1
|
Carvalho LML, Rzasa J, Kerkhof J, McConkey H, Fishman V, Koksharova G, de Lima Jorge AA, Branco EV, de Oliveira DF, Martinez-Delgado B, Barrero MJ, Kleefstra T, Sadikovic B, Haddad LA, Bertola DR, Rosenberg C, Krepischi ACV. EHMT2 as a Candidate Gene for an Autosomal Recessive Neurodevelopmental Syndrome. Mol Neurobiol 2024:10.1007/s12035-024-04655-x. [PMID: 39674972 DOI: 10.1007/s12035-024-04655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Neurodevelopmental disorders (NDD) comprise clinical conditions with high genetic heterogeneity and a notable enrichment of genes involved in regulating chromatin structure and function. The EHMT1/2 epigenetic complex plays a crucial role in repression of gene transcription in a highly tissue- and temporal-specific manner. Mutations resulting in heterozygous loss-of-function (LoF) of EHMT1 are implicated in Kleefstra syndrome 1 (KS1). EHMT2 is a gene acting in epigenetic regulation; however, the involvement of mutations in this gene in the etiology of NDDs has not been established thus far. A homozygous EHMT2 LoF variant [(NM_006709.5):c.328 + 2 T > G] was identified by exome sequencing in an adult female patient with a phenotype resembling KS1, presenting with intellectual disability, aggressive behavior, facial dysmorphisms, fused C2-C3 vertebrae, ventricular septal defect, supernumerary nipple, umbilical hernia, and fingers and toes abnormalities. The absence of homozygous LoF EHMT2 variants in population databases underscores the significant negative selection pressure exerted on these variants. In silico evaluation of the effect of the EHMT2(NM_006709.5):c.328 + 2 T > G variant predicted the abolishment of intron 3 splice donor site. However, manual inspection revealed potential cryptic donor splice sites at this EHMT2 region. To directly access the impact of this splice site variant, RNAseq analysis was employed and disclosed the usage of two cryptic donor sites within exon 3 in the patient's blood, which are predicted to result in either an out-of-frame or in-frame effect on the protein. Methylation analysis was conducted on DNA from blood samples using the clinically validated EpiSign assay, which revealed that the patient with the homozygous EHMT2(NM_006709.5):c.328 + 2 T > G splice site variant is conclusively positive for the KS1 episignature. Taken together, clinical, genetic, and epigenetic data pointed to a LoF mechanism for the EHMT2 splice variant and support this gene as a novel candidate for an autosomal recessive Kleefstra-like syndrome. The identification of additional cases with deleterious EHMT2 variants, alongside further functional validation studies, is required to substantiate EHMT2 as a novel NDD gene.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Veniamin Fishman
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Artificial Intelligence Research Institute, AIRI, Moscow, Russia
| | - Galina Koksharova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Augusto de Lima Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory (LIM/25), Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Elisa Varella Branco
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Danyllo Felipe de Oliveira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Beatriz Martinez-Delgado
- Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria J Barrero
- Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | | | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Luciana Amaral Haddad
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
- Genetics Unit of Instituto da Criança, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.
| |
Collapse
|
2
|
Grigoreva TA, Romanova AA, Tribulovich VG, Pestov NB, Oganov RA, Kovaleva DK, Korneenko TV, Barlev NA. p53: The Multifaceted Roles of Covalent Modifications in Cancer. Pharmaceuticals (Basel) 2024; 17:1682. [PMID: 39770524 PMCID: PMC11677429 DOI: 10.3390/ph17121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The p53 protein has attracted huge research interest over several decades due to its role as one of the most important tumor suppressors in mammals, which orchestrates a synchronous response from normal cells in the body to various forms of stress. The diverse cellular activities of the p53 protein are regulated mainly via its post-translational modifications (PTMs). PTMs affect p53 on several levels: at the level of the assembly of tetrameric complexes on DNA to transactivate its target genes, at the level of the assembly of tetrameric complexes on DNA to transactivate its target genes; at the level of proteolysis in the absence of stress; and on the contrary, at the level of augmented protein stability in response to stress signals. Disruptions in these regulatory mechanisms can lead to deviations from normal cellular function, boosting tumor initiation and progression. Conversely, targeted interventions in these pathways could prove beneficial for the development of antitumor therapies. Advancing our understanding of p53 modifiers and the proteins involved in its regulation equips researchers with an expanded toolkit for studying cellular processes and for developing biologically active molecules that influence p53-mediated responses.
Collapse
Affiliation(s)
- Tatiana A. Grigoreva
- St. Petersburg State Institute of Technology, St-Petersburg 190013, Russia; (T.A.G.); (A.A.R.); (V.G.T.)
| | - Angelina A. Romanova
- St. Petersburg State Institute of Technology, St-Petersburg 190013, Russia; (T.A.G.); (A.A.R.); (V.G.T.)
| | - Vyacheslav G. Tribulovich
- St. Petersburg State Institute of Technology, St-Petersburg 190013, Russia; (T.A.G.); (A.A.R.); (V.G.T.)
| | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - Ruslan A. Oganov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (R.A.O.); (D.K.K.); (T.V.K.)
- Department of Biochemistry, Lomonosov Moscow State University, Moscow 19991, Russia
| | - Diana K. Kovaleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (R.A.O.); (D.K.K.); (T.V.K.)
- Department of Biochemistry, Lomonosov Moscow State University, Moscow 19991, Russia
| | - Tatyana V. Korneenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (R.A.O.); (D.K.K.); (T.V.K.)
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg 194064, Russia
- Department of Biomedicine, School of Medicine, Nazarbayev University, Astana 02000, Kazakhstan
| |
Collapse
|
3
|
Parfenyev SE, Vishnyakov IE, Efimova TN, Daks AA, Shuvalov OY, Fedorova OA, Lomert EV, Tentler DG, Borchsenius SN, Barlev NA. Effect of infection by Mycoplasma arginini and Mycoplasma salivarium on the oncogenic properties of lung cancer cell line A549. Biochem Biophys Res Commun 2024; 736:150878. [PMID: 39476758 DOI: 10.1016/j.bbrc.2024.150878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/10/2024]
Abstract
Most mycoplasma species are the extracellular parasites affecting different cellular processes including proliferation, cell cycle, protein synthesis, DNA repair and others. Mycoplasma infection was shown to contribute to the pathology of various diseases, including cancer. Upon infection, mycoplasmas typically activate the tumor-associated NF-kB pathway, which is associated with EMT, the main mechanism of metastasis. In this study, we found that two different mycoplasma strains, M. arginini and M. salivarium, promoted the initiation of EMT and simultaneous suppression of the p53 tumor suppressor in A549 lung cancer cells. This led to an increase of cancer cell motility, resistance to the antitumor drug etoposide concomitantly with decreased autophagy. These data indicate that mycoplasmas are able to increase the tumorigenic potential of cancer host cells.
Collapse
Affiliation(s)
- S E Parfenyev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | - I E Vishnyakov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - T N Efimova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A A Daks
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - O Y Shuvalov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - O A Fedorova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - E V Lomert
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - D G Tentler
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - S N Borchsenius
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - N A Barlev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia; School of Medicine Nazarbayev University, Astana, 010000, Kazakhstan.
| |
Collapse
|
4
|
Borlak J, Ciribilli Y, Bisio A, Selvaraj S, Inga A, Oh JH, Spanel R. The Abl1 tyrosine kinase is a key player in doxorubicin-induced cardiomyopathy and its p53/p73 cell death mediated signaling differs in atrial and ventricular cardiomyocytes. J Transl Med 2024; 22:845. [PMID: 39285385 PMCID: PMC11403941 DOI: 10.1186/s12967-024-05623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Doxorubicin is an important anticancer drug, however, elicits dose-dependently cardiomyopathy. Given its mode of action, i.e. topoisomerase inhibition and DNA damage, we investigated genetic events associated with cardiomyopathy and searched for mechanism-based possibilities to alleviate cardiotoxicity. We treated rats at clinically relevant doses of doxorubicin. Histopathology and transmission electron microscopy (TEM) defined cardiac lesions, and transcriptomics unveiled cardiomyopathy-associated gene regulations. Genomic-footprints revealed critical components of Abl1-p53-signaling, and EMSA-assays evidenced Abl1 DNA-binding activity. Gene reporter assays confirmed Abl1 activity on p53-targets while immunohistochemistry/immunofluorescence microscopy demonstrated Abl1, p53&p73 signaling. RESULTS Doxorubicin treatment caused dose-dependently toxic cardiomyopathy, and TEM evidenced damaged mitochondria and myofibrillar disarray. Surviving cardiomyocytes repressed Parkin-1 and Bnip3-mediated mitophagy, stimulated dynamin-1-like dependent mitochondrial fission and induced anti-apoptotic Bag1 signaling. Thus, we observed induced mitochondrial biogenesis. Transcriptomics discovered heterogeneity in cellular responses with minimal overlap between treatments, and the data are highly suggestive for distinct cardiomyocyte (sub)populations which differed in their resilience and reparative capacity. Genome-wide footprints revealed Abl1 and p53 enriched binding sites in doxorubicin-regulated genes, and we confirmed Abl1 DNA-binding activity in EMSA-assays. Extraordinarily, Abl1 signaling differed in the heart with highly significant regulations of Abl1, p53 and p73 in atrial cardiomyocytes. Conversely, in ventricular cardiomyocytes, Abl1 solely-modulated p53-signaling that was BAX transcription-independent. Gene reporter assays established Abl1 cofactor activity for the p53-reporter PG13-luc, and ectopic Abl1 expression stimulated p53-mediated apoptosis. CONCLUSIONS The tyrosine kinase Abl1 is of critical importance in doxorubicin induced cardiomyopathy, and we propose its inhibition as means to diminish risk of cardiotoxicity.
