1
|
Villa F, Ainsworth J, Labib KPM. USP37 protects mammalian cells during DNA replication stress by counteracting CUL2 LRR1 and TRAIP. Cell Rep 2025; 44:115739. [PMID: 40411782 DOI: 10.1016/j.celrep.2025.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/09/2025] [Accepted: 05/02/2025] [Indexed: 05/26/2025] Open
Abstract
The USP37 deubiquitylase is essential for mammalian cells to survive DNA replication stress, but the underlying mechanisms are unknown. Here, we demonstrate that USP37 binds the CDC45-MCM-GINS (CMG) helicase, which forms the stable core of the replisome until DNA replication termination when CMG is ubiquitylated and disassembled. USP37 contacts CDC45, and structure-guided mutations that displace USP37 from CMG cause sensitivity to DNA synthesis defects or topological stress. Binding to CDC45 at replication forks enables USP37 to counteract CMG ubiquitylation by the CUL2LRR1 ligase, which subsequently induces replisome disassembly during termination. Correspondingly, depletion of CUL2LRR1 suppresses the sensitivity of Usp37 mutants to DNA synthesis defects and ATR checkpoint kinase inhibitors. In contrast, mutation of the TRAIP ubiquitin ligase specifically suppresses the sensitivity of Usp37 mutants to topological stress. We propose that USP37 protects mammalian cells from replication stress by reversing the untimely action of the CUL2LRR1 and TRAIP ubiquitin ligases.
Collapse
Affiliation(s)
- Fabrizio Villa
- Division of Genome Integrity, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Johanna Ainsworth
- Division of Genome Integrity, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Karim P M Labib
- Division of Genome Integrity, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
2
|
Zhou Y, Wang F, Feng S, Li M, Zhu M. USP39 promote post-translational modifiers to stimulate the progress of cancer. Discov Oncol 2025; 16:749. [PMID: 40358671 PMCID: PMC12075731 DOI: 10.1007/s12672-025-02573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Deubiquitinating enzymes (DUBs) are a class of crucial peptidyl hydrolases within the ubiquitin system, playing a significant role in reversing and strictly regulating ubiquitination, which is essential for various biological processes such as protein stability and cellular signal transduction. Ubiquitin-specific protease 39 (USP39) is an important member of the DUBs family. Recent studies have revealed that USP39 is involved in the regulation of multiple cellular activities including cell proliferation, migration, invasion, apoptosis, and DNA damage repair. USP39 also plays a significant role in the development and progression of various cancers. It is believed that USP39 is a unique enzyme that controls the ubiquitin process and is closely associated with the occurrence and progression of many cancers, including hepatocellular, lung, gastric, breast, and ovarian cancer. This review summarizes the structural and functional aspects of USP39 and its research advancements in tumors, investigates the key molecular mechanisms related to USP39, and provides references for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yuli Zhou
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China
| | - Fang Wang
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China
| | - Siren Feng
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China
| | - Mengsen Li
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570216, China.
| | - Mingyue Zhu
- Key Laboratory of Tropical Translational Medicine, Ministry of Education and Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
3
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
4
|
Shin H, Hwang S, Jeong JH, Shin SC, Oh Y, Kim J, Hwang I, Kim EE, Choo H, Song EJ. Targeting USP47 enhances the efficacy of KRAS inhibitor in KRAS G12C mutated non-small cell lung cancer by controlling deubiquitination of c-Myc. Pharmacol Res 2025; 215:107722. [PMID: 40180254 DOI: 10.1016/j.phrs.2025.107722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
FDA-approved KRASG12C inhibitors, like Sotorasib, target G12C-mutated KRAS in NSCLC. However, issues with insensitivity and drug resistance have emerged, requiring the development of new combination therapies to overcome these limitations. USP47 has been identified as a regulator of cancer-related signaling pathways such as Wnt, Hippo, and p53. However, its role in the KRAS signaling pathway remains largely unexplored and USP47 inhibitors are less developed than those targeting its homolog, USP7. Here, we identify USP47 as a novel therapeutic target in KRASG12C-mutated NSCLC and report K-552, a selective USP47 inhibitor, as a potential treatment strategy. We demonstrate that USP47 stabilizes c-Myc by preventing its proteasomal degradation through deubiquitination, thereby promoting NSCLC cell proliferation. Additionally, the compound K-552, a USP47 inhibitor identified through virtual screening, effectively destabilizes c-Myc and inhibits KRASG12C-mutated NSCLC cell proliferation. Furthermore, USP47 inhibition-either by siRNA knockdown or K-552 treatment-enhances the efficacy of Sotorasib in vitro and in vivo. Together, our findings establish USP47 as a promising therapeutic target in KRASG12C-mutated NSCLC and introduce K-552 as a USP47 inhibitor with potential for combination therapy with KRASG12C inhibitors.
Collapse
Affiliation(s)
- Hyungkyung Shin
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - SuA Hwang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Hyun Jeong
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang Chul Shin
- Technological Convergence Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yeonji Oh
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jinhyeok Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Inah Hwang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Eunice EunKyeong Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Hyunah Choo
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea; Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Lin Z, Liang F, Hong G, Jiang X, Zhang Q, Wang M. TACC3 enhances glycolysis in bladder cancer cells through inducing acetylation of c-Myc. Cell Death Dis 2025; 16:311. [PMID: 40246827 PMCID: PMC12006502 DOI: 10.1038/s41419-025-07645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
The proliferation of bladder cancer (BC) cells is driven by metabolic reprogramming, marked by a glycolytic dependency to sustain uncontrolled growth. While Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) is known to promote BC progression and correlate with poor prognosis, the mechanisms underlying its upregulation and role in aerobic glycolysis remain unclear. Here, we identify E2F3 as a direct transcriptional activator of TACC3, with its amplification in BC driving elevated TACC3 expression. TACC3 overexpression enhances glycolysis, increasing glucose consumption, lactate production, and expression of glycolytic enzymes (e.g., GLUT1, HK2, PFKFB3), while its knockdown suppresses these effects. Pharmacological inhibition of glycolysis abrogates TACC3-driven tumor growth in vitro and in vivo. Mechanistically, TACC3 interacts with c-Myc, promoting its acetylation at lysine 323 (K323) by recruiting the acetyltransferase PCAF and antagonizing the deacetylase SIRT1. This acetylation stabilizes c-Myc, amplifying its transcriptional activation of glycolytic targets. Our findings establish TACC3 as a critical regulator of c-Myc-driven metabolic reprogramming in BC, highlighting its potential as a therapeutic target to disrupt glycolysis and oncogenic c-Myc signaling.
Collapse
Affiliation(s)
- Zhirui Lin
- Institute of Medical Research, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Falian Liang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Gengde Hong
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Xizhen Jiang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Mengyao Wang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China.
| |
Collapse
|
6
|
Chen J, Zhang S, Huang X, Wang Q, Xu W, Huang J, Su Y, Sun Q, Du X, Xing B, Qiu X. Sialylated IgG-activated integrin β4-Src-Erk axis stabilizes c-Myc in a p300 lysine acetyltransferase-dependent manner to promote colorectal cancer liver metastasis. Neoplasia 2025; 61:101140. [PMID: 40010102 PMCID: PMC11908626 DOI: 10.1016/j.neo.2025.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Liver metastasis is a leading cause of colorectal cancer mortality. Therefore, the underlying mechanism and potential therapeutic target of colorectal cancer liver metastasis urge to be found. Mounting evidence indicates that cancer-derived sialylated IgG promotes tumor formation and progression. However, the role of sialylated IgG in colorectal cancer liver metastasis remains undefined. MATERIALS AND METHODS Analysis of sialylated IgG in paired tumor tissues and adjacent normal tissues from 65 colorectal cancer patients was performed using immunohistochemical staining. Functional assays of sialylated IgG were explored in vitro and in vivo. The downstream target of sialylated IgG was investigated by performing gene-set enrichment analysis, ubiquitination assay, cycloheximide chase assay, acetylation assay and co-immunoprecipitation. RESULTS Here, our investigation reveals that sialylated IgG is significantly upregulated in colorectal cancer and that the increase of IgG is positively associated with liver metastasis and poor overall survival in colorectal cancer patients. Sialylated IgG promotes colorectal cancer cell migration, invasion and liver metastasis. Notably, anti-sialylated IgG antibody effectively blocks colorectal cancer liver metastasis in mouse models. Mechanistically, sialylated IgG upregulates c-Myc protein level by decreasing c-Myc ubiquitination. Moreover, we find that p300/CBP can stabilize c-Myc by reducing c-Myc ubiquitination. Overexpression of p300/CBP protects c-Myc protein level from sialylated IgG-knockdown in a lysine acetyltransferase activity-dependent manner. Furthermore, sialylated IgG upregulates p300 protein level through integrin β4-FAK-Src-Erk signaling. CONCLUSION Collectively, these results indicate that a novel sialylated IgG-integrin β4-FAK-Src-Erk-p300-c-Myc signaling pathway promotes colorectal cancer liver metastasis, thus providing potential therapeutic targets for colorectal cancer liver metastasis.
