1
|
Chen L, Huang L, Gu Y, Li C, Sun P, Xiang Y. Novel post-translational modifications of protein by metabolites with immune responses and immune-related molecules in cancer immunotherapy. Int J Biol Macromol 2024; 277:133883. [PMID: 39033895 DOI: 10.1016/j.ijbiomac.2024.133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/30/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Tumour immunotherapy is an effective and essential treatment for cancer. However, the heterogeneity of tumours and the complex and changeable tumour immune microenvironment (TME) creates many uncertainties in the clinical application of immunotherapy, such as different responses to tumour immunotherapy and significant differences in individual efficacy. It makes anti-tumour immunotherapy face many challenges. Immunometabolism is a critical determinant of immune cell response to specific immune effector molecules, significantly affecting the effects of tumour immunotherapy. It is attributed mainly to the fact that metabolites can regulate the function of immune cells and immune-related molecules through the protein post-translational modifications (PTMs) pathway. This study systematically summarizes a variety of novel protein PTMs including acetylation, propionylation, butyrylation, succinylation, crotonylation, malonylation, glutarylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, benzoylation, lactylation and isonicotinylation in the field of tumour immune regulation and immunotherapy. In particular, we elaborate on how different PTMs in the TME can affect the function of immune cells and lead to immune evasion in cancer. Lastly, we highlight the potential treatment with the combined application of target-inhibited protein modification and immune checkpoint inhibitors (ICIs) for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China.
| |
Collapse
|
2
|
Chen X, Ding X, Fang J, Mao C, Gong X, Zhang Y, Zhang N, Yan F, Lou Y, Chen Z, Ding W, Ma Z. Natural Derivatives of Selective HDAC8 Inhibitors with Potent in Vivo Antitumor Efficacy against Breast Cancer. J Med Chem 2024; 67:14609-14632. [PMID: 39110628 DOI: 10.1021/acs.jmedchem.4c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
HDAC8 is a therapeutic target with great promise for breast cancer. Here, we reported a novel compound corallorazine D from Nocardiopsis sp. XZB108, selectively inhibited HDAC8 (IC50 = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. Upon additional modifications of corallorazine D, a candidate compound 5k, demonstrated remarkable inhibitory potency against HDAC8 (IC50 = 0.12 ± 0.01 nM), 89-fold superior to PCI-34051. The selectivity of 5k was at least 439-fold, superior to corallorazine D, confirming the efficacy of our modifications. In an orthotopic mouse model of breast cancer, 5k displayed nearly 4-fold superior antitumor activity than SAHA. Furthermore, 5k triggered antitumor immunity by activating T cells. Treatment with 5k significantly increased the proportion of M1 macrophages and decreased the proportion of M2 macrophages (M1/M2 ratio = 2.67 ± 0.25). 5k represents a promising compound for further investigation as a potential treatment for breast cancer.
Collapse
Affiliation(s)
- Xiaoming Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xia Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Jiebin Fang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Churu Mao
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xingzhi Gong
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yuxiao Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Ningjing Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Feihang Yan
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yijie Lou
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
3
|
Zhao Q, Su X, Xue J, Liu Y, Zhu J, Cai X, Qin S. First-line treatment with KN046, chemotherapy and palliative radiotherapy for advanced esophageal squamous cell carcinoma: an open-label, dose escalation, and dose expansion phase Ib trial. Cancer Immunol Immunother 2024; 73:194. [PMID: 39105827 PMCID: PMC11303366 DOI: 10.1007/s00262-024-03769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024]
Abstract
There is growing evidence to suggest that radiotherapy might enhance the efficacy of immunotherapy. This study aimed to assess the possibility of KN046, a bispecific antibody targeting PD-L1 and CTLA-4, combined with chemotherapy and palliative radiotherapy for advanced esophageal squamous cell carcinoma (ESCC). In this open-label, phase Ib trial, patients with advanced ESCC were administered chemotherapy with palliative radiotherapy, and KN046 in the predefined escalation dosages of 1, 3, or 5 mg/kg (every 3 weeks during chemotherapy cycles and every 2 weeks during KN046 maintenance). The chemotherapy regimen constituted cisplatin (75 mg/m2 i.v., d1) and paclitaxel (135-175 mg/m2 ivgtt., d1). Radiotherapy specifics, including site, timing, dose, and fragmentation pattern, were at the investigator's discretion. The primary outcome was dose-limiting toxicity (DLT). From May 2019 to April 2021, 25 patients were enrolled across the dosage groups: 3 in 1 mg/kg, 12 in 3 mg/kg, and 10 in 5 mg/kg. No DLT was observed during the dose escalation. The objective response rate was 41.7% (95%CI 22.1-63.4), while the disease control rate was 87.5% (95%CI 67.6-97.3). At a median follow-up of 11.8 months, the median progression-free survival was 7.8 months (95%CI 5.2-9.7) and median overall survival was 15.9 months (95%CI 8.4-NE). Serious adverse events were reported in 48.0% of patients, predominantly leukopenia (16%), immune-mediated enterocolitis (12%), immune-mediated pneumonitis (8%), and neutropenia (8%). Combining KN046 with chemotherapy and palliative radiotherapy might be feasible, showing a favorable safety profile and notable efficacy in advanced ESCC patients.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xi Su
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiao Xue
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yandong Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jiaxing Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xuwei Cai
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
4
|
Oberholtzer N, Mills S, Mehta S, Chakraborty P, Mehrotra S. Role of antioxidants in modulating anti-tumor T cell immune resposne. Adv Cancer Res 2024; 162:99-124. [PMID: 39069371 DOI: 10.1016/bs.acr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
It has been well established that in addition to oxygen's vital in cellular respiration, a disruption of oxygen balance can lead to increased stress and oxidative injury. Similarly, reduced oxygen during tumor proliferation and invasion generates a hypoxic tumor microenvironment, resulting in dysfunction of immune cells and providing a conducive milieu for tumors to adapt and grow. Strategies to improve the persistence tumor reactive T cells in the highly oxidative tumor environment are being pursued for enhancing immunotherapy outcomes. To this end, we have focused on various strategies that can help increase or maintain the antioxidant capacity of T cells, thus reducing their susceptibility to oxidative stress/damage. Herein we lay out an overview on the role of oxygen in T cell signaling and how pathways regulating oxidative stress or antioxidant signaling can be targeted to enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Nathaniel Oberholtzer
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Stephanie Mills
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shubham Mehta
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Paramita Chakraborty
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
5
|
Belfrage E, Ek S, Johansson Å, Brauner H, Sonesson A, Drott K. Predictive and Prognostic Biomarkers in Patients With Mycosis Fungoides and Sézary Syndrome (BIO-MUSE): Protocol for a Translational Study. JMIR Res Protoc 2024; 13:e55723. [PMID: 38436589 PMCID: PMC11027051 DOI: 10.2196/55723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Cutaneous T-cell lymphoma (CTCL) is a rare group of lymphomas that primarily affects the skin. Mycosis fungoides (MF) is the most common form of CTCL and Sézary syndrome (SS) is more infrequent. Early stages (IA-IIA) have a favorable prognosis, while advanced stages (IIB-IVB) have a worse prognosis. Around 25% of patients with early stages of the disease will progress to advanced stages. Malignant skin-infiltrating T-cells in CTCL are accompanied by infiltrates of nonmalignant T-cells and other immune cells that produce cytokines that modulate the inflammation. Skin infection, often with Staphylococcus aureus, is frequent in advanced stages and can lead to sepsis and death. S. aureus has also been reported to contribute to the progression of the disease. Previous reports indicate a shift from Th1 to Th2 cytokine production and dysfunction of the skin barrier in CTCL. Treatment response is highly variable and often unpredictable, and there is a need for new predictive and prognostic biomarkers. OBJECTIVE This prospective translational study aims to identify prognostic biomarkers in the blood and skin of patients with MF and SS. METHODS The Predictive and Prognostic Biomarkers in Patients With MF and SS (BIO-MUSE) study aims to recruit 120 adult patients with MF or SS and a control group of 20 healthy volunteers. The treatments will be given according to clinical routine. The sampling of each patient will be performed every 3 months for 3 years. The blood samples will be analyzed for lactate dehydrogenase, immunoglobulin E, interleukins, thymus and activation-regulated chemokine, and lymphocyte subpopulations. The lymphoma microenvironment will be investigated through digital spatial profiling and single-cell RNA sequencing. Microbiological sampling and analysis of skin barrier function will be performed. The life quality parameters will be evaluated. The results will be evaluated by the stage of the disease. RESULTS Patient inclusion started in 2021 and is still ongoing in 2023, with 18 patients and 20 healthy controls enrolled. The publication of selected translational findings before the publication of the main results of the trial is accepted. CONCLUSIONS This study aims to investigate blood and skin with a focus on immune cells and the microbiological environment to identify potential new prognostic biomarkers in MF and SS. TRIAL REGISTRATION ClinicalTrials.gov NCT04904146; https://www.clinicaltrials.gov/study/NCT04904146. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/55723.
