1
|
Yi G, Cai F, Liu L, Liao R, Jiang X, Yang Z, Zhang X. Genomic characteristics of PD-L1-Induced resistance to EGFR-TKIs in lung adenocarcinoma. Future Oncol 2024; 20:3477-3490. [PMID: 39691079 PMCID: PMC11776857 DOI: 10.1080/14796694.2024.2435247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND The co-occurrence of PD-L1 positivity and EGFR mutations in advanced NSCLC often limits EGFR-TKIs effectiveness, with unclear mechanisms. METHODS We analyzed 103 treatment-naive EGFR-mutant LUAD patients from three centers, assessing PD-L1 expression and performing NGS analysis. RESULTS SMO mutations and MET amplification were significantly higher in the PD-L1 ≥ 1% group versus PD-L1 < 1% group (SMO: 8% vs. 0%, p = 0.048; MET: 18% vs. 7%, p = 0.023). The DNA Damage Response and Repair (DDR) pathogenic deficiency mutations, along with biological processes and signaling pathways related to DNA recombination, cell cycle transition and abnormal phosphorylation, were more prevalent in the PD-L1 ≥ 1% group. PIK3CA and RARA clonal alterations were more common in PD-L1 < 1% group, while TP53 clonal mutations predominated in PD-L1 ≥ 1% group. Retrospective analysis showed EGFR-TKIs plus chemotherapy extended median PFS by 9.8 months, potentially overcoming EGFR-TKI monotherapy resistance. CONCLUSION This study elucidates the genomic characteristics of PD-L1-induced resistance to EGFR-TKIs. For patients with concurrent mutations in EGFR and PD-L1 expression, a first-line treatment strategy combining EGFR-TKIs with chemotherapy may offer a more effective alternative.
Collapse
Affiliation(s)
- Guangming Yi
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Fanghao Cai
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Liangzhong Liu
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Rongxin Liao
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Xuan Jiang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Zhenzhou Yang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Xiaoyue Zhang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| |
Collapse
|
2
|
Hou S, Xu H, Lei S, Zhao D. Overexpressed nicotinamide N‑methyltransferase in endometrial stromal cells induced by macrophages and estradiol contributes to cell proliferation in endometriosis. Cell Death Discov 2024; 10:463. [PMID: 39489776 PMCID: PMC11532478 DOI: 10.1038/s41420-024-02229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Endometriosis, an estrogen-dependent chronic inflammatory condition, afflicts reproductive-aged women. However, the underlying pathological mechanisms remain to be elucidated. Nicotinamide N-methyltransferase (NNMT) is a critical enzyme involved in cellular metabolism and methylation regulation. This study investigated the role of NNMT in endometriosis. By analyzing datasets GSE5108, GSE7305, GSE141549, GSE23339, and GSE25628, we identified a significant overexpression of NNMT in the eutopic endometrium and ectopic lesions of endometriosis patients compared to normal endometrium. Furthermore, NNMT was upregulated in collected endometrioma specimens and isolated primary endometrial stromal cells (ESCs) compared to their respective controls. Inhibition of NNMT using JBSNF-000088 attenuated the proliferation, migration, and invasion of ESCs. In vivo, treatment of mouse models of endometriosis with JBSNF-000088 resulted in a marked reduction in lesion weight and quantity. NNMT expression in ESCs was dose-dependently upregulated by 17β-estradiol at concentrations of 1 nM, 10 nM, and 100 nM, an effect that was attenuated by 10 nM progesterone. Additionally, treating HESCs with macrophage-conditioned medium elevated NNMT expression at both mRNA and protein levels. Knockdown of NNMT impeded the proliferation, migration, and invasion of ESCs, which was paralleled by decreased phosphorylation levels of Erb-b2 receptor tyrosine kinase 4 (ERBB4), PI3K, and AKT. Conversely, overexpressing ERBB4 mitigated the NNMT knockdown-induced decline in phosphorylated PI3K and AKT and rescued the proliferation of ESCs. Altogether, these results indicate that the overexpression of NNMT induced by estrogen and macrophage interaction modulates ESC proliferation via the NNMT-ERBB4-PI3K/AKT signaling pathway, as well as promotes cellular migration and invasion, contributing to the development of endometriosis.
Collapse
Affiliation(s)
- Shuhui Hou
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shating Lei
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Dong Zhao
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Paudel KR, Singh M, De Rubis G, Kumbhar P, Mehndiratta S, Kokkinis S, El-Sherkawi T, Gupta G, Singh SK, Malik MZ, Mohammed Y, Oliver BG, Disouza J, Patravale V, Hansbro PM, Dua K. Computational and biological approaches in repurposing ribavirin for lung cancer treatment: Unveiling antitumorigenic strategies. Life Sci 2024; 352:122859. [PMID: 38925223 DOI: 10.1016/j.lfs.2024.122859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Lung cancer is among leading causes of death worldwide. The five-year survival rate of this disease is extremely low (17.8 %), mainly due to difficult early diagnosis and to the limited efficacy of currently available chemotherapeutics. This underlines the necessity to develop innovative therapies for lung cancer. In this context, drug repurposing represents a viable approach, as it reduces the turnaround time of drug development removing costs associated to safety testing of new molecular entities. Ribavirin, an antiviral molecule used to treat hepatitis C virus infections, is particularly promising as repurposed drug for cancer treatment, having shown therapeutic activity against glioblastoma, acute myeloid leukemia, and nasopharyngeal carcinoma. In the present study, we thoroughly investigated the in vitro anticancer activity of ribavirin against A549 human lung adenocarcinoma cells. From a functional standpoint, ribavirin significantly inhibits cancer hallmarks such as cell proliferation, migration, and colony formation. Mechanistically, ribavirin downregulates the expression of numerous proteins and genes regulating cell migration, proliferation, apoptosis, and cancer angiogenesis. The anticancer potential of ribavirin was further investigated in silico through gene ontology pathway enrichment and protein-protein interaction networks, identifying five putative molecular interactors of ribavirin (Erb-B2 Receptor Tyrosine Kinase 4 (Erb-B4); KRAS; Intercellular Adhesion Molecule 1 (ICAM-1); amphiregulin (AREG); and neuregulin-1 (NRG1)). These interactions were characterized via molecular docking and molecular dynamic simulations. The results of this study highlight the potential of ribavirin as a repurposed chemotherapy against lung cancer, warranting further studies to ascertain the in vivo anticancer activity of this molecule.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, Uttar Pradesh, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tammam El-Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144411, Punjab, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait city 15462, Kuwait
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
4
|
Kouhmareh K, Martin E, Finlay D, Bhadada A, Hernandez-Vargas H, Downey F, Allen JK, Teriete P. Capture of circulating metastatic cancer cell clusters from lung cancer patients can reveal unique genomic profiles and potential anti-metastatic molecular targets: A proof-of-concept study. PLoS One 2024; 19:e0306450. [PMID: 39083508 PMCID: PMC11290651 DOI: 10.1371/journal.pone.0306450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Metastasis remains the leading cause of cancer deaths worldwide and lung cancer, known for its highly metastatic progression, remains among the most lethal of malignancies. Lung cancer metastasis can selectively spread to multiple different organs, however the genetic and molecular drivers for this process are still poorly understood. Understanding the heterogeneous genomic profile of lung cancer metastases is considered key in identifying therapeutic targets that prevent its spread. Research has identified the key source for metastasis being clusters of cells rather than individual cancer cells. These clusters, known as metastatic cancer cell clusters (MCCCs) have been shown to be 100-fold more tumorigenic than individual cancer cells. Unfortunately, access to these primary drivers of metastases remains difficult and has limited our understanding of their molecular and genomic profiles. Strong evidence in the literature suggests that differentially regulated biological pathways in MCCCs can provide new therapeutic drug targets to help combat cancer metastases. In order to expand research into MCCCs and their role in metastasis, we demonstrate a novel, proof of principle technology, to capture MCCCs directly from patients' whole blood. Our platform can be readily tuned for different solid tumor types by combining a biomimicry-based margination effect coupled with immunoaffinity to isolate MCCCs. Adopting a selective capture approach based on overexpressed CD44 in MCCCs provides a methodology that preferentially isolates them from whole blood. Furthermore, we demonstrate a high capture efficiency of more than 90% when spiking MCCC-like model cell clusters into whole blood. Characterization of the captured MCCCs from lung cancer patients by immunofluorescence staining and genomic analyses, suggests highly differential morphologies and genomic profiles. This study lays the foundation to identify potential drug targets thus unlocking a new area of anti-metastatic therapeutics.
Collapse
Affiliation(s)
| | - Erika Martin
- PhenoVista Biosciences, San Diego, CA, United States of America
| | - Darren Finlay
- National Cancer Institute Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States of America
| | | | | | | | | | - Peter Teriete
- TumorGen Inc., San Diego, CA, United States of America
- IDEAYA Biosciences, South San Francisco, CA, United States of America
| |
Collapse
|
5
|
Koivu MKA, Chakroborty D, Airenne TT, Johnson MS, Kurppa KJ, Elenius K. Trans-activating mutations of the pseudokinase ERBB3. Oncogene 2024; 43:2253-2265. [PMID: 38806620 PMCID: PMC11245391 DOI: 10.1038/s41388-024-03070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Genetic changes in the ERBB family of receptor tyrosine kinases serve as oncogenic driver events and predictive biomarkers for ERBB inhibitor drugs. ERBB3 is a pseudokinase member of the family that, although lacking a fully active kinase domain, is well known for its potent signaling activity as a heterodimeric complex with ERBB2. Previous studies have identified few transforming ERBB3 mutations while the great majority of the hundreds of different somatic ERBB3 variants observed in different cancer types remain of unknown significance. Here, we describe an unbiased functional genetics screen of the transforming potential of thousands of ERBB3 mutations in parallel. The screen based on a previously described iSCREAM (in vitro screen of activating mutations) platform, and addressing ERBB3 pseudokinase signaling in a context of ERBB3/ERBB2 heterodimers, identified 18 hit mutations. Validation experiments in Ba/F3, NIH 3T3, and MCF10A cell backgrounds demonstrated the presence of both previously known and unknown transforming ERBB3 missense mutations functioning either as single variants or in cis as a pairwise combination. Drug sensitivity assays with trastuzumab, pertuzumab and neratinib indicated actionability of the transforming ERBB3 variants.
Collapse
Affiliation(s)
- Marika K A Koivu
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Deepankar Chakroborty
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Tomi T Airenne
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Kari J Kurppa
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
| | - Klaus Elenius
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland.
- Department of Oncology, Turku University Hospital, Turku, 20521, Finland.
| |
Collapse
|
6
|
Rojas-Rodriguez F, Schmidt MK, Canisius S. Assessing the validity of driver gene identification tools for targeted genome sequencing data. BIOINFORMATICS ADVANCES 2024; 4:vbae073. [PMID: 38808071 PMCID: PMC11132814 DOI: 10.1093/bioadv/vbae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Motivation Most cancer driver gene identification tools have been developed for whole-exome sequencing data. Targeted sequencing is a popular alternative to whole-exome sequencing for large cancer studies due to its greater depth at a lower cost per tumor. Unlike whole-exome sequencing, targeted sequencing only enables mutation calling for a selected subset of genes. Whether existing driver gene identification tools remain valid in that context has not previously been studied. Results We evaluated the validity of seven popular driver gene identification tools when applied to targeted sequencing data. Based on whole-exome data of 14 different cancer types from TCGA, we constructed matching targeted datasets by keeping only the mutations overlapping with the pan-cancer MSK-IMPACT panel and, in the case of breast cancer, also the breast-cancer-specific B-CAST panel. We then compared the driver gene predictions obtained on whole-exome and targeted mutation data for each of the seven tools. Differences in how the tools model background mutation rates were the most important determinant of their validity on targeted sequencing data. Based on our results, we recommend OncodriveFML, OncodriveCLUSTL, 20/20+, dNdSCv, and ActiveDriver for driver gene identification in targeted sequencing data, whereas MutSigCV and DriverML are best avoided in that context. Availability and implementation Code for the analyses is available at https://github.com/SchmidtGroupNKI/TGSdrivergene_validity.
Collapse
Affiliation(s)
- Felipe Rojas-Rodriguez
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Sander Canisius
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
7
|
Mochizuki A, Nishida H, Kaimori R, Kondo Y, Kadowaki H, Kusaba T, Kawamura K, Osoegawa A, Sugio K, Daa T. Clinical characteristics, proteins, and genes related to interstitial pneumonia-associated squamous cell carcinoma of the lungs. Pathol Res Pract 2024; 257:155292. [PMID: 38657559 DOI: 10.1016/j.prp.2024.155292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
Squamous cell carcinoma (SCC) is a common histological type of lung carcinoma that is associated with interstitial pneumonia (IP). We hypothesized that identifying specific genetic alterations or molecular markers of SCC with IP may aid the development of novel therapeutic strategies for the same. Therefore, in the present study, we aimed to identify tumorigenic genetic alterations and molecular markers in cases of SCC with IP. We included 28 lung SCC cases (14 cases with IP and 14 cases without IP). We performed immunohistochemistry for STAT3, STAT5, and TLE1, and next-generation sequencing was performed using an iSeq 100 system. The panel used in this study targeted 50 cancer-associated genes. Immunohistochemically, the rate of TLE1 positivity was higher in the SCC without IP group (93 %) than in the SCC with IP group (29 %), while that of STAT5 was higher in the SCC with IP group (79 %) than in the SCC without IP group (14 %). STAT3 expression was high in both the groups (SCC with IP, 64 %; SCC without IP, 71 %). Eighteen genes were mutated in more than six samples, and FBXW7 mutation was mainly observed in the SCC with IP group (p < 0.01). Mechanisms underlying tumorigenesis in SCC with IP included STAT5 activation via inflammation, while that in SCC without IP included squamous TLE1-mediated metaplasia. These findings are based on smoking-induced STAT3 activation; therefore, patients with IP who smoke are more likely to have progressive SCC. We also found that FBXW7 mutations may be associated with SCC with IP and keratinization. ERBB4 and KDR mutations were observed in both with or without IP, and these genes may be tumor-related genes in SCC. These molecular markers may help determine the prognoses of patients with SCC with IP and direct the development of treatment approaches.
