1
|
Orleanska J, Bik E, Baranska M, Majzner K. Mechanisms of mitotic inhibition in human aorta endothelial cells: Molecular and morphological in vitro spectroscopic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124623. [PMID: 39002470 DOI: 10.1016/j.saa.2024.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
Mitotic inhibitors are drugs commonly used in chemotherapy, but their nonspecific and indiscriminate distribution throughout the body after intravenous administration can lead to serious side effects, particularly on the cardiovascular system. In this context, our investigation into the mechanism of the cytotoxic effects on endothelial cells of mitotic inhibitors widely used in cancer treatment, such as paclitaxel (also known as Taxol) and Vinca alkaloids, holds significant practical implications. Understanding these mechanisms can lead to more targeted and less harmful cancer treatments. Human aorta endothelial cells (HAECs) were incubated with selected mitotic inhibitors in a wide range of concentrations close to those in human plasma during anticancer therapy. The analysis of single cells imaged by Raman spectroscopy allowed for visualization of the nuclear, cytoplasmic, and perinuclear areas to assess biochemical changes induced by the drug's action. The results showed significant changes in the morphology and molecular composition of the nucleus. Moreover, an effect of a given drug on the cytoplasm was observed, which can be related to its mechanism of action (MoA). Raman data supported by fluorescence microscopy measurements identified unique changes in DNA form and proteins and revealed drug-induced inflammation of endothelial cells. The primary goal of mitotic inhibitors is based on the impairment of tubulin formation and the inhibition of the mitosis process. While all three drugs affect microtubules and disrupt cell division, they do so through different MoA, i.e., Vinca alkaloids inhibit microtubule formation, whereas paclitaxel stabilizes microtubules. To sum up, the work shows how a specific drug can interact with endothelial cells.
Collapse
Affiliation(s)
- Jagoda Orleanska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Ewelina Bik
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza Av. 30, 30-059 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Katarzyna Majzner
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
2
|
Li M, Lulla AR, Wang Y, Tsavaschidis S, Wang F, Karakas C, Nguyen TD, Bui TN, Pina MA, Chen MK, Mastoraki S, Multani AS, Fowlkes NW, Sahin A, Marshall CG, Hunt KK, Keyomarsi K. Low-Molecular Weight Cyclin E Confers a Vulnerability to PKMYT1 Inhibition in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3864-3880. [PMID: 39186665 PMCID: PMC11567801 DOI: 10.1158/0008-5472.can-23-4130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Cyclin E is a regulatory subunit of CDK2 that mediates S phase entry and progression. The cleavage of full-length cyclin E (FL-cycE) to low-molecular weight isoforms (LMW-E) dramatically alters substrate specificity, promoting G1-S cell cycle transition and accelerating mitotic exit. Approximately 70% of triple-negative breast cancers (TNBC) express LMW-E, which correlates with poor prognosis. PKMYT1 also plays an important role in mitosis by inhibiting CDK1 to block premature mitotic entry, suggesting it could be a therapeutic target in TNBC expressing LMW-E. In this study, analysis of tumor samples of patients with TNBC revealed that coexpression of LMW-E and PKMYT1-catalyzed CDK1 phosphorylation predicted poor response to neoadjuvant chemotherapy. Compared with FL-cycE, LMW-E specifically upregulates PKMYT1 expression and protein stability, thereby increasing CDK1 phosphorylation. Inhibiting PKMYT1 with the selective inhibitor RP-6306 (lunresertib) elicited LMW-E-dependent antitumor effects, accelerating premature mitotic entry, inhibiting replication fork restart, and enhancing DNA damage, chromosomal breakage, apoptosis, and replication stress. Importantly, TNBC cell line xenografts expressing LMW-E showed greater sensitivity to RP-6306 than tumors with empty vector or FL-cycE. Furthermore, RP-6306 exerted tumor suppressive effects in LMW-E transgenic murine mammary tumors and patient-derived xenografts of LMW-E-high TNBC but not in the LMW-E null models examined in parallel. Lastly, transcriptomic and immune profiling demonstrated that RP-6306 treatment induced interferon responses and T-cell infiltration in the LMW-E-high tumor microenvironment, enhancing the antitumor immune response. These findings highlight the LMW-E/PKMYT1/CDK1 regulatory axis as a promising therapeutic target in TNBC, providing the rationale for further clinical development of PKMYT1 inhibitors in this aggressive breast cancer subtype. Significance: PKMYT1 upregulation and CDK1 phosphorylation in triple-negative breast cancer expressing low-molecular weight cyclin E leads to suboptimal responses to chemotherapy but sensitizes tumors to PKMYT1 inhibitors, proposing a personalized treatment strategy.
Collapse
Affiliation(s)
- Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amriti R. Lulla
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Fuchenchu Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuyen D.T. Nguyen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuyen N. Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marc A. Pina
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Kuang Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sofia Mastoraki
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Asha S. Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Lee HH, Chow KL, Wong HS, Chong TY, Wong AS, Cheng GH, Ko JM, Siu HC, Yeung MC, Huen MS, Tse KY, Bray MR, Mak TW, Leung SY, Ip PP. Inhibition of Aberrantly Overexpressed Polo-like Kinase 4 Is a Potential Effective Treatment for DNA Damage Repair-Deficient Uterine Leiomyosarcoma. Clin Cancer Res 2024; 30:3904-3918. [PMID: 38848043 PMCID: PMC11369621 DOI: 10.1158/1078-0432.ccr-23-3720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Uterine leiomyosarcoma (LMS) is an aggressive sarcoma and a subset of which exhibits DNA repair defects. Polo-like kinase 4 (PLK4) precisely modulates mitosis, and its inhibition causes chromosome missegregation and increased DNA damage. We hypothesize that PLK4 inhibition is an effective LMS treatment. EXPERIMENTAL DESIGN Genomic profiling of clinical uterine LMS samples was performed, and homologous recombination (HR) deficiency scores were calculated. A PLK4 inhibitor (CFI-400945) with and without an ataxia telangiectasia mutated (ATM) inhibitor (AZD0156) was tested in vitro on gynecologic sarcoma cell lines SK-UT-1, SKN, and SK-LMS-1. Findings were validated in vivo using the SK-UT-1 xenograft model in the Balb/c nude mouse model. The effects of CFI-400945 were also evaluated in a BRCA2-knockout SK-UT-1 cell line. The mechanisms of DNA repair were analyzed using a DNA damage reporter assay. RESULTS Uterine LMS had a high HR deficiency score, overexpressed PLK4 mRNA, and displayed mutations in genes responsible for DNA repair. CFI-400945 demonstrated effective antitumor activity in vitro and in vivo. The addition of AZD0156 resulted in drug synergism, largely due to a preference for nonhomologous end-joining DNA repair. Compared with wild-type cells, BRCA2 knockouts were more sensitive to PLK4 inhibition when both HR and nonhomologous end-joining repairs were impaired. CONCLUSIONS Uterine LMS with DNA repair defects is sensitive to PLK4 inhibition because of the effects of chromosome missegregation and increased DNA damage. Loss-of-function BRCA2 alterations or pharmacologic inhibition of ATM enhanced the efficacy of the PLK4 inhibitor. Genomic profiling of an advanced-stage or recurrent uterine LMS may guide therapy.
Collapse
Affiliation(s)
- Horace H.Y. Lee
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Kin Long Chow
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Ho Shing Wong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Tsz Yan Chong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Alice S.T. Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Grace H.W. Cheng
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Jasmine M.K. Ko
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Hoi Cheong Siu
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Maximus C.F. Yeung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Michael S.Y. Huen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Ka Yu Tse
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | - Tak Wah Mak
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Philip P.C. Ip
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
4
|
Li G, Huang Y, Han W, Wei L, Huang H, Zhu Y, Xiao Q, Wang Z, Huang W, Duan R. Eg5 UFMylation promotes spindle organization during mitosis. Cell Death Dis 2024; 15:544. [PMID: 39085203 PMCID: PMC11291904 DOI: 10.1038/s41419-024-06934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
UFMylation is a highly conserved ubiquitin-like post-translational modification that catalyzes the covalent linkage of UFM1 to its target proteins. This modification plays a critical role in the maintenance of endoplasmic reticulum proteostasis, DNA damage response, autophagy, and transcriptional regulation. Mutations in UFM1, as well as in its specific E1 enzyme UBA5 and E2 enzyme UFC1, have been genetically linked to microcephaly. Our previous research unveiled the important role of UFMylation in regulating mitosis. However, the underlying mechanisms have remained unclear due to the limited identification of substrates. In this study, we identified Eg5, a motor protein crucial for mitotic spindle assembly and maintenance, as a novel substrate for UFMylation and identified Lys564 as the crucial UFMylation site. UFMylation did not alter its transcriptional level, phosphorylation level, or protein stability, but affected the mono-ubiquitination of Eg5. During mitosis, Eg5 and UFM1 co-localize at the centrosome and spindle apparatus, and defective UFMylation leads to diminished spindle localization of Eg5. Notably, the UFMylation-defective Eg5 mutant (K564R) exhibited shorter spindles, metaphase arrest, spindle checkpoint activation, and a failure of cell division in HeLa cells. Overall, Eg5 UFMylation is essential for proper spindle organization, mitotic progression, and cell proliferation.
Collapse
Affiliation(s)
- Guangxu Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Yuanjiang Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Wenbo Han
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Liyi Wei
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Hongjing Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Yingbao Zhu
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Qiao Xiao
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Zujia Wang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Wen Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Ranhui Duan
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| |
Collapse
|
5
|
Jado JC, Dow M, Carolino K, Klie A, Fonseca GJ, Ideker T, Carter H, Winzeler EA. In vitro evolution and whole genome analysis to study chemotherapy drug resistance in haploid human cells. Sci Rep 2024; 14:13989. [PMID: 38886371 PMCID: PMC11183241 DOI: 10.1038/s41598-024-63943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In vitro evolution and whole genome analysis has proven to be a powerful method for studying the mechanism of action of small molecules in many haploid microbes but has generally not been applied to human cell lines in part because their diploid state complicates the identification of variants that confer drug resistance. To determine if haploid human cells could be used in MOA studies, we evolved resistance to five different anticancer drugs (doxorubicin, gemcitabine, etoposide, topotecan, and paclitaxel) using a near-haploid cell line (HAP1) and then analyzed the genomes of the drug resistant clones, developing a bioinformatic pipeline that involved filtering for high frequency alleles predicted to change protein sequence, or alleles which appeared in the same gene for multiple independent selections with the same compound. Applying the filter to sequences from 28 drug resistant clones identified a set of 21 genes which was strongly enriched for known resistance genes or known drug targets (TOP1, TOP2A, DCK, WDR33, SLCO3A1). In addition, some lines carried structural variants that encompassed additional known resistance genes (ABCB1, WWOX and RRM1). Gene expression knockdown and knockout experiments of 10 validation targets showed a high degree of specificity and accuracy in our calls and demonstrates that the same drug resistance mechanisms found in diverse clinical samples can be evolved, discovered and studied in an isogenic background.
Collapse
Affiliation(s)
- Juan Carlos Jado
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, 92093, USA
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michelle Dow
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
- Health Science, Department of Biomedical Informatics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Krypton Carolino
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Adam Klie
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gregory J Fonseca
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre, 1001 Decaire Blvd, Montreal, QC, H4A 3J1, Canada
| | - Trey Ideker
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, 92093, USA.