Collapse
Affiliation(s)
- Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Yari Ciribilli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
5
|
Olifirenko V, Barlev NA. A Review of CAR-T Combination Therapies for Treatment of Gynecological Cancers. Int J Mol Sci 2024; 25:6595. [PMID: 38928301 PMCID: PMC11204235 DOI: 10.3390/ijms25126595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
CAR-T cell therapy offers a promising way for prolonged cancer remission, specifically in the case of blood cancers. However, its application in the treatment of solid tumors still faces many limitations. This review paper provides a comprehensive overview of the challenges and strategies associated with CAR-T cell therapy for solid tumors, with a focus on gynecological cancer. This study discusses the limitations of CAR-T therapy for solid tumor treatment, such as T cell exhaustion, stromal barrier, and antigen shedding. Additionally, it addresses possible approaches to increase CAR-T efficacy in solid tumors, including combination therapies with checkpoint inhibitors and chemotherapy, as well as the novel approach of combining CAR-T with oncolytic virotherapy. Given the lack of comprehensive research on CAR-T combination therapies for treating gynecological cancers, this review aims to provide insights into the current landscape of combination therapies for solid tumors and highlight the potential of such an approach in gynecology.
Collapse
Affiliation(s)
| | - Nikolai A. Barlev
- Department of Biomedical Studies, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| |
Collapse
|
6
|
Velez J, Han Y, Yim H, Yang P, Deng Z, Park KS, Kabir M, Kaniskan HÜ, Xiong Y, Jin J. Discovery of the First-in-Class G9a/GLP PROTAC Degrader. J Med Chem 2024; 67:6397-6409. [PMID: 38602846 PMCID: PMC11069390 DOI: 10.1021/acs.jmedchem.3c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and noncatalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time-, and ubiquitin-proteasome system (UPS)-dependent manner. Futhermore, 10 does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.
Collapse
Affiliation(s)
- Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yulin Han
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peiyi Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
7
|
Velez J, Han Y, Yim H, Yang P, Deng Z, Park KS, Kabir M, Kaniskan HÜ, Xiong Y, Jin J. Discovery of the First-in-class G9a/GLP PROTAC Degrader. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582210. [PMID: 38464025 PMCID: PMC10925177 DOI: 10.1101/2024.02.26.582210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and di-methylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and non-catalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader, 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time, and ubiquitin-proteasome system (UPS)-dependent manner, does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.
Collapse
Affiliation(s)
- Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yulin Han
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peiyi Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kwang-su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Current address: College of Pharmacy, Keimyung University, Daegu 704-701, South Korea
| | - Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - H. Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
Szewczyk-Roszczenko O, Barlev NA. The Role of p53 in Nanoparticle-Based Therapy for Cancer. Cells 2023; 12:2803. [PMID: 38132123 PMCID: PMC10742014 DOI: 10.3390/cells12242803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
p53 is arguably one of the most important tumor suppressor genes in humans. Due to the paramount importance of p53 in the onset of cell cycle arrest and apoptosis, the p53 gene is found either silenced or mutated in the vast majority of cancers. Furthermore, activated wild-type p53 exhibits a strong bystander effect, thereby activating apoptosis in surrounding cells without being physically present there. For these reasons, p53-targeted therapy that is designed to restore the function of wild-type p53 in cancer cells seems to be a very appealing therapeutic approach. Systemic delivery of p53-coding DNA or RNA using nanoparticles proved to be feasible both in vitro and in vivo. In fact, one p53-based therapeutic (gendicine) is currently approved for commercial use in China. However, the broad use of p53-based therapy in p53-inactivated cancers is severely restricted by its inadequate efficacy. This review highlights the current state-of-the-art in this area of biomedical research and also discusses novel approaches that may help overcome the shortcomings of p53-targeting nanomedicine.
Collapse
Affiliation(s)
- Olga Szewczyk-Roszczenko
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Nikolai A. Barlev
- Department of Biomedicine, School of Medicine, Nazarbayev University, Kerey and Zhanibek Khans St., Astana 020000, Kazakhstan
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
- Institute of Cytology, 4 Tikhoretsky Ave., Saint-Petersburg 194064, Russia
| |
Collapse
|
9
|
Zhang Q, Chang B, Feng Q, Li L. Discovery of novel G9a/GLP covalent inhibitors for the treatment of triple-negative breast cancer. Eur J Med Chem 2023; 261:115841. [PMID: 37788550 DOI: 10.1016/j.ejmech.2023.115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Triple-negative breast cancer (TNBC) has become a serious threat to women's health. Research on epigenetic drugs is gradually deepening and is expected to provide new options for the treatment of TNBC. G9a/GLP has been shown to play an important role in the development of a variety of tumors, including TNBC. Most reported G9a/GLP inhibitors are reversible inhibitors, and covalent inhibitors with novel mechanisms of action are expected to offer unique advantages. In this study, we designed a series of novel G9a/GLP covalent inhibitors using a structure-based drug design strategy. Compound 7c (ZZM-1220) exhibited potent enzyme inhibitory activity and anti-TNBC proliferative activity. Our biochemical studies showed that ZZM-1220 could covalently bind to G9a/GLP and inhibit H3K9me2 in cells. It could significantly induce apoptosis of TNBC cells and block the cell cycle in the G2/M phase. It is worth noting that ZZM-1220 continuously inhibited the growth of cancer cells and the expression of H3K9me2 after washing out. These data suggested that ZZM-1220 could be used as a promising lead compound for the development of G9a/GLP covalent inhibitors for the treatment of TNBC.
Collapse
Affiliation(s)
- Qiangsheng Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu, 610041, China
| | - Bo Chang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, PR China
| | - Qiang Feng
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, PR China
| | - Lu Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Kim HM, Zheng X, Lee E. Experimental Insights into the Interplay between Histone Modifiers and p53 in Regulating Gene Expression. Int J Mol Sci 2023; 24:11032. [PMID: 37446210 PMCID: PMC10342072 DOI: 10.3390/ijms241311032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Chromatin structure plays a fundamental role in regulating gene expression, with histone modifiers shaping the structure of chromatin by adding or removing chemical changes to histone proteins. The p53 transcription factor controls gene expression, binds target genes, and regulates their activity. While p53 has been extensively studied in cancer research, specifically in relation to fundamental cellular processes, including gene transcription, apoptosis, and cell cycle progression, its association with histone modifiers has received limited attention. This review explores the interplay between histone modifiers and p53 in regulating gene expression. We discuss how histone modifications can influence how p53 binds to target genes and how this interplay can be disrupted in cancer cells. This review provides insights into the complex mechanisms underlying gene regulation and their implications for potential cancer therapy.
Collapse
Affiliation(s)
- Hyun-Min Kim
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | | | | |
Collapse
|
11
|
Able AA, Richard AJ, Stephens JM. TNFα Effects on Adipocytes Are Influenced by the Presence of Lysine Methyltransferases, G9a (EHMT2) and GLP (EHMT1). BIOLOGY 2023; 12:674. [PMID: 37237488 PMCID: PMC10215715 DOI: 10.3390/biology12050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Impaired adipocyte function contributes to systemic metabolic dysregulation, and altered fat mass or function increases the risk of Type 2 diabetes. EHMTs 1 and 2 (euchromatic histone lysine methyltransferases 1 and 2), also known as the G9a-like protein (GLP) and G9a, respectively, catalyze the mono- and di-methylation of histone 3 lysine 9 (H3K9) and also methylate nonhistone substrates; in addition, they can act as transcriptional coactivators independent of their methyltransferase activity. These enzymes are known to contribute to adipocyte development and function, and in vivo data indicate a role for G9a and GLP in metabolic disease states; however, the mechanisms involved in the cell-autonomous functions of G9a and GLP in adipocytes are largely unknown. Tumor necrosis factor alpha (TNFα) is a proinflammatory cytokine typically induced in adipose tissue in conditions of insulin resistance and Type 2 diabetes. Using an siRNA approach, we have determined that the loss of G9a and GLP enhances TNFα-induced lipolysis and inflammatory gene expression in adipocytes. Furthermore, we show that G9a and GLP are present in a protein complex with nuclear factor kappa B (NF-κB) in TNFα-treated adipocytes. These novel observations provide mechanistic insights into the association between adipocyte G9a and GLP expression and systemic metabolic health.
