston, MA, USA
| | - Anaïs Aulas
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Dhwani Dave
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Sulochan Malla
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
- The Genome Science Institute, Boston University School of Medicine, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Shawn M Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
- The Genome Science Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
17
|
KRAS-related long noncoding RNAs in human cancers. Cancer Gene Ther 2022; 29:418-427. [PMID: 34489556 PMCID: PMC9113938 DOI: 10.1038/s41417-021-00381-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
KRAS is one of the most widely prevalent proto-oncogenes in human cancers. The constitutively active KRAS oncoprotein contributes to both tumor onset and cancer development by promoting cell proliferation and anchorage-independent growth in a MAPK pathway-dependent manner. The expression of microRNAs (miRNAs) and the KRAS oncogene are known to be dysregulated in various cancers, while long noncoding RNAs (lncRNAs) can act as regulators of the miRNAs targeting KRAS oncogene in different cancers and have gradually become a focus of research in recent years. In this review article, we summarize recent advances in the research on lncRNAs that have sponging effects on KRAS-targeting miRNAs as crucial mediators of KRAS expression in different cell types and organs. A deeper understanding of lncRNA function in KRAS-driven cancers is of major fundamental importance and will provide a valuable clinical tool for the diagnosis, prognosis, and eventual treatment of cancers.
Collapse
|
18
|
Almotiri A, Alzahrani H, Menendez-Gonzalez JB, Abdelfattah A, Alotaibi B, Saleh L, Greene A, Georgiou M, Gibbs A, Alsayari A, Taha S, Thomas LA, Shah D, Edkins S, Giles P, Stemmler MP, Brabletz S, Brabletz T, Boyd AS, Siebzehnrubl FA, Rodrigues NP. Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia. J Clin Invest 2021; 131:129115. [PMID: 33108352 PMCID: PMC7773410 DOI: 10.1172/jci129115] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of "stemness," such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knock out (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid-onset thymic atrophy and apoptosis-driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multilineage differentiation block were observed in Zeb1-KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multilineage differentiation genes and of cell polarity consisting of cytoskeleton-, lipid metabolism/lipid membrane-, and cell adhesion-related genes. Notably, epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1-KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients, and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9- and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically coordinating HSC self-renewal, apoptotic, and multilineage differentiation fates required to suppress leukemic potential in AML.
Collapse
Affiliation(s)
- Alhomidi Almotiri
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom.,College of Applied Medical Sciences-Dawadmi, Shaqra University, Dawadmi, Saudi Arabia
| | - Hamed Alzahrani
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | | | - Ali Abdelfattah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Badi Alotaibi
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Lubaid Saleh
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Adelle Greene
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Mia Georgiou
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Amani Alsayari
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Sarab Taha
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Leigh-Anne Thomas
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Dhruv Shah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Sarah Edkins
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Ashleigh S Boyd
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Royal Free Hospital, and.,Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| |
Collapse
|
19
|
Park HR, Vallarino J, O'Sullivan M, Wirth C, Panganiban RA, Webb G, Shumyatcher M, Himes BE, Park JA, Christiani DC, Allen J, Lu Q. Electronic cigarette smoke reduces ribosomal protein gene expression to impair protein synthesis in primary human airway epithelial cells. Sci Rep 2021; 11:17517. [PMID: 34471210 PMCID: PMC8410828 DOI: 10.1038/s41598-021-97013-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
The widespread use of electronic cigarettes (e-cig) is a serious public health concern; however, mechanisms by which e-cig impair the function of airway epithelial cells-the direct target of e-cig smoke-are not fully understood. Here we report transcriptomic changes, including decreased expression of many ribosomal genes, in airway epithelial cells in response to e-cig exposure. Using RNA-seq we identify over 200 differentially expressed genes in air-liquid interface cultured primary normal human bronchial epithelial (NHBE) exposed to e-cig smoke solution from commercial e-cig cartridges. In particular, exposure to e-cig smoke solution inhibits biological pathways involving ribosomes and protein biogenesis in NHBE cells. Consistent with this effect, expression of corresponding ribosomal proteins and subsequent protein biogenesis are reduced in the cells exposed to e-cig. Gas chromatography/mass spectrometry (GC/MS) analysis identified the presence of five flavoring chemicals designated as 'high priority' in regard to respiratory health, and methylglyoxal in e-cig smoke solution. Together, our findings reveal the potential detrimental effect of e-cig smoke on ribosomes and the associated protein biogenesis in airway epithelium. Our study calls for further investigation into how these changes in the airway epithelium contribute to the current epidemic of lung injuries in e-cig users.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Jose Vallarino
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Michael O'Sullivan
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Charlotte Wirth
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Ronald A Panganiban
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Gabrielle Webb
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jin-Ah Park
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - David C Christiani
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA
| | - Joseph Allen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA.
- Harvard T.H. Chan School of Public Health, Room 404-L401 Park Drive, Boston, MA, 02215, USA.
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Figueiredo VC, McCarthy JJ. Targeting cancer via ribosome biogenesis: the cachexia perspective. Cell Mol Life Sci 2021; 78:5775-5787. [PMID: 34196731 PMCID: PMC11072391 DOI: 10.1007/s00018-021-03888-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Cancer cachexia afflicts many advanced cancer patients with many progressing to death. While there have been many advancements in understanding the molecular mechanisms that contribute to the development of cancer cachexia, substantial gaps still exist. Chemotherapy drugs often target ribosome biogenesis to slow or blunt tumor cell growth and proliferation. Some of the most frequent side-effects of chemotherapy are loss of skeletal muscle mass, muscular strength and an increase in fatigue. Given that ribosome biogenesis has emerged as a main mechanism regulating muscle hypertrophy, and more recently, also implicated in muscle atrophy, we propose that some chemotherapy drugs can cause further muscle wasting via its effect on skeletal muscle cells. Many chemotherapy drugs, including the most prescribed drugs such as doxorubicin and cisplatin, affect ribosomal DNA transcription, or other pathways related to ribosome biogenesis. Furthermore, middle-aged and older individuals are the most affected population with cancer, and advanced cancer patients often show reduced levels of physical inactivity. Thus, aging and inactivity can themselves affect muscle ribosome biogenesis, which can further worsen the effect of chemotherapy on skeletal muscle ribosome biogenesis and, ultimately, muscle mass and function. We propose that chemotherapy can accelerate the onset or worsen cancer cachexia via its inhibitory effects on skeletal muscle ribosome biogenesis. We end our review by providing recommendations that could be used to ameliorate the negative effects of chemotherapy on skeletal muscle ribosome biogenesis.