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Zhang X, Joseph S, Wu D, Bowser JL, Vaziri C. The DNA Damage Response (DDR) landscape of endometrial cancer defines discrete disease subtypes and reveals therapeutic opportunities. NAR Cancer 2024; 6:zcae015. [PMID: 38596432 PMCID: PMC11000323 DOI: 10.1093/narcan/zcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/12/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Genome maintenance is an enabling characteristic that allows neoplastic cells to tolerate the inherent stresses of tumorigenesis and evade therapy-induced genotoxicity. Neoplastic cells also deploy many mis-expressed germ cell proteins termed Cancer Testes Antigens (CTAs) to promote genome maintenance and survival. Here, we present the first comprehensive characterization of the DNA Damage Response (DDR) and CTA transcriptional landscapes of endometrial cancer in relation to conventional histological and molecular subtypes. We show endometrial serous carcinoma (ESC), an aggressive endometrial cancer subtype, is defined by gene expression signatures comprising members of the Replication Fork Protection Complex (RFPC) and Fanconi Anemia (FA) pathway and CTAs with mitotic functions. DDR and CTA-based profiling also defines a subset of highly aggressive endometrioid endometrial carcinomas (EEC) with poor clinical outcomes that share similar profiles to ESC yet have distinct characteristics based on conventional histological and genomic features. Using an unbiased CRISPR-based genetic screen and a candidate gene approach, we confirm that DDR and CTA genes that constitute the ESC and related EEC gene signatures are required for proliferation and therapy-resistance of cultured endometrial cancer cells. Our study validates the use of DDR and CTA-based tumor classifiers and reveals new vulnerabilities of aggressive endometrial cancer where none currently exist.
Collapse
Affiliation(s)
- Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC - 27599, USA
| | - Sayali Joseph
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC - 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, School of Dentistry, Chapel Hill, NC - 27599, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC - 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC - 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC - 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC - 27599, USA
| |
Collapse
|
7
|
Basar OY, Mohammed S, Qoronfleh MW, Acar A. Optimizing cancer therapy: a review of the multifaceted effects of metronomic chemotherapy. Front Cell Dev Biol 2024; 12:1369597. [PMID: 38813084 PMCID: PMC11133583 DOI: 10.3389/fcell.2024.1369597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Metronomic chemotherapy (MCT), characterized by the continuous administration of chemotherapeutics at a lower dose without prolonged drug-free periods, has garnered significant attention over the last 2 decades. Extensive evidence from both pre-clinical and clinical settings indicates that MCT induces distinct biological effects than the standard Maximum Tolerated Dose (MTD) chemotherapy. The low toxicity profile, reduced likelihood of inducing acquired therapeutic resistance, and low cost of MCT render it an attractive chemotherapeutic regimen option. One of the most prominent aspects of MCT is its anti-angiogenesis effects. It has been shown to stimulate the expression of anti-angiogenic molecules, thereby inhibiting angiogenesis. In addition, MCT has been shown to decrease the regulatory T-cell population and promote anti-tumor immune response through inducing dendritic cell maturation and increasing the number of cytotoxic T-cells. Combination therapies utilizing MCT along with oncolytic virotherapy, radiotherapy or other chemotherapeutic regimens have been studied extensively. This review provides an overview of the current status of MCT research and the established mechanisms of action of MCT treatment and also offers insights into potential avenues of development for MCT in the future.
Collapse
Affiliation(s)
- Oyku Yagmur Basar
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Sawsan Mohammed
- Qatar University, QU Health, College of Medicine, Doha, Qatar
| | - M. Walid Qoronfleh
- Q3 Research Institute (QRI), Research and Policy Division, Ypsilanti, MI, United States
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| |
Collapse
|
8
|
Basson C, Serem JC, Bipath P, Hlophe YN. L-kynurenine and quinolinic acid inhibited markers of cell survival in B16 F10 melanoma cells in vitro. Cell Biol Int 2024. [PMID: 38570921 DOI: 10.1002/cbin.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024]
Abstract
Melanoma is an aggressive malignancy and remains a major cause of skin cancer mortality, highlighting the need for new treatment strategies. Recent findings revealed that L-kynurenine and quinolinic acid induce cytotoxicity and morphological changes in B16 F10 melanoma cells in vitro. This paper highlights the effects of L-kynurenine and quinolinic acid at previously determined half-maximal inhibitory concentrations on cell cycle progression, cell death and extracellular signal-regulated protein kinase inhibition. Melanoma, B16 F10 and murine macrophages, RAW 264.7 cells were used in this study, as both cell lines express all the enzymes associated with the kynurenine pathway. Post exposure to the compounds at half-maximal inhibitory concentrations, transmission electron microscopy was used to assess intracellular morphological changes. Flow cytometry was used to analyse cell cycle progression and quantify apoptosis via the dual staining of Annexin V and propidium iodide and cell survival via extracellular signal-regulated protein kinase. L-kynurenine and quinolinic acid at half-maximal inhibitory concentrations induced intracellular morphological changes representative of cell death. Flow cytometry revealed alterations in cell cycle distribution, increased apoptosis and significantly inhibition of cell survival. L-kynurenine and quinolinic acid are exogenous kynurenine compounds which inhibited cell survival through extracellular signal-regulated protein kinase inhibition, induced cell cycle alterations and induced apoptosis in B16 F10 melanoma cells.
Collapse
Affiliation(s)
- Charlise Basson
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - June Cheptoo Serem
- Department of Anatomy, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Priyesh Bipath
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Yvette Nkondo Hlophe
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Nogueira D, Fatemi HM, Lawrenz B, Elkhatib I, Abdala A, Bayram A, Melado L. Primary sex ratio in euploid embryos of consanguine couples after IVF/ICSI. J Assist Reprod Genet 2024; 41:957-965. [PMID: 38315419 PMCID: PMC11052735 DOI: 10.1007/s10815-024-03044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
PURPOSE To assess the primary sex ratio (males-to-females at time of conception) in blastocysts from consanguine couples undergoing IVF/ICSI treatments and its correlation with chromosomal constitution. METHOD A total of 5135 blastocysts were analyzed by preimplantation-genetic testing for aneuploidy (PGT-A) with next-generation sequencing (NGS) from November 2016 to December 2020. From those, a total of 1138 blastocysts were from consanguine couples (CS) and 3997 from non-consanguine couples (NCS). Only blastocysts presenting normal sex chromosome constitution with or without autosomal aneuploidies were included. Primary sex ratio (PSR) of biopsied blastocysts was compared between CS and NCS couples. RESULTS Expanded blastocysts derived from CS had 47.7% XY versus 52.3% XX constitutions, presenting a PSR of 0.91. In NCS, 48.9% of expanded blastocysts were XY and 51.2% XX, with a less pronounced PSR of 0.95. When stratifying embryos by ploidy, euploid embryos from CS had the lowest PSR (0.87) with 46.6% XY versus 53.4% XX blastocysts (OR 0.89, 95% CI 0.70-1.14; NS), but it did not achieve statistical significance. The lower PSR seemed rather related to euploid embryos from first-degree cousins (PSR = 0.80 versus 0.98 in second-degree cousins, NS). Euploid embryos from NCS presented a PSR of 0.96, with 49.1% XY versus 50.9% XX blastocysts (OR 0.98, 95% CI 0.79-1.22; NS). Significant differences in prevalence of euploidy of specific chromosomes were encountered between CS and NCS. CONCLUSIONS The primary sex ratio was generally similar in expanded blastocysts from consanguine and non-consanguine couples, with a slight decrease in primary sex ratio of euploid blastocysts from consanguine couples.
Collapse
Affiliation(s)
- Daniela Nogueira
- ART Fertility Clinics, Abu Dhabi, United Arab Emirates.
- INOVIE Fertilité, Toulouse, France.
| | | | | | | | - Andrea Abdala
- ART Fertility Clinics, Abu Dhabi, United Arab Emirates
| | - Aşina Bayram
- ART Fertility Clinics, Abu Dhabi, United Arab Emirates
| | - Laura Melado
- ART Fertility Clinics, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Zhou Y, Xu MF, Chen J, Zhang JL, Wang XY, Huang MH, Wei YL, She ZY. Loss-of-function of kinesin-5 KIF11 causes microcephaly, chorioretinopathy, and developmental disorders through chromosome instability and cell cycle arrest. Exp Cell Res 2024; 436:113975. [PMID: 38367657 DOI: 10.1016/j.yexcr.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Xin-Yao Wang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Min-Hui Huang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
11
|
Ou Y, Wang M, Xu Q, Sun B, Jia Y. Small molecule agents for triple negative breast cancer: Current status and future prospects. Transl Oncol 2024; 41:101893. [PMID: 38290250 PMCID: PMC10840364 DOI: 10.1016/j.tranon.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis. The number of cases increased by 2.26 million in 2020, making it the most commonly diagnosed cancer type in the world. TNBCs lack hormone receptor (HR) and human epidermal growth factor 2 (HER2), which limits treatment options. Currently, paclitaxel-based drugs combined with other chemotherapeutics remain the main treatment for TNBC. There is currently no consensus on the best therapeutic regimen for TNBC. However, there have been successful clinical trials exploring large-molecule monoclonal antibodies, small-molecule targeted drugs, and novel antibody-drug conjugate (ADC). Although monoclonal antibodies have produced clinical success, their large molecular weight can limit therapeutic benefits. It is worth noting that in the past 30 years, the FDA has approved small molecule drugs for HER2-positive breast cancers. The lack of effective targets and the occurrence of drug resistance pose significant challenges in the treatment of TNBC. To improve the prognosis of TNBC, it is crucial to search for effective targets and to overcome drug resistance. This review examines the clinical efficacy, adverse effects, resistance mechanisms, and potential solutions of targeted small molecule drugs in both monotherapies and combination therapies. New therapeutic targets, including nuclear export protein 1 (XPO1) and hedgehog (Hh), are emerging as potential options for researchers and become integrated into clinical trials for TNBC. Additionally, there is growing interest in the potential of targeted protein degradation chimeras (PROTACs), degraders of rogue proteins, as a future therapy direction. This review provides potentially valuable insights with clinical implications.
Collapse
Affiliation(s)
- Yan Ou
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Xu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Binxu Sun
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
12
|
Sciatti E, D'Elia E, Gori M, Grosu A, Balestrieri G, Senni M, Barbui T, Gavazzi A. Clonal hematopoiesis of indeterminate potential: implications for the cardiologists. J Cardiovasc Med (Hagerstown) 2024; 25:1-12. [PMID: 38051659 DOI: 10.2459/jcm.0000000000001520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Myeloproliferative neoplasms, including polycythemia vera, essential thrombocythemia, and myelofibrosis, are characterized by somatic gene mutations in bone marrow stem cells, which trigger an inflammatory response influencing the development of associated cardiovascular complications. In recent years, the same mutations were found in individuals with cardiovascular diseases even in the absence of hematological alterations. These genetic events allow the identification of a new entity called 'clonal hematopoiesis of indeterminate potential' (CHIP), as it was uncertain whether it could evolve toward hematological malignancies. CHIP is age-related and, remarkably, myocardial infarction, stroke, and heart failure were frequently reported in these individuals and attributed to systemic chronic inflammation driven by the genetic mutation. We reviewed the connection between clonal hematopoiesis, inflammation, and cardiovascular diseases, with a practical approach to improve clinical practice and highlight the current unmet needs in this area of knowledge.