Collapse
Affiliation(s)
- Ashley A. Able
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
12
|
Mereu E, Abbo D, Paradzik T, Cumerlato M, Bandini C, Labrador M, Maccagno M, Ronchetti D, Manicardi V, Neri A, Piva R. Euchromatic Histone Lysine Methyltransferase 2 Inhibition Enhances Carfilzomib Sensitivity and Overcomes Drug Resistance in Multiple Myeloma Cell Lines. Cancers (Basel) 2023; 15:cancers15082199. [PMID: 37190128 DOI: 10.3390/cancers15082199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Proteasome inhibitors (PIs) are extensively used for the therapy of multiple myeloma. However, patients continuously relapse or are intrinsically resistant to this class of drugs. In addition, adverse toxic effects such as peripheral neuropathy and cardiotoxicity could arise. Here, to identify compounds that can increase the efficacy of PIs, we performed a functional screening using a library of small-molecule inhibitors covering key signaling pathways. Among the best synthetic lethal interactions, the euchromatic histone-lysine N-methyltransferase 2 (EHMT2) inhibitor UNC0642 displayed a cooperative effect with carfilzomib (CFZ) in numerous multiple myeloma (MM) cell lines, including drug-resistant models. In MM patients, EHMT2 expression correlated to worse overall and progression-free survival. Moreover, EHMT2 levels were significantly increased in bortezomib-resistant patients. We demonstrated that CFZ/UNC0642 combination exhibited a favorable cytotoxicity profile toward peripheral blood mononuclear cells and bone-marrow-derived stromal cells. To exclude off-target effects, we proved that UNC0642 treatment reduces EHMT2-related molecular markers and that an alternative EHMT2 inhibitor recapitulated the synergistic activity with CFZ. Finally, we showed that the combinatorial treatment significantly perturbs autophagy and the DNA damage repair pathways, suggesting a multi-layered mechanism of action. Overall, the present study demonstrates that EHMT2 inhibition could provide a valuable strategy to enhance PI sensitivity and overcome drug resistance in MM patients.
Collapse
Affiliation(s)
- Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Damiano Abbo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Tina Paradzik
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- Department of Physical Chemistry, Rudjer Boskovic Insitute, 10000 Zagreb, Croatia
| | - Michela Cumerlato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Cecilia Bandini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Maria Labrador
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Monica Maccagno
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Veronica Manicardi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| |
Collapse
|
13
|
Semenov O, Daks A, Fedorova O, Shuvalov O, Barlev NA. Opposing Roles of Wild-type and Mutant p53 in the Process of Epithelial to Mesenchymal Transition. Front Mol Biosci 2022; 9:928399. [PMID: 35813818 PMCID: PMC9261265 DOI: 10.3389/fmolb.2022.928399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 12/05/2022] Open
Abstract
The central role of an aberrantly activated EMT program in defining the critical features of aggressive carcinomas is well documented and includes cell plasticity, metastatic dissemination, drug resistance, and cancer stem cell-like phenotypes. The p53 tumor suppressor is critical for leashing off all the features mentioned above. On the molecular level, the suppression of these effects is exerted by p53 via regulation of its target genes, whose products are involved in cell cycle, apoptosis, autophagy, DNA repair, and interactions with immune cells. Importantly, a set of specific mutations in the TP53 gene (named Gain-of-Function mutations) converts this tumor suppressor into an oncogene. In this review, we attempted to contrast different regulatory roles of wild-type and mutant p53 in the multi-faceted process of EMT.
Collapse
Affiliation(s)
- Oleg Semenov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Alexandra Daks
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Olga Fedorova
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Oleg Shuvalov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Nickolai A. Barlev
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
- Laboratory of Intracellular Signalling, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- The Group of Targeted Delivery Mechanisms of Nanosystems, Institute of Biomedical Chemistry, Moscow, Russia
- *Correspondence: Nickolai A. Barlev,
| |
Collapse
|
14
|
Gouda MBY, Zidane MA, Abdelhady AS, Hassan NM. Expression and prognostic significance of chromatin modulators EHMT2/G9a and KDM2b in acute myeloid leukemia. J Cell Biochem 2022; 123:1340-1355. [PMID: 35696556 DOI: 10.1002/jcb.30297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022]
Abstract
Epigenetics factors are critical for normal cell function and their regulation is sensitive to malignancy development. EHMT2/G9a and KDM2b are key epigenetics players in different cancer types. However, their expression profiles and related consequences in acute myeloid leukemia (AML) patients have not been known yet. In addition to routine lab work, expression levels of EHMT2/G9a and KDM2b were determined in 110 adult and pediatric patients with De Novo AML. Relations between their expression and patients' clinical data were tested by statistical methods. EHMT2/G9a and KDM2b were highly expressed in AML patients against control cases and associated with the presence of adverse genomic alterations. In response to induction chemotherapy, EHMT2/G9a and KDM2b showed to be significantly high in resistant and relapsed patients in comparison to the complete remission group. KDM2b overexpression was associated with CD11c (integrin alpha X) downregulation. Kaplan-Meier analysis indicated that EHMT2/G9a and KDM2b overexpression was correlated with poor survival status in AML patients. We conclude that EHMT2/G9a and KDM2b expression levels could be used as independent prognostic factors for AML disease.
Collapse
Affiliation(s)
- Mahmoud B Y Gouda
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammed A Zidane
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Naglaa M Hassan
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Ang GCK, Gupta A, Surana U, Yap SXL, Taneja R. Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers (Basel) 2022; 14:2855. [PMID: 35740522 PMCID: PMC9221123 DOI: 10.3390/cancers14122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Euchromatin histone lysine methyltransferases (EHMTs) are epigenetic regulators responsible for silencing gene transcription by catalyzing H3K9 dimethylation. Dysregulation of EHMT1/2 has been reported in multiple cancers and is associated with poor clinical outcomes. Although substantial insights have been gleaned into the downstream targets and pathways regulated by EHMT1/2, few studies have uncovered mechanisms responsible for their dysregulated expression. Moreover, EHMT1/2 interacting partners, which can influence their function and, therefore, the expression of target genes, have not been extensively explored. As none of the currently available EHMT inhibitors have made it past clinical trials, understanding upstream regulators and EHMT protein complexes may provide unique insights into novel therapeutic avenues in EHMT-overexpressing cancers. Here, we review our current understanding of the regulators and interacting partners of EHMTs. We also discuss available therapeutic drugs that target the upstream regulators and binding partners of EHMTs and could potentially modulate EHMT function in cancer progression.
Collapse
Affiliation(s)
- Gareth Chin Khye Ang
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Amogh Gupta
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Shirlyn Xue Ling Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Reshma Taneja
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| |
Collapse
|
16
|
Bamberg LV, Heigwer F, Wandmacher AM, Singh A, Betge J, Rindtorff N, Werner J, Josten J, Skabkina OV, Hinsenkamp I, Erdmann G, Röcken C, Ebert MP, Burgermeister E, Zhan T, Boutros M. Targeting euchromatic histone lysine methyltransferases sensitizes colorectal cancer to histone deacetylase inhibitors. Int J Cancer 2022; 151:1586-1601. [PMID: 35666536 DOI: 10.1002/ijc.34155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022]
Abstract
Epigenetic dysregulation is an important feature of colorectal cancer (CRC). Combining epigenetic drugs with other antineoplastic agents is a promising treatment strategy for advanced cancers. Here, we exploited the concept of synthetic lethality to identify epigenetic targets that act synergistically with histone deacetylase (HDAC) inhibitors to reduce the growth of CRC. We applied a pooled CRISPR-Cas9 screen using a custom sgRNA library directed against 614 epigenetic regulators and discovered that knockout of the euchromatic histone-lysine N-methyltransferases 1 and 2 (EHMT1/2) strongly enhanced the antiproliferative effect of clinically used HDAC inhibitors. Using tissue microarrays from 1066 CRC samples with different tumor stages, we showed that low EHMT2 protein expression is predominantly found in advanced CRC and associated with poor clinical outcome. Co-targeting of HDAC and EHMT1/2 with specific small molecule inhibitors synergistically reduced proliferation of CRC cell lines. Mechanistically, we used a high-throughput Western blot assay to demonstrate that both inhibitors elicited distinct cellular mechanisms to reduce tumor growth, including cell cycle arrest and modulation of autophagy. On the epigenetic level, the compounds increased H3K9 acetylation and reduced H3K9 dimethylation. Finally, we used a panel of patient-derived CRC organoids to show that HDAC and EHMT1/2 inhibition synergistically reduced tumor viability in advanced models of CRC.