Collapse
Affiliation(s)
- Emma Belfrage
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Faculty of Engineering, Lund University, Lund, Sweden
| | - Åsa Johansson
- Clinical Genetics and Pathology, Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| | - Hanna Brauner
- Division of Dermatology and Venereology, Department of Medicine and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Venereology, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Sonesson
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Kristina Drott
- Department of Hematology and Transfusion Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
6
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
7
|
Falkowski L, Buddenkotte J, Datsi A. Epigenetics in T-cell driven inflammation and cancer. Semin Cell Dev Biol 2024; 154:250-260. [PMID: 36641367 DOI: 10.1016/j.semcdb.2023.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
For decades, scientists have been investigating how processes such as gene expression, stem cell plasticity, and cell differentiation can be modulated. The discovery of epigenetics helped unravel these processes and enabled the identification of major underlying mechanisms that, for example, are central for T cell maturation. T cells go through various stages in their development evolving from progenitor cells into double positive CD4/CD8 T cells that finally leave the thymus as naïve T cells. One major mechanism driving T cell maturation is the modulation of gene activity by temporally sequenced transcription of spatially exposed gene loci. DNA methylation, demethylation, and acetylation are key processes that enable a sequenced gene expression required for T cell differentiation. In vivo, differentiated T cells are subjected to enormous pressures originating from the microenvironment. Signals from this environment, particularly from an inflammatory or a tumor microenvironment, can push T cells to differentiate into specific effector and memory T cells, and even prompt T cells to adopt a state of dysfunctional exhaustion, en route of an epigenetically controlled mechanism. Fundamentals of these processes will be discussed in this review highlighting potential therapeutic interventions, in particular those beneficial to revive exhausted T cells.
Collapse
Affiliation(s)
- Lea Falkowski
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Zhou C, Li W, Liang Z, Wu X, Cheng S, Peng J, Zeng K, Li W, Lan P, Yang X, Xiong L, Zeng Z, Zheng X, Huang L, Fan W, Liu Z, Xing Y, Kang L, Liu H. Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death. Nat Commun 2024; 15:499. [PMID: 38216551 PMCID: PMC10786880 DOI: 10.1038/s41467-024-44779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Mutant KRAS (KRASMUT) is often exploited by cancers to shape tumor immunity, but the underlying mechanisms are not fully understood. Here we report that tumor-specific cytotoxic T lymphocytes (CTLs) from KRASMUT cancers are sensitive to activation-induced cell death (AICD). circATXN7, an NF-κB-interacting circular RNA, governs T cell sensitivity to AICD by inactivating NF-κB. Mechanistically, histone lactylation derived from KRASMUT tumor cell-produced lactic acid directly activates transcription of circATXN7, which binds to NF-κB p65 subunit and masks the p65 nuclear localization signal motif, thereby sequestering it in the cytoplasm. Clinically, circATXN7 upregulation in tumor-specific CTLs correlates with adverse clinical outcomes and immunotherapeutic resistance. Genetic ablation of circAtxn7 in CD8+ T cells leads to mutant-selective tumor inhibition, while also increases anti-PD1 efficacy in multiple tumor models in female mice. Furthermore, targeting circATXN7 in adoptively transferred tumor-reactive CTLs improves their antitumor activities. These findings provide insight into how lymphocyte-expressed circRNAs contribute to T-cell fate decisions and anticancer immunotherapies.
Collapse
Affiliation(s)
- Chi Zhou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenxin Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenxing Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianrui Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sijing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kaixuan Zeng
- Precision Medical Research Institute, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, China
| | - Weihao Li
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Yang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Xiong
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobin Zheng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenhua Fan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhanzhen Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
9
|
Truong N, Cottingham AL, Dharmaraj S, Shaw JR, Lasola JJM, Goodis CC, Fletcher S, Pearson RM. Multimodal nanoparticle-containing modified suberoylanilide hydroxamic acid polymer conjugates to mitigate immune dysfunction in severe inflammation. Bioeng Transl Med 2024; 9:e10611. [PMID: 38193117 PMCID: PMC10771562 DOI: 10.1002/btm2.10611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 10/01/2023] [Indexed: 01/10/2024] Open
Abstract
Excessive immune activation and immunosuppression are opposing factors that contribute to the dysregulated innate and adaptive immune responses seen in severe inflammation and sepsis. Here, a novel analog of the histone deacetylase inhibitor (HDACi), suberoylanilide hydroxamic acid (SAHA-OH), was incorporated into immunomodulatory poly(lactic acid)-based nanoparticles (iNP-SAHA) by employing a prodrug approach through the covalent modification of poly(lactic-co-glycolic acid) (PLGA) with SAHA-OH. iNP-SAHA formulation allowed for controlled incorporation and delivery of SAHA-OH from iNP-SAHA and treatment led to multimodal biological responses including significant reductions in proinflammatory cytokine secretions and gene expression, while increasing the survival of primary macrophages under lipopolysaccharide (LPS) challenge. Using a lethal LPS-induced endotoxemia mouse model of sepsis, iNP-SAHA administration improved the survival of mice in a dose-dependent manner and tended to improve survival at the lowest doses compared to iNP control. Further, iNP-SAHA reduced the levels of plasma proinflammatory cytokines and chemokines associated with sepsis more significantly than iNP and similarly improved inflammation-induced spleen and liver toxicity as iNP, supporting its potential polypharmacological activity. Collectively, iNP-SAHA offers a potential drug delivery approach to modulate the multifaceted inflammatory responses observed in diseases such as sepsis.
Collapse
Affiliation(s)
- Nhu Truong
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Andrea L. Cottingham
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Shruti Dharmaraj
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Jacob R. Shaw
- Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | | | - Christopher C. Goodis
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Steven Fletcher
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Ryan M. Pearson
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
- Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
10
|
Vuletić A, Mirjačić Martinović K, Spasić J. Role of Histone Deacetylase 6 and Histone Deacetylase 6 Inhibition in Colorectal Cancer. Pharmaceutics 2023; 16:54. [PMID: 38258065 PMCID: PMC10818982 DOI: 10.3390/pharmaceutics16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Histone deacetylase 6 (HDAC6), by deacetylation of multiple substrates and association with interacting proteins, regulates many physiological processes that are involved in cancer development and invasiveness such as cell proliferation, apoptosis, motility, epithelial to mesenchymal transition, and angiogenesis. Due to its ability to remove misfolded proteins, induce autophagy, and regulate unfolded protein response, HDAC6 plays a protective role in responses to stress and enables tumor cell survival. The scope of this review is to discuss the roles of HDCA6 and its implications for the therapy of colorectal cancer (CRC). As HDAC6 is overexpressed in CRC, correlates with poor disease prognosis, and is not essential for normal mammalian development, it represents a good therapeutic target. Selective inhibition of HDAC6 impairs growth and progression without inducing major adverse events in experimental animals. In CRC, HDAC6 inhibitors have shown the potential to reduce tumor progression and enhance the therapeutic effect of other drugs. As HDAC6 is involved in the regulation of immune responses, HDAC6 inhibitors have shown the potential to improve antitumor immunity by increasing the immunogenicity of tumor cells, augmenting immune cell activity, and alleviating immunosuppression in the tumor microenvironment. Therefore, HDAC6 inhibitors may represent promising candidates to improve the effect of and overcome resistance to immunotherapy.
Collapse
Affiliation(s)
- Ana Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Katarina Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Jelena Spasić
- Clinic for Medical Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| |
Collapse
|
11
|
Xu Y, He Z, Du J, Chen Z, Creemers JWM, Wang B, Li F, Wang Y. Epigenetic modulations of immune cells: from normal development to tumor progression. Int J Biol Sci 2023; 19:5120-5144. [PMID: 37928272 PMCID: PMC10620821 DOI: 10.7150/ijbs.88327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
The dysfunction of immune cell development often impairs immunological homeostasis, thus causing various human diseases. Accumulating evidence shows that the development of different immune cells from hematopoietic stem cells are highly fine-tuned by different epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodeling and RNA-related regulations. Understanding how epigenetic regulators modulate normal development of immune cells contributes to the identification of new strategies for various diseases. Here, we review recent advances suggesting that epigenetic modulations can orchestrate immune cell development and functions through their impact on critical gene expression. We also discuss the aberrations of epigenetic modulations in immune cells that influence tumor progression, and the fact that underlying mechanisms affect how epigenetic drugs interfere with tumor progression in the clinic.
Collapse
Affiliation(s)
- Yuanchun Xu
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Department of nursing, Daping Hospital, Army Medical University, Chongqing, China
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Du
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziqiang Chen
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | | | - Bin Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Fan Li
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yaling Wang
- Department of nursing, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Moran B, Davern M, Reynolds JV, Donlon NE, Lysaght J. The impact of histone deacetylase inhibitors on immune cells and implications for cancer therapy. Cancer Lett 2023; 559:216121. [PMID: 36893893 DOI: 10.1016/j.canlet.2023.216121] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
Many cancers possess the ability to suppress the immune response to malignant cells, thus facilitating tumour growth and invasion, and this has fuelled research to reverse these mechanisms and re-activate the immune system with consequent important therapeutic benefit. One such approach is to use histone deacetylase inhibitors (HDACi), a novel class of targeted therapies, which manipulate the immune response to cancer through epigenetic modification. Four HDACi have recently been approved for clinical use in malignancies including multiple myeloma and T-cell lymphoma. Most research in this context has focussed on HDACi and tumour cells, however, little is known about their impact on the cells of the immune system. Additionally, HDACi have been shown to impact the mechanisms by which other anti-cancer therapies exert their effects by, for example, increasing accessibility to exposed DNA through chromatin relaxation, impairing DNA damage repair pathways and increasing immune checkpoint receptor expression. This review details the effects of HDACi on immune cells, highlights the variability in these effects depending on experimental design, and provides an overview of clinical trials investigating the combination of HDACi with chemotherapy, radiotherapy, immunotherapy and multimodal regimens.