Collapse
Affiliation(s)
| | | | - Mauro Gori
- Cardiology Unit 1, ASST-Papa Giovanni XXIII
| | | | | | | | - Tiziano Barbui
- FROM Research Foundation E.T.S., Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Antonello Gavazzi
- FROM Research Foundation E.T.S., Papa Giovanni XXIII Hospital, Bergamo, Italy
| |
Collapse
|
13
|
Placha W, Suder P, Panek A, Bronowicka-Adamska P, Zarzycka M, Szczygieł M, Zagajewski J, Piwowar MW. The Blocking of Drug Resistance Channels by Selected Hydrophobic Statins in Chemoresistance Human Melanoma. Biomolecules 2023; 13:1682. [PMID: 38136555 PMCID: PMC10741734 DOI: 10.3390/biom13121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Despite the development of modern drugs, drug resistance in oncology remains the main factor limiting the curability of patients. This paper shows the use of a group of hydrophobic statins to inhibit drug resistance (Pgp protein). In a chemoresistance melanoma cell model, viability, necroptosis with DNA damage, the absorption of the applied pharmaceuticals, and the functional activity of the ABCB1 drug transporter after administration of docetaxel or docetaxel with a selected hydrophobic statin were studied. Taxol-resistant human melanoma cells from three stages of development were used as a model: both A375P and WM239A metastatic lines and radial growth phase WM35 cells. An animal model (Mus musculus SCID) was developed for the A375P cell line. The results show that hydrophobic statins administered with docetaxel increase the accumulation of the drug in the tumor cell a.o. by blocking the ABCB1 channel. They reduce taxol-induced drug resistance. The tumor size reduction was observed after the drug combination was administrated. It was shown that the structural similarity of statins is of secondary importance, e.g., pravastatin and simvastatin. Using cytostatics in the presence of hydrophobic statins increases their effectiveness while reducing their overall toxicity.
Collapse
Affiliation(s)
- Wojciech Placha
- Department of Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7b St., 31-034 Krakow, Poland; (P.B.-A.); (M.Z.); (J.Z.)
| | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 31-007 Krakow, Poland;
| | - Agnieszka Panek
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland;
| | - Patrycja Bronowicka-Adamska
- Department of Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7b St., 31-034 Krakow, Poland; (P.B.-A.); (M.Z.); (J.Z.)
| | - Marta Zarzycka
- Department of Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7b St., 31-034 Krakow, Poland; (P.B.-A.); (M.Z.); (J.Z.)
| | - Małgorzata Szczygieł
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Jacek Zagajewski
- Department of Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7b St., 31-034 Krakow, Poland; (P.B.-A.); (M.Z.); (J.Z.)
| | - Monika Weronika Piwowar
- Department of Bioinformatics and Telemedicine, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7e St., 31-034 Krakow, Poland;
| |
Collapse
|
14
|
Zhang X, Joseph S, Wu D, Bowser JL, Vaziri C. The DNA Damage Response (DDR) landscape of endometrial cancer defines discrete disease subtypes and reveals therapeutic opportunities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567919. [PMID: 38045328 PMCID: PMC10690150 DOI: 10.1101/2023.11.20.567919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genome maintenance is an enabling characteristic that allows neoplastic cells to tolerate the inherent stresses of tumorigenesis and evade therapy-induced genotoxicity. Neoplastic cells also deploy mis-expressed germ cell proteins termed Cancer Testes Antigens (CTAs) to promote genome maintenance and survival. Here, we present the first comprehensive characterization of the DNA Damage Response (DDR) and CTA transcriptional landscapes of endometrial cancer in relation to conventional histological and molecular subtypes. We show endometrial serous carcinoma (ESC), an aggressive endometrial cancer subtype, is defined by gene expression signatures comprising members of the Replication Fork Protection Complex (RFPC) and Fanconi Anemia (FA) pathway and CTAs with mitotic functions. DDR and CTA- based profiling also defines a subset of highly aggressive endometrioid endometrial carcinomas (EEC) with poor clinical outcomes that share similar profiles to ESC yet have distinct characteristics based on conventional histological and genomic features. Using an unbiased CRISPR-based genetic screen and a candidate gene approach, we confirm that DDR and CTA genes that constitute the ESC and related EEC gene signatures are required for proliferation and therapy-resistance of cultured endometrial cancer cells. Our study validates the use of DDR and CTA-based tumor classifiers and reveals new vulnerabilities of aggressive endometrial cancer where none currently exist.
Collapse
|
15
|
Shinada M, Kato D, Motegi T, Tsuboi M, Ikeda N, Aoki S, Iguchi T, Li T, Kodera Y, Ota R, Hashimoto Y, Takahashi Y, Chambers J, Uchida K, Kato Y, Nishimura R, Nakagawa T. Podoplanin Drives Amoeboid Invasion in Canine and Human Mucosal Melanoma. Mol Cancer Res 2023; 21:1205-1219. [PMID: 37493578 DOI: 10.1158/1541-7786.mcr-22-0929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/09/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Mucosal melanoma metastasizes at an early stage of the disease in human and dog. We revealed that overexpression of podoplanin in tumor invasion fronts (IF) was related to poor prognosis of dogs with mucosal melanoma. Moreover, podoplanin expressed in canine mucosal melanoma cells promotes proliferation and aggressive amoeboid invasion by activating Rho-associated kinase (ROCK)-myosin light chain 2 (MLC2) signaling. PDPN-ROCK-MLC2 signaling plays a role in cell-cycle arrest and cellular senescence escape as a mechanism for regulating proliferation. Podoplanin induces amoeboid invasion in the IFs of mouse xenografted tumor tissues, similar to canine mucosal melanoma clinical samples. We further identified that podoplanin expression was related to poor prognosis of human patients with mucosal melanoma, and human mucosal melanoma with podoplanin-high expression enriched gene signatures related to amoeboid invasion, similar to canine mucosal melanoma. Overall, we propose that podoplanin promotes canine and human mucosal melanoma metastasis by inducing aggressive amoeboid invasion and naturally occurring canine mucosal melanoma can be a novel research model for podoplanin expressing human mucosal melanoma. IMPLICATIONS Podoplanin could be a new therapeutic target to restrict the metastatic dissemination of canine and human mucosal melanoma.
Collapse
Affiliation(s)
- Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoki Motegi
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Masaya Tsuboi
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Susumu Aoki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takaaki Iguchi
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Li
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuka Kodera
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Ota
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Hashimoto
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Yosuke Takahashi
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Kirsch-Volders M, Fenech M. Towards prevention of aneuploidy-associated cellular senescence and aging: more questions than answers? MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108474. [PMID: 37866738 DOI: 10.1016/j.mrrev.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
The aim of this review is to discuss how aneuploidy contributes to the aging process, and to identify plausible strategies for its prevention. After an overview of mechanisms leading to aneuploidy and the major features of cellular senescence, we discuss the link between (i) aneuploidy and cellular senescence; (ii) aneuploidy and aging; and (iii) cellular senescence and aging. We also consider (i) interactions between aneuploidy, micronuclei, cellular senescence and aging, (ii) the potential of nutritional treatments to prevent aneuploidy-associated senescence and aging, and (iii) knowledge and technological gaps. Evidence for a causal link between aneuploidy, senescence and aging is emerging. In vitro, aneuploidy accompanies the entry into cellular senescence and can itself induce senescence. How aneuploidy contributes in vivo to cellular senescence is less clear. Several routes depending on aneuploidy and/or senescence converge towards chronic inflammation, the major driver of unhealthy aging. Aneuploidy can induce the pro-inflammatory Senescence Associated Secretory Phenotype (SASP), either directly or as a result of micronucleus (MN) induction leading to leakage of DNA into the cytoplasm and triggering of the cGAS-STING pathway of innate immune response. A major difficulty in understanding the impact of aneuploidy on senescence and aging in vivo, results from the heterogeneity of cellular senescence in different tissues at the cytological and molecular level. Due to this complexity, there is at the present time no biomarker or biomarker combination characteristic for all types of senescent cells. In conclusion, a deeper understanding of the critical role aneuploidy plays in cellular senescence and aging is essential to devise practical strategies to protect human populations from aneuploidy-associated pathologies. We discuss emerging evidence, based on in vitro and in vivo studies, that adequate amounts of specific micronutrients are essential for prevention of aneuploidy in humans and that precise nutritional intervention may be essential to help avoid the scourge of aneuploidy-driven diseases.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Michael Fenech
- Clinical and Health Sciences, University of South Australia, SA 5000, Australia; Genome Health Foundation, North Brighton, SA 5048, Australia.
| |
Collapse
|
17
|
Sanz-Gómez N, González-Álvarez M, De Las Rivas J, de Cárcer G. Whole-Genome Doubling as a source of cancer: how, when, where, and why? Front Cell Dev Biol 2023; 11:1209136. [PMID: 37342233 PMCID: PMC10277508 DOI: 10.3389/fcell.2023.1209136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Chromosome instability is a well-known hallmark of cancer, leading to increased genetic plasticity of tumoral cells, which favors cancer aggressiveness, and poor prognosis. One of the main sources of chromosomal instability are events that lead to a Whole-Genome Duplication (WGD) and the subsequently generated cell polyploidy. In recent years, several studies showed that WGD occurs at the early stages of cell transformation, which allows cells to later become aneuploid, thus leading to cancer progression. On the other hand, other studies convey that polyploidy plays a tumor suppressor role, by inducing cell cycle arrest, cell senescence, apoptosis, and even prompting cell differentiation, depending on the tissue cell type. There is still a gap in understanding how cells that underwent WGD can overcome the deleterious effect on cell fitness and evolve to become tumoral. Some laboratories in the chromosomal instability field recently explored this paradox, finding biomarkers that modulate polyploid cells to become oncogenic. This review brings a historical view of how WGD and polyploidy impact cell fitness and cancer progression, and bring together the last studies that describe the genes helping cells to adapt to polyploidy.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - María González-Álvarez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| |
Collapse
|
18
|
Huang M, Zhong F, Chen M, Hong L, Chen W, Abudukeremu X, She F, Chen Y. CEP55 as a promising biomarker and therapeutic target on gallbladder cancer. Front Oncol 2023; 13:1156177. [PMID: 37274251 PMCID: PMC10232967 DOI: 10.3389/fonc.2023.1156177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Gallbladder cancer (GBC) is a highly malignant biliary tumor with a poor prognosis. As existing therapies for advanced metastatic GBC are rarely effective, there is an urgent need to identify more effective targets for treatment. Methods Hub genes of GBC were identified by bioinformatics analysis and their expression in GBC was analyzed by tissue validation. The biological role of CEP55 in GBC cell and the underlying mechanism of the anticancer effect of CEP55 knockdown were evaluated via CCK8, colony formation assay, EDU staining, flow cytometry, western blot, immunofluorescence, and an alkaline comet assay. Results We screened out five hub genes of GBC, namely PLK1, CEP55, FANCI, NEK2 and PTTG1. CEP55 is not only overexpressed in the GBC but also correlated with advanced TNM stage, differentiation grade and poorer survival. After CEP55 knockdown, the proliferation of GBC cells was inhibited with cell cycle arrest in G2/M phase and DNA damage. There was a marked increase in the apoptosis of GBC cells in the siCEP55 group. Besides, in vivo, CEP55 inhibition attenuated the growth and promoted apoptosis of GBC cells. Mechanically, the tumor suppressor effect of CEP55 knockdown is associated with dysregulation of the AKT and ERK signaling networks. Discussion These data not only demonstrate that CEP55 is identified as a potential independent predictor crucial to the diagnosis and prognosis of gallbladder cancer but also reveal the possibility for CEP55 to be used as a promising target in the treatment of GBC.