Collapse
Affiliation(s)
- Leonhard Valentin Bamberg
- German Cancer Research Center (DKFZ), Div. Signaling and Functional Genomics and Heidelberg University, Dept. Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany.,Heidelberg University, Medical Faculty Mannheim, Department of Internal Medicine II, Mannheim, Germany
| | - Florian Heigwer
- German Cancer Research Center (DKFZ), Div. Signaling and Functional Genomics and Heidelberg University, Dept. Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany
| | - Anna Maxi Wandmacher
- German Cancer Research Center (DKFZ), Div. Signaling and Functional Genomics and Heidelberg University, Dept. Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany
| | - Ambika Singh
- German Cancer Research Center (DKFZ), Div. Signaling and Functional Genomics and Heidelberg University, Dept. Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany
| | - Johannes Betge
- German Cancer Research Center (DKFZ), Div. Signaling and Functional Genomics and Heidelberg University, Dept. Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany.,Heidelberg University, Medical Faculty Mannheim, Department of Internal Medicine II, Mannheim, Germany.,German Cancer Research Center (DKFZ), Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center, Mannheim, Germany
| | - Niklas Rindtorff
- German Cancer Research Center (DKFZ), Div. Signaling and Functional Genomics and Heidelberg University, Dept. Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany
| | - Johannes Werner
- German Cancer Research Center (DKFZ), Div. Signaling and Functional Genomics and Heidelberg University, Dept. Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany
| | - Julia Josten
- German Cancer Research Center (DKFZ), Div. Signaling and Functional Genomics and Heidelberg University, Dept. Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany
| | - Olga Valerievna Skabkina
- Heidelberg University, Medical Faculty Mannheim, Department of Internal Medicine II, Mannheim, Germany
| | - Isabel Hinsenkamp
- Heidelberg University, Medical Faculty Mannheim, Department of Internal Medicine II, Mannheim, Germany
| | | | - Christoph Röcken
- Christian-Albrechts University, Department of Pathology, Schleswig-Holstein University Hospital, Kiel, Germany
| | - Matthias P Ebert
- Heidelberg University, Medical Faculty Mannheim, Department of Internal Medicine II, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center, Mannheim, Germany
| | - Elke Burgermeister
- Heidelberg University, Medical Faculty Mannheim, Department of Internal Medicine II, Mannheim, Germany
| | - Tianzuo Zhan
- German Cancer Research Center (DKFZ), Div. Signaling and Functional Genomics and Heidelberg University, Dept. Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany.,Heidelberg University, Medical Faculty Mannheim, Department of Internal Medicine II, Mannheim, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Div. Signaling and Functional Genomics and Heidelberg University, Dept. Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
17
|
G9a inhibition by CM-272: Developing a novel anti-tumoral strategy for castration-resistant prostate cancer using 2D and 3D in vitro models. Biomed Pharmacother 2022; 150:113031. [PMID: 35483199 DOI: 10.1016/j.biopha.2022.113031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an incurable form of prostate cancer (PCa), with DNMT1 and G9a being reported as overexpressed, rendering them highly attractive targets for precision medicine. CM-272 is a dual inhibitor of both methyltransferases' activity. Herein, we assessed the response of different PCa cell lines to CM-272, in both 2D and 3D models, and explored the molecular mechanisms underlying CM-272 inhibitory effects. CRPC tissues displayed significantly higher DNMT1, G9a and H3K9me2 expression than localized PCa. In vitro, CM-272 caused a significant decrease in PCa cell viability and proliferation alongside with increased apoptotic levels. We disclose that, under the evaluated dose, CM-272 led to G9a activity inhibition, while not significantly affecting DNMT1 activity. Upon G9a knockdown, DU145 and PC3 showed decreased cell viability. Remarkably, DU145 cells treated with CM-272 or with G9a knockdown displayed no differences in viability, suggesting a SET-dependent mechanism. Contrarily, PC3 cell viability impact was higher in G9a knockdown, compared with CM-272 treatment, suggesting an additional G9a function. Moreover, DU145 cells overexpressing catalytically functional G9a disclosed higher resistance to CM-272 treatment, reinforcing that the drug mechanism of action is dependent on G9a catalytic function. Importantly, we successfully assembled spheroids from several prostate cell lines. Our results showed that CM-272 retained its anti-tumoral effects in 3D PCa models, leading to a clear reduction in cancer cell survival. We concluded that inhibition of G9a methyltransferase activity by CM-272 has anti-tumor effect in PCa cells, holding therapeutic potential against CRPC.
Collapse
|
18
|
Ichikawa Y, Takahashi H, Chinen Y, Arita A, Sekido Y, Hata T, Ogino T, Miyoshi N, Uemura M, Yamamoto H, Mizushima T, Doki Y, Eguchi H. Low G9a expression is a tumor progression factor of colorectal cancer via IL-8 promotion. Carcinogenesis 2022; 43:797-807. [PMID: 35640269 DOI: 10.1093/carcin/bgac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
The histone methyltransferase G9a is expressed in various types of cancer cells, including colorectal cancer (CRC) cells. Interleukin (IL)-8, also known as C-X-C motif chemokine ligand 8 (CXCL8), is a chemokine that plays a pleiotropic function in the regulation of inflammatory responses and cancer development. Here, we examined the relationship between G9a and IL-8 and the clinical relevance of this association. We immunohistochemically analyzed 235 resected CRC samples to correlate clinical features. Samples with high G9a expression had better overall survival and relapse-free survival than those with low G9a expression. Univariate and multivariate analyses demonstrated that low G9a expression remained a significant independent prognostic factor for increased disease recurrence and decreased survival (P<0.05). G9a was expressed at high levels in commercially available CRC cell lines HCT116 and HT29. Knockdown of G9a by siRNA, shRNA, or the G9a-specific inhibitor BIX01294 upregulated IL-8 expression. The number of spheroids was significantly increased in HCT116 cells with stably suppressed G9a expression, and the number of spheroids was significantly decreased in HCT116 cells with stably suppressed IL-8 expression. Thus, the suppression of IL-8 by G9a may result in a better prognosis in CRC cases with high G9a expression. Furthermore, G9a may suppress cancer stemness and increase chemosensitivity by controlling IL-8. Therefore, G9a is a potential novel marker for predicting CRC prognosis, and therapeutic targeting of G9a in CRC should be contraversial.
Collapse
Affiliation(s)
- Yoshitoshi Ichikawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshinao Chinen
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Asami Arita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Sekido
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
19
|
Wang H, Chang Z, Cai GD, Yang P, Chen JH, Yang SS, Guo YF, Wang MY, Zheng XH, Lei JP, Liu PQ, Zhao DP, Wang JJ. The novel indomethacin derivative CZ-212-3 exerts antitumor effects on castration-resistant prostate cancer by degrading androgen receptor and its variants. Acta Pharmacol Sin 2022; 43:1024-1032. [PMID: 34321613 DOI: 10.1038/s41401-021-00738-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/29/2021] [Indexed: 11/09/2022] Open
Abstract
Androgen receptor (AR) serves as a main therapeutic target for prostate cancer (PCa). However, resistance to anti-androgen therapy (SAT) inevitably occurs. Indomethacin is a nonsteroidal anti-inflammatory drug that exhibits activity against prostate cancer. Recently, we designed and synthesized a series of new indomethacin derivatives (CZ compounds) via Pd (II)-catalyzed synthesis of substituted N-benzoylindole. In this study, we evaluated the antitumor effect of these novel indomethacin derivatives in castration-resistant prostate cancer (CRPC). Upon employing CCK-8 cell viability assays and colony formation assays, we found that these derivatives had high efficacy against CRPC tumor growth in vitro. Among these derivatives, CZ-212-3 exhibited the most potent efficacy against CRPC cell survival and on apoptosis induction. Mechanistically, CZ-212-3 significantly suppressed the expression of AR target gene networks by degrading AR and its variants. Consistently, CZ-212-3 significantly inhibited tumor growth in CRPC cell line-based xenograft and PDX models in vivo. Taken together, the data show that the indomethacin derivative CZ-212-3 significantly inhibited CRPC tumor growth by degrading AR and its variants and could be a promising agent for CRPC therapy.
Collapse
|
20
|
Rada M, Tsamchoe M, Kapelanski-Lamoureux A, Hassan N, Bloom J, Petrillo S, Kim DH, Lazaris A, Metrakos P. Cancer Cells Promote Phenotypic Alterations in Hepatocytes at the Edge of Cancer Cell Nests to Facilitate Vessel Co-Option Establishment in Colorectal Cancer Liver Metastases. Cancers (Basel) 2022; 14:1318. [PMID: 35267627 PMCID: PMC8909291 DOI: 10.3390/cancers14051318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Vessel co-option is correlated with resistance against anti-angiogenic therapy in colorectal cancer liver metastases (CRCLM). Vessel co-opting lesions are characterized by highly motile cancer cells that move toward and along the pre-existing vessels in the surrounding nonmalignant tissue and co-opt them to gain access to nutrients. To access the sinusoidal vessels, the cancer cells in vessel co-opting lesions must displace the hepatocytes and occupy their space. However, the mechanisms underlying this displacement are unknown. Herein, we examined the involvement of apoptosis, autophagy, motility, and epithelial-mesenchymal transition (EMT) pathways in hepatocyte displacement by cancer cells. We demonstrate that cancer cells induce the expression of the proteins that are associated with the upregulation of apoptosis, motility, and EMT in adjacent hepatocytes in vitro and in vivo. Accordingly, we observe the upregulation of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase-1 (PARP-1) and actin-related protein 2/3 (ARP2/3) in adjacent hepatocytes to cancer cell nests, while we notice a downregulation of E-cadherin. Importantly, the knockdown of runt-related transcription factor 1 (RUNX1) in cancer cells attenuates the function of cancer cells in hepatocytes alterations in vitro and in vivo. Altogether, our data suggest that cancer cells exploit various mechanisms to displace hepatocytes and access the sinusoidal vessels to establish vessel co-option.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (M.T.); (A.K.-L.); (N.H.); (J.B.); (S.P.); (D.H.K.); (A.L.)