Collapse
Affiliation(s)
- Jing Chen
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Xinmei Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Qianqian Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Weiyan Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Yuming Su
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qinkun Sun
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China.
| |
Collapse
|
7
|
Cui W, Wang H, Gao Y, Zhang X, Xin J, Li Z, Li G, Gao W, Zhang W. Deubiquitinase USP37 enhances the anti-HIV-2/SIV ability of the host restriction factor SAMHD1. J Virol 2025; 99:e0185824. [PMID: 39655951 PMCID: PMC11784012 DOI: 10.1128/jvi.01858-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/17/2024] [Indexed: 02/01/2025] Open
Abstract
The Vpx protein encoded by HIV-2/simian immunodeficiency virus (SIV) can antagonize the restriction of the host intrinsic restriction factor, SAMHD1, in nondividing cells by promoting its polyubiquitination and subsequent degradation, thereby facilitating viral replication and immune evasion. However, the role of deubiquitinating enzymes (DUBs) in the dynamics of virus and host remains poorly understood. Here, we demonstrate that DUB USP37 significantly reverses the Vpx-mediated degradation of SAMHD1 in various HIV-2/SIV subtypes by interacting with SAMHD1 and removing its ubiquitin chains. Notably, USP37 deubiquitinates SAMHD1 by directly recognizing SAMHD1 rather than by targeting the E3 ubiquitin ligase. The deubiquitinase activity of USP37 and its ubiquitin interacting motifs are essential for the deubiquitination of SAMHD1, whereas the phosphorylation state of USP37 does not influence its activity. Additionally, USP37 enhances the suppression of the retrotransposition of LINE-1 elements by SAMHD1 via stabilizing SAMHD1. Our findings provide important evidence that enhancing the deubiquitinating activity of some DUBs results in the stability of the host restriction factor and might be a viable strategy against HIV/SIV infections.IMPORTANCESAMHD1 is a multifunctional protein, including restricting virus replication, maintaining genomic integrity through DNA repair, modulating the immune response by influencing the production of type I interferons and other cytokines, and affecting cancer cell proliferation and sensitivity to chemotherapy. However, HIV-2/simian immunodeficiency virus (SIV)-encoded Vpx and the host E3 ligase TRIM21 can induce the degradation of SAMHD1 via the ubiquitin-proteasome pathway. Therefore, it is necessary to find the strategy to stabilize SAMHD1. Our study demonstrates that the deubiquitinase USP37 reverses Vpx- and TRIM21-mediated degradation of SAMHD1, thereby inhibiting SIV replication and LINE-1 activity by stabilizing SAMHD1. Thus, we report a novel role of USP37, which represents a potentially useful target for the development of new drugs.
Collapse
Affiliation(s)
- Wenzhe Cui
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Hongfei Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Yuan Gao
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xue Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Jingguo Xin
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhaolong Li
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wenying Gao
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Seres M, Spacayova K, Sulova Z, Spaldova J, Breier A, Pavlikova L. Dynamic Multilevel Regulation of EGFR, KRAS, and MYC Oncogenes: Driving Cancer Cell Proliferation Through (Epi)Genetic and Post-Transcriptional/Translational Pathways. Cancers (Basel) 2025; 17:248. [PMID: 39858030 PMCID: PMC11763799 DOI: 10.3390/cancers17020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The epidermal growth factor receptor (EGFR) regulates gene expression through two primary mechanisms: as a growth factor in the nucleus, where it translocates upon binding its ligand, or via its intrinsic tyrosine kinase activity in the cytosol, where it modulates key signaling pathways such as RAS/MYC, PI3K, PLCγ, and STAT3. During tumorigenesis, these pathways become deregulated, leading to uncontrolled proliferation, enhanced migratory and metastatic capabilities, evasion of programmed cell death, and resistance to chemotherapy or radiotherapy. The RAS and MYC oncogenes are pivotal in tumorigenesis, driving processes such as resistance to apoptosis, replicative immortality, cellular invasion and metastasis, and metabolic reprogramming. These oncogenes are subject to regulation by a range of epigenetic and post-transcriptional modifications. This review focuses on the deregulation of EGFR, RAS, and MYC expression caused by (epi)genetic alterations and post-translational modifications. It also explores the therapeutic potential of targeting these regulatory proteins, emphasizing the importance of phenotyping neoplastic tissues to inform the treatment of cancer.
Collapse
Affiliation(s)
- Mario Seres
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.S.); (K.S.); (Z.S.)
| | - Katarina Spacayova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.S.); (K.S.); (Z.S.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.S.); (K.S.); (Z.S.)
| | - Jana Spaldova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia;
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.S.); (K.S.); (Z.S.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia;
| | - Lucia Pavlikova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.S.); (K.S.); (Z.S.)
| |
Collapse
|
9
|
Li Y, Wang W, Sun L, Huang J, Ma X, Li S, Shi X. USP37 promotes diffuse large B-cell lymphoma progression by deubiquitinating and stabilizing c-myc. J Mol Histol 2024; 56:54. [PMID: 39722070 DOI: 10.1007/s10735-024-10323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
A poorer prognosis is thought to be associated with "double expressor lymphomas," which are a subtype of diffuse large B cell lymphomas (DLBCL) that co-express MYC and BCL2. While the role of ubiquitin-specific peptidase 37 (USP37) in lung cancer, where it mediates the deubiquitination and stabilization of c-myc, has been well-documented, its involvement in DLBCL remains unexplored. The use of RT-PCR, immunohistochemistry, or WB test allowed for the detection of elevated USP37 in DLBCL tissues and cells. In order to understand the function of USP37 in DLBCL, keloid DLBCL cells were transfected with si-USP37 using Lipofectamine 3000. When tested on DLBCL cells, USP37 increased cell proliferation and inhibited cell cycle progression. USP37 controls the process of deubiquitination to stabilise c-myc proteins. The overexpression of c-Myc facilitated cell proliferation and prevented the cell cycle of DLBCL cells stimulated by si-USP37, which should be taken into consideration. Furthermore, USP37 depletion consistently hinders the development of tumour xenografts in mouse models. Overexpressing c-myc, however, may partially counteract this impact. The data show that USP37 may be a potential therapeutic target for DLBCL, and that it may enhance the course of the disease by deubiquitinating c-myc via direct interactions with c-myc.
Collapse
Affiliation(s)
- Ying Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Wei Wang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Lingjie Sun
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Junxia Huang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Xiaolin Ma
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Saisai Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Xue Shi
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China.
| |
Collapse
|
10
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
11
|
Kochenova OV, D’Alessandro G, Pilger D, Schmid E, Richards SL, Garcia MR, Jhujh SS, Voigt A, Gupta V, Carnie CJ, Wu RA, Gueorguieva N, Stewart GS, Walter JC, Jackson SP. USP37 prevents premature disassembly of stressed replisomes by TRAIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611025. [PMID: 39282314 PMCID: PMC11398331 DOI: 10.1101/2024.09.03.611025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The E3 ubiquitin ligase TRAIP associates with the replisome and helps this molecular machine deal with replication stress. Thus, TRAIP promotes DNA inter-strand crosslink repair by triggering the disassembly of CDC45-MCM2-7-GINS (CMG) helicases that have converged on these lesions. However, disassembly of single CMGs that have stalled temporarily would be deleterious, suggesting that TRAIP must be carefully regulated. Here, we demonstrate that human cells lacking the de-ubiquitylating enzyme USP37 are hypersensitive to topoisomerase poisons and other replication stress-inducing agents. We further show that TRAIP loss rescues the hypersensitivity of USP37 knockout cells to topoisomerase inhibitors. In Xenopus egg extracts depleted of USP37, TRAIP promotes premature CMG ubiquitylation and disassembly when converging replisomes stall. Finally, guided by AlphaFold-Multimer, we discovered that binding to CDC45 mediates USP37's response to topological stress. In conclusion, we propose that USP37 protects genome stability by preventing TRAIP-dependent CMG unloading when replication stress impedes timely termination.
Collapse
Affiliation(s)
- Olga V. Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Giuseppina D’Alessandro
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Domenic Pilger
- The Gurdon Institute and Department of Biochemistry, University of Cambridge
| | - Ernst Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Sean L. Richards
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Marcos Rios Garcia
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Satpal S. Jhujh
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrea Voigt
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Vipul Gupta
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Christopher J. Carnie
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - R. Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Nadia Gueorguieva
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Johannes C. Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Stephen P. Jackson
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
12
|
Guo M, Li X, Tao W, Teng F, Li C. Vibrio splendidus infection promotes circRNA-FGL1-regulated coelomocyte apoptosis via competitive binding to Myc with the deubiquitinase OTUB1 in Apostichopus japonicus. PLoS Pathog 2024; 20:e1012463. [PMID: 39146353 PMCID: PMC11349225 DOI: 10.1371/journal.ppat.1012463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Circular RNAs (circRNAs) are involved in various physiological and pathological processes in both vertebrates and invertebrates. However, most studies on circRNAs have focused on their roles as endogenous competitive RNAs. Here, we report a novel function of circRNA derived from the Fibrinogen-like protein 1 gene (circ-FGL1) that inhibits coelomocyte apoptosis via competing with the deubiquitinase AjOTUB1 to bind AjMyc in Apostichopus japonicus during Vibrio splendidus infection. The results showed that circ-FGL1 is significantly downregulated in coelomocytes of V. splendidus-induced A. japonicus and negatively regulates coelomocyte apoptosis through the AjBax-AjCyt c pathway. Mechanistically, the deubiquitinase AjOTUB1 and circ-FGL1 could interact with the transcription factor protein AjMyc in the same region with circ-FGL1/AjMyc having greater affinity. Under normal conditions, high levels of circ-FGL1 bind directly to AjMyc, inhibiting the deubiquitylation of AjMyc by AjOTUB1 and leading to the degradation of AjMyc. After V. splendidus infection, AjMyc disassociates from the depressed expression of circ-FGL1, promoting its deubiquitylation by binding to the induced deubiquitinase AjOTUB1 to inhibit its degradation. AjMyc is then transferred to the nucleus and promotes the transcription of AjCyt c and AjBax to induce coelomocyte apoptosis. The new finding will expand our present outstanding on the functional role of circRNAs and suggest new therapeutic targets for the treatment of echinoderms during bacterial invasion.