Collapse
Affiliation(s)
- Akiko Mochizuki
- Departments of Diagnostic Pathology, Oita University, Oita, Japan
| | - Haruto Nishida
- Departments of Diagnostic Pathology, Oita University, Oita, Japan.
| | - Ryo Kaimori
- Departments of Diagnostic Pathology, Oita University, Oita, Japan
| | - Yoshihiko Kondo
- Departments of Diagnostic Pathology, Oita University, Oita, Japan
| | - Hiroko Kadowaki
- Departments of Diagnostic Pathology, Oita University, Oita, Japan
| | - Takahiro Kusaba
- Departments of Diagnostic Pathology, Oita University, Oita, Japan
| | | | | | - Kenji Sugio
- Thoracic and Breast Surgery, Oita University, Oita, Japan
| | - Tsutomu Daa
- Departments of Diagnostic Pathology, Oita University, Oita, Japan
| |
Collapse
|
8
|
Popović L, Wintgens JP, Wu Y, Brankatschk B, Menninger S, Degenhart C, Jensen N, Wichert SP, Klebl B, Rossner MJ, Wehr MC. Profiling of ERBB receptors and downstream pathways reveals selectivity and hidden properties of ERBB4 antagonists. iScience 2024; 27:108839. [PMID: 38303712 PMCID: PMC10831936 DOI: 10.1016/j.isci.2024.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
ERBB receptor tyrosine kinases are involved in development and diseases like cancer, cardiovascular, neurodevelopmental, and mental disorders. Although existing drugs target ERBB receptors, the next generation of drugs requires enhanced selectivity and understanding of physiological pathway responses to improve efficiency and reduce side effects. To address this, we developed a multilevel barcoded reporter profiling assay, termed 'ERBBprofiler', in living cells to monitor the activity of all ERBB targets and key physiological pathways simultaneously. This assay helps differentiate on-target therapeutic effects from off-target and off-pathway side effects of ERBB antagonists. To challenge the assay, eight established ERBB antagonists were profiled. Known effects were confirmed, and previously uncharacterized properties were discovered, such as pyrotinib's preference for ERBB4 over EGFR. Additionally, two lead compounds selectively targeting ERBB4 were profiled, showing promise for clinical trials. Taken together, this multiparametric profiling approach can guide early-stage drug development and lead to improved future therapeutic interventions.
Collapse
Affiliation(s)
- Lukša Popović
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstrasse 6, 81669 Munich, Germany
| | - Jan P. Wintgens
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstrasse 6, 81669 Munich, Germany
| | - Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Ben Brankatschk
- Systasy Bioscience GmbH, Balanstrasse 6, 81669 Munich, Germany
| | - Sascha Menninger
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Carsten Degenhart
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Niels Jensen
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Sven P. Wichert
- Systasy Bioscience GmbH, Balanstrasse 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Moritz J. Rossner
- Systasy Bioscience GmbH, Balanstrasse 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Michael C. Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstrasse 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstrasse 6, 81669 Munich, Germany
| |
Collapse
|
9
|
Honkanen TJ, Luukkainen MEK, Koivunen JP. Role of human epidermal growth factor receptor 3 in treatment resistance of anaplastic lymphoma kinase translocated non-small cell lung cancer. Cancer Biol Ther 2023; 24:2256906. [PMID: 37722715 PMCID: PMC10512822 DOI: 10.1080/15384047.2023.2256906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND ALK tyrosine kinase inhibitors (TKI) have revolutionized the treatment of ALK+ non-small cell lung cancer (NSCLC), and therapy resistance occurs in virtually all patients. Multiple TKI resistance mechanisms have been characterized, including ERBB receptor coactivation. In this study, we investigated the role of HER3 in ALK TKI resistance. METHODS In vitro studies were carried out using ALK+ NSCLC cell lines H3122, H2228, and DFCI032. Pharmacological co-targeting of ALK and HER3 was investigated with ALK and ERBB TKIs, and HER3 knockdown was achieved using the CRISPR-Cas9 system. Co-localization of ALK and HER3 was investigated by immunoprecipitation (IP) and proximity ligation assay (PLA) in vitro and in vivo using six ALK+ NSCLC tumor samples. RESULTS In all tested cell lines, combined targeting with ALK and pan-ERBB TKI resulted in marked inhibition of colony formation and long-term (72 h) downregulation of pAKT levels. HER3 knockdown resulted in multiple effects on ALK+ cell lines, including the downregulation of ALK expression and visible morphological changes (H2228). Co-immunoprecipitation (IP) and proximation ligation assay (PLA) experiments provided evidence that both ALK and HER3 could interact in vitro, and this finding was verified by PLA using ALK+ NSCLC tumors. CONCLUSIONS This study provides evidence that HER3 may mediate TKI resistance in ALK+ NSCLC. Interestingly, we were able to show that both translocated ALK and HER3 could interact. Joint targeting of ALK and HER3 could be further investigate in ALK+ NSCLC.
Collapse
Affiliation(s)
- Tiia J Honkanen
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Milla E K Luukkainen
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Jussi P Koivunen
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, Oulu, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
10
|
Kouhmareh K, Martin E, Finlay D, Bhadada A, Hernandez-Vargas H, Downey F, Allen JK, Teriete P. Capture of circulating metastatic cancer cell clusters from a lung cancer patient can reveal a unique genomic profile and potential anti-metastatic molecular targets: A proof of concept study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558270. [PMID: 37781582 PMCID: PMC10541091 DOI: 10.1101/2023.09.19.558270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Metastasis remains the leading cause of cancer deaths worldwide and lung cancer, known for its highly metastatic progression, remains among the most lethal of malignancies. The heterogeneous genomic profile of lung cancer metastases is often unknown. Since different metastatic events can selectively spread to multiple organs, strongly suggests more studies are needed to understand and target these different pathways. Unfortunately, access to the primary driver of metastases, the metastatic cancer cell clusters (MCCCs), remains difficult and limited. These metastatic clusters have been shown to be 100-fold more tumorigenic than individual cancer cells. Capturing and characterizing MCCCs is a key limiting factor in efforts to help treat and ultimately prevent cancer metastasis. Elucidating differentially regulated biological pathways in MCCCs will help uncover new therapeutic drug targets to help combat cancer metastases. We demonstrate a novel, proof of principle technology, to capture MCCCs directly from patients' whole blood. Our platform can be readily tuned for different solid tumor types by combining a biomimicry-based margination effect coupled with immunoaffinity to isolate MCCCs. Adopting a selective capture approach based on overexpressed CD44 in MCCCs provides a methodology that preferentially isolates them from whole blood. Furthermore, we demonstrate a high capture efficiency of more than 90% when spiking MCCC-like model cell clusters into whole blood. Characterization of the captured MCCCs from lung cancer patients by immunofluorescence staining and genomic analyses, suggests highly differential morphologies and genomic profiles., This study lays the foundation to identify potential drug targets thus unlocking a new area of anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Kourosh Kouhmareh
- PhenoVista Biosciences, 6195 Cornerstone Ct E STE 114, San Diego, CA 92121
| | - Erika Martin
- PhenoVista Biosciences, 6195 Cornerstone Ct E STE 114, San Diego, CA 92121
| | - Darren Finlay
- NCI Cancer Center Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Anukriti Bhadada
- TumorGen Inc., 6197 Cornerstone Ct E STE #101, San Diego, CA 92121
| | | | - Francisco Downey
- TumorGen Inc., 6197 Cornerstone Ct E STE #101, San Diego, CA 92121
| | - Jeffrey K Allen
- TumorGen Inc., 6197 Cornerstone Ct E STE #101, San Diego, CA 92121
| | - Peter Teriete
- IDEAYA Biosciences, 7000 Shoreline Ct STE #350, South San Francisco, CA 94080
| |
Collapse
|
11
|
Altaf R, Ilyas U, Ma A, Shi M. Identification and validation of differentially expressed genes for targeted therapy in NSCLC using integrated bioinformatics analysis. Front Oncol 2023; 13:1206768. [PMID: 37324026 PMCID: PMC10264625 DOI: 10.3389/fonc.2023.1206768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background Despite the high prevalence of lung cancer, with a five-year survival rate of only 23%, the underlying molecular mechanisms of non-small cell lung cancer (NSCLC) remain unknown. There is a great need to identify reliable candidate biomarker genes for early diagnosis and targeted therapeutic strategies to prevent cancer progression. Methods In this study, four datasets obtained from the Gene Expression Omnibus were evaluated for NSCLC- associated differentially expressed genes (DEGs) using bioinformatics analysis. About 10 common significant DEGs were shortlisted based on their p-value and FDR (DOCK4, ID2, SASH1, NPR1, GJA4, TBX2, CD24, HBEGF, GATA3, and DDR1). The expression of significant genes was validated using experimental data obtained from TCGA and the Human Protein Atlas database. The human proteomic data for post- translational modifications was used to interpret the mutations in these genes. Results Validation of DEGs revealed a significant difference in the expression of hub genes in normal and tumor tissues. Mutation analysis revealed 22.69%, 48.95%, and 47.21% sequence predicted disordered regions of DOCK4, GJA4, and HBEGF, respectively. The gene-gene and drug-gene network analysis revealed important interactions between genes and chemicals suggesting they could act as probable drug targets. The system-level network showed important interactions between these genes, and the drug interaction network showed that these genes are affected by several types of chemicals that could serve as potential drug targets. Conclusions The study demonstrates the importance of systemic genetics in identifying potential drug- targeted therapies for NSCLC. The integrative system- level approach should contribute to a better understanding of disease etiology and may accelerate drug discovery for many cancer types.
Collapse
Affiliation(s)
- Reem Altaf
- Department of Pharmacy, Iqra University, Islamabad, Pakistan
| | - Umair Ilyas
- Department of Pharmaceutics, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Anmei Ma
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meiqi Shi
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Keyl P, Bischoff P, Dernbach G, Bockmayr M, Fritz R, Horst D, Blüthgen N, Montavon G, Müller KR, Klauschen F. Single-cell gene regulatory network prediction by explainable AI. Nucleic Acids Res 2023; 51:e20. [PMID: 36629274 PMCID: PMC9976884 DOI: 10.1093/nar/gkac1212] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.
Collapse
Affiliation(s)
- Philipp Keyl
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Berlin partner site, Germany
| | - Gabriel Dernbach
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Michael Bockmayr
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Pediatric Hematology and Oncolog, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf Martinistr. 52, 20246 Hamburg, Germany
| | - Rebecca Fritz
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Berlin partner site, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Institut für Biologie, Humboldt University, Free University of Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Grégoire Montavon
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Machine Learning Group, Technical University of Berlin, Marchstr. 23, 10587 Berlin, Germany
| | - Klaus-Robert Müller
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Machine Learning Group, Technical University of Berlin, Marchstr. 23, 10587 Berlin, Germany
- Department of Artificial Intelligence, Korea University, Seoul 136-713, South Korea
- Max-Planck-Institute for Informatics, Stuhlsatzenhausweg 4, 66123 Saarbrücken, Germany
| | - Frederick Klauschen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Berlin partner site, Germany
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Institute of Pathology, Ludwig-Maximilians-University Munich, Thalkirchner Str. 36, 80337 München, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Munich partner site, Germany
| |
Collapse
|
13
|
Pitcher JL, Alexander N, Miranda PJ, Johns TG. ErbB4 in the brain: Focus on high grade glioma. Front Oncol 2022; 12:983514. [PMID: 36119496 PMCID: PMC9471956 DOI: 10.3389/fonc.2022.983514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases (RTKs) consists of EGFR, ErbB2, ErbB3, and ErbB4. These receptors play key roles in cell proliferation, angiogenesis, cell migration, and in some cases, tumor promotion. ErbB4 is a unique member of the EGFR family, implicated not only in pro-tumorigenic mechanisms, such as cell proliferation and migration, but also in anti-tumorigenic activities, including cell differentiation and apoptosis. ErbB4 is differentially expressed in a wide variety of tissues, and interestingly, as different isoforms that result in vastly different signalling outcomes. Most studies have either ignored the presence of these isoforms or used overexpression models that may mask the true function of ErbB4. ErbB4 is widely expressed throughout the body with significant expression in skeletal tissue, mammary glands, heart, and brain. Knockout models have demonstrated embryonic lethality due to disrupted heart and brain development. Despite high expression in the brain and a critical role in brain development, remarkably little is known about the potential signalling activity of ErbB4 in brain cancer.This review focuses on the unique biology of ErbB4 in the brain, and in particular, highlights brain cancer research findings. We end the review with a focus on high grade gliomas, primarily glioblastoma, a disease that has been shown to involve EGFR and its mutant forms. The role of the different ErbB4 isotypes in high grade gliomas is still unclear and future research will hopefully shed some light on this question.