Collapse
Affiliation(s)
- Brendan Moran
- Cancer Immunology and Immunotherapy Group, Trinity St. James's Cancer Institute, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Maria Davern
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Noel E Donlon
- Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Trinity St. James's Cancer Institute, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
13
|
Sun N, Yang K, Yan W, Yao M, Yu C, Duan W, Gu X, Guo D, Jiang H, Xie C, Cheng J. Design and Synthesis of Triazole-Containing HDAC Inhibitors That Induce Antitumor Effects and Immune Response. J Med Chem 2023; 66:4802-4826. [PMID: 36934335 DOI: 10.1021/acs.jmedchem.2c01985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Histone deacetylase (HDAC) is an epigenetic antitumor drug target, but most existing HDAC inhibitors show limited antitumor activity and their use is often accompanied by serious adverse effects. To overcome these problems, we designed and synthesized a series of triazole-containing compounds as novel HDAC inhibitors. Among them, compound 19h exhibited potent and selective inhibition of HDAC1, with good antiproliferative activity in vitro and an excellent pharmacokinetic profile. Compound 19h significantly inhibited the growth of human tumor xenografts in nude mice and murine tumor growth in immune-competent mice bearing MC38 colon cancer. In the MC38 model, 19h increased the ratio of splenic CD4+ T effector cells and promoted complete tumor regression in 5/6 animals when combined with the mPD-1 antibody. These results suggested that selective class I HDAC inhibitors exert direct tumor growth inhibition and indirect immune cell-mediated antitumor effects and are synergistic with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nan Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kexin Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenzhong Yan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Mingyue Yao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Chengcheng Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wenwen Duan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| | - Chengying Xie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
14
|
Liu H, Liang Z, Cheng S, Huang L, Li W, Zhou C, Zheng X, Li S, Zeng Z, Kang L. Mutant KRAS Drives Immune Evasion by Sensitizing Cytotoxic T-Cells to Activation-Induced Cell Death in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203757. [PMID: 36599679 PMCID: PMC9951350 DOI: 10.1002/advs.202203757] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The roles of oncogenic KRAS in tumor immune evasion remain poorly understood. Here, mutant KRAS is identified as a key driver of tumor immune evasion in colorectal cancer (CRC). In human CRC specimens, a significant reduction in cytotoxic CD8+ T-cell tumor infiltration is found in patients with mutant versus wild type KRAS. This phenomenon is confirmed by preclinical models of CRC, and further study showed KRAS mutant tumors exhibited poor response to anti-PD-1 and adoptive T-cell therapies. Mechanistic analysis revealed lactic acid derived from mutant KRAS-expressing tumor cells sensitized tumor-specific cytotoxic CD8+ T-cells to activation-induced cell death via NF-κB inactivation; this may underlie the inverse association between intratumoral cytotoxic CD8+ T-cells and KRAS mutation. Importantly, KRAS mutated tumor resistance to immunotherapies can be overcome by inhibiting KRAS or blocking lactic acid production. Together, this work suggests the KRAS-mediated immune program is an exploitable therapeutic approach for the treatment of patients with KRAS mutant CRC.
Collapse
Affiliation(s)
- Huashan Liu
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Zhenxing Liang
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Sijing Cheng
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- School of MedicineSun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Liang Huang
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Wenxin Li
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Chi Zhou
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xiaobin Zheng
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Shujuan Li
- Department of PharmacyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052P. R. China
| | - Ziwei Zeng
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- University Clinic MannheimMedical Faculty MannheimHeidelberg University68167MannheimGermany
| | - Liang Kang
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| |
Collapse
|
15
|
Zhu Y, Zhou J, Zhu L, Hu W, Liu B, Xie L. Adoptive tumor infiltrating lymphocytes cell therapy for cervical cancer. Hum Vaccin Immunother 2022; 18:2060019. [PMID: 35468048 PMCID: PMC9897649 DOI: 10.1080/21645515.2022.2060019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the most common malignancies among females. As a virus-related cancer, cervical cancer has attracted a lot of attention to develop virus-targeted immune therapy, including vaccine and adoptive immune cell therapy (ACT). Adoptive tumor infiltrating lymphocytes (TILs) cell therapy has been found to be able to control advanced disease progression in some cervical cancer patients who have received several lines of treatment in a pilot clinical trial. In addition, sustainable therapeutic effect has been identified in some cases. The safety risks of TIL therapy for patients are minimal or at least manageable. In this review, we focused on the versatility of TILs and tried to summarize potential strategies to improve the therapeutic effect of TILs and discuss related perspectives.
Collapse
Affiliation(s)
- Yahui Zhu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Zhou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Lijing Zhu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Wenjing Hu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Li Xie
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China,CONTACT Li Xie No. 321, Zhongshan Road, Gulou District, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Xu Y, Li P, Liu Y, Xin D, Lei W, Liang A, Han W, Qian W. Epi-immunotherapy for cancers: rationales of epi-drugs in combination with immunotherapy and advances in clinical trials. Cancer Commun (Lond) 2022; 42:493-516. [PMID: 35642676 PMCID: PMC9198339 DOI: 10.1002/cac2.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
Over the last two decades, several epi-drugs, immune checkpoint inhibitors (ICIs) and adoptive cell therapies have received clinical approval for use in certain types of cancer. However, monotherapy with epi-drugs or ICIs has shown limited efficacy in most cancer patients. Epigenetic agents have been shown to regulate the crosstalk between the tumor and host immunity to alleviate immune evasion, suggesting that epi-drugs can potentially synergize with immunotherapy. In this review, we discuss recent insights into the rationales of incorporating epigenetic therapy into immunotherapy, called epi-immunotherapy, and focus on an update of current clinical trials in both hematological and solid malignancies. Furthermore, we outline the future challenges and strategies in the field of cancer epi-immunotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ping Li
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Yang Liu
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Dijia Xin
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Wen Lei
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Aibin Liang
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Weidong Han
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Wenbin Qian
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
| |
Collapse
|
17
|
Sim W, Lim WM, Hii LW, Leong CO, Mai CW. Targeting pancreatic cancer immune evasion by inhibiting histone deacetylases. World J Gastroenterol 2022; 28:1934-1945. [PMID: 35664961 PMCID: PMC9150054 DOI: 10.3748/wjg.v28.i18.1934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a vital role in maintaining the delicate balance between immune recognition and tumor development. Regardless, it is not uncommon that cancerous cells can intelligently acquire abilities to bypass the antitumor immune responses, thus allowing continuous tumor growth and development. Immune evasion has emerged as a significant factor contributing to the progression and immune resistance of pancreatic cancer. Compared with other cancers, pancreatic cancer has a tumor microenvironment that can resist most treatment modalities, including emerging immunotherapy. Sadly, the use of immunotherapy has yet to bring significant clinical breakthrough among pancreatic cancer patients, suggesting that pancreatic cancer has successfully evaded immunomodulation. In this review, we summarize the impact of genetic alteration and epigenetic modification (especially histone deacetylases, HDAC) on immune evasion in pancreatic cancer. HDAC overexpression significantly suppresses tumor suppressor genes, contributing to tumor growth and progression. We review the evidence on HDAC inhibitors in tumor eradication, improving T cells activation, restoring tumor immunogenicity, and modulating programmed death 1 interaction. We provide our perspective in targeting HDAC as a strategy to reverse immune evasion in pancreatic cancer.
Collapse
Affiliation(s)
- Wynne Sim
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Wei-Meng Lim
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ling-Wei Hii
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
- AGTC Genomics, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
18
|
Ding P, Ma Z, Liu D, Pan M, Li H, Feng Y, Zhang Y, Shao C, Jiang M, Lu D, Han J, Wang J, Yan X. Lysine Acetylation/Deacetylation Modification of Immune-Related Molecules in Cancer Immunotherapy. Front Immunol 2022; 13:865975. [PMID: 35585975 PMCID: PMC9108232 DOI: 10.3389/fimmu.2022.865975] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
As major post-translational modifications (PTMs), acetylation and deacetylation are significant factors in signal transmission and cellular metabolism, and are modulated by a dynamic process via two pivotal categories of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). In previous studies, dysregulation of lysine acetylation and deacetylation has been reported to be associated with the genesis and development of malignancy. Scientists have recently explored acetylation/deacetylation patterns and prospective cancer therapy techniques, and the FDA has approved four HDAC inhibitors (HDACi) to be used in clinical treatment. In the present review, the most recent developments in the area of lysine acetylation/deacetylation alteration in cancer immunotherapy were investigated. Firstly, a brief explanation of the acetylation/deacetylation process and relevant indispensable enzymes that participate therein is provided. Subsequently, a multitude of specific immune-related molecules involved in the lysine acetylation/deacetylation process are listed in the context of cancer, in addition to several therapeutic strategies associated with lysine acetylation/deacetylation modification in cancer immunotherapy. Finally, a number of prospective research fields related to cancer immunotherapy concepts are offered with detailed analysis. Overall, the present review may provide a reference for researchers in the relevant field of study, with the aim of being instructive and meaningful to further research as well as the selection of potential targets and effective measures for future cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Huizi Li
- Department of Outpatient, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Di Lu
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Jinliang Wang
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| |
Collapse
|
19
|
Gheorghe AS, Negru ȘM, Preda M, Mihăilă RI, Komporaly IA, Dumitrescu EA, Lungulescu CV, Kajanto LA, Georgescu B, Radu EA, Stănculeanu DL. Biochemical and Metabolical Pathways Associated with Microbiota-Derived Butyrate in Colorectal Cancer and Omega-3 Fatty Acids Implications: A Narrative Review. Nutrients 2022; 14:nu14061152. [PMID: 35334808 PMCID: PMC8950877 DOI: 10.3390/nu14061152] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Knowledge regarding the influence of the microbial community in cancer promotion or protection has expanded even more through the study of bacterial metabolic products and how they can modulate cancer risk, which represents an extremely challenging approach for the relationship between intestinal microbiota and colorectal cancer (CRC). This review discusses research progress on the effect of bacterial dysbiosis from a metabolic point of view, particularly on the biochemical mechanisms of butyrate, one of the main short chain fatty acids (SCFAs) with anti-inflammatory and anti-tumor properties in CRC. Increased daily intake of omega-3 polyunsaturated fatty acids (PUFAs) significantly increases the density of bacteria that are known to produce butyrate. Omega-3 PUFAs have been proposed as a treatment to prevent gut microbiota dysregulation and lower the risk or progression of CRC.