| | | | | | | | | | | | | | | | - Peter Metrakos
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (M.T.); (A.K.-L.); (N.H.); (J.B.); (S.P.); (D.H.K.); (A.L.)
| |
Collapse
|
21
|
Abstract
Epigenetic regulation is a crucial component of DNA maintenance and cellular identity. As our understanding of the vast array of proteins that contribute to chromatin accessibility has advanced, the role of epigenetic remodelers in disease has become more apparent. G9a is a histone methyltransferase that contributes to immune cell differentiation and function, neuronal development, and has been implicated in diseases, including cancer. In melanoma, recurrent mutations and amplifications of G9a have led to its identification as a therapeutic target. The pathways that are regulated by G9a provide an insight into relevant biomarkers for patient stratification. Future work is aided by the breadth of literature on G9a function during normal differentiation and development, along with similarities to EZH2, another histone methyltransferase that forms a synthetic lethal relationship with members of the SWI/SNF complex in certain cancers. Here, we review the literature on G9a, its role in melanoma, and lessons from EZH2 inhibitor studies.
Collapse
|
22
|
Kifle ZD. Bruton tyrosine kinase inhibitors as potential therapeutic agents for COVID-19: A review. Metabol Open 2021; 11:100116. [PMID: 34345815 PMCID: PMC8318668 DOI: 10.1016/j.metop.2021.100116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is first detected in December 2019 in Wuhan, China which is a new pandemic caused by SARS-COV-2 that has greatly affected the whole world. Bruton tyrosine kinase (BTK) inhibitors are drugs that are used for the management of cancer, and are being repurposed for COVID-19. BTK regulates macrophage and B cell activation, development, survival, and signaling. Inhibition of BTK has revealed an ameliorative effect on lung injury in patients with severe COVID-19. Thus, this review aimed to summarize evidence regarding the role of Bruton tyrosine kinase inhibitors against COVID-19. To include findings from diverse studies, publications related to BTK inhibitors and Covid-19 were searched from the databases such as SCOPUS, Web of Science, Medline, Google Scholar, PubMed, and Elsevier, using English key terms. Both experimental and clinical studies suggest that targeting excessive host inflammation with a BTK inhibitor is a potential therapeutic strategy in the treatment of patients with severe COVID-19. Currently, BTK inhibitors such as ibrutinib and acalabrutinib have shown a protective effect against pulmonary injury in a small series group of COVID-19 infected patients. Small molecule inhibitors like BTK inhibitors, targeting a wide range of pro-inflammatory singling pathways, may a key role in the management of COVID-19.
Collapse
Affiliation(s)
- Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
23
|
Rada M, Kapelanski-Lamoureux A, Petrillo S, Tabariès S, Siegel P, Reynolds AR, Lazaris A, Metrakos P. Runt related transcription factor-1 plays a central role in vessel co-option of colorectal cancer liver metastases. Commun Biol 2021; 4:950. [PMID: 34376784 PMCID: PMC8355374 DOI: 10.1038/s42003-021-02481-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer liver metastasis (CRCLM) has two major histopathological growth patterns: angiogenic desmoplastic and non-angiogenic replacement. The replacement lesions obtain their blood supply through vessel co-option, wherein the cancer cells hijack pre-existing blood vessels of the surrounding liver tissue. Consequentially, anti-angiogenic therapies are less efficacious in CRCLM patients with replacement lesions. However, the mechanisms which drive vessel co-option in the replacement lesions are unknown. Here, we show that Runt Related Transcription Factor-1 (RUNX1) overexpression in the cancer cells of the replacement lesions drives cancer cell motility via ARP2/3 to achieve vessel co-option. Furthermore, overexpression of RUNX1 in the cancer cells is mediated by Transforming Growth Factor Beta-1 (TGFβ1) and thrombospondin 1 (TSP1). Importantly, RUNX1 knockdown impaired the metastatic capability of colorectal cancer cells in vivo and induced the development of angiogenic lesions in liver. Our results confirm that RUNX1 may be a potential target to overcome vessel co-option in CRCLM.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | | | - Stephanie Petrillo
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Sébastien Tabariès
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Peter Siegel
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | | | - Anthoula Lazaris
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Peter Metrakos
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada.
| |
Collapse
|
24
|
Sohail M, Shkreta L, Toutant J, Rabea S, Babeu JP, Huard C, Coulombe-Huntington J, Delannoy A, Placet M, Geha S, Gendron FP, Boudreau F, Tyers M, Grierson DS, Chabot B. A novel class of inhibitors that target SRSF10 and promote p53-mediated cytotoxicity on human colorectal cancer cells. NAR Cancer 2021; 3:zcab019. [PMID: 34316707 PMCID: PMC8210162 DOI: 10.1093/narcan/zcab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
The elevated expression of the splicing regulator SRSF10 in metastatic colorectal cancer (CRC) stimulates the production of the pro-tumorigenic BCLAF1-L splice variant. We discovered a group of small molecules with an aminothiazole carboxamide core (GPS167, GPS192 and others) that decrease production of BCLAF1-L. While additional alternative splicing events regulated by SRSF10 are affected by GPS167/192 in HCT116 cells (e.g. in MDM4, WTAP, SLK1 and CLK1), other events are shifted in a SRSF10-independent manner (e.g. in MDM2, NAB2 and TRA2A). GPS167/192 increased the interaction of SRSF10 with the CLK1 and CLK4 kinases, leading us to show that GPS167/192 can inhibit CLK kinases preferentially impacting the activity of SRSF10. Notably, GPS167 impairs the growth of CRC cell lines and organoids, inhibits anchorage-independent colony formation, cell migration, and promotes cytoxicity in a manner that requires SRSF10 and p53. In contrast, GPS167 only minimally affects normal colonocytes and normal colorectal organoids. Thus, GPS167 reprograms the tumorigenic activity of SRSF10 in CRC cells to elicit p53-dependent apoptosis.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Johanne Toutant
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Safwat Rabea
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jean-Philippe Babeu
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Caroline Huard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | | | - Aurélie Delannoy
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Morgane Placet
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| | - Fernand-Pierre Gendron
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - David S Grierson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke. Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique du CHUS, CIUSSS de l’Estrie, Sherbrooke, QC, Canada
| |
Collapse
|
25
|
Lukinović V, Casanova AG, Roth GS, Chuffart F, Reynoird N. Lysine Methyltransferases Signaling: Histones are Just the Tip of the Iceberg. Curr Protein Pept Sci 2021; 21:655-674. [PMID: 31894745 DOI: 10.2174/1871527319666200102101608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022]
Abstract
Protein lysine methylation is a functionally diverse post-translational modification involved in various major cellular processes. Lysine methylation can modulate proteins activity, stability, localization, and/or interaction, resulting in specific downstream signaling and biological outcomes. Lysine methylation is a dynamic and fine-tuned process, deregulation of which often leads to human pathologies. In particular, the lysine methylome and its associated signaling network can be linked to carcinogenesis and cancer progression. Histone modifications and chromatin regulation is a major aspect of lysine methylation importance, but increasing evidence suggests that a high relevance and impact of non-histone lysine methylation signaling has emerged in recent years. In this review, we draw an updated picture of the current scientific knowledge regarding non-histone lysine methylation signaling and its implication in physiological and pathological processes. We aim to demonstrate the significance of lysine methylation as a major and yet underestimated posttranslational modification, and to raise the importance of this modification in both epigenetic and cellular signaling by focusing on the observed activities of SET- and 7β-strandcontaining human lysine methyltransferases. Recent evidence suggests that what has been observed so far regarding lysine methylation's implication in human pathologies is only the tip of the iceberg. Therefore, the exploration of the "methylome network" raises the possibility to use these enzymes and their substrates as promising new therapeutic targets for the development of future epigenetic and methyllysine signaling cancer treatments.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Alexandre G Casanova
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Gael S Roth
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Florent Chuffart
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| |
Collapse
|
26
|
Rada M, Qusairy Z, Massip-Salcedo M, Macip S. Relevance of the Bruton Tyrosine Kinase as a Target for COVID-19 Therapy. Mol Cancer Res 2020; 19:549-554. [PMID: 33328281 DOI: 10.1158/1541-7786.mcr-20-0814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022]
Abstract
The outbreak of the novel coronavirus disease 2019 (COVID-19) has emerged as one of the biggest global health threats worldwide. As of October 2020, more than 44 million confirmed cases and more than 1,160,000 deaths have been reported globally, and the toll is likely to be much higher before the pandemic is over. There are currently little therapeutic options available and new potential targets are intensively investigated. Recently, Bruton tyrosine kinase (BTK) has emerged as an interesting candidate. Elevated levels of BTK activity have been reported in blood monocytes from patients with severe COVID-19, compared with those from healthy volunteers. Importantly, various studies confirmed empirically that administration of BTK inhibitors (acalabrutinib and ibrutinib) decreased the duration of mechanical ventilation and mortality rate for hospitalized patients with severe COVID-19. Herein, we review the current information regarding the role of BTK in severe acute respiratory syndrome coronavirus 2 infections and the suitability of its inhibitors as drugs to treat COVID-19. The use of BTK inhibitors in the management of COVID-19 shows promise in reducing the severity of the immune response to the infection and thus mortality. However, BTK inhibition may be contributing in other ways to inhibit the effects of the virus and this will need to be carefully studied.