Collapse
Affiliation(s)
- Maotuan Huang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Fuxiu Zhong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Department of Nursing, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Mingyuan Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Lingju Hong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Weihong Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiahenazi Abudukeremu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
19
|
Goutas A, Outskouni Z, Papathanasiou I, Georgakopoulou A, Karpetas GE, Gonos ES, Trachana V. The establishment of mitotic errors-driven senescence depends on autophagy. Redox Biol 2023; 62:102701. [PMID: 37094517 PMCID: PMC10149375 DOI: 10.1016/j.redox.2023.102701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
We and others have reported that senescence onset is accompanied by genomic instability that is evident by several defects, such as aneuploidy or erroneous mitosis features. Here, we report that these defects also appear in young cells upon oxidative insult. We provide evidence that these errors could be the consequence of oxidative stress (OS)- either exogenous or senescence-associated - overriding the spindle assembly checkpoint (SAC). Young cells treated with Η2Ο2 as well as older cells fail to maintain mitotic arrest in the presence of spindle poisons and a significant higher percentage of them have supernumerary centrosomes and centrosome related anomalous characteristics. We also report that aging is escorted by expression modifications of SAC components, and especially of Bub1b/BubR1. Bub1b/BubR1 has been previously reported to decrease naturally upon aging. Here, we show that there is an initial increase in Bub1b/BubR1 levels, feasibly as part of the cells' response against OS-driven genomic instability, that is followed by its autophagy dependent degradation. This provides an explanation that was missing regarding the molecular entity responsible for the downregulation of Bub1b/BubR1 upon aging, especially since it is well established, by us and others, that the proteasome function decays as cells age. These results, not only serve the previously reported notion of a shift from proteasome to autophagy-dependent degradation upon aging, but also provide a mechanistic insight for mitotic errors-driven senescence. We believe that our conclusions deepen our understanding regarding the homeostatic function of autophagy that serves the establishment of senescence as a barrier against cellular transformation.
Collapse
Affiliation(s)
- Andreas Goutas
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| | - Zozo Outskouni
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| | - Ioanna Papathanasiou
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| | - Aphrodite Georgakopoulou
- Hematology Department, Hematopoietic Cell Transplant (HCT) Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, 57010, Greece.
| | - Georgios E Karpetas
- Department of Medical Informatics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| | - Efstathios S Gonos
- Hellenic Pasteur Institute, Athens, 11521, Greece; Institute of Biology, Medical Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, 11635, Greece.
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| |
Collapse
|
20
|
Selvanesan BC, Varghese S, Andrys-Olek J, Arriaza RH, Prakash R, Tiwari PB, Hupalo D, Gusev Y, Patel MN, Contente S, Sanda M, Uren A, Wilkerson MD, Dalgard CL, Shimizu LS, Chruszcz M, Borowski T, Upadhyay G. Lymphocyte antigen 6K signaling to aurora kinase promotes advancement of the cell cycle and the growth of cancer cells, which is inhibited by LY6K-NSC243928 interaction. Cancer Lett 2023; 558:216094. [PMID: 36805500 PMCID: PMC10044439 DOI: 10.1016/j.canlet.2023.216094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Lymphocyte antigen 6K (LY6K) is a small GPI-linked protein that is normally expressed in testes. Increased expression of LY6K is significantly associated with poor survival outcomes in many solid cancers, including cancers of the breast, ovary, gastrointestinal tract, head and neck, brain, bladder, and lung. LY6K is required for ERK-AKT and TGF-β pathways in cancer cells and is required for in vivo tumor growth. In this report, we describe a novel role for LY6K in mitosis and cytokinesis through aurora B kinase and its substrate histone H3 signaling axis. Further, we describe the structural basis of the molecular interaction of small molecule NSC243928 with LY6K protein and the disruption of LY6K-aurora B signaling in cell cycle progression due to LY6K-NSC243928 interaction. Overall, disruption of LY6K function via NSC243928 led to failed cytokinesis, multinucleated cells, DNA damage, senescence, and apoptosis of cancer cells. LY6K is not required for vital organ function, thus inhibition of LY6K signaling is an ideal therapeutic approach for hard-to-treat cancers that lack targeted therapy such as triple-negative breast cancer.
Collapse
Affiliation(s)
- Benson Chellakkan Selvanesan
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Sheelu Varghese
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Justyna Andrys-Olek
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Cracow, Poland
| | | | - Rahul Prakash
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | | | - Daniel Hupalo
- Henry M. Jackson Foundation, Bethesda, MD, USA; Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Yuriy Gusev
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Megha Nitin Patel
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sara Contente
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Miloslav Sanda
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse, 43, 61231, Bad Nauheim, Germany
| | - Aykut Uren
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Matthew D Wilkerson
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; John P. Murtha Cancer Center, Bethesda, MD, USA
| | - Clifton Lee Dalgard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; John P. Murtha Cancer Center, Bethesda, MD, USA
| | - Linda S Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Cracow, Poland
| | - Geeta Upadhyay
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; John P. Murtha Cancer Center, Bethesda, MD, USA.
| |
Collapse
|
21
|
Duan T, Thyagarajan S, Amoiroglou A, Rogers GC, Geyer PK. Analysis of a rare progeria variant of Barrier-to-autointegration factor in Drosophila connects centromere function to tissue homeostasis. Cell Mol Life Sci 2023; 80:73. [PMID: 36842139 PMCID: PMC9968693 DOI: 10.1007/s00018-023-04721-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Barrier-to-autointegration factor (BAF/BANF) is a nuclear lamina protein essential for nuclear integrity, chromatin structure, and genome stability. Whereas complete loss of BAF causes lethality in multiple organisms, the A12T missense mutation of the BANF1 gene in humans causes a premature aging syndrome, called Néstor-Guillermo Progeria Syndrome (NGPS). Here, we report the first in vivo animal investigation of progeroid BAF, using CRISPR editing to introduce the NGPS mutation into the endogenous Drosophila baf gene. Progeroid BAF adults are born at expected frequencies, demonstrating that this BAF variant retains some function. However, tissue homeostasis is affected, supported by studies of the ovary, a tissue that depends upon BAF for stem cell survival and continuous oocyte production. We find that progeroid BAF causes defects in germline stem cell mitosis that delay anaphase progression and compromise chromosome segregation. We link these defects to decreased recruitment of centromeric proteins of the kinetochore, indicating dysfunction of cenBAF, a localized pool of dephosphorylated BAF produced by Protein Phosphatase PP4. We show that DNA damage increases in progenitor germ cells, which causes germ cell death due to activation of the DNA damage transducer kinase Chk2. Mitotic defects appear widespread, as aberrant chromosome segregation and increased apoptosis occur in another tissue. Together, these data highlight the importance of BAF in establishing centromeric structures critical for mitosis. Further, these studies link defects in cenBAF function to activation of a checkpoint that depletes progenitor reserves critical for tissue homeostasis, aligning with phenotypes of NGPS patients.
Collapse
Affiliation(s)
- Tingting Duan
- Department of Biochemistry and Molecular Biology, University of Iowa, 3135E MERF, Iowa City, IA, 52242, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Srikantha Thyagarajan
- Department of Biochemistry and Molecular Biology, University of Iowa, 3135E MERF, Iowa City, IA, 52242, USA
| | - Anastasia Amoiroglou
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Pamela K Geyer
- Department of Biochemistry and Molecular Biology, University of Iowa, 3135E MERF, Iowa City, IA, 52242, USA.
| |
Collapse
|
22
|
Lau TY, Poon RY. Whole-Genome Duplication and Genome Instability in Cancer Cells: Double the Trouble. Int J Mol Sci 2023; 24:ijms24043733. [PMID: 36835147 PMCID: PMC9959281 DOI: 10.3390/ijms24043733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Whole-genome duplication (WGD) is one of the most common genomic abnormalities in cancers. WGD can provide a source of redundant genes to buffer the deleterious effect of somatic alterations and facilitate clonal evolution in cancer cells. The extra DNA and centrosome burden after WGD is associated with an elevation of genome instability. Causes of genome instability are multifaceted and occur throughout the cell cycle. Among these are DNA damage caused by the abortive mitosis that initially triggers tetraploidization, replication stress and DNA damage associated with an enlarged genome, and chromosomal instability during the subsequent mitosis in the presence of extra centrosomes and altered spindle morphology. Here, we chronicle the events after WGD, from tetraploidization instigated by abortive mitosis including mitotic slippage and cytokinesis failure to the replication of the tetraploid genome, and finally, to the mitosis in the presence of supernumerary centrosomes. A recurring theme is the ability of some cancer cells to overcome the obstacles in place for preventing WGD. The underlying mechanisms range from the attenuation of the p53-dependent G1 checkpoint to enabling pseudobipolar spindle formation via the clustering of supernumerary centrosomes. These survival tactics and the resulting genome instability confer a subset of polyploid cancer cells proliferative advantage over their diploid counterparts and the development of therapeutic resistance.
Collapse
Affiliation(s)
- Tsz Yin Lau
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Randy Y.C. Poon
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Correspondence: ; Tel.: +852-2358-8718
| |
Collapse
|
23
|
Maity S, Guchhait R, De S, Pramanick K. High doses of nano-polystyrene aggravate the oxidative stress, DNA damage, and the cell death in onions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120611. [PMID: 36368557 DOI: 10.1016/j.envpol.2022.120611] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution has been reported to negatively impact global biodiversity and ecosystem health. However, the molecular mechanisms of nano-plastics in plants are unidentified, especially their negative impacts on genomic stability. This study for the first time showed that nano-polystyrene leads to cell death in plants by subjugating the cellular antioxidant defence mechanisms through the aggravated production of ROS, which in turn could induce the DNA damage impairing the genetic regulation of the corresponding DNA repair pathway. To validate the proposed hypothesis, the DNA damage potential of nano-polystyrene and the expression levels of key genetic regulators of the DNA damage repair pathway (such as - CYCA/B, CDKA, SOG1, MYB transcription factors, and RAD51) have been assessed in onion roots after 72 h exposure with three ecologically relevant concentrations (25, 50, and 100 μg ml-1) of 100 nm nano-polystyrene. In addition, imbalance in redox homeostasis (oxidative stress), cell viability, and nuclear aberrations such as - the frequency of micronucleus and bi-nucleate cells that are directly linked to the DNA damages have been checked to point out the cause and effect of nano-polystyrene-induced DNA damage. Results showed a significant increase in oxidative stress in each treatment concentrations of nano-polystyrene. However, ROS generated at 100 μg ml-1 nano-polystyrene dose subdues the antioxidant defence system and induces cell death. These observations may be ascribed to the accumulation damaged DNA and the down-regulation of repair pathway-associated genes, as observed in this treatment group. Conversely, the observed DNA damage and the reduced expressions of genes would be a mere consequence of reduced cellular viability.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India; Department of Zoology, Mahishadal Raj College, Purba Medinipur, West Bengal, India
| | - Sukanta De
- Department of Physics, Presidency University, Kolkata, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
24
|
Wang EJY, Chen IH, Kuo BYT, Yu CC, Lai MT, Lin JT, Lin LYT, Chen CM, Hwang T, Sheu JJC. Alterations of Cytoskeleton Networks in Cell Fate Determination and Cancer Development. Biomolecules 2022; 12:biom12121862. [PMID: 36551290 PMCID: PMC9775460 DOI: 10.3390/biom12121862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Cytoskeleton proteins have been long recognized as structural proteins that provide the necessary mechanical architecture for cell development and tissue homeostasis. With the completion of the cancer genome project, scientists were surprised to learn that huge numbers of mutated genes are annotated as cytoskeletal or associated proteins. Although most of these mutations are considered as passenger mutations during cancer development and evolution, some genes show high mutation rates that can even determine clinical outcomes. In addition, (phospho)proteomics study confirms that many cytoskeleton-associated proteins, e.g., β-catenin, PIK3CA, and MB21D2, are important signaling mediators, further suggesting their biofunctional roles in cancer development. With emerging evidence to indicate the involvement of mechanotransduction in stemness formation and cell differentiation, mutations in these key cytoskeleton components may change the physical/mechanical properties of the cells and determine the cell fate during cancer development. In particular, tumor microenvironment remodeling triggered by such alterations has been known to play important roles in autophagy, metabolism, cancer dormancy, and immune evasion. In this review paper, we will highlight the current understanding of how aberrant cytoskeleton networks affect cancer behaviors and cellular functions through mechanotransduction.