Collapse
Affiliation(s)
- Jamie-Lee Pitcher
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Jamie-Lee Pitcher,
| | - Naomi Alexander
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
| | - Panimaya Jeffreena Miranda
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
- Division of Paediatrics/Centre for Child Health Research, University of Western Australia, Crawley, WA, Australia
| | - Terrance G. Johns
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
- Division of Paediatrics/Centre for Child Health Research, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
14
|
Chakroborty D, Ojala VK, Knittle AM, Drexler J, Tamirat MZ, Ruzicka R, Bosch K, Woertl J, Schmittner S, Elo LL, Johnson MS, Kurppa KJ, Solca F, Elenius K. An Unbiased Functional Genetics Screen Identifies Rare Activating ERBB4 Mutations. CANCER RESEARCH COMMUNICATIONS 2022; 2:10-27. [PMID: 36860695 PMCID: PMC9973412 DOI: 10.1158/2767-9764.crc-21-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 06/18/2023]
Abstract
UNLABELLED Despite the relatively high frequency of somatic ERBB4 mutations in various cancer types, only a few activating ERBB4 mutations have been characterized, primarily due to lack of mutational hotspots in the ERBB4 gene. Here, we utilized our previously published pipeline, an in vitro screen for activating mutations, to perform an unbiased functional screen to identify potential activating ERBB4 mutations from a randomly mutated ERBB4 expression library. Ten potentially activating ERBB4 mutations were identified and subjected to validation by functional and structural analyses. Two of the 10 ERBB4 mutants, E715K and R687K, demonstrated hyperactivity in all tested cell models and promoted cellular growth under two-dimensional and three-dimensional culture conditions. ERBB4 E715K also promoted tumor growth in in vivo Ba/F3 cell mouse allografts. Importantly, all tested ERBB4 mutants were sensitive to the pan-ERBB tyrosine kinase inhibitors afatinib, neratinib, and dacomitinib. Our data indicate that rare ERBB4 mutations are potential candidates for ERBB4-targeted therapy with pan-ERBB inhibitors. STATEMENT OF SIGNIFICANCE ERBB4 is a member of the ERBB family of oncogenes that is frequently mutated in different cancer types but the functional impact of its somatic mutations remains unknown. Here, we have analyzed the function of over 8,000 randomly mutated ERBB4 variants in an unbiased functional genetics screen. The data indicate the presence of rare activating ERBB4 mutations in cancer, with potential to be targeted with clinically approved pan-ERBB inhibitors.
Collapse
Affiliation(s)
- Deepankar Chakroborty
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veera K. Ojala
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anna M. Knittle
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Mahlet Z. Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Graduate School of Åbo Akademi University (Informational and Structural Biology Doctoral Network), Turku, Finland
| | | | - Karin Bosch
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Laura L. Elo
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Kari J. Kurppa
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Oncology, Turku University Hospital, Turku, Finland
| |
Collapse
|
15
|
Lucas LM, Dwivedi V, Senfeld JI, Cullum RL, Mill CP, Piazza JT, Bryant IN, Cook LJ, Miller ST, Lott JH, Kelley CM, Knerr EL, Markham JA, Kaufmann DP, Jacobi MA, Shen J, Riese DJ. The Yin and Yang of ERBB4: Tumor Suppressor and Oncoprotein. Pharmacol Rev 2022; 74:18-47. [PMID: 34987087 PMCID: PMC11060329 DOI: 10.1124/pharmrev.121.000381] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
ERBB4 (HER4) is a member of the ERBB family of receptor tyrosine kinases, a family that includes the epidermal growth factor receptor (EGFR/ERBB1/HER1), ERBB2 (Neu/HER2), and ERBB3 (HER3). EGFR and ERBB2 are oncoproteins and validated targets for therapeutic intervention in a variety of solid tumors. In contrast, the role that ERBB4 plays in human malignancies is ambiguous. Thus, here we review the literature regarding ERBB4 function in human malignancies. We review the mechanisms of ERBB4 signaling with an emphasis on mechanisms of signaling specificity. In the context of this signaling specificity, we discuss the hypothesis that ERBB4 appears to function as a tumor suppressor protein and as an oncoprotein. Next, we review the literature that describes the role of ERBB4 in tumors of the bladder, liver, prostate, brain, colon, stomach, lung, bone, ovary, thyroid, hematopoietic tissues, pancreas, breast, skin, head, and neck. Whenever possible, we discuss the possibility that ERBB4 mutants function as biomarkers in these tumors. Finally, we discuss the potential roles of ERBB4 mutants in the staging of human tumors and how ERBB4 function may dictate the treatment of human tumors. SIGNIFICANCE STATEMENT: This articles reviews ERBB4 function in the context of the mechanistic model that ERBB4 homodimers function as tumor suppressors, whereas ERBB4-EGFR or ERBB4-ERBB2 heterodimers act as oncogenes. Thus, this review serves as a mechanistic framework for clinicians and scientists to consider the role of ERBB4 and ERBB4 mutants in staging and treating human tumors.
Collapse
Affiliation(s)
- Lauren M Lucas
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Vipasha Dwivedi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jared I Senfeld
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Richard L Cullum
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Christopher P Mill
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - J Tyler Piazza
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Ianthe N Bryant
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Laura J Cook
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - S Tyler Miller
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - James H Lott
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Connor M Kelley
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Elizabeth L Knerr
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jessica A Markham
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David P Kaufmann
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Megan A Jacobi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David J Riese
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| |
Collapse
|
16
|
Kawahara R, Simizu S. ErbB4-mediated regulation of vasculogenic mimicry capability in breast cancer cells. Cancer Sci 2021; 113:950-959. [PMID: 34971015 PMCID: PMC8898724 DOI: 10.1111/cas.15258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
ErbB4 is a member of the ErbB receptor tyrosine kinase family. It has both pro- and anti-oncogenic activities in tumors. Vasculogenic mimicry (VM), a phenomenon in which cancer cells form capillary-like structures without endothelial cells, has been recognized to be a cause of malignant phenotypes in some solid tumors. Here, we used an in vitro VM formation assay, and demonstrated that ErbB4 negatively regulated VM formation in human breast cancer cells. By using CRISPR/Cas9-mediated gene knockout, we verified that the depletion of endogenous ErbB4 improved the VM formation capability. Although treatment with neuregulin 1 (NRG1), a ligand of ErbB4, induced the phosphorylation of ErbB4 and promoted VM formation in a dose-dependent manner, it did not induce such activities in kinase-dead K751M ErbB4-expressing breast cancer cells. Moreover, we examined the effect of the missense mutation E872K of ErbB4, which has been reported in multiple tumors, on VM formation, and found that the mutation enhanced the basal phosphorylation level and ErbB4-mediated VM formation in the absence of NRG1 stimulation. While NRG1 stimulated VM formation, excessive activation of ErbB4 induced a negative effect. In E872K ErbB4-overexpressing cells, but not in wild-type ErbB4-overexpressing cells, the number of VM tubes was significantly decreased by low-dose treatment with the ErbB inhibitor afatinib. Taken together, our findings demonstrated the significance of ErbB4-mediated VM formation, and suggested the possibility of ErbB4 mutations as effective targets in breast cancer.
Collapse
Affiliation(s)
- Ryota Kawahara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
17
|
Tang Y, Tang Y, Xiang Y, Yan J, Guo K. AK003290 Protects Myocardial Cells Against Apoptosis and Promotes Cardiac Function Recovery Via miR-539-3p/ ErbB4 Axis in Ischemic-Reperfusion Injury. DNA Cell Biol 2021; 40:1528-1538. [PMID: 34931871 DOI: 10.1089/dna.2021.0323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acute myocardial infarction is the leading cause of death and disability worldwide. Reperfusion is the main treatment method. However, ischemia-reperfusion (I/R) injury aggravates tissue and cell damage. In this study, we aim to find a strategy to reduce I/R injury and promote cardiac function recovery. The expression of AK003290 was downregulated in I/R injury both in vitro and in vivo. Overexpression of AK003290 reduced infarction area, oxidative stress, cell apoptosis, and promoted cardiac function recovery. AK003290 was observed to sponge miR-539-3p. Moreover, the expression of miR-539-3p was upregulated in I/R injury. Overexpression of miR-539-3p reversed the beneficial role of AK003290 in I/R injury. The target gene of miR-539-3p was proved to be ErbB4, as identified by database prediction, dual-luciferase reporter assay, and pull-down assay. The expression of ErbB4 was negatively correlated with the expression of miR-539-3p, but positively correlated with the expression of AK003290. Subsequently, the key downstream proteins were determined. AK003290 promoted p-AKT and bcl-2 expression and inhibited p-ERK1/2, Bax, cytoplasmic cyto-c, and c-caspase-3 expression. The application of ErbB4 siRNA significantly reversed the effect of AK003290 on the expression of these proteins. These results suggest that ErbB4 is the key downstream gene, which regulates myocardial cell apoptosis by influencing the miR-539-3p expression. To the best of knowledge, this study is the first to demonstrate that the AK003290/miR-539-3p/ErbB4 axis regulates myocardial cell apoptosis. These findings provide a potential novel target for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Yong Tang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Tang
- Department of Radiology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Yan
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Guo
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
El-Gamal MI, Mewafi NH, Abdelmotteleb NE, Emara MA, Tarazi H, Sbenati RM, Madkour MM, Zaraei SO, Shahin AI, Anbar HS. A Review of HER4 (ErbB4) Kinase, Its Impact on Cancer, and Its Inhibitors. Molecules 2021; 26:7376. [PMID: 34885957 PMCID: PMC8659013 DOI: 10.3390/molecules26237376] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
HER4 is a receptor tyrosine kinase that is required for the evolution of normal body systems such as cardiovascular, nervous, and endocrine systems, especially the mammary glands. It is activated through ligand binding and activates MAPKs and PI3K/AKT pathways. HER4 is commonly expressed in many human tissues, both adult and fetal. It is important to understand the role of HER4 in the treatment of many disorders. Many studies were also conducted on the role of HER4 in tumors and its tumor suppressor function. Mostly, overexpression of HER4 kinase results in cancer development. In the present article, we reviewed the structure, location, ligands, physiological functions of HER4, and its relationship to different cancer types. HER4 inhibitors reported mainly from 2016 to the present were reviewed as well.
Collapse
Affiliation(s)
- Mohammed I. El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nada H. Mewafi
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
| | - Nada E. Abdelmotteleb
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
| | - Minnatullah A. Emara
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
| | - Hamadeh Tarazi
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (N.H.M.); (N.E.A.); (M.A.E.); (H.T.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Rawan M. Sbenati
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Moustafa M. Madkour
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Seyed-Omar Zaraei
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Afnan I. Shahin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.M.S.); (M.M.M.); (S.-O.Z.); (A.I.S.)
| | - Hanan S. Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates
| |
Collapse
|
19
|
Hu X, Xu H, Xue Q, Wen R, Jiao W, Tian K. The role of ERBB4 mutations in the prognosis of advanced non-small cell lung cancer treated with immune checkpoint inhibitors. Mol Med 2021; 27:126. [PMID: 34620079 PMCID: PMC8496027 DOI: 10.1186/s10020-021-00387-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have witnessed the achievements of convincing clinical benefits that feature the significantly prolonged overall survival (OS) of patients suffering from advanced non-small cell lung cancer (NSCLC), according to reports recently. Sensitivity to immunotherapy is related to several biomarkers, such as PD-L1 expression, TMB level, MSI-H and MMR. However, a further investigation into the novel biomarkers of the prognosis on ICIs treatment is required. In addition, there is an urgent demand for the establishment of a systematic hazard model to assess the efficacy of ICIs therapy for advanced NSCLC patients. METHODS In this study, the gene mutation and clinical data of NSCLC patients was obtained from the TCGA database, followed by the analysis of the detailed clinical information and mutational data relating to two advanced NSCLC cohorts receiving the ICIs treatment from the cBioPortal of Cancer Genomics. The Kaplan-Meier plot method was used to perform survival analyses, while selected variables were adopted to develop a systematic nomogram. The prognostic significance of ERBB4 in pan-cancer was analyzed by another cohort from the cBioPortal of Cancer Genomics. RESULTS The mutation frequencies of TP53 and ERBB4 were 54% and 8% in NSCLC, respectively. The mutual exclusive analysis in cBioPortal has indicated that ERBB4 does show co-occurencing mutations with TP53. Patients with ERBB4 mutations were confirmed to have better prognosis for ICIs treatment, compared to those seeing ERBB4 wild type (PFS: exact p = 0.017; OS: exact p < 0.01) and only TP53 mutations (OS: p = 0.021). The mutation status of ERBB4 and TP53 was tightly linked to DCB of ICIs treatment, PD-L1 expression, TMB value, and TIICs. Finally, a novel nomogram was built to evaluate the efficacy of ICIs therapy. CONCLUSION ERBB4 mutations could serve as a predictive biomarker for the prognosis of ICIs treatment. The systematic nomogram was proven to have the great potential for evaluating the efficacy of ICIs therapy for advanced NSCLC patients.