Collapse
Affiliation(s)
- Miran Rada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Zahraa Qusairy
- Department of Pharmacy, Sulaimani Technical Institute, Al Sulaymaniyah, Kurdistan Region, Iraq
| | - Marta Massip-Salcedo
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Salvador Macip
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain. .,Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, England, United Kingdom
| |
Collapse
|
27
|
Shrestha R, Mohankumar K, Jin UH, Martin G, Safe S. The Histone Methyltransferase Gene G9A Is Regulated by Nuclear Receptor 4A1 in Alveolar Rhabdomyosarcoma Cells. Mol Cancer Ther 2020; 20:612-622. [PMID: 33277444 DOI: 10.1158/1535-7163.mct-20-0474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
The histone methyltransferase G9A (EHMT2) gene catalyzes methylation of histone 3 lysine 9 (H3K9), and this gene silencing activity contributes to the tumor promoter-like activity of G9A in several tumor types including alveolar rhabdomyosarcoma (ARMS). Previous studies show the orphan nuclear receptor 4A1 (NR4A1, Nur77) is overexpressed in rhabdomyosarcoma and exhibits pro-oncogenic activity. In this study, we show that knockdown of NR4A1 in ARMS cells decreased expression of G9A mRNA and protein. Moreover, treatment of ARMS cells with several bis-indole-derived NR4A1 ligands (antagonists) including 1,1-bis(3'-indolyl)-1-(4-hydroxyphenyl)methane (CDIM8), 3,5-dimethyl (3,5-(CH3)2), and 3-bromo-5-methoxy (3-Br-5-OCH3) analogs also decreased G9A expression. Furthermore, NR4A1 antagonists also decreased G9A expression in breast, lung, liver, and endometrial cancer cells confirming that G9A is an NR4A1-regulated gene in ARMS and other cancer cell lines. Mechanistic studies showed that the NR4A1/Sp1 complex interacted with the GC-rich 511 region of the G9A promoter to regulate G9A gene expression. Moreover, knockdown of NR4A1 or treatment with NR4A1 receptor antagonists decreased overall H3K9me2, H3K9me2 associated with the PTEN promoter, and PTEN-regulated phospho-Akt. In vivo studies showed that the NR4A1 antagonist (3-Br-5-OCH3) inhibited tumor growth in athymic nude mice bearing Rh30 ARMS cells and confirmed that G9A was an NR4A1-regulated gene that can be targeted by NR4A1 receptor antagonists.
Collapse
Affiliation(s)
- Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Gregory Martin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas. .,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
28
|
Dayer G, Masoom ML, Togtema M, Zehbe I. Virus-Host Protein-Protein Interactions between Human Papillomavirus 16 E6 A1 and D2/D3 Sub-Lineages: Variances and Similarities. Int J Mol Sci 2020; 21:E7980. [PMID: 33121134 PMCID: PMC7663357 DOI: 10.3390/ijms21217980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023] Open
Abstract
High-risk strains of human papillomavirus are causative agents for cervical and other mucosal cancers, with type 16 being the most frequent. Compared to the European Prototype (EP; A1), the Asian-American (AA; D2/D3) sub-lineage seems to have increased abilities to promote carcinogenesis. Here, we studied protein-protein interactions (PPIs) between host proteins and sub-lineages of the key transforming E6 protein. We transduced human keratinocyte with EP or AA E6 genes and co-immunoprecipitated E6 proteins along with interacting cellular proteins to detect virus-host binding partners. AAE6 and EPE6 may have unique PPIs with host cellular proteins, conferring gain or loss of function and resulting in varied abilities to promote carcinogenesis. Using liquid chromatography-mass spectrometry and stringent interactor selection criteria based on the number of peptides, we identified 25 candidates: 6 unique to AAE6 and EPE6, along with 13 E6 targets common to both. A novel approach based on pathway selection discovered 171 target proteins: 90 unique AAE6 and 61 unique EPE6 along with 20 common E6 targets. Interpretations were made using databases, such as UniProt, BioGRID, and Reactome. Detected E6 targets were differentially implicated in important hallmarks of cancer: deregulating Notch signaling, energetics and hypoxia, DNA replication and repair, and immune response.
Collapse
Affiliation(s)
- Guillem Dayer
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Mehran L. Masoom
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Melissa Togtema
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Ingeborg Zehbe
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
29
|
Zhou C, Zhang Z, Zhu X, Qian G, Zhou Y, Sun Y, Yu W, Wang J, Lu H, Lin F, Shen Z, Zheng S. N6-Methyladenosine modification of the TRIM7 positively regulates tumorigenesis and chemoresistance in osteosarcoma through ubiquitination of BRMS1. EBioMedicine 2020; 59:102955. [PMID: 32853985 PMCID: PMC7452680 DOI: 10.1016/j.ebiom.2020.102955] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metastasis is the leading cause of death in patients with osteosarcoma. Some of these patients fail to respond to chemotherapy and die of metastasis within a short period. Therefore, it is important to identify novel biomarkers to improve the diagnosis and treatment of osteosarcoma. TRIM7 is a member of the tripartite motif (TRIM) family protein that is involved in various pathological conditions including cancer; however, its role in osteosarcoma remains elusive. METHODS Cell proliferation, invasion and migration were measured by CCK-8 and Transwell. Immunoprecipitation and mass spectrometry analysis were used to identify candidate proteins associated with TRIM7. Immunoprecipitation, immunofluorescence, pull down and ubiquitination assay were performed to examine the regulation between TRIM7 and its candidate protein. m6A modification of TRIM7 was measured by RNA immunoprecipitation. FINDINGS TRIM7 expression was upregulated in osteosarcoma tissues and was an independent risk factor in predicting poor prognosis. TRIM7 regulates osteosarcoma cell migration and invasion through ubiquitination of breast cancer metastasis suppressor 1 (BRMS1). Moreover, chemoresistance was readily observed in osteosarcoma cells and in patient-derived xenograft (PDX) mice with higher TRIM7 levels. Loss of TRIM7 m6A modification was observed in osteosarcoma tissues. METTL3 and YTHDF2 were the main factors involved in the aberrant m6A modification of TRIM7. INTERPRETATION Overall, our findings show that TRIM7 plays a key role in regulating metastasis and chemoresistance in osteosarcoma through ubiquitination of BRMS1. FUNDING This work was financially supported by grants of NSFC (81001192, 81672658 and 81972521) and National Key Research Project of Science and Technology Ministry (2016YFC0106204).
Collapse
Affiliation(s)
- Chenliang Zhou
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Zhichang Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaoshi Zhu
- Pediatric Intensive Care Unit, Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Guowei Qian
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Yan Zhou
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Yong Sun
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Wenxi Yu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Jiahui Wang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Haiyang Lu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Feng Lin
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China
| | - Zan Shen
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China.
| | - Shuier Zheng
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
30
|
Szulik MW, Davis K, Bakhtina A, Azarcon P, Bia R, Horiuchi E, Franklin S. Transcriptional regulation by methyltransferases and their role in the heart: highlighting novel emerging functionality. Am J Physiol Heart Circ Physiol 2020; 319:H847-H865. [PMID: 32822544 DOI: 10.1152/ajpheart.00382.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methyltransferases are a superfamily of enzymes that transfer methyl groups to proteins, nucleic acids, and small molecules. Traditionally, these enzymes have been shown to carry out a specific modification (mono-, di-, or trimethylation) on a single, or limited number of, amino acid(s). The largest subgroup of this family, protein methyltransferases, target arginine and lysine side chains of histone molecules to regulate gene expression. Although there is a large number of functional studies that have been performed on individual methyltransferases describing their methylation targets and effects on biological processes, no analyses exist describing the spatial distribution across tissues or their differential expression in the diseased heart. For this review, we performed tissue profiling in protein databases of 199 confirmed or putative methyltransferases to demonstrate the unique tissue-specific expression of these individual proteins. In addition, we examined transcript data sets from human heart failure patients and murine models of heart disease to identify 40 methyltransferases in humans and 15 in mice, which are differentially regulated in the heart, although many have never been functionally interrogated. Lastly, we focused our analysis on the largest subgroup, that of protein methyltransferases, and present a newly emerging phenomenon in which 16 of these enzymes have been shown to play dual roles in regulating transcription by maintaining the ability to both activate and repress transcription through methyltransferase-dependent or -independent mechanisms. Overall, this review highlights a novel paradigm shift in our understanding of the function of histone methyltransferases and correlates their expression in heart disease.