Collapse
Affiliation(s)
- Evan Ja-Yang Wang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - I-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 907391, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Brian Yu-Ting Kuo
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chia-Cheng Yu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County 907391, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung 403301, Taiwan
| | - Jen-Tai Lin
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813405, Taiwan
| | - Leo Yen-Ting Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Correspondence: ; Tel.: +886-7-5252000 (ext. 7102)
| |
Collapse
|
25
|
More efficient induction of genotoxicity by high-LET Fe-particle radiation than low-LET X-ray radiation at low doses. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
26
|
Zhou J, Corvaisier M, Malycheva D, Alvarado-Kristensson M. Hubbing the Cancer Cell. Cancers (Basel) 2022; 14:5924. [PMID: 36497405 PMCID: PMC9738523 DOI: 10.3390/cancers14235924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Oncogenic transformation drives adaptive changes in a growing tumor that affect the cellular organization of cancerous cells, resulting in the loss of specialized cellular functions in the polarized compartmentalization of cells. The resulting altered metabolic and morphological patterns are used clinically as diagnostic markers. This review recapitulates the known functions of actin, microtubules and the γ-tubulin meshwork in orchestrating cell metabolism and functional cellular asymmetry.
Collapse
Affiliation(s)
| | | | | | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Skåne University Hospital Malmö 1, Lund University, 20502 Malmö, Sweden
| |
Collapse
|
27
|
Tu J, Yu S, Li J, Ren M, Zhang Y, Luo J, Sun K, Lv Y, Han Y, Huang Y, Ren X, Jiang T, Tang Z, Williams MTS, Lu Q, Liu M. Dhx38 is required for the maintenance and differentiation of erythro-myeloid progenitors and hematopoietic stem cells by alternative splicing. Development 2022; 149:276218. [DOI: 10.1242/dev.200450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mutations that occur in RNA-splicing machinery may contribute to hematopoiesis-related diseases. How splicing factor mutations perturb hematopoiesis, especially in the differentiation of erythro-myeloid progenitors (EMPs), remains elusive. Dhx38 is a pre-mRNA splicing-related DEAH box RNA helicase, for which the physiological functions and splicing mechanisms during hematopoiesis currently remain unclear. Here, we report that Dhx38 exerts a broad effect on definitive EMPs as well as the differentiation and maintenance of hematopoietic stem and progenitor cells (HSPCs). In dhx38 knockout zebrafish, EMPs and HSPCs were found to be arrested in mitotic prometaphase, accompanied by a ‘grape’ karyotype, owing to the defects in chromosome alignment. Abnormal alternatively spliced genes related to chromosome segregation, the microtubule cytoskeleton, cell cycle kinases and DNA damage were present in the dhx38 mutants. Subsequently, EMPs and HSPCs in dhx38 mutants underwent P53-dependent apoptosis. This study provides novel insights into alternative splicing regulated by Dhx38, a process that plays a crucial role in the proliferation and differentiation of fetal EMPs and HSPCs.
Collapse
Affiliation(s)
- Jiayi Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Shanshan Yu
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology 2 , Wuhan, Hubei 430065 , P.R. China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mengmeng Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yangjun Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology 3 , Wuhan 430030 , P.R. China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Tao Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mark Thomas Shaw Williams
- Charles Oakley Laboratories 4 , Department of Biological and Biomedical Sciences , , Glasgow G4 0BA , UK
- Glasgow Caledonian University 4 , Department of Biological and Biomedical Sciences , , Glasgow G4 0BA , UK
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| |
Collapse
|
28
|
Cyclin-Dependent Kinase 1 Inhibition Potentiates the Proliferation of Tonsil-Derived Mesenchymal Stem Cells by Delaying Cellular Senescence. Stem Cells Int 2022; 2022:4302992. [PMID: 35910534 PMCID: PMC9337930 DOI: 10.1155/2022/4302992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in tissue regeneration and stem cell therapy and are currently being tested in numerous clinical trials. Senescence-related changes in MSC properties have attracted considerable attention. Senescent MSCs exhibit a compromised potential for proliferation; senescence acts as a stress response that prevents the proliferation of dysfunctional cells by inducing an irreversible cell cycle arrest. Here, we established a senescent MSC model using senescence-associated β-galactosidase, proliferation, and cell cycle assays. We further identified novel biomarker candidates for old, senescent tonsil-derived MSCs (TMSCs) using transcriptomics. A plot of the cellular senescence pathway showed cyclin-dependent kinase 1 (CDK1; +8-fold) and CDK2 (+2-fold), and transforming growth factor beta 2 (TGFB2; +2-fold) showed significantly higher expression in old TMSCs than in young TMSCs. The CDK family was shown to be related to cell cycle and proliferation, as confirmed by quantitative RT-PCR. As replicative senescence of TMSCs, the gene and protein expression of CDK1 was significantly increased, which was further validated by inhibiting CDK1 using an inhibitor and siRNA. Taken together, we suggest that the CDK1 can be used as a selective senescence biomarker of MSCs and broaden the research criteria for senescent mechanisms.
Collapse
|
29
|
Kciuk M, Gielecińska A, Kołat D, Kałuzińska Ż, Kontek R. Transcription factors in DNA damage response. Biochim Biophys Acta Rev Cancer 2022; 1877:188757. [PMID: 35781034 DOI: 10.1016/j.bbcan.2022.188757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Transcription factors (TFs) constitute a wide and highly diverse group of proteins capable of controlling gene expression. Their roles in oncogenesis, tumor progression, and metastasis have been established, but recently their role in the DNA damage response pathway (DDR) has emerged. Many of them can affect elements of canonical DDR pathways, modulating their activity and deciding on the effectiveness of DNA repair. In this review, we focus on the latest reports on the effects of two TFs with dual roles in oncogenesis and metastasis (hypoxia-inducible factor-1 α (HIF1α), proto-oncogene MYC) and three epithelial-mesenchymal transition (EMT) TFs (twist-related protein 1 (TWIST), zinc-finger E-box binding homeobox 1 (ZEB1), and zinc finger protein 281 (ZNF281)) associated with control of canonical DDR pathways.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; University of Lodz, Doctoral School of Exact and Natural Sciences, Banacha Street 12/16, 90-237 Lodz, Poland.
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
30
|
Chou J, Kaller M, Jaeckel S, Rokavec M, Hermeking H. AP4 suppresses DNA damage, chromosomal instability and senescence via inducing MDC1/Mediator of DNA damage Checkpoint 1 and repressing MIR22HG/miR-22-3p. Mol Cancer 2022; 21:120. [PMID: 35624466 PMCID: PMC9137087 DOI: 10.1186/s12943-022-01581-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Background AP4 (TFAP4) encodes a basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor and is a direct target gene of the oncogenic transcription factor c-MYC. Here, we set out to determine the relevance of AP4 in human colorectal cancer (CRC) cells. Methods A CRISPR/Cas9 approach was employed to generate AP4-deficient CRC cell lines with inducible expression of c-MYC. Colony formation, β-gal staining, immunofluorescence, comet and homologous recombination (HR) assays and RNA-Seq analysis were used to determine the effects of AP4 inactivation. qPCR and qChIP analyses was performed to validate differentially expressed AP4 targets. Expression data from CRC cohorts was subjected to bioinformatics analyses. Immunohistochemistry was used to evaluate AP4 targets in vivo. Ap4-deficient APCmin/+ mice were analyzed to determine conservation. Immunofluorescence, chromosome and micronuclei enumeration, MTT and colony formation assays were used to determine the effects of AP4 inactivation and target gene regulation on chromosomal instability (CIN) and drug sensitivity. Results Inactivation of AP4 in CRC cell lines resulted in increased spontaneous and c-MYC-induced DNA damage, chromosomal instability (CIN) and cellular senescence. AP4-deficient cells displayed increased expression of the long non-coding RNA MIR22HG, which encodes miR-22-3p and was directly repressed by AP4. Furthermore, Mediator of DNA damage Checkpoint 1 (MDC1), a central component of the DNA damage response and a known target of miR-22-3p, displayed decreased expression in AP4-deficient cells. Accordingly, MDC1 was directly induced by AP4 and indirectly by AP4-mediated repression of miR-22-3p. Adenomas and organoids from Ap4-deficient APCmin/+ mice displayed conservation of these regulations. Inhibition of miR-22-3p or ectopic MDC1 expression reversed the increased senescence, DNA damage, CIN and defective HR observed in AP4-deficient CRC cells. AP4-deficiency also sensitized CRC cells to 5-FU treatment, whereas ectopic AP4 conferred resistance to 5-FU in a miR-22-3p and MDC1-dependent manner. Conclusions In summary, AP4, miR-22-3p and MDC1 form a conserved and coherent, regulatory feed-forward loop to promote DNA repair, which suppresses DNA damage, senescence and CIN, and contributes to 5-FU resistance. These findings explain how elevated AP4 expression contributes to development and chemo-resistance of colorectal cancer after c-MYC activation. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01581-1.
Collapse
Affiliation(s)
- Jinjiang Chou
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Stephanie Jaeckel
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany. .,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
31
|
Enhanced Effects of Chronic Restraint-Induced Psychological Stress on Total Body Fe-Irradiation-Induced Hematopoietic Toxicity in Trp53-Heterozygous Mice. Life (Basel) 2022; 12:life12040565. [PMID: 35455056 PMCID: PMC9025703 DOI: 10.3390/life12040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Humans are exposed to both psychological stress (PS) and radiation in some scenarios such as manned deep-space missions. It is of great concern to verify possible enhanced deleterious effects from such concurrent exposure. Pioneer studies showed that chronic restraint-induced PS (CRIPS) could attenuate Trp53 functions and increase gamma-ray-induced carcinogenesis in Trp53-heterozygous mice while CRIPS did not significantly modify the effects on X-ray-induced hematopoietic toxicity in Trp53 wild-type mice. As high-linear energy transfer (LET) radiation is the most important component of space radiation in causing biological effects, we further investigated the effects of CRIPS on high-LET iron-particle radiation (Fe)-induced hematopoietic toxicity in Trp53-heterozygous mice. The results showed that CRIPS alone could hardly induce significant alteration in hematological parameters (peripheral hemogram and micronucleated erythrocytes in bone marrow) while concurrent exposure caused elevated genotoxicity measured as micronucleus incidence in erythrocytes. Particularly, exposure to either CRISP or Fe-particle radiation at a low dose (0.1 Gy) did not induce a marked increase in the micronucleus incidence; however, concurrent exposure caused a significantly higher increase in the micronucleus incidence. These findings indicated that CRIPS could enhance the deleterious effects of high-LET radiation, particularly at a low dose, on the hematopoietic toxicity in Trp53-heterozygous mice.