Collapse
Affiliation(s)
- Xilin Hu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Hanlin Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qianwen Xue
- Qingdao Maternal & Child Health and Family Planning Service Center, Qingdao, 266000, Shandong, China
| | - Ruran Wen
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Kaihua Tian
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
20
|
Hazan R, Schoemann M, Klutstein M. Endurance of extremely prolonged nutrient prevention across kingdoms of life. iScience 2021; 24:102745. [PMID: 34258566 PMCID: PMC8258982 DOI: 10.1016/j.isci.2021.102745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Numerous observations demonstrate that microorganisms can survive very long periods of nutrient deprivation and starvation. Moreover, it is evident that prolonged periods of starvation are a feature of many habitats, and many cells in all kingdoms of life are found in prolonged starvation conditions. Bacteria exhibit a range of responses to long-term starvation. These include genetic adaptations such as the long-term stationary phase and the growth advantage in stationary phase phenotypes characterized by mutations in stress-signaling genes and elevated mutation rates. Here, we suggest using the term "endurance of prolonged nutrient prevention" (EPNP phase), to describe this phase, which was also recently described in eukaryotes. Here, we review this literature and describe the current knowledge about the adaptations to very long-term starvation conditions in bacteria and eukaryotes, its conceptual and structural conservation across all kingdoms of life, and point out possible directions that merit further research.
Collapse
Affiliation(s)
- Ronen Hazan
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Miriam Schoemann
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| |
Collapse
|
21
|
Wang WP, Bian HB, Wang XZ, Liu L, Wei D. Association of ERBB4 genetic polymorphism with the risk and prognosis of non-small cell lung cancer in Chinese Han population: A population-based case-control study. Medicine (Baltimore) 2021; 100:e25762. [PMID: 34106605 PMCID: PMC8133196 DOI: 10.1097/md.0000000000025762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 04/10/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to explore the association of rs1836724 single-nucleotide polymorphism (SNP) of ERBB4 with risk and prognosis of non-small cell lung cancer (NSCLC) in the Chinese Han population.The genotype of rs1836724 SNP of ERBB4 from 258 patients with NSCLC and 200 noncancer controls were detected the TaqMan-MGB probes real-time fluorescence polymerase chain reaction. The distribution of genotype and alleles between the 2 groups was compared, and the association between clinicopathological characteristic and rs1836724 SNP was analyzed. Prognosis and influencing factors were analyzed by Kaplan-Meier and Cox regression analysis.There were significant differences in the genotype and allele distribution of ERBB4 rs1836724 between the NSCLC group and control group (P < .05). And CC genotype of rs1836724 was associated with increased risk of NSCLC in the Chinese Han population. Rs1836724 SNP was associated with TNM stage and lymph nodal metastasis (P = .001, P = .007). The median follow-up was 29 months, and the progression-free survival and overall survival of 258 NSCLC patients were 27.91% and 31.39%, respectively. Patients with GG genotype of rs1836724 had poor progression-free survival and overall survival. Rs1836724 SNP was an independent prognostic marker of NSCLC patients, CC genotype had a high risk of poor prognosis (odds ratio = 1.587, 95% confidence interval: 1.079-2.335, P = .019).In Chinese Han populations, rs1836724 SNP of ERBB4 may contribute toward the increased risk and poor prognosis of NSCLC.
Collapse
|
22
|
Guenzi E, Pluvy J, Guyard A, Nguenang M, Rebah K, Benrahmoune Z, Lamoril J, Cazes A, Gounant V, Brosseau S, Boileau C, Zalcman G, Théou-Anton N. A new KIF5B- ERBB4 gene fusion in a lung adenocarcinoma patient. ERJ Open Res 2021; 7:00582-2020. [PMID: 33816604 PMCID: PMC8005686 DOI: 10.1183/23120541.00582-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/12/2021] [Indexed: 01/15/2023] Open
Abstract
ERBB4 fusion is a rare, novel oncogenic event involved in the development of lung adenocarcinoma that is not routinely looked for, although ERBB4 fusion is a potential target for existing pan-ErbB tyrosine kinase and must be implemented in the laboratory https://bit.ly/3nYmGQ9.
Collapse
Affiliation(s)
- Edouard Guenzi
- Dept of Genetics, University Hospital Bichat-Claude Bernard, Paris University, Paris, France
| | - Johan Pluvy
- Thoracic Oncology Dept and CIC1425-CLIP2 Early Phase Cancer Clinical Trials Unit, University Hospital Bichat-Claude Bernard, University Paris-Diderot, Paris, France
| | - Alice Guyard
- Dept of Pathology, University Hospital Bichat-Claude Bernard, University Paris-Diderot, Paris, France
| | - Marina Nguenang
- Thoracic Oncology Dept and CIC1425-CLIP2 Early Phase Cancer Clinical Trials Unit, University Hospital Bichat-Claude Bernard, University Paris-Diderot, Paris, France
| | - Khedidja Rebah
- Dept of Genetics, University Hospital Bichat-Claude Bernard, Paris University, Paris, France
| | - Zoubida Benrahmoune
- Dept of Genetics, University Hospital Bichat-Claude Bernard, Paris University, Paris, France
| | - Jérome Lamoril
- Dept of Genetics, University Hospital Bichat-Claude Bernard, Paris University, Paris, France
| | - Aurelie Cazes
- Dept of Pathology, University Hospital Bichat-Claude Bernard, University Paris-Diderot, Paris, France
| | - Valérie Gounant
- Thoracic Oncology Dept and CIC1425-CLIP2 Early Phase Cancer Clinical Trials Unit, University Hospital Bichat-Claude Bernard, University Paris-Diderot, Paris, France
| | - Solenn Brosseau
- Thoracic Oncology Dept and CIC1425-CLIP2 Early Phase Cancer Clinical Trials Unit, University Hospital Bichat-Claude Bernard, University Paris-Diderot, Paris, France
| | - Catherine Boileau
- Dept of Genetics, University Hospital Bichat-Claude Bernard, Paris University, Paris, France
| | - Gérard Zalcman
- Thoracic Oncology Dept and CIC1425-CLIP2 Early Phase Cancer Clinical Trials Unit, University Hospital Bichat-Claude Bernard, University Paris-Diderot, Paris, France
| | - Nathalie Théou-Anton
- Dept of Genetics, University Hospital Bichat-Claude Bernard, Paris University, Paris, France
| |
Collapse
|
23
|
Ma L, Li H, Wang D, Hu Y, Yu M, Zhang Q, Qin N, Zhang X, Li X, Zhang H, Wu Y, Lv J, Yang X, Yu R, Zhang S, Wang J. Dynamic cfDNA Analysis by NGS in EGFR T790M-Positive Advanced NSCLC Patients Failed to the First-Generation EGFR-TKIs. Front Oncol 2021; 11:643199. [PMID: 33842353 PMCID: PMC8030263 DOI: 10.3389/fonc.2021.643199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose Circulating cell-free DNA (cfDNA) level has been demonstrated to be associated with efficacy in first generation EGFR TKIs in non-small cell lung cancer (NSCLC). However, the role of dynamic cfDNA analysis using next-generation sequencing (NGS) in patients with subsequent third-generation EGFR TKIs remains unclear. Methods From 2016 to 2019, 81 NSCLC patients with EGFR T790M mutation either in tissue or plasma who received third-generation EGFR TKIs treatment were enrolled. CfDNA were sequenced by NGS with a 425-gene panel. The association of clinical characteristics, pretreatment, dynamic cfDNA and T790M level with outcomes in patients treated with the third-generation TKIs were analyzed. Results In univariate analysis, the median PFS of patients with undetectable cfDNA level during treatment was significantly longer than those with detectable cfDNA (16.97 vs. 6.10 months; HR 0.2109; P < 0.0001). The median PFS of patients with undetectable T790M level during treatment was significantly longer than those with detectable T790M (14.1 vs. 4.4 months; HR 0.2192; P < 0.001). Cox hazard proportion model showed that cfDNA clearance was an independent predictor for longer PFS (HR 0.3085; P < 0.001) and longer OS (HR 0.499; P = 0.034). The most common resistant mutations of the third-generation TKIs were EGFR C797S (24%). CDK6 CNV, GRIN2A, BRCA2, EGFR D761N, EGFR Q791H, EGFR V843I, and ERBB4 mutation genes may possibly be new resistant mechanisms. Conclusions Patients with undetectable cfDNA during the third-generation EGFR TKI treatment have superior clinical outcomes, and dynamic cfDNA analysis by NGS is valuable to explore potential resistant mechanisms.
Collapse
Affiliation(s)
- Li Ma
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Haoyang Li
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dongpo Wang
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ying Hu
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Mengjun Yu
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Na Qin
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xinyong Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xi Li
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hui Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yuhua Wu
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jialin Lv
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xinjie Yang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ruoying Yu
- Research and Development, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.,Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Koivu MKA, Chakroborty D, Tamirat MZ, Johnson MS, Kurppa KJ, Elenius K. Identification of Predictive ERBB Mutations by Leveraging Publicly Available Cell Line Databases. Mol Cancer Ther 2020; 20:564-576. [PMID: 33323455 DOI: 10.1158/1535-7163.mct-20-0590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Although targeted therapies can be effective for a subgroup of patients, identification of individuals who benefit from the treatments is challenging. At the same time, the predictive significance of the majority of the thousands of mutations observed in the cancer tissues remains unknown. Here, we describe the identification of novel predictive biomarkers for ERBB-targeted tyrosine kinase inhibitors (TKIs) by leveraging the genetic and drug screening data available in the public cell line databases: Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, and Cancer Therapeutics Response Portal. We assessed the potential of 412 ERBB mutations in 296 cell lines to predict responses to 10 different ERBB-targeted TKIs. Seventy-six ERBB mutations were identified that were associated with ERBB TKI sensitivity comparable with non-small cell lung cancer cell lines harboring the well-established predictive EGFR L858R mutation or exon 19 deletions. Fourteen (18.4%) of these mutations were classified as oncogenic by the cBioPortal database, whereas 62 (81.6%) were regarded as novel potentially predictive mutations. Of the nine functionally validated novel mutations, EGFR Y1069C and ERBB2 E936K were transforming in Ba/F3 cells and demonstrated enhanced signaling activity. Mechanistically, the EGFR Y1069C mutation disrupted the binding of the ubiquitin ligase c-CBL to EGFR, whereas the ERBB2 E936K mutation selectively enhanced the activity of ERBB heterodimers. These findings indicate that integrating data from publicly available cell line databases can be used to identify novel, predictive nonhotspot mutations, potentially expanding the patient population benefiting from existing cancer therapies.
Collapse
Affiliation(s)
- Marika K A Koivu
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Deepankar Chakroborty
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mahlet Z Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Kari J Kurppa
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Oncology, Turku University Hospital, Turku, Finland
| |
Collapse
|
25
|
Cai X, Chen Z, Deng M, Li Z, Wu Q, Wei J, Dai C, Wang G, Luo C. Unique genomic features and prognostic value of COSMIC mutational signature 4 in lung adenocarcinoma and lung squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1176. [PMID: 33241025 PMCID: PMC7576056 DOI: 10.21037/atm-20-5952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Analysis of mutational signatures is becoming routine in cancer genomics, with implications for pathogenesis, classification, and prognosis. Among the signatures cataloged at COSMIC, mutational signature 4 has been linked to smoking. However, the distribution of signature 4 in Chinese lung cancer patients has not been evaluated, and its clinical value has not been evaluated. Here we survey mutational signatures in Chinese lung cancer patients and explore the relationship between signature 4 and other genomic features in the patients. Methods We extracted mutational signatures from whole-exome sequencing data of Chinese non-small cell lung cancer patients. The data included 401 lung adenocarcinoma (LUAD) and 92 squamous cell carcinoma (LUSC). We then performed statistical analysis to search for genomic and clinical features that can be linked to mutation signatures. Results We found signature 4 is the most frequent mutational signature in LUSC and the second most frequent in LUAD. Fifty-six LUAD and thirty-five LUSC patients were named with high signature 4 similarities (cosine similarity >0.7). These patients have shorter survival and higher tumor mutational burden comparing to those with low signature 4 similarities. Dozens of genes with single nucleotide variation, index mutations, and copy number variations were differentially enriched in the patients with high signature 4 similarities. Among these genes, CSMD3, LRP1B, TP53, SYNE1, SLIT2, FGF4, and FGF19 are common in both LUADs and LUSCs with high signature 4 similarities, showing that these genes are tightly associated with signature 4. Conclusions The present study is the first to report a comparison in Chinese NSCLC patients with or without COSMIC mutational signature 4. These results will help find the Signature 4 related mutational process in NSCLC.