Collapse
Affiliation(s)
- Adelina Silvana Gheorghe
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Șerban Mircea Negru
- Department of Oncology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Correspondence: (Ș.M.N.); (M.P.)
| | - Mădălina Preda
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (Ș.M.N.); (M.P.)
| | - Raluca Ioana Mihăilă
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Isabela Anda Komporaly
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Elena Adriana Dumitrescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | | | - Lidia Anca Kajanto
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Bogdan Georgescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Emanuel Alin Radu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| | - Dana Lucia Stănculeanu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.S.G.); (R.I.M.); (I.A.K.); (E.A.D.); (L.A.K.); (B.G.); (E.A.R.); (D.L.S.)
| |
Collapse
|
20
|
Oh SJ, Lee HJ, Song KH, Kim S, Cho E, Lee J, Bosenberg MW, Kim TW. Targeting NANOG/HDAC1 axis reverses resistance to PD-1 blockade by reinvigorating anti-tumor immunity cycle. J Clin Invest 2022; 132:147908. [PMID: 35104240 PMCID: PMC8920337 DOI: 10.1172/jci147908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/26/2022] [Indexed: 11/27/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has shifted the paradigm for cancer treatment. However, the majority of patients lack effective responses because of the emergence of immune-refractory tumors that disrupt the amplification of antitumor immunity. Therefore, the identification of clinically available targets that restrict antitumor immunity is required to develop potential combination therapies. Here, using transcriptomic data on patients with cancer treated with programmed cell death protein 1 (PD-1) therapy and newly established mouse preclinical anti–PD-1 therapy–refractory models, we identified NANOG as a factor restricting the amplification of the antitumor immunity cycle, thereby contributing to the immune-refractory feature of the tumor microenvironment (TME). Mechanistically, NANOG induced insufficient T cell infiltration and resistance to CTL-mediated killing via the histone deacetylase 1–dependent (HDAC1-dependent) regulation of CXCL10 and MCL1, respectively. Importantly, HDAC1 inhibition using an actionable agent sensitized NANOGhi immune-refractory tumors to PD-1 blockade by reinvigorating the antitumor immunity cycle. Thus, our findings implicate the NANOG/HDAC1 axis as a central molecular target for controlling immune-refractory tumors and provide a rationale for combining HDAC inhibitors to reverse the refractoriness of tumors to ICB therapy.
Collapse
Affiliation(s)
- Se Jin Oh
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea, Republic of
| | - Hyo-Jung Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea, Republic of
| | - Kwon-Ho Song
- Department of Cell Biology, Daegu Catholic University School of Medicine, Daegu, Korea, Republic of
| | - Suyeon Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea, Republic of
| | - Eunho Cho
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea, Republic of
| | - Jaeyoon Lee
- College of Social Sciences and Humanities, Northeastern University, Boston, United States of America
| | - Marcus W Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, United States of America
| | - Tae Woo Kim
- Korea University College of Medicine, Seoul, Korea, Republic of
| |
Collapse
|
21
|
Karagiannis D, Rampias T. HDAC Inhibitors: Dissecting Mechanisms of Action to Counter Tumor Heterogeneity. Cancers (Basel) 2021; 13:3575. [PMID: 34298787 PMCID: PMC8307174 DOI: 10.3390/cancers13143575] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Intra-tumoral heterogeneity presents a major obstacle to cancer therapeutics, including conventional chemotherapy, immunotherapy, and targeted therapies. Stochastic events such as mutations, chromosomal aberrations, and epigenetic dysregulation, as well as micro-environmental selection pressures related to nutrient and oxygen availability, immune infiltration, and immunoediting processes can drive immense phenotypic variability in tumor cells. Here, we discuss how histone deacetylase inhibitors, a prominent class of epigenetic drugs, can be leveraged to counter tumor heterogeneity. We examine their effects on cellular processes that contribute to heterogeneity and provide insights on their mechanisms of action that could assist in the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
22
|
Renaude E, Kroemer M, Borg C, Peixoto P, Hervouet E, Loyon R, Adotévi O. Epigenetic Reprogramming of CD4 + Helper T Cells as a Strategy to Improve Anticancer Immunotherapy. Front Immunol 2021; 12:669992. [PMID: 34262562 PMCID: PMC8273698 DOI: 10.3389/fimmu.2021.669992] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/15/2021] [Indexed: 01/22/2023] Open
Abstract
Evidences highlight the role of various CD4+ helper T cells (CD4+ Th) subpopulations in orchestrating the immune responses against cancers. Epigenetics takes an important part in the regulation of CD4+ Th polarization and plasticity. In this review, we described the epigenetic factors that govern CD4+ T cells differentiation and recruitment in the tumor microenvironment and their subsequent involvement in the antitumor immunity. Finally, we discussed how to manipulate tumor reactive CD4+ Th responses by epigenetic drugs to improve anticancer immunotherapy.
Collapse
Affiliation(s)
- Elodie Renaude
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, Besançon, France
| | - Marie Kroemer
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Christophe Borg
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Paul Peixoto
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,EPIGENEXP Platform, University of Bourgogne Franche-Comté, Besançon, France
| | - Eric Hervouet
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,EPIGENEXP Platform, University of Bourgogne Franche-Comté, Besançon, France.,DImaCell Platform, University of Bourgogne Franche-Comté, Besançon, France
| | - Romain Loyon
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Olivier Adotévi
- University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| |
Collapse
|
23
|
Trojaniello C, Luke JJ, Ascierto PA. Therapeutic Advancements Across Clinical Stages in Melanoma, With a Focus on Targeted Immunotherapy. Front Oncol 2021; 11:670726. [PMID: 34178657 PMCID: PMC8222774 DOI: 10.3389/fonc.2021.670726] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022] Open
Abstract
Melanoma is the most fatal skin cancer. In the early stages, it can be safely treated with surgery alone. However, since 2011, there has been an important revolution in the treatment of melanoma with new effective treatments. Targeted therapy and immunotherapy with checkpoint inhibitors have changed the history of this disease. To date, more than half of advanced melanoma patients are alive at 5 years; despite this breakthrough, approximately half of the patients still do not respond to treatment. For these reasons, new therapeutic strategies are required to expand the number of patients who can benefit from immunotherapy or combination with targeted therapy. Current research aims at preventing primary and acquired resistance, which are both responsible for treatment failure in about 50% of patients. This could increase the effectiveness of available drugs and allow for the evaluation of new combinations and new targets. The main pathways and molecules under study are the IDO inhibitor, TLR9 agonist, STING, LAG-3, TIM-3, HDAC inhibitors, pegylated IL-2 (NKTR-214), GITR, and adenosine pathway inhibitors, among others (there are currently about 3000 trials that are evaluating immunotherapeutic combinations in different tumors). Other promising strategies are cancer vaccines and oncolytic viruses. Another approach is to isolate and remove immune cells (DCs, T cells, and NK cells) from the patient's blood or tumor infiltrates, add specific gene fragments, expand them in culture with growth factors, and re-inoculate into the same patient. TILs, TCR gene transfer, and CAR-T therapy follow this approach. In this article, we give an overview over the current status of melanoma therapies, the clinical rationale for choosing treatments, and the new immunotherapy approaches.