Collapse
Affiliation(s)
- Vandré Casagrande Figueiredo
- College of Health Sciences, University of Kentucky, Lexington, KY, USA.
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Hassan A, Iftinca M, Young D, Flynn R, Agosti F, Abdullah N, Defaye M, Scott MGH, Dufour A, Altier C. TRPV1 Activation Promotes β-arrestin2 Interaction with the Ribosomal Biogenesis Machinery in the Nucleolus:Implications for p53 Regulation and Neurite Outgrowth. Int J Mol Sci 2021; 22:2280. [PMID: 33668926 PMCID: PMC7956682 DOI: 10.3390/ijms22052280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Transient receptor potential vanilloids (TRPV1) are non-selective cation channels that sense and transduce inflammatory pain signals. We previously reported that activation of TRPV1 induced the translocation of β-arrestin2 (ARRB2) from the cytoplasm to the nucleus, raising questions about the functional role of ARRB2 in the nucleus. Here, we determined the ARRB2 nuclear signalosome by conducting a quantitative proteomic analysis of the nucleus-sequestered L395Q ARRB2 mutant, compared to the cytosolic wild-type ARRB2 (WT ARRB2), in a heterologous expression system. We identified clusters of proteins that localize to the nucleolus and are involved in ribosomal biogenesis. Accordingly, L395Q ARRB2 or WT ARRB2 after capsaicin treatment were found to co-localize and interact with the nucleolar marker nucleophosmin (NPM1), treacle protein (TCOF1) and RNA polymerase I (POL I). We further investigated the role of nuclear ARRB2 signaling in regulating neuroplasticity. Using neuroblastoma (neuro2a) cells and dorsal root ganglia (DRG) neurons, we found that L395Q ARRB2 mutant increased POL I activity, inhibited the tumor suppressorp53 (p53) level and caused a decrease in the outgrowth of neurites. Together, our results suggest that the activation of TRPV1 promotes the ARRB2-mediated regulation of ribosomal biogenesis in the nucleolus. The ARRB2-TCOF1-p53 checkpoint signaling pathway might be involved in regulating neurite outgrowth associated with pathological pain conditions.
Collapse
Affiliation(s)
- Ahmed Hassan
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; (A.H.); (M.I.); (F.A.); (N.A.); (M.D.)
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; (A.H.); (M.I.); (F.A.); (N.A.); (M.D.)
| | - Daniel Young
- Department of Physiology and Pharmacology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada; (D.Y.); (A.D.)
| | - Robyn Flynn
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Francina Agosti
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; (A.H.); (M.I.); (F.A.); (N.A.); (M.D.)
| | - Nasser Abdullah
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; (A.H.); (M.I.); (F.A.); (N.A.); (M.D.)
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; (A.H.); (M.I.); (F.A.); (N.A.); (M.D.)
| | - Mark G. H. Scott
- INSERM-CNRS, Team: Receptor Signalling & Molecular Scaffolds, Institut Cochin, 75014 Paris, France;
| | - Antoine Dufour
- Department of Physiology and Pharmacology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada; (D.Y.); (A.D.)
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; (A.H.); (M.I.); (F.A.); (N.A.); (M.D.)
| |
Collapse
|
22
|
Lu Y, Zheng Z, Yuan Y, Pathak JL, Yang X, Wang L, Ye Z, Cho WC, Zeng M, Wu L. The Emerging Role of Exosomes in Oral Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:628103. [PMID: 33718365 PMCID: PMC7951141 DOI: 10.3389/fcell.2021.628103] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Oral cancer constitutes approximately 2% of all cancers, while the most common type, oral squamous cell carcinoma (OSCC) represents 90% of oral cancers. Although the treatment of OSCC has improved recently, it still has a high rate of local recurrence and poor prognosis, with a 5-year survival rate of only 50%. Advanced stage OSCC tends to metastasize to lymph nodes. Thus, exploring new therapeutic strategies for OSCC is therefore an urgent priority. Exosomes, the small membrane vesicles derived from endosomes, have been detected in a wide array of bodily fluids. Exosomes contain a diversity of proteins, mRNAs, and non-coding RNAs, including microRNAs, long non-coding RNAs, piRNAs, circular RNAs, tsRNAs, and ribosomal RNAs, which are delivered to neighboring cells or even transported to distant sites. Exosomes have been associated with the tumorigenesis of OSCC, promote the proliferation, colonization, and metastasis of OSCC by transferring their contents to the target cells. Furthermore, exosomes are involved in the regulation of the tumor microenvironment to transform conditions favoring cancer progression in vivo. In this review, we summarize the crucial role of exosomes in the tumorigenesis and progression of OSCC and discuss the potential clinical application of exosomes in OSCC treatment.
Collapse
Affiliation(s)
- Yanhui Lu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Yunyi Yuan
- Department of Orthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xuechao Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Lijing Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Vascular Biology Research Institute, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Mingtao Zeng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| |
Collapse
|
23
|
McNamar R, Abu-Adas Z, Rothblum K, Knutson BA, Rothblum LI. Conditional depletion of the RNA polymerase I subunit PAF53 reveals that it is essential for mitosis and enables identification of functional domains. J Biol Chem 2019; 294:19907-19922. [PMID: 31727736 PMCID: PMC6937585 DOI: 10.1074/jbc.ra119.009902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/05/2019] [Indexed: 12/24/2022] Open
Abstract
Our knowledge of the mechanism of rDNA transcription has benefited from the combined application of genetic and biochemical techniques in yeast. Nomura's laboratory (Nogi, Y., Vu, L., and Nomura, M. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 7026-7030 and Nogi, Y., Yano, R., and Nomura, M. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3962-3966) developed a system in yeast to identify genes essential for ribosome biogenesis. Such systems have allowed investigators to determine whether a gene was essential and to determine its function in rDNA transcription. However, there are significant differences in both the structures and components of the transcription apparatus and the patterns of regulation between mammals and yeast. Thus, there are significant deficits in our understanding of mammalian rDNA transcription. We have developed a system combining CRISPR/Cas9 and an auxin-inducible degron that enables combining a "genetics-like"approach with biochemistry to study mammalian rDNA transcription. We now show that the mammalian orthologue of yeast RPA49, PAF53, is required for rDNA transcription and mitotic growth. We have studied the domains of the protein required for activity. We have found that the C-terminal, DNA-binding domain (tandem-winged helix), the heterodimerization, and the linker domain were essential. Analysis of the linker identified a putative helix-turn-helix (HTH) DNA-binding domain. This HTH constitutes a second DNA-binding domain within PAF53. The HTH of the yeast and mammalian orthologues is essential for function. In summary, we show that an auxin-dependent degron system can be used to rapidly deplete nucleolar proteins in mammalian cells, that PAF53 is necessary for rDNA transcription and cell growth, and that all three PAF53 domains are necessary for its function.