Collapse
Affiliation(s)
- Xiuyu Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhenghe Chen
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Meiling Deng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianchao Wu
- GenomiCare Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | - Jinwang Wei
- GenomiCare Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | - Chun Dai
- GenomiCare Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | - Guan Wang
- GenomiCare Biotechnology (Shanghai) Co. Ltd., Shanghai, China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Gašperšič J, Videtič Paska A. Potential of modern circulating cell-free DNA diagnostic tools for detection of specific tumour cells in clinical practice. Biochem Med (Zagreb) 2020; 30:030504. [PMID: 32774122 PMCID: PMC7394254 DOI: 10.11613/bm.2020.030504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
Personalized medicine is a developing field of medicine that has gained in importance in recent decades. New diagnostic tests based on the analysis of circulating cell-free DNA (cfDNA) were developed as a tool of diagnosing different cancer types. By detecting the subpopulation of mutated DNA from cancer cells, it is possible to detect the presence of a specific tumour in early stages of the disease. Mutation analysis is performed by quantitative polymerase chain reaction (qPCR) or the next generation sequencing (NGS), however, cfDNA protocols need to be modified carefully in preanalytical, analytical, and postanalytical stages. To further improve treatment of cancer the Food and Drug Administration approved more than 20 companion diagnostic tests that combine cancer drugs with highly efficient genetic diagnostic tools. Tools detect mutations in the DNA originating from cancer cells directly through the subpopulation of cfDNA, the circular tumour DNA (ctDNA) analysis or with visualization of cells through intracellular DNA probes. A large number of ctDNA tests in clinical studies demonstrate the importance of new findings in the field of cancer diagnosis. We describe the innovations in personalized medicine: techniques for detecting ctDNA and genomic DNA (gDNA) mutations approved Food and Drug Administration companion genetic diagnostics, candidate genes for assembling the cancer NGS panels, and a brief mention of the multitude of cfDNA currently in clinical trials. Additionally, an overview of the development steps of the diagnostic tools will refresh and expand the knowledge of clinics and geneticists for research opportunities beyond the development phases.
Collapse
Affiliation(s)
- Jernej Gašperšič
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alja Videtič Paska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
Segers VFM, Dugaucquier L, Feyen E, Shakeri H, De Keulenaer GW. The role of ErbB4 in cancer. Cell Oncol (Dordr) 2020; 43:335-352. [PMID: 32219702 DOI: 10.1007/s13402-020-00499-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptor family consists of four members, ErbB1 (epidermal growth factor receptor-1), ErbB2, ErbB3, and ErbB4, which all have been found to play important roles in tumor development. ErbB4 appears to be unique among these receptors, because it is the only member with growth inhibiting properties. ErbB4 plays well-defined roles in normal tissue development, in particular the heart, the nervous system, and the mammary gland system. In recent years, information on the role of ErbB4 in a number of tumors has emerged and its general direction points towards a tumor suppressor role for ErbB4. However, there are some controversies and conflicting data, warranting a review on this topic. CONCLUSIONS Here, we discuss the role of ErbB4 in normal physiology and in breast, lung, colorectal, gastric, pancreatic, prostate, bladder, and brain cancers, as well as in hepatocellular carcinoma, cholangiocarcinoma, and melanoma. Understanding the role of ErbB4 in cancer is not only important for the treatment of tumors, but also for the treatment of other disorders in which ErbB4 plays a major role, e.g. cardiovascular disease.
Collapse
Affiliation(s)
- Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium. .,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium.
| | - Lindsey Dugaucquier
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, ZNA Hospital, Antwerp, Belgium
| |
Collapse
|
28
|
Huang Z, Wang SL, Chen H, Shen RK, Li XD, Huang QS, Wu CY, Weng DF, Lin JH. Clinicopathological and prognostic values of ErbB receptor family amplification in primary osteosarcoma. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:601-612. [PMID: 31663373 DOI: 10.1080/00365513.2019.1683764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteosarcoma is a malignant bone tumor with extremely high invasion, metastasis and mortality. The prognosis of patients with osteosarcoma remains poor. The ErbB receptor family was found to be overexpressed in human cancers and associated with poor prognosis. However, the role of ErbB receptor family in osteosarcoma has not been fully understood. The present study aimed to investigate the clinicopathological and prognostic significances of ErbB receptors in primary osteosarcoma. Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and fluorescence in situ hybridization (FISH) were used to detect the protein and gene expression of ErbB receptors in 60 primary osteosarcoma specimens and 30 non-neoplastic bone tissues. WB and RT-qPCR analyses showed that the protein and mRNA expression levels of EGFR, ErbB3 and ErbB4 in osteosarcoma specimens were significantly higher than those in non-neoplastic bone tissues. Seventeen (28.33%), 15 (25.00%) and 15 (25.00%) osteosarcoma specimens presented with amplification of EGFR, ErbB3 and ErbB4 gene, respectively, which were significantly higher compared with non-neoplastic bone tissues. The amplification of ErbB3 and ErbB4 in osteosarcoma was associated with advanced surgical stage. The amplification of EGFR, ErbB3, ErbB4 and the co-amplification of EGFR-ErbB3, EGFR-ErbB4, ErbB3-ErbB4 was linked with poor response to chemotherapy and distant metastasis. The amplification of EGFR, ErbB3 and ErbB4, as well as their co-amplification demonstrated independent prognostic values for reduced survival time of osteosarcoma patients and may serve as potential therapeutic targets for osteosarcoma patients in the future.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Sheng-Lin Wang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Hui Chen
- Department of Nephrology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Rong-Kai Shen
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Xiao-Dong Li
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Qing-Shan Huang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Chao-Yang Wu
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Dan-Feng Weng
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Jian-Hua Lin
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China.,Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
29
|
Tamirat MZ, Koivu M, Elenius K, Johnson MS. Structural characterization of EGFR exon 19 deletion mutation using molecular dynamics simulation. PLoS One 2019; 14:e0222814. [PMID: 31536605 PMCID: PMC6752865 DOI: 10.1371/journal.pone.0222814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor important in diverse biological processes including cell proliferation and survival. Upregulation of EGFR activity due to over-expression or mutation is widely implicated in cancer. Activating somatic mutations of the EGFR kinase are postulated to affect the conformation and/or stability of the protein, shifting the EGFR inactive-active state equilibrium towards the activated state. Here, we examined a common EGFR deletion mutation, Δ746ELREA750, which is frequently observed in non-small cell lung cancer patients. By using molecular dynamics simulation, we investigated the structural effects of the mutation that lead to the experimentally reported increases in kinase activity. Simulations of the active form wild-type and ΔELREA EGFRs revealed the deletion stabilizes the αC helix of the kinase domain, which is located adjacent to the deletion site, by rigidifying the flexible β3-αC loop that accommodates the ELREA sequence. Consequently, the αC helix is stabilized in the “αC-in” active conformation that would prolong the time of the activated state. Moreover, in the mutant kinase, a salt bridge between E762 and K745, which is key for EGFR activity, was also stabilized during the simulation. Additionally, the interaction between EGFR and ATP was favored by ΔELREA EGFR over wild-type EGFR, as reflected by the number of hydrogen bonds formed and the free energy of binding. Simulation of inactive EGFR suggested the deletion would promote a shift from the inactive conformation towards active EGFR, which is supported by the inward movement of the αC helix. The MDS results also align with the effects of tyrosine kinase inhibitors on ΔELREA and wild-type EGFR lung cancer cell lines, where more pronounced inhibition was observed against ΔELREA than for wild-type EGFR by inhibitors recognizing the active kinase conformation.
Collapse
Affiliation(s)
- Mahlet Z. Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Marika Koivu
- Medicity Research Laboratories and Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Klaus Elenius
- Medicity Research Laboratories and Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- * E-mail:
| |
Collapse
|
30
|
Alcala N, Leblay N, Gabriel AAG, Mangiante L, Hervas D, Giffon T, Sertier AS, Ferrari A, Derks J, Ghantous A, Delhomme TM, Chabrier A, Cuenin C, Abedi-Ardekani B, Boland A, Olaso R, Meyer V, Altmuller J, Le Calvez-Kelm F, Durand G, Voegele C, Boyault S, Moonen L, Lemaitre N, Lorimier P, Toffart AC, Soltermann A, Clement JH, Saenger J, Field JK, Brevet M, Blanc-Fournier C, Galateau-Salle F, Le Stang N, Russell PA, Wright G, Sozzi G, Pastorino U, Lacomme S, Vignaud JM, Hofman V, Hofman P, Brustugun OT, Lund-Iversen M, Thomas de Montpreville V, Muscarella LA, Graziano P, Popper H, Stojsic J, Deleuze JF, Herceg Z, Viari A, Nuernberg P, Pelosi G, Dingemans AMC, Milione M, Roz L, Brcic L, Volante M, Papotti MG, Caux C, Sandoval J, Hernandez-Vargas H, Brambilla E, Speel EJM, Girard N, Lantuejoul S, McKay JD, Foll M, Fernandez-Cuesta L. Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids. Nat Commun 2019; 10:3407. [PMID: 31431620 PMCID: PMC6702229 DOI: 10.1038/s41467-019-11276-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide incidence of pulmonary carcinoids is increasing, but little is known about their molecular characteristics. Through machine learning and multi-omics factor analysis, we compare and contrast the genomic profiles of 116 pulmonary carcinoids (including 35 atypical), 75 large-cell neuroendocrine carcinomas (LCNEC), and 66 small-cell lung cancers. Here we report that the integrative analyses on 257 lung neuroendocrine neoplasms stratify atypical carcinoids into two prognostic groups with a 10-year overall survival of 88% and 27%, respectively. We identify therapeutically relevant molecular groups of pulmonary carcinoids, suggesting DLL3 and the immune system as candidate therapeutic targets; we confirm the value of OTP expression levels for the prognosis and diagnosis of these diseases, and we unveil the group of supra-carcinoids. This group comprises samples with carcinoid-like morphology yet the molecular and clinical features of the deadly LCNEC, further supporting the previously proposed molecular link between the low- and high-grade lung neuroendocrine neoplasms.
Collapse
Affiliation(s)
- N Alcala
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - N Leblay
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - A A G Gabriel
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - L Mangiante
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - D Hervas
- Health Research Institute La Fe, Avenida Fernando Abril Martorell, Torre 106 A 7planta, 46026, Valencia, Spain
| | - T Giffon
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - A S Sertier
- Synergie Lyon Cancer, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France
| | - A Ferrari
- Synergie Lyon Cancer, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France
| | - J Derks
- Maastricht University Medical Centre (MUMC), GROW School for Oncology and Developmental Biology, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - A Ghantous
- International Agency for Research on Cancer (IARC/WHO), Section of Mechanisms of Carcinogenesis, 150 Cours Albert Thomas, 69008, Lyon, France
| | - T M Delhomme
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - A Chabrier
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - C Cuenin
- International Agency for Research on Cancer (IARC/WHO), Section of Mechanisms of Carcinogenesis, 150 Cours Albert Thomas, 69008, Lyon, France
| | - B Abedi-Ardekani
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - A Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057, Evry Cedex, France
| | - R Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057, Evry Cedex, France
| | - V Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057, Evry Cedex, France
| | - J Altmuller
- Cologne Centre for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Weyertal 115, 50931, Cologne, Germany
| | - F Le Calvez-Kelm
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - G Durand
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - C Voegele
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - S Boyault
- Translational Research and Innovation Department, Cancer Genomic Platform, 28 Rue Laennec, 69008, Lyon, France
| | - L Moonen
- Maastricht University Medical Centre (MUMC), GROW School for Oncology and Developmental Biology, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - N Lemaitre
- Institute for Advanced Biosciences, Site Santé, Allée des Alpes, 38700, La Tronche, Grenoble, France
| | - P Lorimier
- Institute for Advanced Biosciences, Site Santé, Allée des Alpes, 38700, La Tronche, Grenoble, France
| | - A C Toffart
- Pulmonology-Physiology Unit, Grenoble Alpes University Hospital, 38700, La Tronche, France
| | - A Soltermann
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - J H Clement
- Department Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - J Saenger
- Bad Berka Institute of Pathology, Robert-Koch-Allee 9, 99438, Bad Berka, Germany
| | - J K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6 West Derby Street, L7 8TX, Liverpool, UK
| | - M Brevet
- Pathology Institute, Hospices Civils de Lyon, University Claude Bernard Lyon 1, 59 Boulevard Pinel, 69677, BRON Cedex, France
| | - C Blanc-Fournier
- CLCC François Baclesse, 3 avenue du Général Harris, 14076, Caen Cedex 5, France
| | - F Galateau-Salle
- Department of Pathology, Centre Léon Bérard, 28, rue Laennec, 69373, Lyon Cedex 8, France
| | - N Le Stang
- Department of Pathology, Centre Léon Bérard, 28, rue Laennec, 69373, Lyon Cedex 8, France
| | - P A Russell
- St. Vincent's Hospital and University of Melbourne, Victoria Parade, Fitzroy, Melbourne, VIC, 3065, Australia
| | - G Wright
- St. Vincent's Hospital and University of Melbourne, Victoria Parade, Fitzroy, Melbourne, VIC, 3065, Australia
| | - G Sozzi
- Pathology Division Fondazione, IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - U Pastorino
- Pathology Division Fondazione, IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - S Lacomme
- Nancy Regional University Hospital, CHRU, CRB BB-0033-00035, INSERM U1256, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy Cedex, France
| | - J M Vignaud
- Nancy Regional University Hospital, CHRU, CRB BB-0033-00035, INSERM U1256, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy Cedex, France
| | - V Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Hospital, Biobank BB-0033-00025, IRCAN Inserm U1081 CNRS 7284, University Côte d'Azur, 30 avenue de la voie Romaine, CS, 51069-06001, Nice Cedex 1, France
| | - P Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Hospital, Biobank BB-0033-00025, IRCAN Inserm U1081 CNRS 7284, University Côte d'Azur, 30 avenue de la voie Romaine, CS, 51069-06001, Nice Cedex 1, France
| | - O T Brustugun
- Drammen Hospital, Vestre Viken Health Trust, Vestre Viken HF, Postboks 800, 3004, Drammen, Norway
- Institute of Cancer Research, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway
| | - M Lund-Iversen
- Institute of Cancer Research, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway
| | | | - L A Muscarella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013, San Giovanni Rotondo FG, Italy
| | - P Graziano
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013, San Giovanni Rotondo FG, Italy
| | - H Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - J Stojsic
- Department of Thoracopulmonary Pathology, Service of Pathology, Clinical Center of Serbia, Pasterova 2, Belgrade, 11000, Serbia
| | - J F Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057, Evry Cedex, France
| | - Z Herceg
- International Agency for Research on Cancer (IARC/WHO), Section of Mechanisms of Carcinogenesis, 150 Cours Albert Thomas, 69008, Lyon, France
| | - A Viari
- Synergie Lyon Cancer, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France
| | - P Nuernberg
- Cologne Centre for Genomics (CCG) and Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Weyertal 115, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - G Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, and Inter-Hospital Pathology Division, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy
| | - A M C Dingemans
- Maastricht University Medical Centre (MUMC), GROW School for Oncology and Developmental Biology, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - M Milione
- Pathology Division Fondazione, IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - L Roz
- Pathology Division Fondazione, IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - L Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - M Volante
- Department of Oncology, University of Turin, Pathology Division, Via Santena 7, 10126, Torino, Italy
| | - M G Papotti
- Department of Oncology, University of Turin, Pathology Division, Via Santena 7, 10126, Torino, Italy
| | - C Caux
- Department of Immunity, Virus, and Inflammation, Cancer Research Centre of Lyon (CRCL), 28 Rue Laennec, 69008, Lyon, France
| | - J Sandoval
- Health Research Institute La Fe, Avenida Fernando Abril Martorell, Torre 106 A 7planta, 46026, Valencia, Spain
| | - H Hernandez-Vargas
- Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 28 Rue Laennec, 69008, Lyon, France
| | - E Brambilla
- Institute for Advanced Biosciences, Site Santé, Allée des Alpes, 38700, La Tronche, Grenoble, France
| | - E J M Speel
- Maastricht University Medical Centre (MUMC), GROW School for Oncology and Developmental Biology, P.O. Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - N Girard
- Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
- European Reference Network (ERN-EURACAN), 28 rue Laennec, 69008, Lyon, France
| | - S Lantuejoul
- Synergie Lyon Cancer, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France
- Translational Research and Innovation Department, Cancer Genomic Platform, 28 Rue Laennec, 69008, Lyon, France
- Department of Pathology, Centre Léon Bérard, 28, rue Laennec, 69373, Lyon Cedex 8, France
| | - J D McKay
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - M Foll
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France
| | - L Fernandez-Cuesta
- International Agency for Research on Cancer (IARC/WHO), Section of Genetics, 150 Cours Albert Thomas, 69008, Lyon, France.