Collapse
Affiliation(s)
- Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wenjun Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fei Teng
- College of Mathematics and Computer, Jilin Normal University, Siping, Jilin, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Liu W, Ding Z, Tao Y, Liu S, Jiang M, Yi F, Wang Z, Han Y, Zong H, Li D, Zhu Y, Xie Z, Sang S, Chen X, Miao M, Chen X, Lin W, Zhao Y, Zheng G, Zafereo M, Li G, Wu J, Zha X, Liu Y. A positive feedback loop between PFKP and c-Myc drives head and neck squamous cell carcinoma progression. Mol Cancer 2024; 23:141. [PMID: 38982480 PMCID: PMC11232239 DOI: 10.1186/s12943-024-02051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The aberrant expression of phosphofructokinase-platelet (PFKP) plays a crucial role in the development of various human cancers by modifying diverse biological functions. However, the precise molecular mechanisms underlying the role of PFKP in head and neck squamous cell carcinoma (HNSCC) are not fully elucidated. METHODS We assessed the expression levels of PFKP and c-Myc in tumor and adjacent normal tissues from 120 HNSCC patients. A series of in vitro and in vivo experiments were performed to explore the impact of the feedback loop between PFKP and c-Myc on HNSCC progression. Additionally, we explored the therapeutic effects of targeting PFKP and c-Myc in HNSCC using Patient-Derived Organoids (PDO), Cell Line-Derived Xenografts, and Patients-Derived Xenografts. RESULTS Our findings indicated that PFKP is frequently upregulated in HNSCC tissues and cell lines, correlating with poor prognosis. Our in vitro and in vivo experiments demonstrate that elevated PFKP facilitates cell proliferation, angiogenesis, and metastasis in HNSCC. Mechanistically, PFKP increases the ERK-mediated stability of c-Myc, thereby driving progression of HNSCC. Moreover, c-Myc stimulates PFKP expression at the transcriptional level, thus forming a positive feedback loop between PFKP and c-Myc. Additionally, our multiple models demonstrate that co-targeting PFKP and c-Myc triggers synergistic anti-tumor effects in HNSCC. CONCLUSION Our study demonstrates the critical role of the PFKP/c-Myc positive feedback loop in driving HNSCC progression and suggests that simultaneously targeting PFKP and c-Myc may be a novel and effective therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhao Ding
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ye Tao
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shixian Liu
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Maoyu Jiang
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Fangzheng Yi
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zixi Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province, 230032, China
- Institutes of Biomedical Sciences, Children's Hospital of Fudan University, National Children's Medical Center, Fudan University, Shanghai, 200032, China
| | - Yanxun Han
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Huaiyuan Zong
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province, 230032, China
| | - Dapeng Li
- Department of Otolaryngology, Head & Neck Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, 236800, China
| | - Yue Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zihui Xie
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shujia Sang
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xixi Chen
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Manli Miao
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province, 230032, China
| | - Xu Chen
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province, 230032, China
| | - Wei Lin
- Department of Stomatology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yi Zhao
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Guibin Zheng
- Department of Thyroid Surgery, the Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, China
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wu
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province, 230032, China.
- Department of Otolaryngology, Head & Neck Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, 236800, China.
| | - Yehai Liu
- Department of Otolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
14
|
Chen L, Zhang L, He H, Shao F, Yu Z, Gao Y, He J. Ubiquitin-specific protease 54 regulates GLUT1-mediated aerobic glycolysis to inhibit lung adenocarcinoma progression by modifying p53 degradation. Oncogene 2024; 43:2025-2037. [PMID: 38744954 DOI: 10.1038/s41388-024-03047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/13/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent types of cancer. Ubiquitination is crucial in modulating cell proliferation and aerobic glycolysis in cancer. The frequency of TP53 mutations in LUAD is approximately 50%. Currently, therapeutic targets for wild-type (WT) p53-expressing LUAD are limited. In the present study, we systemically explored the expression of ubiquitin-specific protease genes using public datasets. Then, we focused on ubiquitin-specific protease 54 (USP54), and explored its prognostic significance in LUAD patients using public datasets, analyses, and an independent cohort from our center. We found that the expression of USP54 was lower in LUAD tissues compared with that in the paracancerous tissues. Low USP54 expression levels were linked to a malignant phenotype and worse survival in patients with LUAD. The results of functional experiments revealed that up-regulation of USP54 suppressed LUAD cell proliferation in vivo and in vitro. USP54 directly interacted with p53 protein and the levels of ubiquitinated p53 were inversely related to USP54 levels, consistent with a role of USP54 in deubiquitinating p53 in p53-WT LUAD cells. Moreover, up-regulation of the USP54 expression inhibited aerobic glycolysis in LUAD cells. Importantly, we confirmed that USP54 inhibited aerobic glycolysis and the growth of tumor cells by a p53-mediated decrease in glucose transporter 1 (GLUT1) expression in p53-WT LUAD cells. Altogether, we determined a novel mechanism of survival in the p53-WT LUAD cells to endure the malnourished tumor microenvironment and provided insights into the role of USP54 in the adaptation of p53-WT LUAD cells to metabolic stress.
Collapse
Affiliation(s)
- Leifeng Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Medical Center for Cardiovascular Diseases, Neurological Diseases and Tumors of Jiangxi Province, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lin Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Haihua He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Fei Shao
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
- Laboratory of Thoracic Oncology & Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
- Translational Medicine Platform, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
15
|
Tsukiyama T. New insights in ubiquitin-dependent Wnt receptor regulation in tumorigenesis. In Vitro Cell Dev Biol Anim 2024; 60:449-465. [PMID: 38383910 PMCID: PMC11126518 DOI: 10.1007/s11626-024-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Wnt signaling plays a crucial role in embryonic development and homeostasis maintenance. Delicate and sensitive fine-tuning of Wnt signaling based on the proper timings and positions is required to balance cell proliferation and differentiation and maintain individual health. Therefore, homeostasis is broken by tissue hypoplasia or tumor formation once Wnt signal dysregulation disturbs the balance of cell proliferation. The well-known regulatory mechanism of Wnt signaling is the molecular reaction associated with the cytoplasmic accumulation of effector β-catenin. In addition to β-catenin, most Wnt effector proteins are also regulated by ubiquitin-dependent modification, both qualitatively and quantitatively. This review will explain the regulation of the whole Wnt signal in four regulatory phases, as well as the different ubiquitin ligases and the function of deubiquitinating enzymes in each phase. Along with the recent results, the mechanism by which RNF43 negatively regulates the surface expression of Wnt receptors, which has recently been well understood, will be detailed. Many RNF43 mutations have been identified in pancreatic and gastrointestinal cancers and examined for their functional alteration in Wnt signaling. Several mutations facilitate or activate the Wnt signal, reversing the RNF43 tumor suppressor function into an oncogene. RNF43 may simultaneously play different roles in classical multistep tumorigenesis, as both wild-type and mutant RNF43 suppress the p53 pathway. We hope that the knowledge obtained from further research in RNF43 will be applied to cancer treatment in the future despite the fully unclear function of RNF43.
Collapse
Affiliation(s)
- Tadasuke Tsukiyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, 15NW7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
16
|
Wang S, Lei K, Lai HT, Liu T, Du L, Wu SY, Ye X, Chiang CM, Li M. Novel BRD4-p53 Inhibitor SDU-071 Suppresses Proliferation and Migration of MDA-MB-231 Triple-Negative Breast Cancer Cells. ACS Pharmacol Transl Sci 2024; 7:1178-1190. [PMID: 38633583 PMCID: PMC11019737 DOI: 10.1021/acsptsci.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
A promising alternative for cancer treatment involves targeted inhibition of the epigenetic regulator bromodomain-containing protein 4 (BRD4); however, available BRD4 inhibitors are constrained by their potency, oral bioavailability, and cytotoxicity. Herein, to overcome the drawback of the translational BRD4 inhibitors, we describe a novel BRD4-p53 inhibitor, SDU-071, which suppresses BRD4 interaction with the p53 tumor suppressor and its biological activity in MDA-MB-231 triple-negative breast cancer (TNBC) cells in vitro and in vivo. This novel small-molecule BRD4-p53 inhibitor suppresses cell proliferation, migration, and invasion by downregulating the expression of BRD4-targeted genes, such as c-Myc and Mucin 5AC, and inducing cell cycle arrest and apoptosis, as demonstrated in cultured MDA-MB-231 TNBC cells. Its antitumor activity is illustrated in an orthotopic mouse xenograft mammary tumor model. Overall, our results show that SDU-071 is a viable option for potentially treating TNBC as a new BRD4-p53 inhibitor.
Collapse
Affiliation(s)
- Shumei Wang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kang Lei
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hsien-Tsung Lai
- Simmons
Comprehensive Cancer Center, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Tingting Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shwu-Yuan Wu
- Simmons
Comprehensive Cancer Center, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Xiaohan Ye
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Cheng-Ming Chiang
- Simmons
Comprehensive Cancer Center, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
- Department
of Pharmacology, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Minyong Li
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
17
|
Cheng C, Yao H, Li H, Liu J, Liu Z, Wu Y, Zhu L, Hu H, Fang Z, Wu L. Blockade of the deubiquitinating enzyme USP48 degrades oncogenic HMGA2 and inhibits colorectal cancer invasion and metastasis. Acta Pharm Sin B 2024; 14:1624-1643. [PMID: 38572092 PMCID: PMC10985028 DOI: 10.1016/j.apsb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
HMGA2, a pivotal transcription factor, functions as a versatile regulator implicated in the progression of diverse aggressive malignancies. In this study, mass spectrometry was employed to identify ubiquitin-specific proteases that potentially interact with HMGA2, and USP48 was identified as a deubiquitinating enzyme of HMGA2. The enforced expression of USP48 significantly increased HMGA2 protein levels by inhibiting its degradation, while the deprivation of USP48 promoted HMGA2 degradation, thereby suppressing tumor invasion and metastasis. We discovered that USP48 undergoes SUMOylation at lysine 258, which enhances its binding affinity to HMGA2. Through subsequent phenotypic screening of small molecules, we identified DUB-IN-2 as a remarkably potent pharmacological inhibitor of USP48. Interestingly, the small-molecule inhibitor targeting USP48 induces destabilization of HMGA2. Clinically, upregulation of USP48 or HMGA2 in cancerous tissues is indicative of poor prognosis for patients with colorectal cancer (CRC). Collectively, our study not only elucidates the regulatory mechanism of DUBs involved in HMGA2 stability and validates USP48 as a potential therapeutic target for CRC, but also identifies DUB-IN-2 as a potent inhibitor of USP48 and a promising candidate for CRC treatment.