Collapse
Affiliation(s)
- Rachel McNamar
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma 73104
| | - Zakaria Abu-Adas
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma 73104
| | - Katrina Rothblum
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma 73104
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Lawrence I Rothblum
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma 73104
| |
Collapse
|
24
|
Watt KEN, Neben CL, Hall S, Merrill AE, Trainor PA. tp53-dependent and independent signaling underlies the pathogenesis and possible prevention of Acrofacial Dysostosis-Cincinnati type. Hum Mol Genet 2019; 27:2628-2643. [PMID: 29750247 DOI: 10.1093/hmg/ddy172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/11/2018] [Accepted: 05/02/2018] [Indexed: 01/05/2023] Open
Abstract
Ribosome biogenesis is a global process required for growth and proliferation in all cells, but disruptions in this process surprisingly lead to tissue-specific phenotypic disorders termed ribosomopathies. Pathogenic variants in the RNA Polymerase (Pol) I subunit POLR1A cause Acrofacial Dysostosis-Cincinnati type, which is characterized by craniofacial and limb anomalies. In a zebrafish model of Acrofacial Dysostosis-Cincinnati type, we demonstrate that polr1a-/- mutants exhibit deficient 47S rRNA transcription, reduced monosomes and polysomes and, consequently, defects in protein translation. This results in Tp53-dependent neuroepithelial apoptosis, diminished neural crest cell proliferation and cranioskeletal anomalies. This indicates that POLR1A is critical for rRNA transcription, which is considered a rate limiting step in ribosome biogenesis, underpinning its requirement for neuroepithelial cell and neural crest cell proliferation and survival. To understand the contribution of the Tp53 pathway to the pathogenesis of Acrofacial Dysostosis-Cincinnati type, we genetically inhibited tp53 in polr1a-/- mutant embryos. Tp53 inhibition suppresses neuroepithelial apoptosis and partially ameliorates the polr1a mutant phenotype. However, complete rescue of cartilage development is not observed due to the failure to improve rDNA transcription and neural crest cell proliferation. Altogether, these data reveal specific functions for both Tp53-dependent and independent signaling downstream of polr1a in ribosome biogenesis during neural crest cell and craniofacial development, in the pathogenesis of Acrofacial Dysostosis-Cincinnati type. Furthermore, our work sets the stage for identifying Tp53-independent therapies to potentially prevent Acrofacial dysostosis-Cincinnati type and other similar ribosomopathies.
Collapse
Affiliation(s)
- Kristin E N Watt
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Cynthia L Neben
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shawn Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
25
|
Morcelle C, Menoyo S, Morón-Duran FD, Tauler A, Kozma SC, Thomas G, Gentilella A. Oncogenic MYC Induces the Impaired Ribosome Biogenesis Checkpoint and Stabilizes p53 Independent of Increased Ribosome Content. Cancer Res 2019; 79:4348-4359. [PMID: 31292158 DOI: 10.1158/0008-5472.can-18-2718] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/07/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
Abstract
The role of MYC in regulating p53 stability as a function of increased ribosome biogenesis is controversial. On the one hand, it was suggested that MYC drives the overexpression of ribosomal proteins (RP)L5 and RPL11, which bind and inhibit HDM2, stabilizing p53. On the other, it has been proposed that increased ribosome biogenesis leads the consumption of RPL5/RPL11 into nascent ribosomes, reducing p53 levels and enhancing tumorigenesis. Here, we show that the components that make up the recently described impaired ribosome biogenesis checkpoint (IRBC) complex, RPL5, RPL11, and 5S rRNA, are reduced following MYC silencing. This leads to a rapid reduction in p53 protein half-life in an HDM2-dependent manner. In contrast, MYC induction leads to increased ribosome biogenesis and p53 protein stabilization. Unexpectedly, there is no change in free RPL5/RPL11 levels, but there is a striking increase in IRBC complex bound to HDM2. Our data support a cell-intrinsic tumor-suppressor response to MYC expression, which is presently being exploited to treat cancer. SIGNIFICANCE: Oncogenic MYC induces the impaired ribosome biogenesis checkpoint, which could be potentially targeted for cancer treatment.
Collapse
Affiliation(s)
- Carmen Morcelle
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Sandra Menoyo
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Francisco D Morón-Duran
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Albert Tauler
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Sara C Kozma
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - George Thomas
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. .,Physiological Sciences Department, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. .,Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 2019; 11:2512-2540. [PMID: 31026227 PMCID: PMC6520011 DOI: 10.18632/aging.101922] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.
Collapse
Affiliation(s)
- Zsofia Turi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
27
|
Wang M, Niu W, Hu R, Wang Y, Liu Y, Liu L, Zhong J, Zhang C, You H, Zhang J, Lu L, Wei L, Xiao W. POLR1D promotes colorectal cancer progression and predicts poor prognosis of patients. Mol Carcinog 2019; 58:735-748. [PMID: 30582221 DOI: 10.1002/mc.22966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022]
Abstract
RNA polymerase I subunit D (POLR1D), which is involved in synthesis of ribosomal RNA precursors and small RNAs, has been shown to be overexpressed in several human cancer types. Nevertheless, the role of POLR1D in the progression of colorectal cancer (CRC) remains unknown. The following study aimed to investigate the role and underlying mechanism of POLR1D in CRC progression. In this report, we found that POLR1D was significantly up-regulated in CRC through data mining of oncomine database. Furthermore, the immunohistochemistry (IHC) staining of a tissue microarray (TMA) of 75 human CRC patients showed that the expression level of POLR1D was positively correlated to tumor size and poor survival of CRC patients. Aberrant expression of POLR1D significantly promoted cell proliferation and migration in vitro, as well as tumor growth in vivo. Conversely, POLR1D knockdown displayed the opposite effects. The flow Cytometry assays showed that POLR1D fostered cell cycle progression at G1-S transition and inhibited cell apoptosis. Finally, at the molecular level, we demonstrated that POLR1D-induced the promotion of G1-S cell cycle transition was mediated by activation of wnt-β-catenin signaling and inactivation of p53 signaling. Our results suggested that POLR1D may function as a risk factor for predicting the outcome of CRC patients, as well as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Mingqing Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenbo Niu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Rong Hu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanjing Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yangyang Liu
- Zhongshan Huangpu People's Hospital, Zhongshan, Guangdong, China
| | - Lingyu Liu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Juan Zhong
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cha Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan You
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiaxing Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianbo Wei
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Penzo M, Montanaro L, Treré D, Derenzini M. The Ribosome Biogenesis-Cancer Connection. Cells 2019; 8:cells8010055. [PMID: 30650663 PMCID: PMC6356843 DOI: 10.3390/cells8010055] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 01/05/2023] Open
Abstract
Multifaceted relations link ribosome biogenesis to cancer. Ribosome biogenesis takes place in the nucleolus. Clarifying the mechanisms involved in this nucleolar function and its relationship with cell proliferation: (1) allowed the understanding of the reasons for the nucleolar changes in cancer cells and their exploitation in tumor pathology, (2) defined the importance of the inhibition of ribosome biogenesis in cancer chemotherapy and (3) focused the attention on alterations of ribosome biogenesis in the pathogenesis of cancer. This review summarizes the research milestones regarding these relevant relationships between ribosome biogenesis and cancer. The structure and function of the nucleolus will also be briefly described.