| |
Collapse
|
31
|
Design, synthesis and biological evaluation of novel substituted purine isosters as EGFR kinase inhibitors, with promising pharmacokinetic profile and in vivo efficacy. Eur J Med Chem 2019; 176:393-409. [DOI: 10.1016/j.ejmech.2019.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 01/07/2023]
|
32
|
Putnam DK, Ma X, Rice SV, Liu Y, Newman S, Zhang J, Chen X. VCF2CNA: A tool for efficiently detecting copy-number alterations in VCF genotype data and tumor purity. Sci Rep 2019; 9:10357. [PMID: 31316100 PMCID: PMC6637131 DOI: 10.1038/s41598-019-45938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/19/2019] [Indexed: 01/24/2023] Open
Abstract
VCF2CNA is a tool (Linux commandline or web-interface) for copy-number alteration (CNA) analysis and tumor purity estimation of paired tumor-normal VCF variant file formats. It operates on whole genome and whole exome datasets. To benchmark its performance, we applied it to 46 adult glioblastoma and 146 pediatric neuroblastoma samples sequenced by Illumina and Complete Genomics (CGI) platforms respectively. VCF2CNA was highly consistent with a state-of-the-art algorithm using raw sequencing data (mean F1-score = 0.994) in high-quality whole genome glioblastoma samples and was robust to uneven coverage introduced by library artifacts. In the whole genome neuroblastoma set, VCF2CNA identified MYCN high-level amplifications in 31 of 32 clinically validated samples compared to 15 found by CGI’s HMM-based CNA model. Moreover, VCF2CNA achieved highly consistent CNA profiles between WGS and WXS platforms (mean F1 score 0.97 on a set of 15 rhabdomyosarcoma samples). In addition, VCF2CNA provides accurate tumor purity estimates for samples with sufficient CNAs. These results suggest that VCF2CNA is an accurate, efficient and platform-independent tool for CNA and tumor purity analyses without accessing raw sequence data.
Collapse
Affiliation(s)
- Daniel K Putnam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen V Rice
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
33
|
Santoni-Rugiu E, Melchior LC, Urbanska EM, Jakobsen JN, Stricker KD, Grauslund M, Sørensen JB. Intrinsic resistance to EGFR-Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer: Differences and Similarities with Acquired Resistance. Cancers (Basel) 2019; 11:E923. [PMID: 31266248 PMCID: PMC6678669 DOI: 10.3390/cancers11070923] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Activating mutations in the epidermal growth factor receptor gene occur as early cancer-driving clonal events in a subset of patients with non-small cell lung cancer (NSCLC) and result in increased sensitivity to EGFR-tyrosine-kinase-inhibitors (EGFR-TKIs). Despite very frequent and often prolonged clinical response to EGFR-TKIs, virtually all advanced EGFR-mutated (EGFRM+) NSCLCs inevitably acquire resistance mechanisms and progress at some point during treatment. Additionally, 20-30% of patients do not respond or respond for a very short time (<3 months) because of intrinsic resistance. While several mechanisms of acquired EGFR-TKI-resistance have been determined by analyzing tumor specimens obtained at disease progression, the factors causing intrinsic TKI-resistance are less understood. However, recent comprehensive molecular-pathological profiling of advanced EGFRM+ NSCLC at baseline has illustrated the co-existence of multiple genetic, phenotypic, and functional mechanisms that may contribute to tumor progression and cause intrinsic TKI-resistance. Several of these mechanisms have been further corroborated by preclinical experiments. Intrinsic resistance can be caused by mechanisms inherent in EGFR or by EGFR-independent processes, including genetic, phenotypic or functional tumor changes. This comprehensive review describes the identified mechanisms connected with intrinsic EGFR-TKI-resistance and differences and similarities with acquired resistance and among clinically implemented EGFR-TKIs of different generations. Additionally, the review highlights the need for extensive pre-treatment molecular profiling of advanced NSCLC for identifying inherently TKI-resistant cases and designing potential combinatorial targeted strategies to treat them.
Collapse
Affiliation(s)
- Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Linea C Melchior
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Edyta M Urbanska
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Jan N Jakobsen
- Department of Oncology and Palliative Units, Zealand University Hospital, DK-4700 Næstved, Denmark
| | - Karin de Stricker
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Morten Grauslund
- Department of Clinical Genetics and Pathology, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Jens B Sørensen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| |
Collapse
|
34
|
Haryuni RD, Watabe S, Yamaguchi A, Fukushi Y, Tanaka T, Kawasaki Y, Zhou Y, Yokoyama S, Sakurai H. Negative feedback regulation of ErbB4 tyrosine kinase activity by ERK-mediated non-canonical phosphorylation. Biochem Biophys Res Commun 2019; 514:456-461. [PMID: 31053301 DOI: 10.1016/j.bbrc.2019.04.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
ErbB4 receptor tyrosine kinase has four different isoforms that are classified based on variants in the extracellular juxtamembrane domain (JM-a and JM-b) and the C-terminal region (CYT-1 and CYT-2). Here, we used the JM-b/CYT-1 isoform to investigate the roles of serine/threonine phosphorylation in MEK-ERK-dependent feedback inhibition. TPA as an activator of the ERK pathway markedly induced ErbB4 phosphorylation at Thr-674, the conserved common feedback site in the intracellular JM domain, which resulted in the downregulation of tyrosine autophosphorylation. We also identified Ser-1026 as an ErbB4-specific ERK target site in the CYT-1 region. Moreover, double mutations (Thr-674/Ser-1026 to Ala) significantly upregulated ErbB4 activation, indicating that Thr-674 and Ser-1026 are cooperatively involved in negative feedback regulation. Given the fact that ErbB4 mutation is one of the most common genetic alterations in melanoma cells, we demonstrated that a typical oncogenic ErbB4 mutant was resistant to the negative feedback regulation to maintain a highly active status of tyrosine kinase activity. Together, these findings indicate that feedback mechanisms are key switches determining oncogenic potentials of ErbB receptor kinases.
Collapse
Affiliation(s)
- Ratna Dini Haryuni
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency of Indonesia, Serpong, Tangerang Selatan, Indonesia
| | - Satoko Watabe
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Asako Yamaguchi
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yayoi Fukushi
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomohiro Tanaka
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuki Kawasaki
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Laboratory of Public Health, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yue Zhou
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
35
|
Duplaquet L, Figeac M, Leprêtre F, Frandemiche C, Villenet C, Sebda S, Sarafan-Vasseur N, Bénozène M, Vinchent A, Goormachtigh G, Wicquart L, Rousseau N, Beaussire L, Truant S, Michel P, Sabourin JC, Galateau-Sallé F, Copin MC, Zalcman G, De Launoit Y, Fafeur V, Tulasne D. Functional Analysis of Somatic Mutations Affecting Receptor Tyrosine Kinase Family in Metastatic Colorectal Cancer. Mol Cancer Ther 2019; 18:1137-1148. [PMID: 30926633 DOI: 10.1158/1535-7163.mct-18-0582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/08/2018] [Accepted: 03/21/2019] [Indexed: 11/16/2022]
Abstract
Besides the detection of somatic receptor tyrosine kinases (RTK) mutations in tumor samples, the current challenge is to interpret their biological relevance to give patients effective targeted treatment. By high-throughput sequencing of the 58 RTK exons of healthy tissues, colorectal tumors, and hepatic metastases from 30 patients, 38 different somatic mutations in RTKs were identified. The mutations in the kinase domains and present in both tumors and metastases were reconstituted to perform an unbiased functional study. Among eight variants found in seven RTKs (EPHA4-Met726Ile, EPHB2-Val621Ile, ERBB4-Thr731Met, FGFR4-Ala585Thr, VEGFR3-Leu1014Phe, KIT-Pro875Leu, TRKB-Leu584Val, and NTRK2-Lys618Thr), none displayed significantly increased tyrosine kinase activity. Consistently, none of them induced transformation of NIH3T3 fibroblasts. On the contrary, two RTK variants (FGFR4-Ala585Thr and FLT4-Leu1014Phe) caused drastic inhibition of their kinase activity. These findings indicate that these RTK variants are not suitable targets and highlight the importance of functional studies to validate RTK mutations as potential therapeutic targets.
Collapse
Affiliation(s)
- Leslie Duplaquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T, Lille, France
| | - Martin Figeac
- Univ. Lille, Plateau de génomique fonctionnelle et structurale, CHU Lille, Lille, France
| | - Frédéric Leprêtre
- Univ. Lille, Plateau de génomique fonctionnelle et structurale, CHU Lille, Lille, France
| | - Charline Frandemiche
- TCBN - Tumorothèque Caen Basse-Normandie, Caen, France.,Réseau Régional de Cancérologie, OncoBasseNormandie, Caen, France
| | - Céline Villenet
- Univ. Lille, Plateau de génomique fonctionnelle et structurale, CHU Lille, Lille, France
| | - Shéhérazade Sebda
- Univ. Lille, Plateau de génomique fonctionnelle et structurale, CHU Lille, Lille, France
| | - Nasrin Sarafan-Vasseur
- Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Mélanie Bénozène
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T, Lille, France
| | - Audrey Vinchent
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T, Lille, France
| | | | | | | | - Ludivine Beaussire
- Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Stéphanie Truant
- Department of Digestive Surgery and Transplantation, CHU Lille, Univ Lille, Lille Cedex, France
| | - Pierre Michel
- Department of Hepato-Gastroenterology, Rouen University Hospital, Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Rouen, France
| | - Jean-Christophe Sabourin
- Department of Pathology, Normandy University, INSERM 1245, Rouen University Hospital, Rouen, France
| | | | - Marie-Christine Copin
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T, Lille, France.,Tumorothèque du C2RC de Lille, Lille, France
| | - Gérard Zalcman
- Thoracic Oncology Department, CIC1425/CLIP2 Paris-Nord, Hôpital Bichat-Claude Bernard, Paris, France
| | - Yvan De Launoit
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T, Lille, France
| | - Véronique Fafeur
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T, Lille, France
| | - David Tulasne
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T, Lille, France.
| |
Collapse
|
36
|
Stein MK, Morris LK, Martin MG. Next-Generation Sequencing Identifies Novel RTK VUSs in Breast Cancer with an Emphasis on ROS1, ERBB4, ALK and NTRK3. Pathol Oncol Res 2018; 26:593-595. [PMID: 30460540 DOI: 10.1007/s12253-018-0550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 11/16/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Matthew K Stein
- West Cancer Center, Memphis, TN, USA. .,University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Lindsay K Morris
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
37
|
Gara SK, Lack J, Zhang L, Harris E, Cam M, Kebebew E. Metastatic adrenocortical carcinoma displays higher mutation rate and tumor heterogeneity than primary tumors. Nat Commun 2018; 9:4172. [PMID: 30301885 PMCID: PMC6178360 DOI: 10.1038/s41467-018-06366-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Adrenocortical cancer (ACC) is a rare cancer with poor prognosis and high mortality due to metastatic disease. All reported genetic alterations have been in primary ACC, and it is unknown if there is molecular heterogeneity in ACC. Here, we report the genetic changes associated with metastatic ACC compared to primary ACCs and tumor heterogeneity. We performed whole-exome sequencing of 33 metastatic tumors. The overall mutation rate (per megabase) in metastatic tumors was 2.8-fold higher than primary ACC tumor samples. We found tumor heterogeneity among different metastatic sites in ACC and discovered recurrent mutations in several novel genes. We observed 37–57% overlap in genes that are mutated among different metastatic sites within the same patient. We also identified new therapeutic targets in recurrent and metastatic ACC not previously described in primary ACCs. Adrenocortical cancer (ACC) is a rarely diagnosed and aggressive cancer whose metastatic form has been scarcely studied. Here, the authors study primary and metastatic ACC to investigate genomic heterogeneity, discovering higher mutation rates in metastatic lesions and novel recurrent mutations.