Collapse
Affiliation(s)
- Can Cheng
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hanhui Yao
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Heng Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jingwen Liu
- Anhui Provincial Hospital Health Management Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhengyi Liu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Yang Wu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Liang Zhu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hejie Hu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhengdong Fang
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Liang Wu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
18
|
Liu J, Zhu Y, Wang H, Han C, Wang Y, Tang R. LINC00629, a HOXB4-downregulated long noncoding RNA, inhibits glycolysis and ovarian cancer progression by destabilizing c-Myc. Cancer Sci 2024; 115:804-819. [PMID: 38182548 PMCID: PMC10920983 DOI: 10.1111/cas.16049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024] Open
Abstract
Ovarian cancer (OC) cells typically reprogram their metabolism to promote rapid proliferation. However, the role of long noncoding RNAs (lncRNAs) in the metabolic reprogramming of ovarian cancer, especially in glucose metabolic reprogramming, remains largely unknown. LINC00629 has been reported in our previous study to promote osteosarcoma progression. Upregulated LINC00629 was found to enhance the growth-suppressive effect of apigenin on oral squamous cell carcinoma. However, the precise function of LINC00629 in ovarian cancer development remains poorly understood. In this study, we found that LINC00629 was significantly downregulated in OC tissues and that low LINC00629 expression was associated with poor survival. Inhibition of LINC00629 was required for increased glycolysis activity and cell proliferation in ovarian cancer. In vivo, overexpression of LINC00629 dramatically inhibited tumor growth and lung metastasis. Mechanistically, LINC00629 interacted with and destabilized c-Myc, leading to its ubiquitination and proteasome degradation, further resulting in increased expression of downstream glycolysis-related genes and glucose metabolic reprogramming in OC. Interestingly, HOXB4 bound to the LINC00629 promoter and inhibited its transcription, indicating that LINC00629 is a transcriptional target of HOXB4. Collectively, these findings establish a direct role for LINC00629 in suppressing glucose metabolism, and HOXB4/LINC00629/c-Myc might serve as a potential biomarker and an effective therapeutic strategy for OC cancer treatment.
Collapse
Affiliation(s)
- Jia Liu
- Department of GynecologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
| | - Yuan Zhu
- Department of GynecologyWomen's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare HospitalNanjingChina
| | - Huan Wang
- Department of GynecologyWomen's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare HospitalNanjingChina
| | - Chuanchun Han
- The Second Affiliated Hospital and Institute of Cancer Stem CellDalian Medical UniversityDalianLiaoningChina
| | - Yongpeng Wang
- Department of GynecologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
| | - Ranran Tang
- Department of GynecologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
- Department of GynecologyWomen's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare HospitalNanjingChina
| |
Collapse
|
19
|
De S, Chauhan R, Singh M, Singh N. Ubiquitin specific peptidase (USP37) mediated effects in microscaffold-encapsulated cells: a comprehensive study on growth, proliferation and EMT. RSC Adv 2024; 14:5461-5471. [PMID: 38352690 PMCID: PMC10862100 DOI: 10.1039/d3ra08786g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/14/2024] [Indexed: 02/16/2024] Open
Abstract
Though significant advances have been made in developing therapeutic strategies for cancer, suitable in vitro models for mechanistically identifying relevant drug targets and understanding disease progression are still lacking. Most studies are generally performed using two-dimensional (2D) models, since these models can be readily established and allow high throughput assays. However, these models have also been reported as the reason for unreliable pre-clinical information. To avoid this discrepancy, three-dimensional (3D) cell culture models have been established and have demonstrated the potential to provide alternative ways to study tissue behavior. However, most of these models first require optimization and cell cultures with a certain density, thus adding a prepping step in the platform before it can be used for any studies. This limits their use in studies where the fundamental understanding of biological processes must be carried out in a short time frame. In this study, we developed a 3D cell culture system that tests a less explored cancer therapeutic target-the deubiquitinating enzyme ubiquitin specific peptidase 37 (USP37)-in different cancer cell lines using sensitive carbon dot pH nanosensors, which provides a rapid model for studies compared to the parallel model available commercially. This enzyme is found to be elevated in different cancers and has been reported to play a role in cell cycle regulation, oncogenesis and metastasis. However, the confirmation of the role of USP37 downregulation in cellular proliferation via appropriate in vitro 3D models has not been demonstrated. To establish the applicability of the developed 3D platform in studying such oncogenes, classical 2D models have been used in this study for identifying the role of USP37 in tumor progression and metastasis. The data clearly suggests that this ingeniously developed 3D cell culture system is a better alternative to 2D models to study the growth and migration of different cancer cell lines on depletion of oncogenic proteins like USP37 and its effect on epithelial-mesenchymal transition (EMT) markers, and it can further be targeted as a viable therapeutic option.
Collapse
Affiliation(s)
- Shreemoyee De
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Ravi Chauhan
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences New Delhi India
| | - Mayank Singh
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences New Delhi India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
- Biomedical Engineering Unit, All India Institute of Medical Sciences Ansari Nagar New Delhi 110029 India
| |
Collapse
|
20
|
Li M, Yu J, Ju L, Wang Y, Jin W, Zhang R, Xiang W, Ji M, Du W, Wang G, Qian K, Zhang Y, Xiao Y, Wang X. USP43 stabilizes c-Myc to promote glycolysis and metastasis in bladder cancer. Cell Death Dis 2024; 15:44. [PMID: 38218970 PMCID: PMC10787741 DOI: 10.1038/s41419-024-06446-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
A hallmark of tumor cells, including bladder cancer (BLCA) cells, is metabolic reprogramming toward aerobic glycolysis (Warburg effect). The classical oncogene MYC, which is crucial in regulating glycolysis, is amplified and activated in BLCA. However, direct targeting of the c-Myc oncoprotein, which regulates glycolytic metabolism, presents great challenges and necessitates the discovery of a more clarified regulatory mechanism to develop selective targeted therapy. In this study, a siRNA library targeting deubiquitinases identified a candidate enzyme named USP43, which may regulate glycolytic metabolism and c-Myc transcriptional activity. Further investigation using functional assays and molecular studies revealed a USP43/c-Myc positive feedback loop that contributes to the progression of BLCA. Moreover, USP43 stabilizes c-Myc by deubiquitinating c-Myc at K148 and K289 primarily through deubiquitinase activity. Additionally, upregulation of USP43 protein in BLCA increased the chance of interaction with c-Myc and interfered with FBXW7 access and degradation of c-Myc. These findings suggest that USP43 is a potential therapeutic target for indirectly targeting glycolytic metabolism and the c-Myc oncoprotein consequently enhancing the efficacy of bladder cancer treatment.
Collapse
Affiliation(s)
- Mingxing Li
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingtian Yu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yejinpeng Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Jin
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Euler Technology, ZGC Life Sciences Park, Beijing, China
| | - Renjie Zhang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Xiang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng Ji
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenzhi Du
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Gang Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China.
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China.
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
21
|
Hosseiniyan Khatibi SM, Rahbar Saadat Y, Hejazian SM, Sharifi S, Ardalan M, Teshnehlab M, Zununi Vahed S, Pirmoradi S. Decoding the Possible Molecular Mechanisms in Pediatric Wilms Tumor and Rhabdoid Tumor of the Kidney through Machine Learning Approaches. Fetal Pediatr Pathol 2023; 42:825-844. [PMID: 37548233 DOI: 10.1080/15513815.2023.2242979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Objective: Wilms tumor (WT) and Rhabdoid tumor (RT) are pediatric renal tumors and their differentiation is based on histopathological and molecular analysis. The present study aimed to introduce the panels of mRNAs and microRNAs involved in the pathogenesis of these cancers using deep learning algorithms. Methods: Filter, graph, and association rule mining algorithms were applied to the mRNAs/microRNAs data. Results: Candidate miRNAs and mRNAs with high accuracy (AUC: 97%/93% and 94%/97%, respectively) could differentiate the WT and RT classes in training and test data. Let-7a-2 and C19orf24 were identified in the WT, while miR-199b and RP1-3E10.2 were detected in the RT by analysis of Association Rule Mining. Conclusion: The application of the machine learning methods could identify mRNA/miRNA patterns to discriminate WT from RT. The identified miRNAs/mRNAs panels could offer novel insights into the underlying molecular mechanisms that are responsible for the initiation and development of these cancers. They may provide further insight into the pathogenesis, prognosis, diagnosis, and molecular-targeted therapy in pediatric renal tumors.
Collapse
Affiliation(s)
- Seyed Mahdi Hosseiniyan Khatibi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz Iran
| | | | - Mohammad Teshnehlab
- Department of Electrical and Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | | | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
23
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
24
|
Liu F, Liao Z, Zhang Z. MYC in liver cancer: mechanisms and targeted therapy opportunities. Oncogene 2023; 42:3303-3318. [PMID: 37833558 DOI: 10.1038/s41388-023-02861-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
MYC, a major oncogenic transcription factor, regulates target genes involved in various pathways such as cell proliferation, metabolism and immune evasion, playing a critical role in the tumor initiation and development in multiple types of cancer. In liver cancer, MYC and its signaling pathways undergo significant changes, exerting a profound impact on liver cancer progression, including tumor proliferation, metastasis, dedifferentiation, metabolism, immune microenvironment, and resistance to comprehensive therapies. This makes MYC an appealing target, despite it being previously considered an undruggable protein. In this review, we discuss the role and mechanisms of MYC in liver physiology, chronic liver diseases, hepatocarcinogenesis, and liver cancer progression, providing a theoretical basis for targeting MYC as an ideal therapeutic target for liver cancer. We also summarize and prospect the strategies for targeting MYC, including direct and indirect approaches to abolish the oncogenic function of MYC in liver cancer.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
25
|
Wallbillich NJ, Lu H. Role of c-Myc in lung cancer: Progress, challenges, and prospects. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:129-138. [PMID: 37920609 PMCID: PMC10621893 DOI: 10.1016/j.pccm.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite the recent advances in cancer therapies, the 5-year survival of non-small cell lung cancer (NSCLC) patients hovers around 20%. Inherent and acquired resistance to therapies (including radiation, chemotherapies, targeted drugs, and combination therapies) has become a significant obstacle in the successful treatment of NSCLC. c-Myc, one of the critical oncoproteins, has been shown to be heavily associated with the malignant cancer phenotype, including rapid proliferation, metastasis, and chemoresistance across multiple cancer types. The c-Myc proto-oncogene is amplified in small cell lung cancers (SCLCs) and overexpressed in over 50% of NSCLCs. c-Myc is known to actively regulate the transcription of cancer stemness genes that are recognized as major contributors to tumor progression and therapeutic resistance; thus, targeting c-Myc either directly or indirectly in mitigation of the cancer stemness phenotype becomes a promising approach for development of a new strategy against drug resistant lung cancers. This review will summarize what is currently known about the mechanisms underlying c-Myc regulation of cancer stemness and its involvement in drug resistance and offer an overview on the current progress and future prospects in therapeutically targeting c-Myc in both SCLC and NSCLC.