Collapse
Affiliation(s)
- Claudia Trojaniello
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Jason J. Luke
- Cancer Immunotherapeutics Center, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, United States
| | - Paolo A. Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
24
|
Abstract
The success of checkpoint immunotherapy has created optimism that cancer may be curable. However, not all patients respond, resistance is common and many patients relapse owing to immune escape. We demonstrate that HDAC inhibition not only decreases the trafficking of myeloid-derived suppressor cells (MDSCs) into tumors but also potentiates tumor-associated macrophages (TAMs) to specify anti-tumoral phenotype and bolster T cells activation within the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hanren Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Giardina SF, Valdambrini E, Warren JD, Barany F. PROTACs: Promising Approaches for Epigenetic Strategies to Overcome Drug Resistance. Curr Cancer Drug Targets 2021; 21:306-325. [PMID: 33535953 DOI: 10.2174/1568009621666210203110857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/26/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Epigenetic modulation of gene expression is essential for tissue-specific development and maintenance in mammalian cells. Disruption of epigenetic processes, and the subsequent alteration of gene functions, can result in inappropriate activation or inhibition of various cellular signaling pathways, leading to cancer. Recent advancements in the understanding of the role of epigenetics in cancer initiation and progression have uncovered functions for DNA methylation, histone modifications, nucleosome positioning, and non-coding RNAs. Epigenetic therapies have shown some promise for hematological malignancies, and a wide range of epigenetic-based drugs are undergoing clinical trials. However, in a dynamic survival strategy, cancer cells exploit their heterogeneous population which frequently results in the rapid acquisition of therapy resistance. Here, we describe novel approaches in drug discovery targeting the epigenome, highlighting recent advances the selective degradation of target proteins using Proteolysis Targeting Chimera (PROTAC) to address drug resistance.
Collapse
Affiliation(s)
- Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, Box 62, New York, NY, United States
| | - Elena Valdambrini
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, Box 62, New York, NY, United States
| | - J David Warren
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Ave, Box 63, New York, NY, 10065, United States
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, Box 62, New York, NY, United States
| |
Collapse
|
26
|
George A, Sahin I, Carneiro BA, Dizon DS, Safran HP, El-Deiry WS. Strategies to sensitize cancer cells to immunotherapy. Hum Vaccin Immunother 2021; 17:2595-2601. [PMID: 34019474 PMCID: PMC8475577 DOI: 10.1080/21645515.2021.1891817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent years have seen the emergence of immunotherapy as a promising modality for treating a variety of cancers. However, the initial data have led to the ultimate reality that such a treatment does not work effectively in all cancers, nor does it universally result in long-lasting benefits, which can be partly attributed to the development of drug resistance- itself a major challenge. Worse, in some cases, immunotherapy can lead to accelerated tumor growth known as hyperprogression. Tumor sensitization is being pursued as a means to circumvent resistance to immunotherapy, and perhaps as a means to prevent hyperprogression. Such approaches aim to counteract features of immune resistance demonstrated by refractory tumors, paving the way for improved treatment effectiveness when standard immunotherapies such as immune checkpoint inhibitors are utilized. Sensitizing agents can be categorized by whether their target is a tumor-intrinsic or a tumor cell-extrinsic factor. Tumor-intrinsic sensitization strategies act directly on cancer cells, suppressing their anti-immune tendencies, whereas tumor cell-extrinsic sensitization strategies target the tumor microenvironment to more effectively mediate the desired therapeutic effects of immunotherapy.
Collapse
Affiliation(s)
- Andrew George
- Department of Chemistry, Brown University, Providence, RI, USA.,Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Ilyas Sahin
- Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Benedito A Carneiro
- Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA.,The Warren Alpert Medical School, Cancer Center at Brown University, Brown University, Providence, RI, USA
| | - Don S Dizon
- Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA.,The Warren Alpert Medical School, Cancer Center at Brown University, Brown University, Providence, RI, USA
| | - Howard P Safran
- Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA.,The Warren Alpert Medical School, Cancer Center at Brown University, Brown University, Providence, RI, USA
| | - Wafik S El-Deiry
- Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA.,The Warren Alpert Medical School, Cancer Center at Brown University, Brown University, Providence, RI, USA.,Department of Pathology & Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
27
|
Lei X, Ou Z, Yang Z, Zhong J, Zhu Y, Tian J, Wu J, Deng H, Lin X, Peng Y, Li B, He L, Tu Z, Chen W, Li Q, Liu N, Zhang H, Wang Z, Fang Z, Yamada T, Lv X, Tian T, Pan G, Wu F, Xiao L, Zhang L, Cai T, Wang X, Tannous BA, Li J, Kontos F, Ferrone S, Fan S. A Pan-Histone Deacetylase Inhibitor Enhances the Antitumor Activity of B7-H3-Specific CAR T Cells in Solid Tumors. Clin Cancer Res 2021; 27:3757-3771. [PMID: 33811153 DOI: 10.1158/1078-0432.ccr-20-2487] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The limited efficacy of chimeric antigen receptor (CAR) T-cell therapies with solid malignancies prompted us to test whether epigenetic therapy could enhance the antitumor activity of B7-H3.CAR T cells with several solid cancer types. EXPERIMENTAL DESIGN We evaluated B7-H3 expression in many human solid cancer and normal tissue samples. The efficacy of the combinatorial therapy with B7-H3.CAR T cells and the deacetylase inhibitor SAHA with several solid cancer types and the potential underlying mechanisms were characterized with in vitro and ex vivo experiments. RESULTS B7-H3 is expressed in most of the human solid tumor samples tested, but exhibits a restricted expression in normal tissues. B7-H3.CAR T cells selectively killed B7-H3 expressing human cancer cell lines in vitro. A low dose of SAHA upregulated B7-H3 expression in several types of solid cancer cells at the transcriptional level and B7-H3.CAR expression on human transgenic T-cell membrane. In contrast, the expression of immunosuppressive molecules, such as CTLA-4 and TET2, by T cells was downregulated upon SAHA treatment. A low dose of SAHA significantly enhanced the antitumor activity of B7-H3.CAR T cells with solid cancers in vitro and ex vivo, including orthotopic patient-derived xenograft and metastatic models treated with autologous CAR T-cell infusions. CONCLUSIONS Our results show that our novel strategy which combines SAHA and B7-H3.CAR T cells enhances their therapeutic efficacy with solid cancers and justify its translation to a clinical setting.
Collapse
Affiliation(s)
- Xinyuan Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China.,State University of New York at Stony Brook, Stony Brook, New York
| | - Zhanpeng Ou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Zhaohui Yang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianglong Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yanliang Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Jing Tian
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiannan Wu
- Department of Breast Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Heran Deng
- Department of Breast Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Lin
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Bowen Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lile He
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhiming Tu
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Weixiong Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qunxing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Niu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Hanqing Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Zhangsong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Zezhen Fang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Teppei Yamada
- Department of Gastroenterological Surgery, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Xiaobin Lv
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, the Third Affiliated Hospital, Nanchang University, Nanchang, China
| | - Tian Tian
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guokai Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Fan Wu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liping Xiao
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lizao Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Tingting Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jinsong Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Song Fan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China. .,Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Chen J, Zhang H, Zhou L, Hu Y, Li M, He Y, Li Y. Enhancing the Efficacy of Tumor Vaccines Based on Immune Evasion Mechanisms. Front Oncol 2021; 10:584367. [PMID: 33614478 PMCID: PMC7886973 DOI: 10.3389/fonc.2020.584367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor vaccines aim to expand tumor-specific T cells and reactivate existing tumor-specific T cells that are in a dormant or unresponsive state. As such, there is growing interest in improving the durable anti-tumor activity of tumor vaccines. Failure of vaccine-activated T cells to protect against tumors is thought to be the result of the immune escape mechanisms of tumor cells and the intricate immunosuppressive tumor microenvironment. In this review, we discuss how tumor cells and the tumor microenvironment influence the effects of tumor infiltrating lymphocytes and summarize how to improve the efficacy of tumor vaccines by improving the design of current tumor vaccines and combining tumor vaccines with other therapies, such as metabolic therapy, immune checkpoint blockade immunotherapy and epigenetic therapy.
Collapse
Affiliation(s)
- Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
29
|
HDAC inhibition prevents transgene expression downregulation and loss-of-function in T-cell-receptor-transduced T cells. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:352-363. [PMID: 33614916 PMCID: PMC7878989 DOI: 10.1016/j.omto.2021.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/20/2021] [Indexed: 01/22/2023]
Abstract
T cells that are gene-modified with tumor-specific T cell receptors are a promising treatment for metastatic melanoma patients. In a clinical trial, we treated seven metastatic melanoma patients with autologous T cells transduced to express a tyrosinase-reactive T cell receptor (TCR) (TIL 1383I) and a truncated CD34 molecule as a selection marker. We followed transgene expression in the TCR-transduced T cells after infusion and observed that both lentiviral- and retroviral-transduced T cells lost transgene expression over time, so that by 4 weeks post-transfer, few T cells expressed either lentiviral or retroviral transgenes. Transgene expression was reactivated by stimulation with anti-CD3/anti-CD28 beads and cytokines. TCR-transduced T cell lentiviral and retroviral transgene expression was also downregulated in vitro when T cells were cultured without cytokines. Transduced T cells cultured with interleukin (IL)-15 maintained transgene expression. Culturing gene-modified T cells in the presence of histone deacetylase (HDAC) inhibitors maintained transgene expression and functional TCR-transduced T cell responses to tumor. These results implicate epigenetic processes in the loss of transgene expression in lentiviral- and retroviral-transduced T cells.