Collapse
Affiliation(s)
- Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | - Davide Treré
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | | |
Collapse
|
29
|
Olson CO, Pejhan S, Kroft D, Sheikholeslami K, Fuss D, Buist M, Ali Sher A, Del Bigio MR, Sztainberg Y, Siu VM, Ang LC, Sabourin-Felix M, Moss T, Rastegar M. MECP2 Mutation Interrupts Nucleolin-mTOR-P70S6K Signaling in Rett Syndrome Patients. Front Genet 2018; 9:635. [PMID: 30619462 PMCID: PMC6305968 DOI: 10.3389/fgene.2018.00635] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023] Open
Abstract
Rett syndrome (RTT) is a severe and rare neurological disorder that is caused by mutations in the X-linked MECP2 (methyl CpG-binding protein 2) gene. MeCP2 protein is an important epigenetic factor in the brain and in neurons. In Mecp2-deficient neurons, nucleoli structures are compromised. Nucleoli are sites of active ribosomal RNA (rRNA) transcription and maturation, a process mainly controlled by nucleolin and mechanistic target of rapamycin (mTOR)-P70S6K signaling. Currently, it is unclear how nucleolin-rRNA-mTOR-P70S6K signaling from RTT cellular model systems translates into human RTT brain. Here, we studied the components of nucleolin-rRNA-mTOR-P70S6K signaling in the brain of RTT patients with common T158M and R255X mutations. Immunohistochemical examination of T158M brain showed disturbed nucleolin subcellular localization, which was absent in Mecp2-deficient homozygous male or heterozygote female mice, compared to wild type (WT). We confirmed by Western blot analysis that nucleolin protein levels are altered in RTT brain, but not in Mecp2-deficient mice. Further, we studied the expression of rRNA transcripts in Mecp2-deficient mice and RTT patients, as downstream molecules that are controlled by nucleolin. By data mining of published ChIP-seq studies, we showed MeCP2-binding at the multi-copy rRNA genes in the mouse brain, suggesting that rRNA might be a direct MeCP2 target gene. Additionally, we observed compromised mTOR-P70S6K signaling in the human RTT brain, a molecular pathway that is upstream of rRNA-nucleolin molecular conduits. RTT patients showed significantly higher phosphorylation of active mTORC1 or mTORC2 complexes compared to age- and sex-matched controls. Correlational analysis of mTORC1/2-P70S6K signaling pathway identified multiple points of deviation from the control tissues that may result in abnormal ribosome biogenesis in RTT brain. To our knowledge, this is the first report of deregulated nucleolin-rRNA-mTOR-P70S6K signaling in the human RTT brain. Our results provide important insight toward understanding the molecular properties of human RTT brain.
Collapse
Affiliation(s)
- Carl O Olson
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shervin Pejhan
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Kroft
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kimia Sheikholeslami
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David Fuss
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marjorie Buist
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Annan Ali Sher
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Yehezkel Sztainberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Victoria Mok Siu
- Division of Medical Genetics, Department of Paediatrics, Schulich School of Medicine, Western University, London, ON, Canada
| | - Lee Cyn Ang
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Marianne Sabourin-Felix
- Cancer Division of the Quebec University Hospital Research Centre, Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Tom Moss
- Cancer Division of the Quebec University Hospital Research Centre, Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
30
|
Vadivel Gnanasundram S, Fåhraeus R. Translation Stress Regulates Ribosome Synthesis and Cell Proliferation. Int J Mol Sci 2018; 19:ijms19123757. [PMID: 30486342 PMCID: PMC6321632 DOI: 10.3390/ijms19123757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/11/2022] Open
Abstract
Ribosome and protein synthesis are major metabolic events that control cellular growth and proliferation. Impairment in ribosome biogenesis pathways and mRNA translation is associated with pathologies such as cancer and developmental disorders. Processes that control global protein synthesis are tightly regulated at different levels by numerous factors and linked with multiple cellular signaling pathways. Several of these merge on the growth promoting factor c-Myc, which induces ribosome biogenesis by stimulating Pol I, Pol II, and Pol III transcription. However, how cells sense and respond to mRNA translation stress is not well understood. It was more recently shown that mRNA translation stress activates c-Myc, through a specific induction of E2F1 synthesis via a PI3Kδ-dependent pathway. This review focuses on how this novel feedback pathway stimulates cellular growth and proliferation pathways to synchronize protein synthesis with ribosome biogenesis. It also describes for the first time the oncogenic activity of the mRNA, and not the encoded protein.
Collapse
Affiliation(s)
| | - Robin Fåhraeus
- Inserm UMRS1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France.
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic.
- Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden.
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
31
|
Nop-7-associated 2 (NSA2) is required for ribosome biogenesis and protein synthesis. Biochem Biophys Res Commun 2018; 505:249-254. [PMID: 30243719 DOI: 10.1016/j.bbrc.2018.09.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
Ribosome biogenesis is a fundamental cellular process and occurs mainly in the nucleolus in eukaryotes. The process is exceptionally complex and highly regulated by numerous ribosomal and non-ribosomal factors. A recent discovery strengthened the link between ribosome biogenesis and malignant transformation. Here, we determined that Nop-7-associated 2 (NSA2) is a nucleolar protein required for ribosome biogenesis. NSA2 knockdown reduced the rate of rRNA synthesis, diminishing the 60S ribosomal subunit. Moreover, we demonstrated that depletion of NSA2 suppressed protein synthesis. To investigate the signaling pathway affected by NSA2, NSA2 was depleted, which triggered the inactivation of the mTOR signaling pathway. Taken together, our findings reveal a novel function of NSA2 and provide insight into the regulation of ribosome biogenesis by NSA2.