Collapse
|
32
|
Batista JJ, de Araújo HDA, Aguiar TWDA, Ferreira SADO, Lima MDV, Pereira DR, Ferreira MRA, Soares LAL, Melo AMMDA, Albuquerque MCPDA, Aires ADL, Coelho LCBB. Toxic, cytotoxic and genotoxic effect of saline extract and fraction of Parkia pendula seeds in the developmental stages of Biomphalaria glabrata (Say 1818 - intermediate host) and cercaricide activity against the infectious agent of schistosomiasis. Acta Trop 2022; 228:106312. [PMID: 35033504 DOI: 10.1016/j.actatropica.2022.106312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/28/2022]
Abstract
This study describes for the first time the effect of saline extract and Parkia pendula seed fraction on Biomphalaria glabrata adult embryos and molluscs well as the reproductive parameters (fecundity and fertility) and survival, in addition to cytotoxicity and genotoxicity through the profile of blood cells after exposure to sublethal concentrations. Furthermore, we analyzed the action of both preparations against the cercariae of Schistosoma mansoni and their environmental safety using the bioindicator Artemia salina. The saline extract and fraction showed toxic effects for embryos (CL90 of 464.25, 479.62, 731.28, 643.28, 408.43 and 250.94, 318.03, 406.12, 635.64, 1.145 mg/mL, for blastula, gastrula, trocophore, veliger and hippo stage respectively), adult snails after 24 h of exposure (CL90 of 9.50 and 10.92 mg/mL, respectively) with increased mortality after 7 days of observation and significant decrease (p <0.05; p < 0.01 and p < 0.001) in egg mass deposition. At sublethal concentrations, an increase in quantitative and morphological changes in hemocytes was observed, and in the genotoxicity/comet assay analysis, varying degrees of nuclear damage were detected. In addition, the saline extract showed changes in the motility of the cercariae, while the fraction howed toxicity from a concentration of 1.0 mg/mL. The saline extract showed toxicity to A. salina at the highest concentrations (3.0, 4.0 and 5.0 mg/mL), while the fraction did not show ecotoxicity. Thus, the saline extract and fraction was promising in combating schistosomiasis by eliminating the intermediate host and causing alterations and/or mortality to the infectious agent.
Collapse
Affiliation(s)
- José Josenildo Batista
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, UFPE,Avenida Prof. Moraes Rego,Cidade Universitária, nº 1235, Recife-PE 50670-420, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, UFPE,Avenida Prof. Moraes Rego,Cidade Universitária, nº 1235, Recife-PE 50670-420, Brazil
| | - Thierry Wesley de Albuquerque Aguiar
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, UFPE,Avenida Prof. Moraes Rego,Cidade Universitária, nº 1235, Recife-PE 50670-420, Brazil
| | - Sílvio Assis de Oliveira Ferreira
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, UFPE,Avenida Prof. Moraes Rego,Cidade Universitária, nº 1235, Recife-PE 50670-420, Brazil
| | - Maíra de Vasconcelos Lima
- Departamento de Biofísica e Radiobiologia, CB, UFPE,Avenida Prof. Moraes Rego, Cidade Universitária, nº 1235, Recife-PE 50670-901, Brazil
| | - Dewson Rocha Pereira
- Departamento de Biofísica e Radiobiologia, CB, UFPE,Avenida Prof. Moraes Rego, Cidade Universitária, nº 1235, Recife-PE 50670-901, Brazil
| | - Magda Rhayanny Assunção Ferreira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, CCS, UFPE, Avenida Prof. Arthur de Sá, Cidade Universitária, nº 1235, Recife-PE 50.740-520, Brazil
| | - Luiz Alberto Lira Soares
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, CCS, UFPE, Avenida Prof. Arthur de Sá, Cidade Universitária, nº 1235, Recife-PE 50.740-520, Brazil
| | | | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Departamento de Medicina Tropical, CCS, UFPE, Avenida Prof. Moraes Rego, Cidade Universitária, nº 1235, Recife-PE 50670-901, Brazil; Laboratório de ImunopatologiaKeizoAsami, LIKA, UFPE, Avenida Prof. Moraes Rego, Cidade Universitária, nº 1235, Recife-PE 50670-901, Brazil
| | - André de Lima Aires
- Departamento de Medicina Tropical, CCS, UFPE, Avenida Prof. Moraes Rego, Cidade Universitária, nº 1235, Recife-PE 50670-901, Brazil; Laboratório de ImunopatologiaKeizoAsami, LIKA, UFPE, Avenida Prof. Moraes Rego, Cidade Universitária, nº 1235, Recife-PE 50670-901, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, UFPE,Avenida Prof. Moraes Rego,Cidade Universitária, nº 1235, Recife-PE 50670-420, Brazil.
| |
Collapse
|
33
|
Kciuk M, Gielecińska A, Mujwar S, Mojzych M, Kontek R. Cyclin-dependent kinases in DNA damage response. Biochim Biophys Acta Rev Cancer 2022; 1877:188716. [DOI: 10.1016/j.bbcan.2022.188716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
|
34
|
Prochownik EV, Wang H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022; 11:747. [PMID: 35203395 PMCID: PMC8870482 DOI: 10.3390/cells11040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15224, USA
| | - Huabo Wang
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
35
|
Lacroix B, Dumont J. Spatial and Temporal Scaling of Microtubules and Mitotic Spindles. Cells 2022; 11:cells11020248. [PMID: 35053364 PMCID: PMC8774166 DOI: 10.3390/cells11020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/01/2023] Open
Abstract
During cell division, the mitotic spindle, a macromolecular structure primarily comprised of microtubules, drives chromosome alignment and partitioning between daughter cells. Mitotic spindles can sense cellular dimensions in order to adapt their length and mass to cell size. This scaling capacity is particularly remarkable during early embryo cleavage when cells divide rapidly in the absence of cell growth, thus leading to a reduction of cell volume at each division. Although mitotic spindle size scaling can occur over an order of magnitude in early embryos, in many species the duration of mitosis is relatively short, constant throughout early development and independent of cell size. Therefore, a key challenge for cells during embryo cleavage is not only to assemble a spindle of proper size, but also to do it in an appropriate time window which is compatible with embryo development. How spatial and temporal scaling of the mitotic spindle is achieved and coordinated with the duration of mitosis remains elusive. In this review, we will focus on the mechanisms that support mitotic spindle spatial and temporal scaling over a wide range of cell sizes and cellular contexts. We will present current models and propose alternative mechanisms allowing cells to spatially and temporally coordinate microtubule and mitotic spindle assembly.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
- Correspondence:
| | - Julien Dumont
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France;
| |
Collapse
|
36
|
Nakano T, Fujimoto K, Tomiyama A, Takahashi M, Achiha T, Arita H, Kawauchi D, Yasukawa M, Masutomi K, Kondo A, Narita Y, Maehara T, Ichimura K. Eribulin prolongs survival in an orthotopic xenograft mouse model of malignant meningioma. Cancer Sci 2021; 113:697-708. [PMID: 34839570 PMCID: PMC8819309 DOI: 10.1111/cas.15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 11/27/2022] Open
Abstract
Meningioma is the most common intracranial tumor, with generally favorable patient prognosis. However, patients with malignant meningioma typically experience recurrence, undergo multiple surgical resections, and ultimately have a poor prognosis. Thus far, effective chemotherapy for malignant meningiomas has not been established. We recently reported the efficacy of eribulin (Halaven) for glioblastoma with a telomerase reverse transcriptase (TERT) promoter mutation. This study investigated the anti–tumor effect of eribulin against TERT promoter mutation‐harboring human malignant meningioma cell lines in vitro and in vivo. Two meningioma cell lines, IOMM‐Lee and HKBMM, were used in this study. The strong inhibition of cell proliferation by eribulin via cell cycle arrest was demonstrated through viability assay and flow cytometry. Apoptotic cell death in malignant meningioma cell lines was determined through vital dye assay and immunoblotting. Moreover, a wound healing assay revealed the suppression of tumor cell migration after eribulin exposure. Intraperitoneal administration of eribulin significantly prolonged the survival of orthotopic xenograft mouse models of both malignant meningioma cell lines implanted in the subdural space (P < .0001). Immunohistochemistry confirmed apoptosis in brain tumor tissue treated with eribulin. Overall, these results suggest that eribulin is a potential therapeutic agent for malignant meningiomas.
Collapse
Affiliation(s)
- Tomoyuki Nakano
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Neurosurgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.,Department of Brain Disease Translational Research, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kenji Fujimoto
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Neurosurgery, Graduate School of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Arata Tomiyama
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Brain Disease Translational Research, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.,Department of Neurosurgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masamichi Takahashi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Takamune Achiha
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hideyuki Arita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Kawauchi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chuo-ku, Chiba-shi, Chiba, Japan
| | - Mami Yasukawa
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Brain Disease Translational Research, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
37
|
Conedera FM, Pousa AMQ, Mercader N, Tschopp M, Enzmann V. The TGFβ/Notch axis facilitates Müller cell-to-epithelial transition to ultimately form a chronic glial scar. Mol Neurodegener 2021; 16:69. [PMID: 34593012 PMCID: PMC8482586 DOI: 10.1186/s13024-021-00482-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/13/2021] [Indexed: 01/04/2023] Open
Abstract
Background Contrasting with zebrafish, retinal regeneration from Müller cells (MCs) is largely limited in mammals, where they undergo reactive gliosis that consist of a hypertrophic response and ultimately results in vision loss. Transforming growth factor β (TGFβ) is essential for wound healing, including both scar formation and regeneration. However, targeting TGFβ may affect other physiological mechanisms, owing its pleiotropic nature. The regulation of various cellular activities by TGFβ relies on its interaction with other pathways including Notch. Here, we explore the interplay of TGFβ with Notch and how this regulates MC response to injury in zebrafish and mice. Furthermore, we aimed to characterize potential similarities between murine and human MCs during chronic reactive gliosis. Methods Focal damage to photoreceptors was induced with a 532 nm diode laser in TgBAC (gfap:gfap-GFP) zebrafish (ZF) and B6-Tg (Rlbp1-GFP) mice. Transcriptomics, immunofluorescence, and flow cytometry were employed for a comparative analysis of MC response to laser-induced injury between ZF and mouse. The laser-induced injury was paired with pharmacological treatments to inhibit either Notch (DAPT) or TGFβ (Pirfenidone) or TGFβ/Notch interplay (SIS3). To determine if the murine laser-induced injury model translates to the human system, we compared the ensuing MC response to human donors with early retinal degeneration. Results Investigations into injury-induced changes in murine MCs revealed TGFβ/Notch interplay during reactive gliosis. We found that TGFβ1/2 and Notch1/2 interact via Smad3 to reprogram murine MCs towards an epithelial lineage and ultimately to form a glial scar. Similar to what we observed in mice, we confirmed the epithelial phenotype of human Müller cells during gliotic response. Conclusion The study indicates a pivotal role for TGFβ/Notch interplay in tuning MC stemness during injury response and provides novel insights into the remodeling mechanism during retinal degenerative diseases. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00482-z.