Collapse
Affiliation(s)
- Nicholas J. Wallbillich
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
26
|
Faida P, Attiogbe MKI, Majeed U, Zhao J, Qu L, Fan D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell Signal 2023:110797. [PMID: 37423343 DOI: 10.1016/j.cellsig.2023.110797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Lung cancer is one of the mortal cancers and the leading cause of cancer-related mortality, with a cancer survival rate of fewer than 5% in developing nations. This low survival rate can be linked to things like late-stage detection, quick postoperative recurrences in patients receiving therapy, and chemoresistance developing against various lung cancer treatments. Signal transducer and activator of transcription (STAT) family of transcription factors are involved in lung cancer cell proliferation, metastasis, immunological control, and treatment resistance. By interacting with specific DNA sequences, STAT proteins trigger the production of particular genes, which in turn result in adaptive and incredibly specific biological responses. In the human genome, seven STAT proteins have been discovered (STAT1 to STAT6, including STAT5a and STAT5b). Many external signaling proteins can activate unphosphorylated STATs (uSTATs), which are found inactively in the cytoplasm. When STAT proteins are activated, they can increase the transcription of several target genes, which leads to unchecked cellular proliferation, anti-apoptotic reactions, and angiogenesis. The effects of STAT transcription factors on lung cancer are variable; some are either pro- or anti-tumorigenic, while others maintain dual, context-dependent activities. Here, we give a succinct summary of the various functions that each member of the STAT family plays in lung cancer and go into more detail about the advantages and disadvantages of pharmacologically targeting STAT proteins and their upstream activators in the context of lung cancer treatment.
Collapse
Affiliation(s)
- Paison Faida
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
27
|
Liang XW, Wang SZ, Liu B, Chen JC, Cao Z, Chu FR, Lin X, Liu H, Wu JC. A review of deubiquitinases and thier roles in tumorigenesis and development. Front Bioeng Biotechnol 2023; 11:1204472. [PMID: 37251574 PMCID: PMC10213685 DOI: 10.3389/fbioe.2023.1204472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Ubiquitin is a small protein that can be added onto target protein for inducing target degradation, thereby modulating the activity and stability of protein. Relatively, deubiquitinases (DUBs), a class catalase that can remove ubiquitin from substrate protein, provide a positive regulation of the protein amount at transcription level, post-translational modification, protein interaction, etc. The reversible and dynamic ubiquitination-deubiquitination process plays an essential role in maintaining protein homeostasis, which is critical to almost all the biological processes. Therefore, the metabolic dysregulation of deubiquitinases often lead to serious consequences, including the growth and metastasis of tumors. Accordingly, deubiquitinases can be served as key drug targets for the treatment of tumors. The small molecule inhibitors targeting deubiquitinases has become one of the hot spots of anti-tumor drug research areas. This review concentrated on the function and mechanism of deubiquitinase system in the proliferation, apoptosis, metastasis and autophagy of tumor cells. The research status of small molecule inhibitors of specific deubiquitinases in tumor treatment is introduced, aiming to provide reference for the development of clinical targeted drugs.
Collapse
Affiliation(s)
- Xian-Wen Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Sheng-Zhong Wang
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bing Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jia-Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhi Cao
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Feng-Ran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiong Lin
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Hui Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jin-Cai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
28
|
Chauhan R, Gupta A, Malhotra L, Bhat AA, Pandita RK, Masoodi T, Dagar G, Sadida HQ, Al-Marzooqi SK, Batra A, Bakhshi S, Sharma MC, Tanwar P, Khan SA, Samath EA, Uddin S, Akil ASAS, Haris M, Macha MA, Pandita TK, Singh M. Ubiquitin specific peptidase 37 and PCNA interaction promotes osteosarcoma pathogenesis by modulating replication fork progression. J Transl Med 2023; 21:286. [PMID: 37118828 PMCID: PMC10142227 DOI: 10.1186/s12967-023-04126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Osteosarcoma is a type of bone cancer that predominantly affects young individuals, including children and adolescents. The disease progresses through heterogeneous genetic alterations, and patients often develop pulmonary metastases even after the primary tumors have been surgically removed. Ubiquitin-specific peptidases (USPs) regulate several critical cellular processes, such as cell cycle progression, transcriptional activation, and signal transduction. Various studies have revealed the significance of USP37 in the regulation of replication stress and oncogenesis. METHODS In this study, the Cancer Genome Atlas (TCGA) database was analyzed to investigate USP37 expression. RNA sequencing was utilized to assess the impact of USP37 overexpression and depletion on gene expression in osteosarcoma cells. Various molecular assays, including colony formation, immunofluorescence, immunoprecipitation, and DNA replication restart, were employed to examine the physical interaction between USP37 and PCNA, as well as its physiological effects in osteosarcoma cells. Additionally, molecular docking studies were conducted to gain insight into the nature of the interaction between USP37 and PCNA. Furthermore, immunohistochemistry was performed on archived tissue blocks from osteosarcoma patients to establish a correlation between USP37 and PCNA expression. RESULTS Analysis of the TCGA database revealed that increased expression of USP37 was linked to decreased progression-free survival (PFS) in osteosarcoma patients. Next-generation sequencing analysis of osteosarcoma cells demonstrated that overexpression or knockdown of USP37 led to the expression of different sets of genes. USP37 overexpression provided a survival advantage, while its depletion heightened sensitivity to replication stress in osteosarcoma cells. USP37 was found to physically interact with PCNA, and molecular docking studies indicated that the interaction occurs through unique residues. In response to genotoxic stress, cells that overexpressed USP37 resolved DNA damage foci more quickly than control cells or cells in which USP37 was depleted. The expression of USP37 varied in archived osteosarcoma tissues, with intermediate expression seen in 52% of cases in the cohort examined. CONCLUSION The results of this investigation propose that USP37 plays a vital role in promoting replication stress tolerance in osteosarcoma cells. The interaction between USP37 and PCNA is involved in the regulation of replication stress, and disrupting it could potentially trigger synthetic lethality in osteosarcoma. This study has expanded our knowledge of the mechanism through which USP37 regulates replication stress, and its potential as a therapeutic target in osteosarcoma merits additional exploration.
Collapse
Affiliation(s)
- Ravi Chauhan
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Raj K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Gunjan Dagar
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Sara K Al-Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Atul Batra
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Department of Lab Oncology, Dr. BRAIRCH. All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shah Alam Khan
- Department of Orthopaedics, Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, India
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| |
Collapse
|
29
|
Deficiency of Carbamoyl Phosphate Synthetase 1 Engenders Radioresistance in Hepatocellular Carcinoma via Deubiquitinating c-Myc. Int J Radiat Oncol Biol Phys 2023; 115:1244-1256. [PMID: 36423742 DOI: 10.1016/j.ijrobp.2022.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Tumor radiation resistance is the main obstacle to effective radiation therapy for patients with hepatocellular carcinoma (HCC). We identified the role of urea cycle key enzyme carbamoyl phosphate synthetase 1 (CPS1) in radioresistance of HCC and explored its mechanism, aiming to provide a novel radiosensitization strategy for the CPS1-deficiency HCC subtype. METHODS AND MATERIALS The expression of CPS1 was measured by western blot and immunohistochemistry. Cell growth assay, EdU assay, cell apoptosis assay, cell cycle assay, clone formation assay, and subcutaneous tumor assay were performed to explore the relationship between CPS1 and radioresistance of HCC cells. Lipid metabonomic analysis was used for investigating the effects of CPS1 on lipid synthesis of HCC cells. RNA sequencing and coimmunoprecipitation assay were carried out to reveal the mechanism of CPS1 participating in the regulation of HCC radiation therapy resistance. Furthermore, 10074-G5, the specific inhibitor of c-Myc, was administered to HCC cells to investigate the role of c-Myc in CPS1-deficiency HCC cells. RESULTS We found that urea cycle key enzyme CPS1 was frequently lower in human HCC samples and positively associated with the patient's prognosis. Functionally, the present study proved that CPS1 depletion could accelerate the development of HCC and induce radiation resistance of HCC in vitro and in vivo, and deficiency of CPS1 promoted the synthesis of some lipid molecules. Regarding the mechanism, we uncovered that inhibition of CPS1 upregulated CyclinA2 and CyclinD1 by stabilizing oncoprotein c-Myc at the posttranscriptional level and generated radioresistance of HCC cells. Moreover, inactivation of c-Myc using 10074-G5, a specific c-Myc inhibitor, could partially attenuate the proliferation and radioresistance induced by depletion of CPS1. CONCLUSIONS Our results recapitulated that silencing CPS1 could promote HCC progression and radioresistance via c-Myc stability mediated by the ubiquitin-proteasome system, suggesting that targeting c-Myc in CPS1-deficiency HCC subtype may be a valuable radiosensitization strategy in the treatment of HCC.