Collapse
|
30
|
HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene 2021; 40:1836-1850. [PMID: 33564072 PMCID: PMC7946638 DOI: 10.1038/s41388-020-01636-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023]
Abstract
Despite the widespread use of the blockade of immune checkpoints, for a significant number of cancer patients, these therapies have proven ineffective, presumably due to the immunosuppressive nature of the tumor microenvironment (TME). Critical drivers of immune escape in the TME include tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), which not only mediate immune suppression, but also facilitate metastatic dissemination and impart resistance to immunotherapies. Thus, strategies that convert them into tumor fighters may offer great therapeutic potential. In this study, we evaluated whether pharmacologic modulation of macrophage phenotype by HDAC inhibitors (HDACi) could produce an anti-tumor effect. We demonstrated that low-dose HDACi trichostatin-A (TSA) markedly reshaped the tumor immune microenvironment by modulating the suppressive activity of infiltrating macrophages and inhibiting the recruitment of MDSCs in various tumors. These actions, in turn, augmented anti-tumor immune responses and further enhanced anti-tumor effects of immunotherapies. HDAC inhibition, however, also upregulated PD-L1, thereby limiting the beneficial therapeutic effects. Indeed, combining low-dose TSA with anti-PD-L1 in this model significantly enhanced the durability of tumor reduction and prolonged survival of tumor-bearing mice, compared with the effect of either treatment alone. These data introduce HDAC inhibition as a potential means to harness the anti-tumor potential of macrophages in cancer therapy.
Collapse
|
31
|
Wang Z, Li K, Chen W, Wang X, Huang Y, Wang W, Wu W, Cai Z, Huang W. Modulation of SRSF2 expression reverses the exhaustion of TILs via the epigenetic regulation of immune checkpoint molecules. Cell Mol Life Sci 2020; 77:3441-3452. [PMID: 31838573 PMCID: PMC7426320 DOI: 10.1007/s00018-019-03362-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
The elevated expression of immune checkpoints by the tumor microenvironment is associated with poor prognosis in several cancers due to the exhaustion of tumor-infiltrating lymphocytes (TILs), and the effective suppression of the expression of these genes is key to reversing the exhaustion of TILs. Herein, we determined that serine/arginine-rich splicing factor 2 (SRSF2) is a target for blocking the tumor microenvironment-associated immunosuppressive effects. We found that the expression of SRSF2 was increased in exhausted T cells and that SRSF2 was involved in multiple immune checkpoint molecules mediating TILs' exhaustion. Furthermore, SRSF2 was revealed to regulate the transcription of these immune checkpoint genes by associating with an acyl-transferases P300/CBP complex and altering the H3K27Ac level near these genes, thereafter influencing the recruitment of signal transducer and activator of transcription 3 (STAT3) to these gene promoters. Collectively, our data indicated that SRSF2 functions as a modulator of the anti-tumor response of T cells and may be a therapeutic target for reversing the exhaustion of TILs.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Kun Li
- Department of Nuclear Medicine, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, China
| | - Wei Chen
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Xiaoxia Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Yikun Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Weiming Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Wanjun Wu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China
| | - Zhiming Cai
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| |
Collapse
|
32
|
Wang X, Waschke BC, Woolaver RA, Chen SMY, Chen Z, Wang JH. HDAC inhibitors overcome immunotherapy resistance in B-cell lymphoma. Protein Cell 2020; 11:472-482. [PMID: 32162275 PMCID: PMC7305292 DOI: 10.1007/s13238-020-00694-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been applied successfully to treat B-cell lymphomas in preclinical models or clinical settings. However, immunotherapy resistance is a major challenge for B-cell lymphoma treatment. To overcome this issue, combinatorial therapeutic strategies have been pursued to achieve a better efficacy for treating B-cell lymphomas. One of such strategies is to combine immunotherapy with histone deacetylase (HDAC) inhibitors. HDAC inhibitors can potentially increase tumor immunogenicity, promote anti-tumor immune responses, or reverse immunosuppressive tumor environments. Thus, the combination of HDAC inhibitors and immunotherapy has drawn much attention in current cancer treatment. However, not all HDAC inhibitors are created equal and their net effects are highly dependent on the specific inhibitors used and the HDACs they target. Hence, we suggest that optimal treatment efficacy requires personalized design and rational combination based on prognostic biomarkers and unique profiles of HDAC inhibitors. Here, we discuss the possible mechanisms by which B-cell lymphomas acquire immunotherapy resistance and the effects of HDAC inhibitors on tumor cells and immune cells that could help overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Brittany C Waschke
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Samantha M Y Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA.
| |
Collapse
|
33
|
Kim S, Santhanam S, Lim S, Choi J. Targeting Histone Deacetylases to Modulate Graft-Versus-Host Disease and Graft-Versus-Leukemia. Int J Mol Sci 2020; 21:ijms21124281. [PMID: 32560120 PMCID: PMC7349873 DOI: 10.3390/ijms21124281] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the main therapeutic strategy for patients with both malignant and nonmalignant disorders. The therapeutic benefits of allo-HSCT in malignant disorders are primarily derived from the graft-versus-leukemia (GvL) effect, in which T cells in the donor graft recognize and eradicate residual malignant cells. However, the same donor T cells can also recognize normal host tissues as foreign, leading to the development of graft-versus-host disease (GvHD), which is difficult to separate from GvL and is the most frequent and serious complication following allo-HSCT. Inhibition of donor T cell toxicity helps in reducing GvHD but also restricts GvL activity. Therefore, developing a novel therapeutic strategy that selectively suppresses GvHD without affecting GvL is essential. Recent studies have shown that inhibition of histone deacetylases (HDACs) not only inhibits the growth of tumor cells but also regulates the cytotoxic activity of T cells. Here, we compile the known therapeutic potential of HDAC inhibitors in preventing several stages of GvHD pathogenesis. Furthermore, we will also review the current clinical features of HDAC inhibitors in preventing and treating GvHD as well as maintaining GvL.
Collapse
Affiliation(s)
- Sena Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Correspondence: (S.K.); (J.C.)
| | | | - Sora Lim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Jaebok Choi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Correspondence: (S.K.); (J.C.)
| |
Collapse
|
34
|
Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res 2020; 30:507-519. [PMID: 32467593 PMCID: PMC7264181 DOI: 10.1038/s41422-020-0337-2] [Citation(s) in RCA: 437] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Immunotherapy holds the potential to induce durable responses, but only a minority of patients currently respond. The etiologies of primary and secondary resistance to immunotherapy are multifaceted, deriving not only from tumor intrinsic factors, but also from the complex interplay between cancer and its microenvironment. In addressing frontiers in clinical immunotherapy, we describe two categories of approaches to the design of novel drugs and combination therapies: the first involves direct modification of the tumor, while the second indirectly enhances immunogenicity through alteration of the microenvironment. By systematically addressing the factors that mediate resistance, we are able to identify mechanistically-driven novel approaches to improve immunotherapy outcomes.
Collapse
Affiliation(s)
| | - Allison Betof Warner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, New York, NY, 10065, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Weill Cornell Medicine, New York, NY, 10065, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
35
|
Han Y, Zhu L, Wu W, Zhang H, Hu W, Dai L, Yang Y. Small Molecular Immune Modulators as Anticancer Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:547-618. [PMID: 32185725 DOI: 10.1007/978-981-15-3266-5_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After decades of intense effort, immune checkpoint inhibitors have been conclusively demonstrated to be effective in cancer treatments and thus are revolutionizing the concepts in the treatment of cancers. Immuno-oncology has arrived and will play a key role in cancer treatment in the foreseeable future. However, efforts to find novel methods to improve the immune response to cancer have not ceased. Small-molecule approaches offer inherent advantages over biologic immunotherapies since they can cross cell membranes, penetrate into tumor tissue and tumor microenvironment more easily, and are amenable to be finely controlled than biological agents, which may help reduce immune-related adverse events seen with biologic therapies and provide more flexibility for the combination use with other therapies and superior clinical benefit. On the one hand, small-molecule therapies can modulate the immune response to cancer by restoring the antitumor immunity, promoting more effective cytotoxic lymphocyte responses, and regulating tumor microenvironment, either directly or epigenetically. On the other hand, the combination of different mechanisms of small molecules with antibodies and other biologics demonstrated admirable synergistic effect in clinical settings for cancer treatment and may expand antibodies' usefulness for broader clinical applications. This chapter provides an overview of small-molecule immunotherapeutic approaches either as monotherapy or in combination for the treatment of cancer.