Collapse
Affiliation(s)
- Marta W Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Presley Azarcon
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Emilee Horiuchi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
31
|
Cao YP, Sun JY, Li MQ, Dong Y, Zhang YH, Yan J, Huang RM, Yan X. Inhibition of G9a by a small molecule inhibitor, UNC0642, induces apoptosis of human bladder cancer cells. Acta Pharmacol Sin 2019; 40:1076-1084. [PMID: 30765842 DOI: 10.1038/s41401-018-0205-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022] Open
Abstract
Urinary bladder cancer (UBC) is characterized by frequent recurrence and metastasis despite the standard chemotherapy with gemcitabine and cisplatin combination. Histone modifiers are often dysregulated in cancer development, thus they can serve as an excellent drug targets for cancer therapy. Here, we investigated whether G9a, one of the histone H3 methyltransferases, was associated with UBC development. We first analyzed clinical data from public databases and found that G9a was significantly overexpressed in UBC patients. The TCGA Provisional dataset showed that the average expression level of G9a in primary UBC samples (n = 408) was 1.6-fold as much as that in normal bladder samples (n = 19; P < 0.001). Then we used small interfering RNA to knockdown G9a in human UBC T24 and J82 cell lines in vitro, and observed that the cell viability was significantly decreased and cell apoptosis induced. Next, we choosed UNC0642, a small molecule inhibitor targeting G9a, with low cytotoxicity, and excellent in vivo pharmacokinetic properties, to test its anticancer effects against UBC cells in vitro and in vivo. Treatment with UNC0642 dose-dependently decreased the viability of T24, J82, and 5637 cells with the IC50 values of 9.85 ± 0.41, 13.15 ± 1.72, and 9.57 ± 0.37 μM, respectively. Furthermore, treatment with UNC0642 (1-20 μM) dose-dependently decreased the levels of histone H3K9me2, the downstream target of G9a, and increased apoptosis in T24 and J82 cells. In nude mice bearing J82 engrafts, administration of UNC0642 (5 mg/kg, every other day, i.p., for 6 times) exerted significant suppressive effect on tumor growth without loss of mouse body weight. Moreover, administration of UNC0642 significantly reduced Ki67 expression and increased the level of cleaved Caspase 3 and BIM protein in J82 xenografts evidenced by immunohistochemistry and western blot analysis, respectively. Taken together, our data demonstrated that G9a may be a promising therapeutic target for UBC, and an epigenetics-based therapy by UNC0642 is suggested.
Collapse
|
32
|
Liu Z, Wu X, Lv J, Sun H, Zhou F. Resveratrol induces p53 in colorectal cancer through SET7/9. Oncol Lett 2019; 17:3783-3789. [PMID: 30881498 PMCID: PMC6403518 DOI: 10.3892/ol.2019.10034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/04/2018] [Indexed: 12/26/2022] Open
Abstract
Resveratrol is one of the most promising phytoalexins for use as an anti-cancer agent, which is present in the skin of red grapes and berries. Resveratrol has been demonstrated to modulate a number of signalling pathways that are involved in carcinogenesis. In the present study, the function of resveratrol as a pro-apoptotic agent in colorectal cancer cell lines, including HCT116, CO115 and SW48, was investigated. The results revealed that resveratrol supressed cell viability. Additionally, resveratrol enhanced the expression of tumour protein p53 (p53) and p53 target genes, including Bcl2 associated X, apoptosis regulator and Bcl2 binding component 3 that have a pivotal role in p53-dependent apoptosis. Furthermore, treating cells with resveratrol upregulated SET domain containing lysine methyltransferase 7/9 (SET7/9) expression, which positively regulates p53 through its mono-methylation at lysine 372, compared with untreated cells. Furthermore, treating cells with resveratrol induced the expression of apoptotic markers including cleaved caspase-3 and poly (ADP-ribose) polymerases (PARP) compared with untreated cells. However, the genetic knockdown of SET7/9 by short hairpin RNA attenuated the resveratrol-driven overexpression of p53, cleaved caspase-3 and PARP. Collectively, these results reveal the molecular mechanisms by which resveratrol induces p53 stability in colon cancer that results in the activation of p53-mediated apoptosis.
Collapse
Affiliation(s)
- Zhonglun Liu
- Department of Clinical Laboratory, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Xiaohong Wu
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Jingjing Lv
- Department of Clinical Comprehensive Experiment Centre, Lianyungang Oriental Hospital, Lianyungang, Jiangsu 222042, P.R. China
| | - Hui Sun
- Department of Clinical Comprehensive Experiment Centre, Lianyungang Oriental Hospital, Lianyungang, Jiangsu 222042, P.R. China
| | - Feiqin Zhou
- Department of Medical Examination Centre, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| |
Collapse
|
33
|
Abaev-Schneiderman E, Admoni-Elisha L, Levy D. SETD3 is a positive regulator of DNA-damage-induced apoptosis. Cell Death Dis 2019; 10:74. [PMID: 30683849 PMCID: PMC6347638 DOI: 10.1038/s41419-019-1328-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Abstract
SETD3 is a member of the protein lysine methyltransferase (PKMT) family, which catalyzes the addition of methyl group to lysine residues. However, the protein network and the signaling pathways in which SETD3 is involved remain largely unexplored. In the current study, we show that SETD3 is a positive regulator of DNA-damage-induced apoptosis in colon cancer cells. Our data indicate that depletion of SETD3 from HCT-116 cells results in a significant inhibition of apoptosis after doxorubicin treatment. Our results imply that the positive regulation is sustained by methylation, though the substrate remains unknown. We present a functional cross-talk between SETD3 and the tumor suppressor p53. SETD3 binds p53 in cells in response to doxorubicin treatment and positively regulates p53 target genes activation under these conditions. Mechanistically, we provide evidence that the presence of SETD3 and its catalytic activity is required for the recruitment of p53 to its target genes. Finally, Kaplan-Meier survival analysis, of two-independent cohorts of colon cancer patients, revealed that low expression of SETD3 is a reliable predictor of poor survival in these patients, which correlates with our findings. Together, our data uncover a new role of the PKMT SETD3 in the regulation of p53-dependent activation of apoptosis in response to DNA damage.
Collapse
Affiliation(s)
- Elina Abaev-Schneiderman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Be'er-Sheva, 84105, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Be'er-Sheva, 84105, Israel
| | - Lee Admoni-Elisha
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Be'er-Sheva, 84105, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Be'er-Sheva, 84105, Israel
| | - Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Be'er-Sheva, 84105, Israel. .,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Be'er-Sheva, 84105, Israel.
| |
Collapse
|
34
|
Zhang J, Wang Y, Shen Y, He P, Ding J, Chen Y. G9a stimulates CRC growth by inducing p53 Lys373 dimethylation-dependent activation of Plk1. Theranostics 2018; 8:2884-2895. [PMID: 29774081 PMCID: PMC5957015 DOI: 10.7150/thno.23824] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/01/2018] [Indexed: 11/28/2022] Open
Abstract
Rationale: G9a is genetically deregulated in various tumor types and is important for cell proliferation; however, the mechanism underlying G9a-induced carcinogenesis, especially in colorectal cancer (CRC), is unclear. Here, we investigated if G9a exerts oncogenic effects in CRC by increasing polo-like kinase 1 (Plk1) expression. Thus, we further characterized the detailed molecular mechanisms. Methods: The role of Plk1 in G9a aberrant CRC was determined by performing different in vitro and in vivo assays, including assessment of cell growth by performing cell viability assay and assessment of signaling transduction profiles by performing immunoblotting, in the cases of pharmacological inhibition or short RNA interference-mediated suppression of G9a. Detailed molecular mechanisms underlying the effect of G9a on Plk1 expression were determined by performing point mutation analysis, chromatin immunoprecipitation analysis, and luciferase reporter assay. Correlation between G9a and Plk1 expression was determined by analyzing clinical samples of patients with CRC by performing immunohistochemistry. Results: Our study is the first to report a significant positive correlation between G9a and Plk1 levels in 89 clinical samples of patients with CRC. Moreover, G9a depletion decreased Plk1 expression and suppressed CRC cell growth both in vitro and in vivo, thus confirming the significant correlation between G9a and Plk1 levels. Further, we observed that G9a-induced Plk1 regulation depended on p53 inhibition. G9a dimethylated p53 at lysine 373, which in turn increased Plk1 expression and promoted CRC cell growth. Conclusions: These results indicate that G9a-induced and p53-dependent epigenetic programing stimulates the growth of colon cancer, which also suggests that G9a inhibitors that restore p53 activity are promising therapeutic agents for treating colon cancer, especially for CRC expressing wild-type p53.