Collapse
|
32
|
Derenzini E, Rossi A, Treré D. Treating hematological malignancies with drugs inhibiting ribosome biogenesis: when and why. J Hematol Oncol 2018; 11:75. [PMID: 29855342 PMCID: PMC5984324 DOI: 10.1186/s13045-018-0609-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023] Open
Abstract
It is well known that chemotherapy can cure only some cancers in advanced stage, mostly those with an intact p53 pathway. Hematological cancers such as lymphoma and certain forms of leukemia are paradigmatic examples of such scenario. Recent evidence indicates that the efficacy of many of the alkylating and intercalating agents, antimetabolites, topoisomerase, and kinase inhibitors used in cancer therapy is largely due to p53 stabilization and activation consequent to the inhibition of ribosome biogenesis. In this context, innovative drugs specifically hindering ribosome biogenesis showed preclinical activity and are currently in early clinical development in hematological malignancies. The mechanism of p53 stabilization after ribosome biogenesis inhibition is a multistep process, depending on specific factors that can be altered in tumor cells, which can affect the antitumor efficacy of ribosome biogenesis inhibitors (RiBi). In the present review, the basic mechanisms underlying the anticancer activity of RiBi are discussed based on the evidence deriving from available preclinical and clinical studies, with the purpose of defining when and why the treatment with drugs inhibiting ribosomal biogenesis could be highly effective in hematological malignancies.
Collapse
Affiliation(s)
- Enrico Derenzini
- European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy.
| | - Alessandra Rossi
- European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | - Davide Treré
- DIMES, Università di Bologna, Via Massarenti 9, Bologna, Italy.
| |
Collapse
|
33
|
Therapeutic dosages of aspirin counteract the IL-6 induced pro-tumorigenic effects by slowing down the ribosome biogenesis rate. Oncotarget 2018; 7:63226-63241. [PMID: 27557515 PMCID: PMC5325359 DOI: 10.18632/oncotarget.11441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/13/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation is a risk factor for the onset of cancer and the regular use of aspirin reduces the risk of cancer development. Here we showed that therapeutic dosages of aspirin counteract the pro-tumorigenic effects of the inflammatory cytokine interleukin(IL)-6 in cancer and non-cancer cell lines, and in mouse liver in vivo. We found that therapeutic dosages of aspirin prevented IL-6 from inducing the down-regulation of p53 expression and the acquisition of the epithelial mesenchymal transition (EMT) phenotypic changes in the cell lines. This was the result of a reduction in c-Myc mRNA transcription which was responsible for a down-regulation of the ribosomal protein S6 expression which, in turn, slowed down the rRNA maturation process, thus reducing the ribosome biogenesis rate. The perturbation of ribosome biogenesis hindered the Mdm2-mediated proteasomal degradation of p53, throughout the ribosomal protein-Mdm2-p53 pathway. P53 stabilization hindered the IL-6 induction of the EMT changes. The same effects were observed in livers from mice stimulated with IL-6 and treated with aspirin. It is worth noting that aspirin down-regulated ribosome biogenesis, stabilized p53 and up-regulated E-cadherin expression in unstimulated control cells also. In conclusion, these data showed that therapeutic dosages of aspirin increase the p53-mediated tumor-suppressor activity of the cells thus being in this way able to reduce the risk of cancer onset, either or not linked to chronic inflammatory processes.
Collapse
|
34
|
MDM2-p53 Interactions in Human Hepatocellular Carcinoma: What Is the Role of Nutlins and New Therapeutic Options? J Clin Med 2018; 7:jcm7040064. [PMID: 29584707 PMCID: PMC5920438 DOI: 10.3390/jcm7040064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is the fifth most common cancer and is associated with poor prognosis worldwide. The molecular mechanisms underlying the pathogenesis of HCC have been an area of continuing interest, and recent studies using next generation sequencing (NGS) have revealed much regarding previously unsettled issues. Molecular studies using HCC samples have been mainly targeted with the aim to identify the fundamental mechanisms contributing to HCC and identify more effective treatments. In response to cellular stresses (e.g., DNA damage or oncogenes), activated p53 elicits appropriate responses that aim at DNA repair, genetic stability, cell cycle arrest, and the deletion of DNA-damaged cells. On the other hand, the murine double minute 2 (MDM2) oncogene protein is an important cellular antagonist of p53. MDM2 negatively regulates p53 activity through the induction of p53 protein degradation. However, current research has shown that the mechanisms underlying MDM2-p53 interactions are more complex than previously thought. Microarray data have added new insight into the transcription changes in HCC. Recently, Nutlin-3 has shown potency against p53-MDM2 binding and the enhancement of p53 stabilization as well as an increment of p53 cellular accumulation with potential therapeutic effects. This review outlines the molecular mechanisms involved in the p53-MDM2 pathways, the biological factors influencing these pathways, and their roles in the pathogenesis of HCC. It also discusses the action of Nutlin-3 treatment in inducing growth arrest in HCC and elaborates on future directions in research in this area. More research on the biology of p53-MDM2 interactions may offer a better understanding of these mechanisms and discover new biomarkers, sensitive prognostic indicators as well as new therapeutic interventions in HCC.
Collapse
|
35
|
The pre-existing population of 5S rRNA effects p53 stabilization during ribosome biogenesis inhibition. Oncotarget 2018; 8:4257-4267. [PMID: 28032591 PMCID: PMC5354829 DOI: 10.18632/oncotarget.13833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/03/2016] [Indexed: 12/14/2022] Open
Abstract
Pre-ribosomal complex RPL5/RPL11/5S rRNA (5S RNP) is considered the central MDM2 inhibitory complex that control p53 stabilization during ribosome biogenesis inhibition. Despite its role is well defined, the dynamic of 5S RNP assembly still requires further characterization. In the present work, we report that MDM2 inhibition is dependent by a pre-existing population of 5S rRNA.