Collapse
|
30
|
Kamran DES, Hussain M, Mirza T. Investigating In Situ Expression of c-MYC and Candidate Ubiquitin-Specific Proteases in DLBCL and Assessment for Peptidyl Disruptor Molecule against c-MYC-USP37 Complex. Molecules 2023; 28:molecules28062441. [PMID: 36985413 PMCID: PMC10058055 DOI: 10.3390/molecules28062441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Diffuse Large B-Cell Lymphoma (DLBCL) is the most common form of non-Hodgkin's lymphoma (NHL). Elevated expression of c-MYC in DLBCL is associated with poor prognosis of the disease. In different cancers, c-MYC has been found regulated by different ubiquitin-specific proteases (USPs), but to date, the role of USPs in c-MYC regulation has not been investigated in DLBCL. In this study, in situ co expression of c-MYC and three candidates USPs, USP28, USP36 and USP37, have been investigated in both the ABC and GCB subtypes of DLBCL. This shows that USP37 expression is positively correlated with the c-MYC expression in the ABC subtype of DLBCL. Structurally, both c-MYC and USP37 has shown large proportion of intrinsically disordered regions, minimizing their chances for full structure crystallization. Peptide array and docking simulations has shown that N-terminal region of c-MYC interacts directly with residues within and in proximity of catalytically active C19 domain of the USP37. Given the structural properties of the interaction sites in the c-MYC-USP37 complex, a peptidyl inhibitor has been designed. Molecular docking has shown that the peptide fits well in the targeted site of c-MYC, masking most of its residues involved in the binding with USP37. The findings could further be exploited to develop therapeutic interventions against the ABC subtype of DLBCL.
Collapse
Affiliation(s)
- Durr E Sameen Kamran
- Department of Pathology, Dow Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 75330, Pakistan
- Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi 75330, Pakistan
| | - Talat Mirza
- Department of Research, Ziauddin University, Karachi 75000, Pakistan
| |
Collapse
|
31
|
Zhou X, Fu C, Chen X. The role of ubiquitin pathway-mediated regulation of immune checkpoints in cancer immunotherapy. Cancer 2023; 129:1649-1661. [PMID: 36857206 DOI: 10.1002/cncr.34729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
With the continuous cognition of the relationship between tumor cells and tumor immune microenvironment, immunotherapy based on the immune checkpoint blockade has achieved great breakthroughs, led to improved clinical outcomes, and prolonged survival for cancer patients in recent years. Nevertheless, the de novo or acquired resistance to immunotherapy has greatly counteracted the efficacy, leading to a 20%-40% overall response rate. Thus, further in-depth understanding of the regulation of the tumor microenvironment and antitumor immunity is urgently warranted. Ubiquitination-mediated protein degradation plays vital roles in protein stabilization, activation, and dynamics as well as in cellular homeostasis modulation. The dysregulated ubiquitination and deubiquitination are closely related to the changes in physiological and pathological processes, which subsequently result in a variety of diseases including cancer. In this review, the authors first summarize the current knowledge about the involvement of the ubiquitin-proteasome system in tumor development with the ubiquitin conjugation-regulated stability of p53, phosphatase and tensin homolog, and Myc protein as examples, then dissect the potential implications of ubiquitination-mediated immune checkpoints degradation in tumor microenvironment and immune responses, and finally discuss the effects of therapeutically targeting the ubiquitin-proteasome pathway on immunotherapy, with the goal of providing deep insights into the exploitation of more precise and effective combinational therapy against cancer.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Chengxiao Fu
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xisha Chen
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Tu X, Li C, Sun W, Tian X, Li Q, Wang S, Ding X, Huang Z. Suppression of Cancer Cell Stemness and Drug Resistance via MYC Destabilization by Deubiquitinase USP45 Inhibition with a Natural Small Molecule. Cancers (Basel) 2023; 15:cancers15030930. [PMID: 36765885 PMCID: PMC9913288 DOI: 10.3390/cancers15030930] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) play significant roles in cancer development, drug resistance and cancer recurrence. In cancer treatments based on the CSC characteristics and inducing factors, MYC is a promising target for therapeutic molecules. Although it has been regarded as an undrugable target, its stability tightly regulated by the ubiquitin-proteasome system offers a new direction for molecule targeting and cancer treatment. Herein we report our discoveries in this research area, and we have found that deubiquitinase USP45 can directly bind with MYC, resulting in its deubiquitination and stabilization. Further, USP45 overexpressing can upregulate MYC, and this overexpressing can significantly enhance cancer development, cancer cell stemness and drug resistance. Interestingly, without enhancing cancer development, MYC silencing with shRNA can only suppress USP45-induced stemness and drug resistance. Moreover, we have identified that USP45 can be specifically bound and inhibited by a natural small molecule (α-mangostin), in turn significantly suppressing USP45-induced stemness and drug resistance. Since USP45 is significantly expressed in cervical tumors, we have discovered that the combination of α-mangostin and doxorubicin can significantly inhibit USP45-induced cervical tumorigenesis in an animal model. In general, on the basis of our USP45 discoveries on its MYC deubiquitination and α-mangostin inhibition, suppressing USP45 has opened a new window for suppressing cancer development, stemness and drug resistance.
Collapse
Affiliation(s)
- Xiao Tu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Chuncheng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Wen Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Xi Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Qiufu Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Shaoxin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Xiaoling Ding
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu 610000, China
- Correspondence: ; Fax: +86-028-8550-2629
| |
Collapse
|
33
|
Piao M, Feng G. The deubiquitinating enzyme
USP37
promotes keloid fibroblasts proliferation and collagen production by regulating the
c‐Myc
expression. Int Wound J 2022; 20:1517-1524. [PMID: 36333840 PMCID: PMC10088848 DOI: 10.1111/iwj.14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Previous research testifies that c-Myc may promote keloid fibroblast proliferation and collagen accumulation. Ubiquitin-specific peptidase 37 (USP37)-mediated deubiquitination and stabilisation of c-Myc are vital for lung cancer proliferation, while the potential role of USP37 in keloid fibroblasts is not investigated. Elevated USP37, c-Myc, and Collagen I content were detected in keloid tissue with RT-PCR or ELISA assay. USP37 over-expression plasmids or USP37 short hairpin RNAs (shRNAs) were transfected into keloid fibroblasts with Lipofectamine 3000 to decipher the role of USP37 in keloid fibroblasts. USP37 overexpression could promote the proliferation of keloid fibroblasts with increased c-Myc and Collagen I expression. On the other hand, USP37 shRNAs inhibited the proliferation of keloid fibroblasts with diminished c-Myc and Collagen I expression. It was worth noting that C-Myc overexpression promoted the proliferation of keloid fibroblasts inhibited by USP37 shRNAs with increasing Collagen I expression. All of these results demonstrate that USP37 could regulate c-Myc to promote the proliferation and collagen deposit of keloid fibroblasts, and USP37 could be targeted in future keloid therapy.
Collapse
Affiliation(s)
- Meishan Piao
- Department of dermatology the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University Wuxi China
| | - Guangdong Feng
- Department of dermatology the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University Wuxi China
| |
Collapse
|
34
|
Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, Salimimoghadam S, Entezari M, Taheriazam A, Hushmandi K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother 2022; 155:113774. [DOI: 10.1016/j.biopha.2022.113774] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
|
35
|
Qin S, Yuan Y, Huang X, Tan Z, Hu X, Liu H, Pu Y, Ding YQ, Su Z, He C. Topoisomerase IIA in adult NSCs regulates SVZ neurogenesis by transcriptional activation of Usp37. Nucleic Acids Res 2022; 50:9319-9338. [PMID: 36029179 PMCID: PMC9458435 DOI: 10.1093/nar/gkac731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/31/2022] [Accepted: 08/14/2022] [Indexed: 01/27/2023] Open
Abstract
Topoisomerase IIA (TOP2a) has traditionally been known as an important nuclear enzyme that resolves entanglements and relieves torsional stress of DNA double strands. However, its function in genomic transcriptional regulation remains largely unknown, especially during adult neurogenesis. Here, we show that TOP2a is preferentially expressed in neurogenic niches in the brain of adult mice, such as the subventricular zone (SVZ). Conditional knockout of Top2a in adult neural stem cells (NSCs) of the SVZ significantly inhibits their self-renewal and proliferation, and ultimately reduces neurogenesis. To gain insight into the molecular mechanisms by which TOP2a regulates adult NSCs, we perform RNA-sequencing (RNA-Seq) plus chromatin immunoprecipitation sequencing (ChIP-Seq) and identify ubiquitin-specific protease 37 (Usp37) as a direct TOP2a target gene. Importantly, overexpression of Usp37 is sufficient to rescue the impaired self-renewal ability of adult NSCs caused by Top2a knockdown. Taken together, this proof-of-principle study illustrates a TOP2a/Usp37-mediated novel molecular mechanism in adult neurogenesis, which will significantly expand our understanding of the function of topoisomerase in the adult brain.