Collapse
Affiliation(s)
- Federica Maria Conedera
- Department of Ophthalmology, University Hospital of Bern, University of Bern, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Advanced Microscopy Program, Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ana Maria Quintela Pousa
- Department of Ophthalmology, University Hospital of Bern, University of Bern, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Markus Tschopp
- Department of Ophthalmology, University Hospital of Bern, University of Bern, Bern, Switzerland.,Department of Ophthalmology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Volker Enzmann
- Department of Ophthalmology, University Hospital of Bern, University of Bern, Bern, Switzerland. .,Department of BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
38
|
Beta-Genus Human Papillomavirus 8 E6 Destabilizes the Host Genome by Promoting p300 Degradation. Viruses 2021; 13:v13081662. [PMID: 34452526 PMCID: PMC8402844 DOI: 10.3390/v13081662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023] Open
Abstract
The beta genus of human papillomaviruses infects cutaneous keratinocytes. Their replication depends on actively proliferating cells and, thus, they conflict with the cellular response to the DNA damage frequently encountered by these cells. This review focus on one of these viruses (HPV8) that counters the cellular response to damaged DNA and mitotic errors by expressing a protein (HPV8 E6) that destabilizes a histone acetyltransferase, p300. The loss of p300 results in broad dysregulation of cell signaling that decreases genome stability. In addition to discussing phenotypes caused by p300 destabilization, the review contains a discussion of the extent to which E6 from other β-HPVs destabilizes p300, and provides a discussion on dissecting HPV8 E6 biology using mutants.
Collapse
|
39
|
Gonzalez Rajal A, Marzec KA, McCloy RA, Nobis M, Chin V, Hastings JF, Lai K, Kennerson M, Hughes WE, Vaghjiani V, Timpson P, Cain JE, Watkins DN, Croucher DR, Burgess A. A non-genetic, cell cycle-dependent mechanism of platinum resistance in lung adenocarcinoma. eLife 2021; 10:65234. [PMID: 33983115 PMCID: PMC8169122 DOI: 10.7554/elife.65234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
We previously used a pulse-based in vitro assay to unveil targetable signalling pathways associated with innate cisplatin resistance in lung adenocarcinoma (Hastings et al., 2020). Here, we advanced this model system and identified a non-genetic mechanism of resistance that drives recovery and regrowth in a subset of cells. Using RNAseq and a suite of biosensors to track single-cell fates both in vitro and in vivo, we identified that early S phase cells have a greater ability to maintain proliferative capacity, which correlated with reduced DNA damage over multiple generations. In contrast, cells in G1, late S or those treated with PARP/RAD51 inhibitors, maintained higher levels of DNA damage and underwent prolonged S/G2 phase arrest and senescence. Combined with our previous work, these data indicate that there is a non-genetic mechanism of resistance in human lung adenocarcinoma that is dependent on the cell cycle stage at the time of cisplatin exposure.
Collapse
Affiliation(s)
- Alvaro Gonzalez Rajal
- ANZAC Research Institute, Concord Hospital, Concord, Australia.,Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Hospital Clinical School, University of New South Wales, Sydney, Australia
| | - Kamila A Marzec
- ANZAC Research Institute, Concord Hospital, Concord, Australia
| | - Rachael A McCloy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | - Max Nobis
- St Vincent's Hospital Clinical School, University of New South Wales, Sydney, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | - Venessa Chin
- St Vincent's Hospital Clinical School, University of New South Wales, Sydney, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Hospital Sydney, Darlinghurst, Australia
| | - Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | - Kaitao Lai
- ANZAC Research Institute, Concord Hospital, Concord, Australia.,The University of Sydney Concord Clinical School, Faculty of Medicine and Health, Sydney, Australia
| | - Marina Kennerson
- ANZAC Research Institute, Concord Hospital, Concord, Australia.,The University of Sydney Concord Clinical School, Faculty of Medicine and Health, Sydney, Australia
| | - William E Hughes
- Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Hospital Clinical School, University of New South Wales, Sydney, Australia.,Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | | | - Paul Timpson
- St Vincent's Hospital Clinical School, University of New South Wales, Sydney, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Canada.,Department of Internal Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
| | - David R Croucher
- St Vincent's Hospital Clinical School, University of New South Wales, Sydney, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | - Andrew Burgess
- ANZAC Research Institute, Concord Hospital, Concord, Australia
| |
Collapse
|
40
|
Yeung TK, Lau HW, Ma HT, Poon RYC. One-step multiplex toolkit for efficient generation of conditional gene silencing human cell lines. Mol Biol Cell 2021; 32:1320-1330. [PMID: 33979199 PMCID: PMC8351548 DOI: 10.1091/mbc.e21-02-0051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Loss-of-function analysis is one of the major arsenals we have for understanding gene functions in mammalian cells. For analysis of essential genes, the major challenge is to develop simple methodologies for tight and rapid inducible gene inactivation. One approach involves CRISPR-Cas9-mediated disruption of the endogenous locus in conjunction with the expression of a rescue construct, which can subsequently be turned off to produce a gene inactivation effect. Here we describe the development of a set of Sleeping Beauty transposon-based vectors for expressing auxin-inducible degron (AID)-tagged genes under the regulation of a tetracycline-controlled promoter. The dual transcriptional and degron-mediated post-translational regulation allows rapid and tight silencing of protein expression in mammalian cells. We demonstrated that both non-essential and essential genes could be targeted in human cell lines using a one-step transfection method. Moreover, multiple genes could be simultaneously or sequentially targeted, allowing inducible inactivation of multiple genes. These resources enable highly efficient generation of conditional gene silencing cell lines to facilitate functional studies of essential genes.
Collapse
Affiliation(s)
- Tsz Kwan Yeung
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Ho Wai Lau
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hoi Tang Ma
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Randy Y C Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
41
|
Guo Y, Gabola M, Lattanzio R, Paul C, Pinet V, Tang R, Turali H, Bremond J, Longobardi C, Maurizy C, Da Costa Q, Finetti P, Boissière-Michot F, Rivière B, Lemmers C, Garnier S, Bertucci F, Zlobec I, Chebli K, Tazi J, Azar R, Blanchard JM, Sicinski P, Mamessier E, Lemmers B, Hahne M. Cyclin A2 maintains colon homeostasis and is a prognostic factor in colorectal cancer. J Clin Invest 2021; 131:131517. [PMID: 33332285 DOI: 10.1172/jci131517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
To clarify the function of cyclin A2 in colon homeostasis and colorectal cancer (CRC), we generated mice deficient for cyclin A2 in colonic epithelial cells (CECs). Colons of these mice displayed architectural changes in the mucosa and signs of inflammation, as well as increased proliferation of CECs associated with the appearance of low- and high-grade dysplasias. The main initial events triggering those alterations in cyclin A2-deficient CECs appeared to be abnormal mitoses and DNA damage. Cyclin A2 deletion in CECs promoted the development of dysplasia and adenocarcinomas in a murine colitis-associated cancer model. We next explored the status of cyclin A2 expression in clinical CRC samples at the mRNA and protein levels and found higher expression in tumors of patients with stage 1 or 2 CRC compared with those of patients with stage 3 or 4 CRC. A meta-analysis of 11 transcriptome data sets comprising 2239 primary CRC tumors revealed different expression levels of CCNA2 (the mRNA coding for cyclin A2) among the CRC tumor subtypes, with the highest expression detected in consensus molecular subtype 1 (CMS1) and the lowest in CMS4 tumors. Moreover, we found high expression of CCNA2 to be a new, independent prognosis factor for CRC tumors.
Collapse
Affiliation(s)
- Yuchen Guo
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Monica Gabola
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Rossano Lattanzio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Conception Paul
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Valérie Pinet
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Ruizhi Tang
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Hulya Turali
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Julie Bremond
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Ciro Longobardi
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Chloé Maurizy
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Quentin Da Costa
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Florence Boissière-Michot
- Translationnal Research Unit, Montpellier Cancer Institute, Montpellier, France - Université de Montpellier, Montpellier, France
| | - Benjamin Rivière
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Céline Lemmers
- PVM, Biocampus, Université de Montpellier, CNRS, Montpellier, France
| | - Séverine Garnier
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France.,Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Karim Chebli
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Rania Azar
- Faculty of Pharmacy, Lebanese University, Hadath, Lebanon
| | - Jean-Marie Blanchard
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | | | - Emilie Mamessier
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Bénédicte Lemmers
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| |
Collapse
|
42
|
Meaza I, Speer RM, Toyoda JH, Lu H, Wise SS, Croom-Perez TJ, Aboueissa AEM, Wise JP. Prolonged exposure to particulate Cr(VI) is cytotoxic and genotoxic to fin whale cells. J Trace Elem Med Biol 2020; 62:126562. [PMID: 32570008 PMCID: PMC7655514 DOI: 10.1016/j.jtemb.2020.126562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hexavalent chromium [Cr(VI)] is a human lung carcinogen and global marine pollutant. High Cr concentrations, resembling the ones observed in occupationally exposed workers, have been observed in fin whales (Balaenoptera physalus) in the Gulf of Maine. This outcome suggests Cr might be disrupting the health of fin whale populations. Indeed, Cr in acute (24 h) exposure does cause toxicity in fin whale cells. However, human cell culture data indicate prolonged exposures (120 h) induce a higher amount of toxicity compared to 24 h exposure due to an inhibition of homologous recombination repair. However, whether prolonged exposure causes similar outcomes in fin whale cells is unknown. OBJECTIVE Due to the importance of assessing prolonged exposure toxicity, this study focuses on characterizing acute and prolonged exposure of Cr(VI) in male and female fin whale cells. METHODS Cytotoxicity was measured by the clonogenic assay, also known as colony forming assay, which measures the ability of cells to proliferate and form colonies after the treatment. DNA double strand breaks were analyzed by neutral comet assay. Clastogenicity was measured using the chromosome aberration assay. Intracellular Cr levels were measured with Graphite Furnace Atomic Absorption Spectrometry (GFAAS) with Syngistix Software. RESULTS In this study, we demonstrate that particulate Cr(VI) induces cytotoxicity and genotoxicity in a treatment-dependent manner after 24 h and 120 h exposures. Cytotoxicity levels were generally low with relative survival above 64 %. DNA double strand break data and chromosome aberration data were elevated after a 24 h exposure, but decreased after a 120 h exposure. While cytotoxicity was similar after 24 h and 120 h exposures, less DNA double strand breaks and chromosomal instability occurred with prolonged exposure. CONCLUSION Particulate Cr(VI) is cytotoxic and genotoxic to fin whale cells after acute and prolonged exposures. The reduction of genotoxicity we have observed after 120 h exposure may be partly explained by lower intracellular Cr levels after 120 h. However, the decrease in intracellular levels is not reflected by a similar decrease in chromosome aberrations suggesting other mechanisms may be at play. Male fin whale cells appear to be more susceptible to the genotoxic effects of particulate Cr(VI) while female cells are less susceptible possibly due to increased cell death of damaged cells, but more work is needed to clarify if this outcome reflects a sex difference or interindividual variability. Overall, the study shows particulate Cr(VI) does induce toxicity at both acute and prolonged exposures in fin whales cells indicating Cr(VI) exposure is a health risk for this species.