Collapse
|
36
|
Zhang M, Zhang J, Yan W, Chen X. p73 expression is regulated by ribosomal protein RPL26 through mRNA translation and protein stability. Oncotarget 2018; 7:78255-78268. [PMID: 27825141 PMCID: PMC5346636 DOI: 10.18632/oncotarget.13126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022] Open
Abstract
p73, a p53 family tumor suppressor, is regulated by multiple mechanisms, including transcription and mRNA and protein stability. However, whether p73 expression is regulated via mRNA translation has not been explored. To test this, we examined whether ribosomal protein 26 (RPL26) plays a role in p73 expression. Here, we showed that p73 expression is controlled by RPL26 via protein stability and mRNA translation. To examine whether MDM2 mediates RPL26 to regulate p73 protein stability, we generated multiple MDM2-knockout cell lines by CRISPR-cas9. We found that in the absence of MDM2, the half-life of p73 protein is markedly increased. Interestingly, we also found that RPL26 is still capable of regulating p73 expression, albeit to a lesser extent, in MDM2-KO cells compared to that in isogenic control cells, suggesting that RPL26 regulates p73 expression via multiple mechanisms. Indeed, we found that RPL26 is necessary for efficient assembly of polysomes on p73 mRNA and de novo synthesis of p73 protein. Consistently, we found that RPL26 directly binds to p73 3′ untranslated region (3′UTR) and that RPL26 is necessary for efficient expression of an eGFP reporter that carries p73 3′UTR. We also found that RPL26 interacts with cap-binding protein eIF4E and enhances the association of eIF4E with p73 mRNA, leading to increased p73 mRNA translation. Finally, we showed that knockdown of RPL26 promotes, whereas ectopic expression of RPL26 inhibits, cell growth in a TAp73-dependent manner. Together, our data indicate that RPL26 regulates p73 expression via two distinct mechanisms: protein stability and mRNA translation.
Collapse
Affiliation(s)
- Min Zhang
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Wensheng Yan
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| |
Collapse
|
37
|
Neben CL, Tuzon CT, Mao X, Lay FD, Merrill AE. FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Hum Mol Genet 2018; 26:3253-3270. [PMID: 28595297 DOI: 10.1093/hmg/ddx209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
Fibroblast Growth Factor (FGF) signaling promotes self-renewal in progenitor cells by encouraging proliferation and inhibiting cellular senescence. Yet, these beneficial effects can be hijacked by disease-causing mutations in FGF receptor (FGFR) during embryogenesis. By studying dominant FGFR2 mutations that are germline in bent bone dysplasia syndrome (BBDS), we reveal a mechanistic connection between FGFR2, ribosome biogenesis, and cellular stress that links cell fate determination to disease pathology. We previously showed that FGFR2 mutations in BBDS, which amplify nucleolar targeting of FGFR2, activate ribosomal DNA (rDNA) transcription and delay differentiation in osteoprogenitor cells and patient-derived bone. Here we find that the BBDS mutations augment the ability of FGFR2 to recruit histone-remodeling factors that epigenetically activate transcriptionally silent rDNA. Nucleolar morphology is controlled by chromatin structure, and the high levels of euchromatic rDNA induced by the BBDS mutations direct nucleolar disorganization, alter ribosome biogenesis, and activate the Rpl11-Mdm2-p53 nucleolar stress response pathway. Inhibition of p53 in cells expressing the FGFR2 mutations in BBDS rescues delayed osteoblast differentiation, suggesting that p53 activation is an essential pathogenic factor in, and potential therapeutic target for, BBDS. This work establishes rDNA as developmentally regulated loci that receive direct input from FGF signaling to balance self-renewal and cell fate determination.
Collapse
Affiliation(s)
- Cynthia L Neben
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Creighton T Tuzon
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaojing Mao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fides D Lay
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
38
|
Eriksson A, Chantzi E, Fryknäs M, Gullbo J, Nygren P, Gustafsson M, Höglund M, Larsson R. Towards repositioning of quinacrine for treatment of acute myeloid leukemia – Promising synergies and in vivo effects. Leuk Res 2017; 63:41-46. [DOI: 10.1016/j.leukres.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/30/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022]
|
39
|
Abstract
PURPOSE OF REVIEW Myelodysplastic syndromes (MDS) are heterogeneous diseases of the hematopoietic stem cell in the elderly. Anemia is the main symptom that mostly correlates with dysplastic erythropoiesis in the bone marrow. We will review the recent advances in understanding the diverse mechanisms of dyserythropoiesis. RECENT FINDINGS Dyserythropoiesis defined as 10% dysplastic erythroid cells in the bone marrow is found in more than 80% of early MDS. Immature erythroblasts accumulate at the expense of mature erythroblasts due to differentiation arrest and apoptosis. In early MDS with dyserythropoiesis, caspase-dependent cleavage of the erythroid transcription factor GATA-1 occurring in basophilic erythroblasts accounts for impairment of final maturation. Depending on initiating genetic alteration, specific mechanisms contribute to erythroid defect. In MDS with 5q deletion, the haploinsufficiency of ribosomal protein gene, RPS14, opposes the transition of immature to mature erythroblasts by inducing a p53-dependent ribosome stress, cell cycle arrest and apoptosis. Recent work identifies the activation of a p53-S100A8/9 innate immune pathway that both intrinsically and extrinsically contributes to defective erythropoiesis. In MDS with ring sideroblasts, a paradigm of dyserythropoiesis, a unique mutation in SF3B1 splicing factor gene induces a multiplicity of alterations at RNA level that deeply modifies the patterns of gene expression. SUMMARY Insights in the pathophysiology of MDS with dyserythropoiesis may guide the choice of the appropriate therapy, for instance lenalidomide in MDS with del(5q). A better understanding of the mechanisms of dyserthropoiesis is required to treat anemia in non-del(5q) MDS, especially in case of resistance to first-line therapy by erythropoiesis-stimulating agents.