Collapse
Affiliation(s)
- Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Xiao Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Zijian Tan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Xin Hu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yu-qiang Ding
- Department of Laboratory Animal Science, and State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
36
|
Han X, Ren C, Lu C, Qiao P, Yang T, Yu Z. Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis. Cell Death Differ 2022; 29:1864-1873. [PMID: 35296795 PMCID: PMC9433372 DOI: 10.1038/s41418-022-00971-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
MYC as a transcriptional factor plays a crucial role in breast cancer progression. However, the mechanisms underlying MYC deubiquitination in breast cancer are not well defined. Here, we report that OTUB1 is responsible for MYC deubiquitination. OTUB1 could directly deubiquitinate MYC at K323 site, which blocks MYC protein degradation. Moreover, OTUB1 mediated MYC protein stability is also confirmed in OTUB1-knockout mice. Stabilized MYC by OTUB1 promotes its transcriptional activity and induces HK2 expression, which leads to enhance aerobic glycolysis. Therefore, OTUB1 promotes breast tumorigenesis in vivo and in vitro via blocking MYC protein degradation. Taken together, our data identify OTUB1 as a new deubiquitination enzyme for MYC protein degradation, which provides a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
37
|
Peng Y, Liu J, Wang Z, Cui C, Zhang T, Zhang S, Gao P, Hou Z, Liu H, Guo J, Zhang J, Wen Y, Wei W, Zhang L, Liu J, Long J. Prostate-specific oncogene OTUD6A promotes prostatic tumorigenesis via deubiquitinating and stabilizing c-Myc. Cell Death Differ 2022; 29:1730-1743. [PMID: 35217790 PMCID: PMC9433443 DOI: 10.1038/s41418-022-00960-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/29/2023] Open
Abstract
MYC drives the tumorigenesis of human cancers, including prostate cancer (PrCa), thus deubiquitinase (DUB) that maintains high level of c-Myc oncoprotein is a rational therapeutic target. Several ubiquitin-specific protease (USP) family members of DUB have been reported to deubiquitinate c-Myc, but none of them is the physiological DUB for c-Myc in PrCa. By screening all the DUBs, here we reveal that OTUD6A is exclusively amplified and overexpressed in PrCa but not in other cancers, eliciting a prostatic-specific oncogenic role through deubiquitinating and stabilizing c-Myc oncoprotein. Moreover, genetic ablation of OTUD6A efficiently represses prostatic tumorigenesis of both human PrCa cells and the Hi-Myc transgenic PrCa mice, via reversing the metabolic remodeling caused by c-Myc overexpression in PrCa. These results indicate that OTUD6A is a physiological DUB for c-Myc in PrCa setting and specifically promotes prostatic tumorigenesis through stabilizing c-Myc oncoprotein, suggesting that OTUD6A could be a unique therapeutic target for Myc-driven PrCa.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Tiantian Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peipei Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jinfang Zhang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yurong Wen
- Department of Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
38
|
LIU J, LEUNG CT, LIANG L, WANG Y, CHEN J, LAI KP, TSE WKF. Deubiquitinases in Cancers: Aspects of Proliferation, Metastasis, and Apoptosis. Cancers (Basel) 2022; 14:cancers14143547. [PMID: 35884607 PMCID: PMC9323628 DOI: 10.3390/cancers14143547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review summarizes the current DUBs findings that correlate with the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The DUBs were further classified by their biological functions in terms of proliferation, metastasis, and apoptosis. The work provides an updated of the current findings, and could be used as a quick guide for researchers to identify target DUBs in cancers. Abstract Deubiquitinases (DUBs) deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate its activity and stability. They are involved in several cellular functions. In addition to the general biological regulation of normal cells, studies have demonstrated their critical roles in various cancers. In this review, we evaluated and grouped the biological roles of DUBs, including proliferation, metastasis, and apoptosis, in the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The current findings in these cancers are summarized, and the relevant mechanisms and relationship between DUBs and cancers are discussed. In addition to highlighting the importance of DUBs in cancer biology, this study also provides updated information on the roles of DUBs in different types of cancers.
Collapse
Affiliation(s)
- Jiaqi LIU
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Chi Tim LEUNG
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China;
| | - Luyun LIANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Yuqin WANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Jian CHEN
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - Keng Po LAI
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - William Ka Fai TSE
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
39
|
Li K, Wang Q, Bian H, Chen Z, He H, Zhao X, Gong P. Comprehensive Analysis Reveals USP45 as a Novel Putative Oncogene in Pan-Cancer. Front Mol Biosci 2022; 9:886904. [PMID: 35836933 PMCID: PMC9273912 DOI: 10.3389/fmolb.2022.886904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Deubiquitinating enzymes specifically removes ubiquitin molecules from ubiquitin-tagged target proteins, thereby inhibiting the degradation of target proteins and playing an important role in tumor. However, the mechanism of deubiquitinating enzyme USP45 in tumors remains unclear. Methods: Based on the RNA-seq data of tissues and cell lines in The Cancer Genome Atlas (TCGA) database, GTEx and CCLE database, the pan-cancer analysis of USP45 expression and survival outcome were performed using R software and Kaplan-Meier Plotter. The structural variants, gene mutations and gene copy number alteration of USP45 were analyzed using the TCGA Pan-Cancer Atlas Studies dataset in the cBioPortal database. The relationships between USP45 and mRNA methylation, tumor heterogeneity, tumor stemness, and tumor immunity were performed by Sangerbox platform and TIMER2.0 using Pearson correlation analysis. Through the ENCORI database and string database, we constructed the ceRNA regulatory mechanism and protein-protein interaction network for USP45. Based on the RNA-seq data in TCGA and GTEx databases, we also constructed the downstream regulatory network for USP45 using the Limma and ClusterProfiler packages of R software. At last, the protein expression levels of USP45 were detected by immunohistochemistry in tumor tissue microarrays. Results: USP45 is upregulated in most types of tumors and negatively correlated with the overall survival and recurrence-free survival of patient. Furthermore, the structural variation, gene mutations and gene copy number variation of USP45 were identified in different types of tumors. The pan-cancer analysis showed that USP45 was closely related to mRNA methylation, tumor heterogeneity and tumor stemness. In most types of tumors, the expression of USP45 was positively correlated with many immune checkpoint molecules and immune regulators such as PD-L1, while negatively correlated with the infiltration levels of NK cells, Th1 cells, macrophages, and dendritic cells in the tumor microenvironment. Finally, we constructed the ceRNA regulatory network, protein-protein interaction network and downstream regulatory network for USP45 in different types of tumors. Conclusion: Our study firstly explored the putative oncogenic role of USP45 in pan-cancer, and provided insights for further investigation of USP45.
Collapse
Affiliation(s)
- Kai Li
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Qian Wang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Hua Bian
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Zhiguo Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Haifa He
- Department of Pathology, Central Hospital of Nanyang City, Nanyang, China
| | - Xulin Zhao
- Department of Oncology, The First People’s Hospital of Nanyang, Nanyang, China
| | - Pengju Gong
- The University of Texas MD Anderson Cancer Center UThealth Graduate School of Biomedical Sciences, Houston, TX, United States
- *Correspondence: Pengju Gong,
| |
Collapse
|
40
|
Gu X, Zhuang A, Yu J, Chai P, Jia R, Ruan J. Phase separation drives tumor pathogenesis and evolution: all roads lead to Rome. Oncogene 2022; 41:1527-1535. [PMID: 35132182 DOI: 10.1038/s41388-022-02195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022]
Abstract
Cells coordinate numerous biochemical reactions in space and time, depending on the subdivision of the intracellular space into functional compartments. Compelling evidence has demonstrated that phase separation induces the formation of membrane-less compartments to partition intracellular substances in a strictly regulated manner and participates in various biological processes. Based on the strong association of cancer with the dysregulation of intracellular physiological processes and the occurrence of phase separation in cancer-associated condensates, phase separation undoubtedly plays a significant role in tumorigenesis. In this review, we summarize the drivers and functions of phase separation, elaborate on the roles of phase separation in tumor pathogenesis and evolution, and propose substantial research and therapeutic prospects for phase separation in cancer.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, PR China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| |
Collapse
|
41
|
Nagasaka M, Inoue Y, Yoshida M, Miyajima C, Morishita D, Tokugawa M, Nakamoto H, Sugano M, Ohoka N, Hayashi H. The deubiquitinating enzyme USP17 regulates c‐Myc levels and controls cell proliferation and glycolysis. FEBS Lett 2022; 596:465-478. [DOI: 10.1002/1873-3468.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mai Nagasaka
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Yasumichi Inoue
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
- Department of Innovative Therapeutics Sciences Cooperative Major in Nanopharmaceutical Sciences Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Manaka Yoshida
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Chiharu Miyajima
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
- Department of Innovative Therapeutics Sciences Cooperative Major in Nanopharmaceutical Sciences Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Daisuke Morishita
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
- Chordia Therapeutics Inc 251‐0012 Kanagawa Japan
| | - Muneshige Tokugawa
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Haruna Nakamoto
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Mayumi Sugano
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products National Institute of Health Sciences 210‐9501 Kanagawa Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
- Department of Innovative Therapeutics Sciences Cooperative Major in Nanopharmaceutical Sciences Graduate School of Pharmaceutical Sciences Nagoya City University 467‐8603 Nagoya Japan
| |
Collapse
|
42
|
Xie Y, Wang M, Xia M, Guo Y, Zu X, Zhong J. Ubiquitination regulation of aerobic glycolysis in cancer. Life Sci 2022; 292:120322. [PMID: 35031261 DOI: 10.1016/j.lfs.2022.120322] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/18/2022]
Abstract
Aerobic glycolysis, or the Warburg effect, is regarded as a critical part of metabolic reprogramming and plays a crucial role in the occurrence and development of tumours. Ubiquitination and deubiquitination, essential post-translational modifications, have attracted increasing attention with regards to the regulation of metabolic reprogramming in cancer. However, the mechanism of ubiquitination in glycolysis remains unclear. In this review, we discuss the roles of ubiquitination and deubiquitination in regulating glycolysis, and their involvement in regulating important signalling pathways, enzymes, and transcription factors. Focusing on potential mechanisms may provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Yao Xie
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Clinical Laboratory, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Mu Wang
- Clinical Research Institute, the NanHua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Min Xia
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yinping Guo
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Jing Zhong
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
43
|
The role of ubiquitin-specific peptidases in glioma progression. Biomed Pharmacother 2021; 146:112585. [PMID: 34968923 DOI: 10.1016/j.biopha.2021.112585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
The balance between ubiquitination and deubiquitination is crucial for protein stability, function and location under physiological conditions. Dysregulation of E1/E2/E3 ligases or deubiquitinases (DUBs) results in malfunction of the ubiquitin system and is involved in many diseases. Increasing reports have indicated that ubiquitin-specific peptidases (USPs) play a part in the progression of many kinds of cancers and could be good targets for anticancer treatment. Glioma is the most common malignant tumor in the central nervous system. Clinical treatment for high-grade glioma is unsatisfactory thus far. Multiple USPs are dysregulated in glioma and have the potential to be therapeutic targets. In this review, we collected studies on the roles of USPs in glioma progression and summarized the mechanisms of USPs in glioma tumorigenesis, malignancy and chemoradiotherapy resistance.