Collapse
Affiliation(s)
- Sudheer Kumar Gara
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Justin Lack
- Center for Cancer Research, Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa Zhang
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emerson Harris
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Margaret Cam
- Center for Cancer Research, Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Electron Kebebew
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
38
|
Cervical small cell neuroendocrine tumor mutation profiles via whole exome sequencing. Oncotarget 2018; 8:8095-8104. [PMID: 28042953 PMCID: PMC5352385 DOI: 10.18632/oncotarget.14098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/22/2016] [Indexed: 01/31/2023] Open
Abstract
Cervical small cell neuroendocrine tumors (CSCNETs) are rare, aggressive neuroendocrine tumors (NETs). Reliable diagnostic and prognostic CSCNET markers are lacking, making diagnosis and prognosis prediction difficult, and treatment strategies limited. Here we provide mutation profiles for five tumor-normal paired CSCNETs using whole exome sequencing (WES). We expanded our assessment of frequently mutated genes to include publicly available data from 55 small intestine neuroendocrine tumors, 10 pancreatic neuroendocrine tumors, 42 small cell lung cancers, six NET cell lines, and 188 cervical cancers, along with our five CSCNETs. We identified 1,968 somatic mutations, including 1,710 missense, 106 nonsense, 144 splice site, 4 lncRNA, 3 nonstop, and 1 start codon mutation. We assigned functions to the 114 most frequently mutated genes based on gene ontology. ATRX, ERBB4, and genes in the Akt/mTOR pathway were most frequently mutated. Positive cytoplasmic ERBB4 immunohistochemical staining was detected in all CSCNET tumors tested, but not in adjacent normal tissues. To our knowledge, this study is the first to utilize WES in matched CSCNET and normal tissues to identify somatic mutations. Further studies will improve our understanding of how ATRX and ERBB4 mutations and AKT/mTOR signaling promote CSCNET tumorigenesis, and may be leveraged in novel anti-cancer treatment strategies.
Collapse
|
39
|
Guo Y, Duan Z, Jia Y, Ren C, Lv J, Guo P, Zhao W, Wang B, Zhang S, Li Y, Li Z. HER4 isoform CYT2 and its ligand NRG1III are expressed at high levels in human colorectal cancer. Oncol Lett 2018; 15:6629-6635. [PMID: 29616125 DOI: 10.3892/ol.2018.8124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/20/2017] [Indexed: 01/30/2023] Open
Abstract
The present study aimed to evaluate the expression of human epidermal growth factor receptor (HER4) isoforms and their ligand neuregulin 1 (NRG1) isoforms in human primary colorectal cancer (CRC). The mRNA expression of HER4 isoforms JM-a, JM-b, CYT1 and CYT2, and their ligand isoforms NRG1 I, II and III in CRC tissues and adjacent normal tissues were quantified by reverse transcription-quantitative polymerase chain reaction analysis. Univariate analysis and logistic regression analysis were performed to analyze the association between HER4 and NRG1 expression and lymph node metastasis in CRC. The expression levels of CYT1 (P=0.002), CYT2 (P=0.002) and NRG1 type III (P<0.001) were significantly higher in the CRC tissues than in the adjacent normal tissues. The expression of CYT2 was correlated with tumor stage (P=0.018), lymph node status (P=0.015) and tumor-node-metastasis (P=0.038) in CRC. The expression of NRG1III was correlated with lymph node metastasis, and the expression of CYT2 was associated with the expression of NRG1III (r=0.691, P<0.01). The logistic regression analysis indicated that expression of CYT2 >50 was a risk factor for lymph node metastasis in CRC. In conclusion the expression levels of CYT1, CYT2 and NRG1III were upregulated in CRC. An expression of CYT-2 >50 was identified as a risk factor for lymph node metastasis in CRC. Therefore, CY-2 and NRG1III may be involved in the progression of CRC.
Collapse
Affiliation(s)
- Yan Guo
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China.,Fifth Department of Oncology, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhihui Duan
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China.,Department of Endoscopy, Xingtai General Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Yitao Jia
- Third Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Chaoying Ren
- Third Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Jian Lv
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Peng Guo
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Wujie Zhao
- Third Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Bin Wang
- Third Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Suqiao Zhang
- Third Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yaxing Li
- Third Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhongxin Li
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| |
Collapse
|
40
|
Rauf F, Festa F, Park JG, Magee M, Eaton S, Rinaldi C, Betanzos CM, Gonzalez-Malerva L, LaBaer J. Ibrutinib inhibition of ERBB4 reduces cell growth in a WNT5A-dependent manner. Oncogene 2018; 37:2237-2250. [PMID: 29398709 PMCID: PMC5916919 DOI: 10.1038/s41388-017-0079-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/25/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022]
Abstract
Alterations in ERBB family members have been associated with many tumor malignancies. EGFR and ERBB2 have been extensively explored in clinical oncology and several drugs currently target them therapeutically. However, the significance of ERBB4 as a potential therapeutic target remains mostly unexplored, even though ERBB4 is overexpressed or mutated in many solid tumors. Using a unique functional protein microarray platform, we found that ibrutinib inhibits ERBB4 activity in the same nM range as its canonical target, BTK. Cell-based assays revealed that ibrutinib treatment inhibited cell growth and decreased phosphorylation of ERBB4 and downstream targets MEK and ERK in cancer cell lines with high levels of endogenous ERBB4. In vivo, ibrutinib-responsive mouse xenograft tumors showed decreased tumor volumes with ibrutinib treatment. Interestingly, global gene expression comparisons between responsive and non-responsive cells identified a signature featuring the WNT pathway that predicts growth responsiveness to ibrutinib. Non-responsive ERBB4-expressing cell lines featured elevated activity of the WNT pathway, through the overexpression of WNT5A. Moreover, inhibition of WNT5A expression led to an ibrutinib response in non-responsive cell lines. Our data show that inhibiting ERBB4 reduces cell growth in cells that have low WNT5A expression and reveal a link between the ERBB4 and WNT pathways.
Collapse
Affiliation(s)
- Femina Rauf
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Fernanda Festa
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jin G Park
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mitchell Magee
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Seron Eaton
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Capria Rinaldi
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Carlos Morales Betanzos
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Laura Gonzalez-Malerva
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joshua LaBaer
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
41
|
Zhang Y, Zhang L, Li R, Chang DW, Ye Y, Minna JD, Roth JA, Han B, Wu X. Genetic variations in cancer-related significantly mutated genes and lung cancer susceptibility. Ann Oncol 2018; 28:1625-1630. [PMID: 28383694 DOI: 10.1093/annonc/mdx161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Background Cancer initiation and development are driven by key mutations in driver genes. Applying high-throughput sequencing technologies and bioinformatic analyses, The Cancer Genome Atlas (TCGA) project has identified panels of somatic mutations that contributed to the etiology of various cancers. However, there are few studies investigating the germline genetic variations in these significantly mutated genes (SMGs) and lung cancer susceptibility. Patients and methods We comprehensively evaluated 1655 tagged single nucleotide polymorphisms (SNPs) located in 127 SMGs identified by TCGA, and test their association with lung cancer risk in large-scale case-control study. Functional effect of the validated SNPs, gene mutation frequency and pathways were analyzed. Results We found 11 SNPs in 8 genes showed consistent association (P < 0.1) and 8 SNPs significantly associated with lung cancer risk (P < 0.05) in both discovery and validation phases. The most significant association was rs10412613 in PPP2R1A, with the minor G allele associated with a decreased risk of lung cancer [odds ratio = 0.91, 95% confidence interval (CI): 0.87-0.96, P = 2.3 × 10-4]. Cumulative analysis of risk score built as a weight sum of the 11 SNPs showed consistently elevated risk with increasing risk score (P for trend = 9.5 × 10-9). In stratified analyses, the association of PPP2R1A:rs10412613 and lung cancer risk appeared stronger among population of younger age at diagnosis and never smokers. The expression quantitative trait loci analysis indicated that rs10412613, rs10804682, rs635469 and rs6742399 genotypes significantly correlated with the expression of PPP2R1A, ATR, SETBP1 and ERBB4, respectively. From TCGA data, expression of the identified genes was significantly different in lung tumors compared with normal tissues, and the genes' highest mutation frequency was found in lung cancers. Integrative pathway analysis indicated the identified genes were mainly involved in AKT/NF-κB regulatory pathway suggesting the underlying biological processes. Conclusion This study revealed novel genetic variants in SMGs associated with lung cancer risk, which might contribute to elucidating the biological network involved in lung cancer development.
Collapse
Affiliation(s)
- Y Zhang
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, USA.,Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - L Zhang
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - R Li
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, USA.,Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - D W Chang
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Y Ye
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - J D Minna
- Harmon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center, Dallas
| | - J A Roth
- Department of Thoracic & Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, USA
| | - B Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - X Wu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
42
|
Mishra R, Hanker AB, Garrett JT. Genomic alterations of ERBB receptors in cancer: clinical implications. Oncotarget 2017; 8:114371-114392. [PMID: 29371993 PMCID: PMC5768410 DOI: 10.18632/oncotarget.22825] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/09/2017] [Indexed: 12/28/2022] Open
Abstract
The ERBB family of receptor tyrosine kinases has been implicated in carcinogenesis for over three decades with rigorous attention to EGFR and HER2. ERBB receptors, consisting of EGFR, HER2, HER3, and HER4 are part of a complicated signaling network that activates downstream signaling pathways including PI3K/AKT, Ras/Raf/MAPK, JAK/STAT and PKC. It is well established that EGFR is amplified and/or mutated in gliomas and non-small-cell lung carcinoma while HER2 is amplified and/or over-expressed in breast, gastric, ovarian, non-small cell lung carcinoma, and several other tumor types. With the advent of next generation sequencing and large scale efforts to explore the entire spectrum of genomic alterations involved in human cancer progression, it is now appreciated that somatic ERBB receptor mutations occur at relatively low frequencies across multiple tumor types. Some of these mutations may represent oncogenic driver events; clinical studies are underway to determine whether tumors harboring these alterations respond to small molecule EGFR/HER2 inhibitors. Recent evidence suggests that some somatic ERBB receptor mutations render resistance to FDA-approved EGFR and HER2 inhibitors. In this review, we focus on the landscape of genomic alterations of EGFR, HER2, HER3 and HER4 in cancer and the clinical implications for patients harboring these alterations.
Collapse
Affiliation(s)
- Rosalin Mishra
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Ariella B Hanker
- Department of Medicine, Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Joan T Garrett
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, U.S.A
| |
Collapse
|
43
|
Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017; 6. [PMID: 28892296 DOI: 10.1002/adhm.201700258] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Approaches to increase the efficiency in developing drugs and diagnostics tools, including new drug delivery and diagnostic technologies, are needed for improved diagnosis and treatment of major diseases and health problems such as cancer, inflammatory diseases, chronic wounds, and antibiotic resistance. Development within several areas of research ranging from computational sciences, material sciences, bioengineering to biomedical sciences and bioimaging is needed to realize innovative drug development and diagnostic (DDD) approaches. Here, an overview of recent progresses within key areas that can provide customizable solutions to improve processes and the approaches taken within DDD is provided. Due to the broadness of the area, unfortunately all relevant aspects such as pharmacokinetics of bioactive molecules and delivery systems cannot be covered. Tailored approaches within (i) bioinformatics and computer-aided drug design, (ii) nanotechnology, (iii) novel materials and technologies for drug delivery and diagnostic systems, and (iv) disease models to predict safety and efficacy of medicines under development are focused on. Current developments and challenges ahead are discussed. The broad scope reflects the multidisciplinary nature of the field of DDD and aims to highlight the convergence of biological, pharmaceutical, and medical disciplines needed to meet the societal challenges of the 21st century.