Collapse
Affiliation(s)
- Yongxin Han
- Lapam Capital LLC., 17C1, Tower 2, Xizhimenwai Street, Xicheng District, Beijing, 100044, China.
| | - Li Zhu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Wei Wu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Hui Zhang
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Wei Hu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Liguang Dai
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Yanqing Yang
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| |
Collapse
|
36
|
Nomura M, Nagatomo R, Doi K, Shimizu J, Baba K, Saito T, Matsumoto S, Inoue K, Muto M. Association of Short-Chain Fatty Acids in the Gut Microbiome With Clinical Response to Treatment With Nivolumab or Pembrolizumab in Patients With Solid Cancer Tumors. JAMA Netw Open 2020; 3:e202895. [PMID: 32297948 PMCID: PMC7163404 DOI: 10.1001/jamanetworkopen.2020.2895] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Immunotherapy using immune checkpoint inhibitors has been remarkably effective for treating multiple cancer types, and the gut microbiome is a possible factor affecting immune checkpoint inhibitor efficacy. However, the association between the gut microbiome and immune status of the tumor microenvironment remains unclear. Short-chain fatty acids (SCFAs) are major end product metabolites produced by the gut microbiota and have wide-ranging impacts on host physiology. OBJECTIVE To evaluate fecal and plasma SCFAs in patients with solid cancer tumors treated with programmed cell death-1 inhibitors (PD-1i). DESIGN, SETTING, AND PARTICIPANTS This was a prospective cohort biomarker study of patients with cancer who planned therapy with PD-1i at Kyoto University Hospital between July 2016 and February 2019. Data were analyzed from October 2019 to February 2020. EXPOSURES Patients who were treated with nivolumab or pembrolizumab were classified into 2 groups based on their treatment response using Response Evaluation Criteria in Solid Tumors version 1.1: responders who achieved an objective response and nonresponders. Dietary information in terms of intake frequency was obtained. Concentrations of SCFAs in fecal and plasma samples collected before PD-1i administration were measured using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. MAIN OUTCOMES AND MEASURES The concentration of SCFAs and progression-free survival. RESULTS Among 52 patients enrolled, the median (range) patient age was 67 (27-84) years, and 23 (44%) were women. Median (range) duration of follow-up of the survivors after administration of PD-1i was 2.0 (0.4-4.1) years. The overall response rate was 28.8%. High concentrations of some SCFAs were associated with longer progression-free survival. These included fecal acetic acid (hazard ratio [HR], 0.29; 95% CI, 0.15-0.54), propionic acid (HR, 0.08; 95% CI, 0.03-0.20), butyric acid (HR, 0.31; 95% CI, 0.16-0.60), valeric acid (HR, 0.53; 95% CI, 0.29-0.98), and plasma isovaleric acid (HR, 0.38; 95% CI, 0.14-0.99). CONCLUSIONS AND RELEVANCE Results of this study suggest that fecal SCFA concentrations may associated with PD-1i efficacy; thus, SCFAs may be the link between the gut microbiota and PD-1i efficacy. Because fecal examinations are completely noninvasive, they may be applicable for routine monitoring of patients.
Collapse
Affiliation(s)
- Motoo Nomura
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Nagatomo
- Laboratory of Clinical and Analytical Chemistry, Ritsumeikan University College of Pharmaceutical Sciences, Shiga, Japan
| | - Keitaro Doi
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Juko Shimizu
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiichiro Baba
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoki Saito
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigemi Matsumoto
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichi Inoue
- Laboratory of Clinical and Analytical Chemistry, Ritsumeikan University College of Pharmaceutical Sciences, Shiga, Japan
| | - Manabu Muto
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
37
|
Wang Y, Hays E, Rama M, Bonavida B. Cell-mediated immune resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:232-251. [PMID: 35310881 PMCID: PMC8932590 DOI: 10.20517/cdr.2019.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022]
Abstract
The genetic and epigenetic aberrations that underlie immune resistance lead to tumors that are refractory to clinically established and experimental immunotherapies, including monoclonal antibodies and T cell-based therapies. From various forms of cytotoxic T cells to small molecule inhibitors that revamp the tumor microenvironment, these therapies have demonstrated notable responses in cancer models and a resistant subset of cancer patients, used both alone and in combination. However, even current approaches, such as those targeting checkpoint molecules, tumor ligands, and involving gene-related therapies, present a challenge in non-responding patients. In this perspective, we discuss the most common mechanisms of immune resistance, including tumor heterogeneity, tumor ligand and major histocompatibility complex modulation, anti-apoptotic pathways, checkpoint inhibitory ligands, immunosuppressive cells and factors in the tumor microenvironment, and activation-induced cell death. In addition, we discuss the strategies designed to circumvent these resistance pathways to showcase the potential of emerging technologies in battling the rise of resistance.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA 90025-1747, USA
| | - Emily Hays
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA 90025-1747, USA
| | - Martina Rama
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA 90025-1747, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, The University of California, Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
38
|
Histone deacetylase inhibition promotes intratumoral CD8 + T-cell responses, sensitizing murine breast tumors to anti-PD1. Cancer Immunol Immunother 2019; 68:2081-2094. [PMID: 31720815 DOI: 10.1007/s00262-019-02430-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
Histone deacetylase (HDAC) inhibitors impair tumor cell proliferation and alter gene expression. However, the impact of these changes on anti-tumor immunity is poorly understood. Here, we showed that the class I HDAC inhibitor, entinostat (ENT), promoted the expression of immune-modulatory molecules, including MHCII, costimulatory ligands, and chemokines on murine breast tumor cells in vitro and in vivo. ENT also impaired tumor growth in vivo-an effect that was dependent on both CD8+ T cells and IFNγ. Moreover, ENT promoted intratumoral T-cell clonal expansion and enhanced their functional activity. Importantly, ENT sensitized normally unresponsive tumors to the effects of PD1 blockade, predominantly through increases in T-cell proliferation. Our findings suggest that class I HDAC inhibitors impair tumor growth by enhancing the proliferative and functional capacity of CD8+ T cells and by sensitizing tumor cells to T-cell recognition.
Collapse
|
39
|
Zhao LM, Zhang JH. Histone Deacetylase Inhibitors in Tumor Immunotherapy. Curr Med Chem 2019; 26:2990-3008. [PMID: 28762309 DOI: 10.2174/0929867324666170801102124] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 04/26/2017] [Accepted: 06/27/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND With an increasing understanding of the antitumor immune response, considerable progress has been made in the field of tumor immunotherapy in the last decade. Inhibition of histone deacetylases represents a new strategy in tumor therapy and histone deacetylase inhibitors have been recently developed and validated as potential antitumor drugs. In addition to the direct antitumor effects, histone deacetylase inhibitors have been found to have the ability to improve tumor recognition by immune cells that may contribute to their antitumor activity. These immunomodolutory effects are desirable, and their in-depth comprehension will facilitate the design of novel regimens with improved clinical efficacy. OBJECTIVE Our goal here is to review recent developments in the application of histone deacetylase inhibitors as immune modulators in cancer treatment. METHODS Systemic compilation of the relevant literature in this field. RESULTS & CONCLUSION In this review, we summarize recent advances in the understanding of how histone deacetylase inhibitors alter immune process and discuss their effects on various cytokines. We also discuss the challenges to optimize the use of these inhibitors as immune modulators in cancer treatment. Information gained from this review will be valuable to this field and may be helpful for designing tumor immunotherapy trials involving histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Li-Ming Zhao
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Jie-Huan Zhang
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
40
|
Zhu J, Petit PF, Van den Eynde BJ. Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. Cancer Immunol Immunother 2019; 68:835-847. [PMID: 30406374 PMCID: PMC11028327 DOI: 10.1007/s00262-018-2269-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy based on checkpoint inhibitors is providing substantial clinical benefit, but only to a minority of cancer patients. The current priority is to understand why the majority of patients fail to respond. Besides T-cell dysfunction, T-cell apoptosis was reported in several recent studies as a relevant mechanism of tumoral immune resistance. Several death receptors (Fas, DR3, DR4, DR5, TNFR1) can trigger apoptosis when activated by their respective ligands. In this review, we discuss the immunomodulatory role of the main death receptors and how these are shaping the tumor microenvironment, with a focus on Fas and its ligand. Fas-mediated apoptosis of T cells has long been known as a mechanism allowing the contraction of T-cell responses to prevent immunopathology, a phenomenon known as activation-induced cell death, which is triggered by induction of Fas ligand (FasL) expression on T cells themselves and qualifies as an immune checkpoint mechanism. Recent evidence indicates that other cells in the tumor microenvironment can express FasL and trigger apoptosis of tumor-infiltrating lymphocytes (TIL), including endothelial cells and myeloid-derived suppressor cells. The resulting disappearance of TIL prevents anti-tumor immunity and may in fact contribute to the absence of TIL that is typical of "cold" tumors that fail to respond to immunotherapy. Interfering with the Fas-FasL pathway in the tumor microenvironment has the potential to increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Jingjing Zhu
- Ludwig Institute for Cancer Research, 1200, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, 1200, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium
| | - Pierre-Florent Petit
- Ludwig Institute for Cancer Research, 1200, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, 1200, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, 1200, Brussels, Belgium.
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75 B1.74.03, 1200, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.
| |
Collapse
|
41
|
Schnekenburger M, Dicato M, Diederich MF. Anticancer potential of naturally occurring immunoepigenetic modulators: A promising avenue? Cancer 2019; 125:1612-1628. [PMID: 30840315 DOI: 10.1002/cncr.32041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/29/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
Abstract
The immune system represents the major primary defense line against carcinogenesis and acts by identifying and eradicating nascent transformed cells. A growing body of evidence is indicating that aberrant epigenetic reprogramming plays a key role in tumor immune escape through: 1) impaired efficient recognition of neoplastic cells by the immune system, resulting from a downregulation or loss of the expression of tumor-associated antigens, human leukocyte antigens, antigen processing and presenting machinery, and costimulatory molecule genes; 2) aberrant expression of immune checkpoint proteins and their ligands; and 3) modification of cytokine profiles and tumor-associated immune cell populations toward an immunosuppressive state in the tumor microenvironment. Consistent with the inherent reversibility of epigenetic alterations, epigenetic drugs, including DNA methyltransferase and histone deacetylase inhibitors, have the unique potential to favorably modify the tumor microenvironment, restore tumor recognition and stimulate an antitumor immune response. The objective of this review is to highlight selected, naturally occurring epigenetic modulators, namely, butyrate, curcumin, (-)-epigallocatechin-3-gallate, resveratrol, romidepsin, and trichostatin A, with a special focus on their antitumor immune properties.