Collapse
|
44
|
Chauhan R, Bhat AA, Masoodi T, Bagga P, Reddy R, Gupta A, Sheikh ZA, Macha MA, Haris M, Singh M. Ubiquitin-specific peptidase 37: an important cog in the oncogenic machinery of cancerous cells. J Exp Clin Cancer Res 2021; 40:356. [PMID: 34758854 PMCID: PMC8579576 DOI: 10.1186/s13046-021-02163-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Protein ubiquitination is one of the most crucial posttranslational modifications responsible for regulating the stability and activity of proteins involved in homeostatic cellular function. Inconsistencies in the ubiquitination process may lead to tumorigenesis. Ubiquitin-specific peptidases are attractive therapeutic targets in different cancers and are being evaluated for clinical development. Ubiquitin-specific peptidase 37 (USP37) is one of the least studied members of the USP family. USP37 controls numerous aspects of oncogenesis, including stabilizing many different oncoproteins. Recent work highlights the role of USP37 in stimulating the epithelial-mesenchymal transition and metastasis in lung and breast cancer by stabilizing SNAI1 and stimulating the sonic hedgehog pathway, respectively. Several aspects of USP37 biology in cancer cells are yet unclear and are an active area of research. This review emphasizes the importance of USP37 in cancer and how identifying its molecular targets and signalling networks in various cancer types can help advance cancer therapeutics.
Collapse
Affiliation(s)
- Ravi Chauhan
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Department of Genomic Medicine, Genetikode, Mumbai, India
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Ashna Gupta
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Zahoor Ahmad Sheikh
- Department of Surgical Oncology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, India
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
45
|
Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, Kamel M, Altyar AE, Abdel-Daim MM. Pharmacological Modulation of Ubiquitin-Proteasome Pathways in Oncogenic Signaling. Int J Mol Sci 2021; 22:11971. [PMID: 34769401 PMCID: PMC8584958 DOI: 10.3390/ijms222111971] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is involved in regulating several biological functions, including cell cycle control, apoptosis, DNA damage response, and apoptosis. It is widely known for its role in degrading abnormal protein substrates and maintaining physiological body functions via ubiquitinating enzymes (E1, E2, E3) and the proteasome. Therefore, aberrant expression in these enzymes results in an altered biological process, including transduction signaling for cell death and survival, resulting in cancer. In this review, an overview of profuse enzymes involved as a pro-oncogenic or progressive growth factor in tumors with their downstream signaling pathways has been discussed. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on modulation of ubiquitin-proteasome pathways in oncogenic signaling. Various in vitro, in vivo studies demonstrating the involvement of ubiquitin-proteasome systems in varied types of cancers and the downstream signaling pathways involved are also discussed in the current review. Several inhibitors of E1, E2, E3, deubiquitinase enzymes and proteasome have been applied for treating cancer. Some of these drugs have exhibited successful outcomes in in vivo studies on different cancer types, so clinical trials are going on for these inhibitors. This review mainly focuses on certain ubiquitin-proteasome enzymes involved in developing cancers and certain enzymes that can be targeted to treat cancer.
Collapse
Affiliation(s)
- Anmol Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Małgorzata Kawecka-Radomska
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
46
|
Mullard M, Lavaud M, Regnier L, Tesfaye R, Ory B, Rédini F, Verrecchia F. Ubiquitin-specific proteases as therapeutic targets in paediatric primary bone tumours? Biochem Pharmacol 2021; 194:114797. [PMID: 34678225 DOI: 10.1016/j.bcp.2021.114797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
In children and young adults, primary malignant bone tumours are mainly composed of osteosarcoma and Ewing's sarcoma. Despite advances in treatments, nearly 40% of patients succumb to these diseases. In particular, the clinical outcome of metastatic osteosarcoma or Ewing's sarcoma remains poor, with less than 30% of patients who develop metastases surviving five years after initial diagnosis. Over the last decade, the cancer research community has shown considerable interest in the processes of protein ubiquitination and deubiquitination. In particular, a growing number of studies show the relevance to target the ubiquitin-specific protease (USP) family in various cancers. This review provides an update on the current knowledge regarding the implication of these USPs in the progression of bone sarcoma: osteosarcoma and Ewing's sarcoma.
Collapse
Affiliation(s)
- Mathilde Mullard
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Mélanie Lavaud
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Laura Regnier
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Robel Tesfaye
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Benjamin Ory
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Françoise Rédini
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Franck Verrecchia
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France.
| |
Collapse
|
47
|
Zhou Y, Gao X, Yuan M, Yang B, He Q, Cao J. Targeting Myc Interacting Proteins as a Winding Path in Cancer Therapy. Front Pharmacol 2021; 12:748852. [PMID: 34658888 PMCID: PMC8511624 DOI: 10.3389/fphar.2021.748852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
MYC, as a well-known oncogene, plays essential roles in promoting tumor occurrence, development, invasion and metastasis in many kinds of solid tumors and hematologic neoplasms. In tumors, the low expression and the short half-life of Myc are reversed, cause tumorigenesis. And proteins that directly interact with different Myc domains have exerted a significant impact in the process of Myc-driven carcinogenesis. Apart from affecting the transcription of Myc target genes, Myc interaction proteins also regulate the stability of Myc through acetylation, methylation, phosphorylation and other post-translational modifications, as well as competitive combination with Myc. In this review, we summarize a series of Myc interacting proteins and recent advances in the related inhibitors, hoping that can provide new opportunities for Myc-driven cancer treatment.
Collapse
Affiliation(s)
- Yihui Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Wu C, Chang Y, Chen J, Su Y, Li L, Chen Y, Li Y, Wu J, Huang J, Zhao F, Wang W, Yin H, Wang S, Jin M, Lou Z, Zhu WG, Luo K, Zhang J, Yuan J. USP37 regulates DNA damage response through stabilizing and deubiquitinating BLM. Nucleic Acids Res 2021; 49:11224-11240. [PMID: 34606619 PMCID: PMC8565321 DOI: 10.1093/nar/gkab842] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 08/16/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
The human RecQ helicase BLM is involved in the DNA damage response, DNA metabolism, and genetic stability. Loss of function mutations in BLM cause the genetic instability/cancer predisposition syndrome Bloom syndrome. However, the molecular mechanism underlying the regulation of BLM in cancers remains largely elusive. Here, we demonstrate that the deubiquitinating enzyme USP37 interacts with BLM and that USP37 deubiquitinates and stabilizes BLM, thereby sustaining the DNA damage response (DDR). Mechanistically, DNA double-strand breaks (DSB) promotes ATM phosphorylation of USP37 and enhances the binding between USP37 and BLM. Moreover, knockdown of USP37 increases BLM polyubiquitination, accelerates its proteolysis, and impairs its function in DNA damage response. This leads to enhanced DNA damage and sensitizes breast cancer cells to DNA-damaging agents in both cell culture and in vivo mouse models. Collectively, our results establish a novel molecular mechanism for the USP37-BLM axis in regulating DSB repair with an important role in chemotherapy and radiotherapy response in human cancers.
Collapse
Affiliation(s)
- Chenming Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Yiming Chang
- Jinzhou Medical University, Jinzhou 121001, China
| | - Junliang Chen
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yang Su
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lei Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuping Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yunhui Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinhuan Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wenrui Wang
- Department of Biotechnology, Bengbu Medical College, Anhui 233030, China
| | - Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shunli Wang
- Department of Pathology,Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Mingpeng Jin
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Zhang
- Correspondence may also be addressed to Jie Zhang. Tel: +86 21 13917090488;
| | - Jian Yuan
- To whom correspondence should be addressed. Tel: +86 21 13818233596;
| |
Collapse
|
49
|
Stromberg BR, Singh M, Torres AE, Burrows AC, Pal D, Insinna C, Rhee Y, Dickson AS, Westlake CJ, Summers MK. The deubiquitinating enzyme USP37 enhances CHK1 activity to promote the cellular response to replication stress. J Biol Chem 2021; 297:101184. [PMID: 34509474 PMCID: PMC8487067 DOI: 10.1016/j.jbc.2021.101184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability.
Collapse
Affiliation(s)
- Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Mayank Singh
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Amy C Burrows
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Debjani Pal
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Christine Insinna
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Yosup Rhee
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew S Dickson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher J Westlake
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
50
|
Zhao X, Yongchun Z, Qian H, Sanhui G, Jie L, Hong Y, Yanfei Z, Guizhen W, Yunchao H, Guangbiao Z. Identification of a potential tumor suppressor gene, UBL3, in non-small cell lung cancer. Cancer Biol Med 2021; 17:76-87. [PMID: 32296577 PMCID: PMC7142850 DOI: 10.20892/j.issn.2095-3941.2019.0279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: Oncogenes have been shown to be drivers of non-small cell lung cancer (NSCLC), yet the tumor suppressing genes involved in lung carcinogenesis remain to be systematically investigated. This study aimed to identify tumor suppressing ubiquitin pathway genes (UPGs) that were critical to lung tumorigenesis. Methods: The 696 UPGs were silenced by an siRNA screening in NSCLC cells; the potential tumor suppressing UPGs were analyzed, and their clinical significance was investigated. Results: We reported that silencing of 11 UPGs resulted in enhanced proliferation of NSCLC cells, and four UPGs (UBL3, TRIM22, UBE2G2, and MARCH1) were significantly downregulated in tumor samples compared to that in normal lung tissues and their expression levels were positively associated with overall survival (OS) of NSCLC patients. Among these genes, UBL3 was the most significant one. UBL3 expression was decreased in tumor samples compared to that in paired normal lung tissues in 59/86 (68.6%) NSCLCs, was correlated with TNM stage and sex of NSCLC patients, and was significantly higher in non-smoking patients than in smoking patients. Silencing UBL3 accelerated cell proliferation and ectopic expression of UBL3 suppressed NSCLC in vitro and in vivo. Conclusions: These results showed that UBL3 represented a tumor suppressor in NSCLC and may have potential for use in therapeutics and for the prediction of clinical outcome of patients.
Collapse
Affiliation(s)
- Xinchun Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhou Yongchun
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China
| | - Hu Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Gao Sanhui
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liu Jie
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Hong
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhang Yanfei
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wang Guizhen
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huang Yunchao
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China
| | - Zhou Guangbiao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|