Collapse
|
40
|
Xie X, Guo P, Yu H, Wang Y, Chen G. Ribosomal proteins: insight into molecular roles and functions in hepatocellular carcinoma. Oncogene 2017; 37:277-285. [PMID: 28945227 DOI: 10.1038/onc.2017.343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Ribosomes, which are important sites for the synthesis of proteins related to expression and transmission of genetic information in humans, have a complex structure and diverse functions. They consist of a variety of ribosomal proteins (RPs), ribosomal RNAs (rRNAs) and small nucleolar RNAs. Owing to the involvement of ribosomes in many important biological processes of cells, their major components, rRNAs and RPs, have an important role in human diseases, including the initiation and evolvement of malignancies. However, the main mechanisms underlying the involvement of ribosomes in cancer remain unclear. This review describes the crucial role of ribosomes in various common malignant tumors; in particular, it examines the effects of RPs, including S6, the receptor for activated C-kinase and RPS15A, on the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- X Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - P Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - H Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Y Wang
- Research Center of Evidence-Based Medicine and Clinical Epidemiology, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - G Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Lam HC, Liu HJ, Baglini CV, Filippakis H, Alesi N, Nijmeh J, Du H, Lope AL, Cottrill KA, Handen A, Asara JM, Kwiatkowski DJ, Ben-Sahra I, Oldham WM, Chan SY, Henske EP. Rapamycin-induced miR-21 promotes mitochondrial homeostasis and adaptation in mTORC1 activated cells. Oncotarget 2017; 8:64714-64727. [PMID: 29029388 PMCID: PMC5630288 DOI: 10.18632/oncotarget.19947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 06/25/2017] [Indexed: 12/24/2022] Open
Abstract
mTORC1 hyperactivation drives the multi-organ hamartomatous disease tuberous sclerosis complex (TSC). Rapamycin inhibits mTORC1, inducing partial tumor responses; however, the tumors regrow following treatment cessation. We discovered that the oncogenic miRNA, miR-21, is increased in Tsc2-deficient cells and, surprisingly, further increased by rapamycin. To determine the impact of miR-21 in TSC, we inhibited miR-21 in vitro. miR-21 inhibition significantly repressed the tumorigenic potential of Tsc2-deficient cells and increased apoptosis sensitivity. Tsc2-deficient cells' clonogenic and anchorage independent growth were reduced by ∼50% (p<0.01) and ∼75% (p<0.0001), respectively, and combined rapamycin treatment decreased soft agar growth by ∼90% (p<0.0001). miR-21 inhibition also increased sensitivity to apoptosis. Through a network biology-driven integration of RNAseq data, we discovered that miR-21 promotes mitochondrial adaptation and homeostasis in Tsc2-deficient cells. miR-21 inhibition reduced mitochondrial polarization and function in Tsc2-deficient cells, with and without co-treatment with rapamycin. Importantly, miR-21 inhibition limited Tsc2-deficient tumor growth in vivo, reducing tumor size by approximately 3-fold (p<0.0001). When combined with rapamcyin, miR-21 inhibition showed even more striking efficacy, both during treatment and after treatment cessation, with a 4-fold increase in median survival following rapamycin cessation (p=0.0008). We conclude that miR-21 promotes mTORC1-driven tumorigenesis via a mechanism that involves the mitochondria, and that miR-21 is a potential therapeutic target for TSC-associated hamartomas and other mTORC1-driven tumors, with the potential for synergistic efficacy when combined with rapalogs.
Collapse
Affiliation(s)
- Hilaire C. Lam
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Heng-Jia Liu
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian V. Baglini
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Harilaos Filippakis
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicola Alesi
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie Nijmeh
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Heng Du
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alicia Llorente Lope
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Katherine A. Cottrill
- Department of Medicine, Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adam Handen
- Department of Medicine, Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John M. Asara
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David J. Kwiatkowski
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - William M. Oldham
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen Y. Chan
- Department of Medicine, Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Elizabeth P. Henske
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Experimental Autoimmune Encephalomyelitis Ameliorated by Passive Transfer of Polymerase 1-Silenced MOG35-55 Lymphatic Node Cells: Verification of a Novel Therapeutic Approach in Multiple Sclerosis. Neuromolecular Med 2017; 19:406-412. [DOI: 10.1007/s12017-017-8456-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/22/2017] [Indexed: 01/07/2023]
|
43
|
Derenzini M, Montanaro L, Trerè D. Ribosome biogenesis and cancer. Acta Histochem 2017; 119:190-197. [PMID: 28168996 DOI: 10.1016/j.acthis.2017.01.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/27/2017] [Indexed: 12/21/2022]
Abstract
There is growing evidence indicating that the human pathological conditions characterized by an up-regulated ribosome biogenesis are at an increased risk of cancer onset. At the basis of this relationship is the close interconnection between the ribosome biogenesis and cell proliferation. Cell proliferation-stimulating factors also stimulate ribosome production, while the ribosome biogenesis rate controls the cell cycle progression. The major tumour suppressor, the p53 protein, plays an important balancing role between the ribosome biogenesis rate and the cell progression through the cell cycle phases. The perturbation of ribosome biogenesis stabilizes and activates p53, with a consequent cell cycle arrest and/or apoptotic cell death, whereas an up-regulated ribosome production down-regulates p53 expression and activity, thus facilitating neoplastic transformation. In the present review we describe the interconnection between ribosome biogenesis and cell proliferation, while highlighting the mechanisms by which quantitative changes in ribosome biogenesis may induce cancer.
Collapse
Affiliation(s)
- Massimo Derenzini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy.
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy.
| | - Davide Trerè
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
44
|
Govoni M. In vitro Assessment of RNA Polymerase I Activity. Bio Protoc 2017; 7:e2120. [PMID: 34458444 DOI: 10.21769/bioprotoc.2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/07/2016] [Accepted: 01/06/2017] [Indexed: 11/02/2022] Open
Abstract
In eukaryotic cells transcriptional processes are carried out by three different RNA polymerases: RNA polymerase I which specifically transcribes ribosomal RNA (rRNA), RNA polymerase II which transcribes protein-coding genes to yield messenger RNAs (mRNAs) and small RNAs, while RNA polymerase III transcribes the genes for transfer RNAs and for the smallest species of ribosomal RNA (5S rRNA). This protocol describes an in vitro assay to evaluate the rRNA transcriptional activity of RNA polymerase I. The method measures the quantity of radiolabelled uridine 5' triphosphate incorporated in ex novo synthesized rRNA molecules by RNA polymerase I, in optimal conditions for the enzyme activity and in the presence of a toxin, α-amanitin, which inhibits RNA polymerase II and III without affecting RNA polymerase I (Novello and Stirpe, 1970).
Collapse
Affiliation(s)
- Marzia Govoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
45
|
Liu F, Jin R, Liu X, Huang H, Wilkinson SC, Zhong D, Khuri FR, Fu H, Marcus A, He Y, Zhou W. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions. Oncotarget 2016; 7:2519-31. [PMID: 26506235 PMCID: PMC4823052 DOI: 10.18632/oncotarget.6224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022] Open
Abstract
We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells.
Collapse
Affiliation(s)
- Fakeng Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Rui Jin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiuju Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Henry Huang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Scott C Wilkinson
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA
| | - Diansheng Zhong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, P.R.China
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology and Laboratory Medicine and Department of Human Genetics Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
46
|
Sarkar A, Marszalkowska M, Schäfer M, Pees T, Klingenberg H, Macht F, Reinhold-Hurek B. Global expression analysis of the response to microaerobiosis reveals an important cue for endophytic establishment of Azoarcus sp. BH72. Environ Microbiol 2016; 19:198-217. [PMID: 27727497 DOI: 10.1111/1462-2920.13569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 11/30/2022]
Abstract
The endophyte Azoarcus sp. BH72, fixing nitrogen microaerobically, encounters low O2 tensions in flooded roots. Therefore, its transcriptome upon shift to microaerobiosis was analyzed using oligonucleotide microarrays. A total of 8.7% of the protein-coding genes were significantly modulated. Aerobic conditions induced expression of genes involved in oxidative stress protection, while under microaerobiosis, 233 genes were upregulated, encoding hypothetical proteins, transcriptional regulators, and proteins involved in energy metabolism, among them a cbb3 -type terminal oxidase contributing to but not essential for N2 fixation. A newly established sensitive transcriptional reporter system using tdTomato allowed to visualize even relatively low bacterial gene expression in association with roots. Beyond metabolic changes, low oxygen concentrations seemed to prime transcription for plant colonization: Several genes known to be required for endophytic rice interaction were induced, and novel bacterial colonization factors were identified, such as azo1653. The cargo of the type V autotransporter Azo1653 had similarities to the attachment factor pertactin. Although for short term swarming-dependent colonization, it conferred a competitive disadvantage, it contributed to endophytic long-term establishment inside roots. Proteins sharing such opposing roles in the colonization process appear to occur more generally, as we demonstrated a very similar phenotype for another attachment protein, Azo1684. This suggests distinct cellular strategies for endophyte establishment.