Collapse
Affiliation(s)
- Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, United States
| | - Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, United States
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, United States
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, United States
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, United States
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, United States
| | | | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, United States.
| |
Collapse
|
43
|
Dewey EB, Parra AS, Johnston CA. Loss of the spectraplakin gene Short stop induces a DNA damage response in Drosophila epithelia. Sci Rep 2020; 10:20165. [PMID: 33214581 PMCID: PMC7677407 DOI: 10.1038/s41598-020-77159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelia are an eminent tissue type and a common driver of tumorigenesis, requiring continual precision in cell division to maintain tissue structure and genome integrity. Mitotic defects often trigger apoptosis, impairing cell viability as a tradeoff for tumor suppression. Identifying conditions that lead to cell death and understanding the mechanisms behind this response are therefore of considerable importance. Here we investigated how epithelia of the Drosophila wing disc respond to loss of Short stop (Shot), a cytoskeletal crosslinking spectraplakin protein that we previously found to control mitotic spindle assembly and chromosome dynamics. In contrast to other known spindle-regulating genes, Shot knockdown induces apoptosis in the absence of Jun kinase (JNK) activation, but instead leads to elevated levels of active p38 kinase. Shot loss leads to double-strand break (DSB) DNA damage, and the apoptotic response is exacerbated by concomitant loss of p53. DSB accumulation is increased by suppression of the spindle assembly checkpoint, suggesting this effect results from chromosome damage during error-prone mitoses. Consistent with DSB induction, we found that the DNA damage and stress response genes, Growth arrest and DNA damage (GADD45) and Apoptosis signal-regulating kinase 1 (Ask1), are transcriptionally upregulated as part of the shot-induced apoptotic response. Finally, co-depletion of Shot and GADD45 induced significantly higher rates of chromosome segregation errors in cultured cells and suppressed shot-induced mitotic arrest. Our results demonstrate that epithelia are capable of mounting molecularly distinct responses to loss of different spindle-associated genes and underscore the importance of proper cytoskeletal organization in tissue homeostasis.
Collapse
Affiliation(s)
- Evan B Dewey
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Amalia S Parra
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | |
Collapse
|
44
|
Griffin M, Khan R, Basu S, Smith S. Ion Channels as Therapeutic Targets in High Grade Gliomas. Cancers (Basel) 2020; 12:cancers12103068. [PMID: 33096667 PMCID: PMC7589494 DOI: 10.3390/cancers12103068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is an aggressive grade IV lethal brain tumour with a median survival of 14 months. Despite surgery to remove the tumour, and subsequent concurrent chemotherapy and radiotherapy, there is little in terms of effective treatment options. Because of this, exploring new treatment avenues is vital. Brain tumours are intrinsically electrically active; expressing unique patterns of ion channels, and this is a characteristic we can exploit. Ion channels are specialised proteins in the cell’s membrane that allow for the passage of positive and negatively charged ions in and out of the cell, controlling membrane potential. Membrane potential is a crucial biophysical signal in normal and cancerous cells. Research has identified that specific classes of ion channels not only move the cell through its cell cycle, thus encouraging growth and proliferation, but may also be essential in the development of brain tumours. Inhibition of sodium, potassium, calcium, and chloride channels has been shown to reduce the capacity of glioblastoma cells to grow and invade. Therefore, we propose that targeting ion channels and repurposing commercially available ion channel inhibitors may hold the key to new therapeutic avenues in high grade gliomas. Abstract Glioblastoma multiforme (GBM) is a lethal brain cancer with an average survival of 14–15 months even with exhaustive treatment. High grade gliomas (HGG) represent the leading cause of CNS cancer-related death in children and adults due to the aggressive nature of the tumour and limited treatment options. The scarcity of treatment available for GBM has opened the field to new modalities such as electrotherapy. Previous studies have identified the clinical benefit of electrotherapy in combination with chemotherapeutics, however the mechanistic action is unclear. Increasing evidence indicates that not only are ion channels key in regulating electrical signaling and membrane potential of excitable cells, they perform a crucial role in the development and neoplastic progression of brain tumours. Unlike other tissue types, neural tissue is intrinsically electrically active and reliant on ion channels and their function. Ion channels are essential in cell cycle control, invasion and migration of cancer cells and therefore present as valuable therapeutic targets. This review aims to discuss the role that ion channels hold in gliomagenesis and whether we can target and exploit these channels to provide new therapeutic targets and whether ion channels hold the mechanistic key to the newfound success of electrotherapies.
Collapse
Affiliation(s)
- Michaela Griffin
- Children’s Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Raheela Khan
- Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Surajit Basu
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2RD, UK;
| | - Stuart Smith
- Children’s Brain Tumour Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
- Correspondence:
| |
Collapse
|
45
|
Kciuk M, Marciniak B, Mojzych M, Kontek R. Focus on UV-Induced DNA Damage and Repair-Disease Relevance and Protective Strategies. Int J Mol Sci 2020; 21:ijms21197264. [PMID: 33019598 PMCID: PMC7582305 DOI: 10.3390/ijms21197264] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The protective ozone layer is continually depleting due to the release of deteriorating environmental pollutants. The diminished ozone layer contributes to excessive exposure of cells to ultraviolet (UV) radiation. This leads to various cellular responses utilized to restore the homeostasis of exposed cells. DNA is the primary chromophore of the cells that absorbs sunlight energy. Exposure of genomic DNA to UV light leads to the formation of multitude of types of damage (depending on wavelength and exposure time) that are removed by effectively working repair pathways. The aim of this review is to summarize current knowledge considering cellular response to UV radiation with special focus on DNA damage and repair and to give a comprehensive insight for new researchers in this field. We also highlight most important future prospects considering application of the progressing knowledge of UV response for the clinical control of diverse pathologies.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
- Correspondence:
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| |
Collapse
|
46
|
Dacus D, Riforgiate E, Wallace NA. β-HPV 8E6 combined with TERT expression promotes long-term proliferation and genome instability after cytokinesis failure. Virology 2020; 549:32-38. [PMID: 32818730 PMCID: PMC11381111 DOI: 10.1016/j.virol.2020.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022]
Abstract
Human papillomavirus (HPV) is a family of viruses divided into five genera: alpha, beta, gamma, mu, and nu. There is an ongoing discussion about whether beta genus HPVs (β-HPVs) contribute to cutaneous squamous cell carcinoma (cSCC). The data presented here add to this conversation by determining how a β-HPV E6 protein (β-HPV 8E6) alters the cellular response to cytokinesis failure. Specifically, cells were observed after cytokinesis failure was induced by dihydrocytochalasin B (H2CB). β-HPV 8E6 attenuated the immediate toxicity associated with H2CB but did not promote long-term proliferation after H2CB. Immortalization by telomerase reverse transcriptase (TERT) activation also rarely allowed cells to sustain proliferation after H2CB exposure. In contrast, TERT expression combined with β-HPV 8E6 expression allowed cells to proliferate for months following cytokinesis failure. However, this continued proliferation comes with genome destabilizing consequences. Cells that survived H2CB-induced cytokinesis failure suffered from changes in ploidy.
Collapse
Affiliation(s)
- Dalton Dacus
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | | | | |
Collapse
|
47
|
Advances in DNA Repair-Emerging Players in the Arena of Eukaryotic DNA Repair. Int J Mol Sci 2020; 21:ijms21113934. [PMID: 32486270 PMCID: PMC7313471 DOI: 10.3390/ijms21113934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA is constantly damaged by factors produced during natural metabolic processes as well as agents coming from the external environment. Considering such a wide array of damaging agents, eukaryotic cells have evolved a DNA damage response (DRR) that opposes the influence of deleterious factors. Despite the broad knowledge regarding DNA damage and repair, new areas of research are emerging. New players in the field of DDR are constantly being discovered. The aim of this study is to review current knowledge regarding the roles of sirtuins, heat shock proteins, long-noncoding RNAs and the circadian clock in DDR and distinguish new agents that may have a prominent role in DNA damage response and repair.
Collapse
|
48
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
49
|
Adeyemi JA, Machado ART, Ogunjimi AT, Alberici LC, Antunes LMG, Barbosa F. Cytotoxicity, mutagenicity, oxidative stress and mitochondrial impairment in human hepatoma (HepG2) cells exposed to copper oxide, copper-iron oxide and carbon nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109982. [PMID: 31830603 DOI: 10.1016/j.ecoenv.2019.109982] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The increasing application of nanomaterials in various fields such as drug delivery, cosmetics, disease detection, cancer treatment, food preservation etc. has resulted in high levels of engineered nanoparticles in the environment, thus leading to higher possibility of direct or indirect interactions between these particles and biological systems. In this study, the toxic effects of three commercially available nanomaterials; copper oxide nanoparticles, copper-iron oxide nanopowders and carbon nanopowders were determined in the human hepatoma HepG2 cells using various toxicological assays which are indicative of cytotoxicity (MTT and neutral red assays), mutagenicity (cytokinesis-block micronucleus assay), oxidative stress (total reactive oxygen species and superoxide anion production) and mitochondrial impairment (cellular oxygen consumption). There was increased cytotoxicity, mutagenicity, and mitochondrial impairment in the cells treated with higher concentrations of the nanomaterials, especially the copper oxide nanoparticles. The fold production of reactive oxygen species was similar at the concentrations tested in this study but longer exposure duration resulted in production of more superoxide anions. The results of this study showed that copper oxide nanoparticles are highly toxic to the human HepG2 cells, thus implying that the liver is a target organ in human for copper oxide nanoparticles toxicity.
Collapse
Affiliation(s)
- Joseph A Adeyemi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil; Department of Biology, School of Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Ana Rita Thomazela Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Abayomi T Ogunjimi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Avenue, Iowa City, IA, USA
| | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Lusania Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
50
|
Sasaki JC, Allemang A, Bryce SM, Custer L, Dearfield KL, Dietz Y, Elhajouji A, Escobar PA, Fornace AJ, Froetschl R, Galloway S, Hemmann U, Hendriks G, Li HH, Luijten M, Ouedraogo G, Peel L, Pfuhler S, Roberts DJ, Thybaud V, van Benthem J, Yauk CL, Schuler M. Application of the adverse outcome pathway framework to genotoxic modes of action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:114-134. [PMID: 31603995 DOI: 10.1002/em.22339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
In May 2017, the Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee hosted a workshop to discuss whether mode of action (MOA) investigation is enhanced through the application of the adverse outcome pathway (AOP) framework. As AOPs are a relatively new approach in genetic toxicology, this report describes how AOPs could be harnessed to advance MOA analysis of genotoxicity pathways using five example case studies. Each of these genetic toxicology AOPs proposed for further development includes the relevant molecular initiating events, key events, and adverse outcomes (AOs), identification and/or further development of the appropriate assays to link an agent to these events, and discussion regarding the biological plausibility of the proposed AOP. A key difference between these proposed genetic toxicology AOPs versus traditional AOPs is that the AO is a genetic toxicology endpoint of potential significance in risk characterization, in contrast to an adverse state of an organism or a population. The first two detailed case studies describe provisional AOPs for aurora kinase inhibition and tubulin binding, leading to the common AO of aneuploidy. The remaining three case studies highlight provisional AOPs that lead to chromosome breakage or mutation via indirect DNA interaction (inhibition of topoisomerase II, production of cellular reactive oxygen species, and inhibition of DNA synthesis). These case studies serve as starting points for genotoxicity AOPs that could ultimately be published and utilized by the broader toxicology community and illustrate the practical considerations and evidence required to formalize such AOPs so that they may be applied to genetic toxicity evaluation schemes. Environ. Mol. Mutagen. 61:114-134, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Laura Custer
- Bristol-Myers Squibb Company, Drug Safety Evaluation, New Brunswick, New Jersey
| | | | - Yasmin Dietz
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | | | | | | | | | | | | | - Heng-Hong Li
- Georgetown University, Washington, District of Columbia
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, District of Columbia
| | | | | | - Véronique Thybaud
- Sanofi, Research and Development, Preclinical Safety, Vitry-sur-Seine, France
| | - Jan van Benthem
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Maik Schuler
- Pfizer Inc, World Wide Research and Development, Groton, Connecticut
| |
Collapse
|