Collapse
Affiliation(s)
- Jie Zhang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yafang Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanyan Shen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pengxing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
35
|
Rada M, Althubiti M, Ekpenyong-Akiba AE, Lee KG, Lam KP, Fedorova O, Barlev NA, Macip S. BTK blocks the inhibitory effects of MDM2 on p53 activity. Oncotarget 2017; 8:106639-106647. [PMID: 29290977 PMCID: PMC5739762 DOI: 10.18632/oncotarget.22543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
p53 is a tumour suppressor that is activated in response to various types of stress. It is regulated by a complex pattern of over 50 different post-translational modifications, including ubiquitination by the E3 ligase MDM2, which leads to its proteasomal degradation. We have previously reported that expression of Bruton’s Tyrosine Kinase (BTK) induces phosphorylation of p53 at the N-terminus, including Serine 15, and increases its protein levels and activity. The mechanisms involved in this process are not completely understood. Here, we show that BTK also increases MDM2 and is necessary for MDM2 upregulation after DNA damage, consistent with what we have shown for other p53 target genes. Moreover, we found that BTK binds to MDM2 on its PH domain and induces its phosphorylation. This suggested a negative regulation of MDM2 functions by BTK, supported by the fact BTK expression rescued the inhibitory effects of MDM2 on p53 transcriptional activity. Indeed, we observed that BTK mediated the loss of the ubiquitination activity of MDM2, a process that was dependent on the phosphorylation functions of BTK. Our data together shows that the kinase activity of BTK plays an important role in disrupting the MDM2-p53 negative feedback loop by acting at different levels, including binding to and inactivation of MDM2. This study provides a potential mechanism to explain how BTK modulates p53 functions.
Collapse
Affiliation(s)
- Miran Rada
- Department of Molecular and Cell Biology, Mechanisms of Cancer and Aging Laboratory, University of Leicester, Leicester, UK
| | - Mohammad Althubiti
- Department of Molecular and Cell Biology, Mechanisms of Cancer and Aging Laboratory, University of Leicester, Leicester, UK.,Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Akang E Ekpenyong-Akiba
- Department of Molecular and Cell Biology, Mechanisms of Cancer and Aging Laboratory, University of Leicester, Leicester, UK
| | - Koon-Guan Lee
- Bioprocessing Technology Institute, ASTAR, Singapore
| | - Kong Peng Lam
- Bioprocessing Technology Institute, ASTAR, Singapore
| | - Olga Fedorova
- Institute of Cytology, RAS, Saint-Petersburg, Russia
| | | | - Salvador Macip
- Department of Molecular and Cell Biology, Mechanisms of Cancer and Aging Laboratory, University of Leicester, Leicester, UK
| |
Collapse
|
36
|
YM155 as an inhibitor of cancer stemness simultaneously inhibits autophosphorylation of epidermal growth factor receptor and G9a-mediated stemness in lung cancer cells. PLoS One 2017; 12:e0182149. [PMID: 28787001 PMCID: PMC5546577 DOI: 10.1371/journal.pone.0182149] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Cancer stem cell survival is the leading factor for tumor recurrence after tumor-suppressive treatments. Therefore, specific and efficient inhibitors of cancer stemness must be discovered for reducing tumor recurrence. YM155 has been indicated to significantly reduce stemness-derived tumorsphere formation. However, the pharmaceutical mechanism of YM155 against cancer stemness is unclear. This study investigated the potential mechanism of YM155 against cancer stemness in lung cancer. Tumorspheres derived from epidermal growth factor receptor (EGFR)-mutant HCC827 and EGFR wild-type A549 cells expressing higher cancer stemness markers (CD133, Oct4, and Nanog) were used as cancer stemness models. We observed that EGFR autophosphorylation (Y1068) was higher in HCC827- and A549-derived tumorspheres than in parental cells; this autophosphorylation induced tumorsphere formation by activating G9a-mediated stemness. Notably, YM155 inhibited tumorsphere formation by blocking the autophosphorylation of EGFR and the EGFR-G9a-mediated stemness pathway. The chemical and genetic inhibition of EGFR and G9a revealed the significant role of the EGFR-G9a pathway in maintaining the cancer stemness property. In conclusion, this study not only revealed that EGFR could trigger tumorsphere formation by elevating G9a-mediated stemness but also demonstrated that YM155 could inhibit this formation by simultaneously blocking EGFR autophosphorylation and G9a activity, thus acting as a potent agent against lung cancer stemness.
Collapse
|
37
|
G9a coordinates with the RPA complex to promote DNA damage repair and cell survival. Proc Natl Acad Sci U S A 2017; 114:E6054-E6063. [PMID: 28698370 DOI: 10.1073/pnas.1700694114] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone methyltransferase G9a has critical roles in promoting cancer-cell growth and gene suppression, but whether it is also associated with the DNA damage response is rarely studied. Here, we report that loss of G9a impairs DNA damage repair and enhances the sensitivity of cancer cells to radiation and chemotherapeutics. In response to DNA double-strand breaks (DSBs), G9a is phosphorylated at serine 211 by casein kinase 2 (CK2) and recruited to chromatin. The chromatin-enriched G9a can then directly interact with replication protein A (RPA) and promote loading of the RPA and Rad51 recombinase to DSBs. This mechanism facilitates homologous recombination (HR) and cell survival. We confirmed the interaction between RPA and G9a to be critical for RPA foci formation and HR upon DNA damage. Collectively, our findings demonstrate a regulatory pathway based on CK2-G9a-RPA that permits HR in cancer cells and provide further rationale for the use of G9a inhibitors as a cancer therapeutic.
Collapse
|
38
|
Chen RJ, Shun CT, Yen ML, Chou CH, Lin MC. Methyltransferase G9a promotes cervical cancer angiogenesis and decreases patient survival. Oncotarget 2017; 8:62081-62098. [PMID: 28977928 PMCID: PMC5617488 DOI: 10.18632/oncotarget.19060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
Research suggests that the epigenetic regulator G9a, a H3K9 histone methyltransferase, is involved in cancer invasion and metastasis. Here we show that G9a is linked to cancer angiogenesis and poor patient survival. Invasive cervical cancer has a higher G9a expression than cancer precursors or normal epithelium. Pharmacological inhibition and genetic silencing of G9a suppresses H3K9 methylation, cancer cell proliferation, angiogenesis, and cancer cell invasion/migration, but not apoptosis. Microarray and quantitative reverse transcription polymerase chain reaction analyses reveal that G9a induces a cohort of angiogenic factors that include angiogenin, interleukin-8, and C-X-C motif chemokine ligand 16. Depressing G9a by either pharmacological inhibitor or gene knock down significantly reduces angiogenic factor expression. Moreover, promoting G9a gene expression augments transcription and angiogenic function. A luciferase reporter assay suggests that knockdown of G9a inhibits transcriptional activation of interleukin-8. G9a depletion suppresses xenograft tumor growth in mouse model, which is linked to a decrease in microvessel density and proliferating cell nuclear antigen expression. Clinically, higher G9a expression correlates with poorer survival for cancer patients. For patients’ primary tumors a positive correlation between G9a expression and microvessel density also exists. In addition to increasing tumor cell proliferation, G9a promotes tumor angiogenesis and reduces the patient survival rate. G9a may possess great value for targeted therapies.
Collapse
Affiliation(s)
- Ruey-Jien Chen
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University, Taipei 100, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Chieh Lin
- Department of Pathology, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
39
|
Deimling SJ, Olsen JB, Tropepe V. The expanding role of the Ehmt2/G9a complex in neurodevelopment. NEUROGENESIS 2017; 4:e1316888. [PMID: 28596979 DOI: 10.1080/23262133.2017.1316888] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Epigenetic regulators play a crucial role in neurodevelopment. One such epigenetic complex, Ehmt1/2 (G9a/GLP), is essential for repressing gene transcription by methylating H3K9 in a highly tissue- and temporal-specific manner. Recently, data has emerged suggesting that this complex plays additional roles in regulating the activity of numerous other non-histone proteins. While much is known about the downstream effects of Ehmt1/2 function, evidence is only beginning to come to light suggesting the control of Ehmt1/2 function may be, at least in part, due to context-dependent binding partners. Here we review emerging roles for the Ehmt1/2 complex suggesting that it may play a much larger role than previously recognized, and discuss binding partners that we and others have recently characterized which act to coordinate its activity during early neurodevelopment.
Collapse
Affiliation(s)
- Steven J Deimling
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Jonathan B Olsen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Abstract
Progression of cells through distinct phases of the cell cycle, and transition into out-of-cycling states, such as terminal differentiation and senescence, is accompanied by specific patterns of gene expression. These cell fate decisions are mediated not only by distinct transcription factors, but also chromatin modifiers that establish heritable epigenetic patterns. Lysine methyltransferases (KMTs) that mediate methylation marks on histone and non-histone proteins are now recognized as important regulators of gene expression in cycling and non-cycling cells. Among these, the SUV39 sub-family of KMTs, which includes SUV39H1, SUV39H2, G9a, GLP, SETDB1, and SETDB2, play a prominent role. In this review, we discuss their biochemical properties, sub-cellular localization and function in cell cycle, differentiation programs, and cellular senescence. We also discuss their aberrant expression in cancers, which exhibit de-regulation of cell cycle and differentiation.
Collapse
Affiliation(s)
- Vinay Kumar Rao
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|