Collapse
Affiliation(s)
- Abhijit Sarkar
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Marta Marszalkowska
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Martin Schäfer
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Tobias Pees
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Hannah Klingenberg
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Franziska Macht
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Barbara Reinhold-Hurek
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| |
Collapse
|
47
|
Ma P, Wang H, Han L, Jing W, Zhou X, Liu Z. Up-regulation of small nucleolar RNA 78 is correlated with aggressive phenotype and poor prognosis of hepatocellular carcinoma. Tumour Biol 2016; 37:10.1007/s13277-016-5366-6. [PMID: 27770311 DOI: 10.1007/s13277-016-5366-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) as a novel molecular species may have significant and comprehensive influences on the development and progression of hepatocellular carcinoma (HCC). We recently characterized snoRNA transcriptome signatures in HCC tissues by small RNA sequencing and found that small nucleolar RNA 78 (SNORD78) was associated with HCC. However, little is known about the pathological role of SNORD78 in HCC patients. This study aimed to profile SNORD78 expression signature and then to explore the pathogenesis of SNORD78 in HCC. The real-time PCR results showed that SNORD78 was greatly upregulated in HCC tissues than adjacent noncancerous tissues (p = 0.004). Correlation analysis showed that high-level expression of SNORD78 was notably associated with tumor number (single vs. multiply, p = 0.02), stage (I∼II vs. III∼IV, p = 0.014), and distant metastasis (absent vs. present, p = 0.01) in HCC patients. Univatiate and multivariate analyses showed that SNORD78 was a significant prognostic predictor for overall survival and recurrence-free survival of HCC patients (hazard ratio = 1.375, 95 % CI = 1.125-1.680, p = 0.002; hazard ratio = 1.418, 95 % CI = 1.201-1.675, p < 0.001). Moreover, Kaplan-Meier analysis showed that high-level expression of SNORD78 was associated with short overall survival and recurrence-free survival of HCC patients (p = 0.023, 0.014). Functionally, knockdown of SNORD78 significantly inhibited cellular proliferation, migration, and invasion of SK-Hep-1 via inducing G0/G1 cell cycle arrest and apoptosis. In conclusion, SNORD78 may be associated with aggressive phenotype and poor prognosis of HCC.
Collapse
Affiliation(s)
- Pei Ma
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Haitao Wang
- Department of Hepatobiliary and Pancreas, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lu Han
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wei Jing
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xin Zhou
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.
| | - Zhisu Liu
- Department of Hepatobiliary and Pancreas, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
48
|
Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech 2016; 8:1013-26. [PMID: 26398160 PMCID: PMC4582105 DOI: 10.1242/dmm.020529] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Defects in ribosome biogenesis are associated with a group of diseases called the ribosomopathies, of which Diamond-Blackfan anemia (DBA) is the most studied. Ribosomes are composed of ribosomal proteins (RPs) and ribosomal RNA (rRNA). RPs and multiple other factors are necessary for the processing of pre-rRNA, the assembly of ribosomal subunits, their export to the cytoplasm and for the final assembly of subunits into a ribosome. Haploinsufficiency of certain RPs causes DBA, whereas mutations in other factors cause various other ribosomopathies. Despite the general nature of their underlying defects, the clinical manifestations of ribosomopathies differ. In DBA, for example, red blood cell pathology is especially evident. In addition, individuals with DBA often have malformations of limbs, the face and various organs, and also have an increased risk of cancer. Common features shared among human DBA and animal models have emerged, such as small body size, eye defects, duplication or overgrowth of ectoderm-derived structures, and hematopoietic defects. Phenotypes of ribosomopathies are mediated both by p53-dependent and -independent pathways. The current challenge is to identify differences in response to ribosomal stress that lead to specific tissue defects in various ribosomopathies. Here, we review recent findings in this field, with a particular focus on animal models, and discuss how, in some cases, the different phenotypes of ribosomopathies might arise from differences in the spatiotemporal expression of the affected genes. Summary: This paper reviews recent data on Diamond Blackfan anemia and discusses them in connection with other ribosomopathies.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Hanna T Gazda
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
49
|
Over-expressed RPL34 promotes malignant proliferation of non-small cell lung cancer cells. Gene 2016; 576:421-8. [DOI: 10.1016/j.gene.2015.10.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/21/2015] [Indexed: 01/18/2023]
|
50
|
The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin Cancer Biol 2015; 37-38:36-50. [PMID: 26721423 DOI: 10.1016/j.semcancer.2015.12.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 12/13/2022]
Abstract
The nucleolus is the most prominent nuclear substructure assigned to produce ribosomes; molecular machines that are responsible for carrying out protein synthesis. To meet the increased demand for proteins during cell growth and proliferation the cell must increase protein synthetic capacity by upregulating ribosome biogenesis. While larger nucleolar size and number have been recognized as hallmark features of many tumor types, recent evidence has suggested that, in addition to overproduction of ribosomes, decreased ribosome biogenesis as well as qualitative changes in this process could also contribute to tumor initiation and cancer progression. Furthermore, the nucleolus has become the focus of intense attention for its involvement in processes that are clearly unrelated to ribosome biogenesis such as sensing and responding to endogenous and exogenous stressors, maintenance of genome stability, regulation of cell-cycle progression, cellular senescence, telomere function, chromatin structure, establishment of nuclear architecture, global regulation of gene expression and biogenesis of multiple ribonucleoprotein particles. The fact that dysregulation of many of these fundamental cellular processes may contribute to the malignant phenotype suggests that normal functioning of the nucleolus safeguards against the development of cancer and indicates its potential as a therapeutic approach. Here we review the recent advances made toward understanding these newly-recognized nucleolar functions and their roles in normal and cancer cells, and discuss possible future research directions.
Collapse
|