Collapse
Affiliation(s)
- Michael Schnekenburger
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, Luxembourg, Luxembourg
| | - Marc F Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
42
|
Manzotti G, Ciarrocchi A, Sancisi V. Inhibition of BET Proteins and Histone Deacetylase (HDACs): Crossing Roads in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11030304. [PMID: 30841549 PMCID: PMC6468908 DOI: 10.3390/cancers11030304] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Histone DeACetylases (HDACs) are enzymes that remove acetyl groups from histones and other proteins, regulating the expression of target genes. Pharmacological inhibition of these enzymes re-shapes chromatin acetylation status, confusing boundaries between transcriptionally active and quiescent chromatin. This results in reinducing expression of silent genes while repressing highly transcribed genes. Bromodomain and Extraterminal domain (BET) proteins are readers of acetylated chromatin status and accumulate on transcriptionally active regulatory elements where they serve as scaffold for the building of transcription-promoting complexes. The expression of many well-known oncogenes relies on BET proteins function, indicating BET inhibition as a strategy to counteract their activity. BETi and HDACi share many common targets and affect similar cellular processes to the point that combined inhibition of both these classes of proteins is regarded as a strategy to improve the effectiveness of these drugs in cancer. In this work, we aim to discuss the molecular basis of the interplay between HDAC and BET proteins, pointing at chromatin acetylation as a crucial node of their functional interaction. We will also describe the state of the art of their dual inhibition in cancer therapy. Finally, starting from their mechanism of action we will provide a speculative perspective on how these drugs may be employed in combination with standard therapies to improve effectiveness and/or overcome resistance.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| |
Collapse
|
43
|
Zhang J, Zheng ZQ, Yuan YW, Zhang PP, Li YQ, Wang YQ, Tang XR, Wen X, Hong XH, Lei Y, He QM, Yang XJ, Sun Y, Ma J, Liu N. NFAT1 Hypermethylation Promotes Epithelial-Mesenchymal Transition and Metastasis in Nasopharyngeal Carcinoma by Activating ITGA6 Transcription. Neoplasia 2019; 21:311-321. [PMID: 30772768 PMCID: PMC6378632 DOI: 10.1016/j.neo.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is an important epigenetic change in carcinogenesis. However, the function and mechanism of DNA methylation dysregulation in nasopharyngeal carcinoma (NPC) is still largely unclear. Our previous genome-wide microarray data showed that NFAT1 is one of the most hypermethylated transcription factor genes in NPC tissues. Here, we found that NFAT1 hypermethylation contributes to its down-regulation in NPC. NFAT1 overexpression inhibited cell migration, invasion, and epithelial-mesenchymal transition in vitro and tumor metastasis in vivo. We further established that the tumor suppressor effect of NFAT1 is mediated by its inactivation of ITGA6 transcription. Our findings suggest the significance of activating NFAT1/ITGA6 signaling in aggressive NPC, defining a novel critical signaling mechanism that drives NPC invasion and metastasis and providing a novel target for future personalized therapy.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China; Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, PR China
| | - Zi-Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ya-Wei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, PR China
| | - Pan-Pan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ya-Qin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xin-Ran Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xin Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xiao-Hong Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yuan Lei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xiao-Jing Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| |
Collapse
|
44
|
Yajima T, Hoshino K, Muranushi R, Mogi A, Onozato R, Yamaki E, Kosaka T, Tanaka S, Shirabe K, Yoshikai Y, Kuwano H. Fas/FasL signaling is critical for the survival of exhausted antigen-specific CD8 + T cells during tumor immune response. Mol Immunol 2019; 107:97-105. [PMID: 30711908 DOI: 10.1016/j.molimm.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/30/2018] [Accepted: 01/25/2019] [Indexed: 01/22/2023]
Abstract
Antigen (Ag)-specific activated CD8+ T cells are critical for tumor elimination but become exhausted, and thus, dysfunctional during immune response against the tumor due to chronic antigen stimulation. The signaling of immune checkpoint receptors is known to be a critical component in this exhaustion; however, the fate of these exhausted CD8+ T cells remains unclear. Therefore, to elucidate this, we followed the fate of Ag-specific CD8+ T cells by directly visualizing them using MHC class I tetramers coupled with ovoalubumin257-264 in C57BL/6 mice inoculated with EG.7. We found that the number of generated Ag-specific activated CD8+ T cells decreased via apoptosis during a prolonged tumor immune response. However, the number of Ag-specific CD8+ T cells was significantly higher in Fas ligand (FasL)-dysfunctional gld mice than in control mice, resulting in suppressed tumor growth. In contrast, the enforced expression of Bcl-2 failed to rescue apoptosis of the exhausted CD8+ T cells following EG.7 inoculation. These results suggest that Fas/FasL signaling is critical for the survival of exhausted CD8+ T cells during the tumor immune response.
Collapse
Affiliation(s)
- Toshiki Yajima
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan.
| | - Kouki Hoshino
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Ryo Muranushi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Akira Mogi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Ryoichi Onozato
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Ei Yamaki
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Takayuki Kosaka
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Shigebumi Tanaka
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi 371-8511, Japan
| |
Collapse
|
45
|
Loo Yau H, Ettayebi I, De Carvalho DD. The Cancer Epigenome: Exploiting Its Vulnerabilities for Immunotherapy. Trends Cell Biol 2019; 29:31-43. [DOI: 10.1016/j.tcb.2018.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
|
46
|
Ma Y, Pitt JM, Li Q, Yang H. The renaissance of anti-neoplastic immunity from tumor cell demise. Immunol Rev 2018; 280:194-206. [PMID: 29027231 DOI: 10.1111/imr.12586] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer therapies can temporarily reduce tumor burdens by inducing malignant cell death. However, cancer cure is still far from realization because tumors often gain resistance to current treatment and eventually relapse. Accumulating evidence suggests that successful cancer interventions require anti-tumor immunity. Therapy-induced cell stress responses ultimately result in one or more cell death modalities, including apoptosis, autophagy, necroptosis, and pyroptosis. These irreversible dying processes are accompanied by active or passive release of cell death-associated molecular patterns (CDAMPs), which can be sensed by corresponding pattern recognition receptors (PRR) on tumor-infiltrating immune cells. This crosstalk with the immune system can reawaken immune surveillance in the tumor microenvironment (TME). This review focuses on immune-modulatory properties of anti-cancer regimens and CDAMP-mediated communications between cell stress responses and the immune contexture of TME. In addition, we describe how immunogenic cell death can elicit strong and durable anti-tumor immune responses.
Collapse
Affiliation(s)
- Yuting Ma
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Qingqing Li
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Heng Yang
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
47
|
Zappasodi R, Merghoub T, Wolchok JD. Emerging Concepts for Immune Checkpoint Blockade-Based Combination Therapies. Cancer Cell 2018; 33:581-598. [PMID: 29634946 PMCID: PMC5896787 DOI: 10.1016/j.ccell.2018.03.005] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 12/20/2022]
Abstract
Checkpoint blockade has formally demonstrated that reactivating anti-tumor immune responses can regress tumors. However, this only occurs in a fraction of patients. Incorporating these therapies in more powerful combinations is thus a logical next step. Here, we review functional roles of immune checkpoints and molecular determinants of checkpoint-blockade clinical activity. Limited-size T cell-infiltrated tumors, differing substantially from "self," generally respond to checkpoint blockade. Therefore, we propose that reducing tumor burden and increasing tumor immunogenicity are key factors to improve immunotherapy. Lastly, we outline criteria to select proper immunotherapy combination partners and highlight the importance of activity biomarkers for timely treatment optimization.
Collapse
Affiliation(s)
- Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Jedd D Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
48
|
Suraweera A, O’Byrne KJ, Richard DJ. Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi. Front Oncol 2018; 8:92. [PMID: 29651407 PMCID: PMC5884928 DOI: 10.3389/fonc.2018.00092] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/16/2018] [Indexed: 01/10/2023] Open
Abstract
Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs) are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi), a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient's response to these agents, in order to limit the off-target toxicity associated with HDACi.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth J. O’Byrne
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
49
|
Conte M, De Palma R, Altucci L. HDAC inhibitors as epigenetic regulators for cancer immunotherapy. Int J Biochem Cell Biol 2018. [PMID: 29535070 DOI: 10.1016/j.biocel.2018.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, anti-tumor immunotherapy has shown promising results, and immune-oncology is now emerging as the fourth major wave in the treatment of tumors after radiotherapy, chemotherapy and molecular targeted therapy. Understanding the impact of the immune system on neoplastic cells is crucial to improve its effectiveness against cancer. The stratification of patients who might benefit from immunotherapy as well as the personalization of medicine have contributed to the discovery of new immunotherapeutic targets and molecules. In the present review, we discuss the mechanistic role of histone deacetylase inhibitors (HDACi) as potential immunomodulating agents to treat cancer. Our current understanding of the use of HDACi in combination with various immunotherapeutic approaches, such as immunomodulating agents and cancer vaccines, is also addressed. The potential clinical applications of the growing number of novel epigenetic drugs for cancer immunotherapy are widening, and some of these therapies are already in clinical trials.
Collapse
Affiliation(s)
| | - Raffaele De Palma
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
50
|
Manson G, Houot R. Next-generation immunotherapies for lymphoma: one foot in the future. Ann Oncol 2018; 29:588-601. [DOI: 10.1093/annonc/mdy032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|