Collapse
Affiliation(s)
- Cecilia Sahlgren
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Annika Meinander
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Hongbo Zhang
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Fang Cheng
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Maren Preis
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Chunlin Xu
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Tiina A. Salminen
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Diana Toivola
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Center for Disease Modeling; University of Turku; FI-20520 Turku Finland
| | - Daniel Abankwa
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Ari Rosling
- Faculty of Science and Engineering; Polymer Technologies; Åbo Akademi University; FI-20500 Turku Finland
| | - Didem Şen Karaman
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Outi M. H. Salo-Ahen
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Ronald Österbacka
- Faculty of Science and Engineering; Physics; Åbo Akademi University; FI-20500 Turku Finland
| | - John E. Eriksson
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
| | - Stefan Willför
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Ion Petre
- Faculty of Science and Engineering; Computer Science; Åbo Akademi University; FI-20500 Turku Finland
| | - Jouko Peltonen
- Faculty of Science and Engineering; Physical Chemistry; Åbo Akademi University; FI-20500 Turku Finland
| | - Reko Leino
- Faculty of Science and Engineering; Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; FI-20500 Turku Finland
| | - Mark Johnson
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Jessica Rosenholm
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Niklas Sandler
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| |
Collapse
|
44
|
Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017. [DOI: 10.1002/adhm.201700258 10.1002/adhm.201700258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Cecilia Sahlgren
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Annika Meinander
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Hongbo Zhang
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Fang Cheng
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Maren Preis
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Chunlin Xu
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Tiina A. Salminen
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Diana Toivola
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Center for Disease Modeling; University of Turku; FI-20520 Turku Finland
| | - Daniel Abankwa
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Ari Rosling
- Faculty of Science and Engineering; Polymer Technologies; Åbo Akademi University; FI-20500 Turku Finland
| | - Didem Şen Karaman
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Outi M. H. Salo-Ahen
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Ronald Österbacka
- Faculty of Science and Engineering; Physics; Åbo Akademi University; FI-20500 Turku Finland
| | - John E. Eriksson
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
| | - Stefan Willför
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Ion Petre
- Faculty of Science and Engineering; Computer Science; Åbo Akademi University; FI-20500 Turku Finland
| | - Jouko Peltonen
- Faculty of Science and Engineering; Physical Chemistry; Åbo Akademi University; FI-20500 Turku Finland
| | - Reko Leino
- Faculty of Science and Engineering; Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; FI-20500 Turku Finland
| | - Mark Johnson
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Jessica Rosenholm
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Niklas Sandler
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| |
Collapse
|
45
|
Abstract
Breast cancer affects approximately 1 in 8 women, and it is estimated that over 246,660 women in the USA will be diagnosed with breast cancer in 2016. Breast cancer mortality has decline over the last two decades due to early detection and improved treatment. Over the last few years, there is mounting evidence to demonstrate the prominent role of receptor tyrosine kinases (RTKs) in tumor initiation and progression, and targeted therapies against the RTKs have been developed, evaluated in clinical trials, and approved for many cancer types, including breast cancer. However, not all breast cancers are the same as evidenced by the multiple subtypes of the disease, with some more aggressive than others, showing differential treatment response to different types of drugs. Moreover, in addition to canonical signaling from the cell surface, many RTKs can be trafficked to various subcellular compartments, e.g., the multivesicular body and nucleus, where they carry out critical cellular functions, such as cell proliferation, DNA replication and repair, and therapeutic resistance. In this review, we provide a brief summary on the role of a selected number of RTKs in breast cancer and describe some mechanisms of resistance to targeted therapies.
Collapse
Affiliation(s)
- Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan.,Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. .,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
46
|
Knittle AM, Helkkula M, Johnson MS, Sundvall M, Elenius K. SUMOylation regulates nuclear accumulation and signaling activity of the soluble intracellular domain of the ErbB4 receptor tyrosine kinase. J Biol Chem 2017; 292:19890-19904. [PMID: 28974580 DOI: 10.1074/jbc.m117.794271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/22/2017] [Indexed: 01/24/2023] Open
Abstract
Erb-B2 receptor tyrosine kinase 4 (ErbB4) is a kinase that can signal via a proteolytically released intracellular domain (ICD) in addition to classical receptor tyrosine kinase-activated signaling cascades. Previously, we have demonstrated that ErbB4 ICD is posttranslationally modified by the small ubiquitin-like modifier (SUMO) and functionally interacts with the PIAS3 SUMO E3 ligase. However, direct evidence of SUMO modification in ErbB4 signaling has remained elusive. Here, we report that the conserved lysine residue 714 in the ErbB4 ICD undergoes SUMO modification, which was reversed by sentrin-specific proteases (SENPs) 1, 2, and 5. Although ErbB4 kinase activity was not necessary for the SUMOylation, the SUMOylated ErbB4 ICD was tyrosine phosphorylated to a higher extent than unmodified ErbB4 ICD. Mutation of the SUMOylation site compromised neither ErbB4-induced phosphorylation of the canonical signaling pathway effectors Erk1/2, Akt, or STAT5 nor ErbB4 stability. In contrast, SUMOylation was required for nuclear accumulation of the ErbB4 ICD. We also found that Lys-714 was located within a leucine-rich stretch, which resembles a nuclear export signal, and could be inactivated by site-directed mutagenesis. Furthermore, SUMOylation modulated the interaction of ErbB4 with chromosomal region maintenance 1 (CRM1), the major nuclear export receptor for proteins. Finally, the SUMO acceptor lysine was functionally required for ErbB4 ICD-mediated inhibition of mammary epithelial cell differentiation in a three-dimensional cell culture model. Our findings indicate that a SUMOylation-mediated mechanism regulates nuclear localization and function of the ICD of ErbB4 receptor tyrosine kinase.
Collapse
Affiliation(s)
- Anna M Knittle
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland.,Turku Doctoral Programmes of Biomedical Sciences and Molecular Medicine, University of Turku, FI-20014 Turku, Finland
| | - Maria Helkkula
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland, and
| | - Maria Sundvall
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland, .,Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, FI-20014 Turku, Finland
| | - Klaus Elenius
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland, .,Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, FI-20014 Turku, Finland
| |
Collapse
|
47
|
Liu J, Cho SN, Wu SP, Jin N, Moghaddam SJ, Gilbert JL, Wistuba I, DeMayo FJ. Mig-6 deficiency cooperates with oncogenic Kras to promote mouse lung tumorigenesis. Lung Cancer 2017; 112:47-56. [PMID: 29191600 PMCID: PMC5718380 DOI: 10.1016/j.lungcan.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Lung cancer is the leading cause of cancer related deaths worldwide and mutation activating KRAS is one of the most frequent mutations found in lung adenocarcinoma. Identifying regulators of KRAS may aid in the development of therapies to treat this disease. The mitogen-induced gene 6, MIG-6, is a small adaptor protein modulating signaling in cells to regulate the growth and differentiation in multiple tissues. Here, we investigated the role of Mig-6 in regulating adenocarcinoma progression in the lungs of genetically engineered mice with activation of Kras. MATERIALS AND METHODS Using the CCSPCre mouse to specifically activate expression of the oncogenic KrasG12D in Club cells, we investigated the expression of Mig-6 in CCSPCreKrasG12D-induced lung tumors. To determine the role of Mig-6 in KrasG12D-induced lung tumorigenesis, Mig-6 was conditionally ablated in the Club cells by breeding Mig6f/f mice to CCSPCreKrasG12D mice, yielding CCSPCreMig-6d/dKrasG12D mice (Mig-6d/dKrasG12D). RESULTS We found that Mig-6 expression is decreased in CCSPCreKrasG12D-induced lung tumors. Ablation of Mig-6 in the KrasG12D background led to enhanced tumorigenesis and reduced life expectancy. During tumor progression, there was increased airway hyperplasia, a heightened inflammatory response, reduced apoptosis in KrasG12D mouse lungs, and an increase of total and phosphorylated ERBB4 protein levels. Mechanistically, Mig-6 deficiency attenuates the cell apoptosis of lung tumor expressing KRASG12D partially through activating the ErbB4 pathway. CONCLUSIONS In summary, Mig-6 deficiency promotes the development of KrasG12D-induced lung adenoma through reducing the cell apoptosis in KrasG12D mouse lungs partially by activating the ErbB4 pathway.
Collapse
Affiliation(s)
- Jian Liu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Sung-Nam Cho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - San-Pin Wu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Nili Jin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L Gilbert
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA.
| |
Collapse
|
48
|
ErbB Family Signalling: A Paradigm for Oncogene Addiction and Personalized Oncology. Cancers (Basel) 2017; 9:cancers9040033. [PMID: 28417948 PMCID: PMC5406708 DOI: 10.3390/cancers9040033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
ErbB family members represent important biomarkers and drug targets for modern precision therapy. They have gained considerable importance as paradigms for oncoprotein addiction and personalized medicine. This review summarizes the current understanding of ErbB proteins in cell signalling and cancer and describes the molecular rationale of prominent cases of ErbB oncoprotein addiction in different cancer types. In addition, we have highlighted experimental technologies for the development of innovative cancer cell models that accurately predicted clinical ErbB drug efficacies. In the future, such cancer models might facilitate the identification and validation of physiologically relevant novel forms of oncoprotein and non-oncoprotein addiction or synthetic lethality. The identification of genotype-drug response relationships will further advance personalized oncology and improve drug efficacy in the clinic. Finally, we review the most important drugs targeting ErbB family members that are under investigation in clinical trials or that made their way already into clinical routine. Taken together, the functional characterization of ErbB oncoproteins have significantly increased our knowledge on predictive biomarkers, oncoprotein addiction and patient stratification and treatment.
Collapse
|
49
|
Ma X, Li L, Tian T, Liu H, Li Q, Gao Q. Study of lung cancer regulatory network that involves erbB4 and tumor marker gene. Saudi J Biol Sci 2017; 24:649-657. [PMID: 28386192 PMCID: PMC5372390 DOI: 10.1016/j.sjbs.2017.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/28/2016] [Accepted: 01/07/2017] [Indexed: 12/12/2022] Open
Abstract
Our purpose is to screen out serum tumor markers closely correlated to the nature of solitary pulmonary nodule (SPN) and to draw a regulatory network containing genes correlated to lung cancer. Two hundred and sixty cases of SPN patients confirmed through pathological diagnosis were collected as subjects, factors closely correlated to the nature of SPN were screened out from eight tumor markers through Fisher discriminant method, and functional annotation and pathway analysis were conducted on erbB4 as well as its tumor marker genes by GO and KEGG databases. Four key tumor markers: CYFRA21-1, CA125, SCC-Ag and CA153 were successfully screened out and the first three proteins’ corresponding gene were KRT19, MUC16 and SERPINB3 while that of CA153 was not found. GO analysis on erbB4, KRT19, MUC16 and SERPINB3 showed that they covered three domains, cell components, molecular function and biological process; meanwhile, combined with KEGG database and based on signal pathway of erbB4, a regulatory network of lung cancer cells escaping from apoptosis was successfully made. This study indicates that serum tumor marker genes play an important role in the occurrence and development of lung cancer, besides, this study primarily discussed the molecular mechanism of these tumor markers in predicting tumor, which provides a basis for in-depth information about lung cancer.
Collapse
Affiliation(s)
- Xuhui Ma
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Lu Li
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Tongde Tian
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Huaimin Liu
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Qiujian Li
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Qilong Gao
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| |
Collapse
|
50
|
Developmental pruning of excitatory synaptic inputs to parvalbumin interneurons in monkey prefrontal cortex. Proc Natl Acad Sci U S A 2017; 114:E629-E637. [PMID: 28074037 DOI: 10.1073/pnas.1610077114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Working memory requires efficient excitatory drive to parvalbumin-positive (PV) interneurons in the primate dorsolateral prefrontal cortex (DLPFC). Developmental pruning eliminates superfluous excitatory inputs, suggesting that working memory maturation during adolescence requires pruning of excitatory inputs to PV interneurons. Therefore, we tested the hypothesis that excitatory synapses on PV interneurons are pruned during adolescence. The density of excitatory synapses, defined by overlapping vesicular glutamate transporter 1-positive (VGlut1+) and postsynaptic density 95-positive (PSD95+) puncta, on PV interneurons was lower in postpubertal relative to prepubertal monkeys. In contrast, puncta levels of VGlut1 and PSD95 proteins were higher in postpubertal monkeys and positively predicted activity-dependent PV levels, suggesting a greater strength of the remaining synapses after pruning. Because excitatory synapse number on PV interneurons is regulated by erb-b2 receptor tyrosine kinase 4 (ErbB4), whose function is influenced by alternative splicing, we tested the hypothesis that pruning of excitatory synapses on PV interneurons is associated with developmental shifts in ErbB4 expression and/or splicing. Pan-ErbB4 expression did not change, whereas the minor-to-major splice variant ratios increased with age. In cell culture, the major, but not the minor, variant increased excitatory synapse number on PV interneurons and displayed greater kinase activity than the minor variant, suggesting that the effect of ErbB4 signaling in PV interneurons is mediated by alternative splicing. Supporting this interpretation, in monkey DLPFC, higher minor-to-major variant ratios predicted lower PSD95+ puncta density on PV interneurons. Together, our findings suggest that ErbB4 splicing may regulate the pruning of excitatory synapses on PV interneurons during adolescence.
Collapse
|