1
|
Hikasa H, Kawahara K, Inui M, Yasuki Y, Yamashita K, Otsubo K, Kitajima S, Nishio M, Arima K, Endo M, Taira M, Suzuki A. A highly sensitive reporter system to monitor endogenous YAP1/TAZ activity and its application in various human cells. Cancer Sci 2024; 115:3370-3383. [PMID: 39155534 PMCID: PMC11447953 DOI: 10.1111/cas.16316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The activation of yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ) has been implicated in both regeneration and tumorigenesis, thus representing a double-edged sword in tissue homeostasis. However, how the activity of YAP1/TAZ is regulated or what leads to its dysregulation in these processes remains unknown. To explore the upstream stimuli modulating the cellular activity of YAP1/TAZ, we developed a highly sensitive YAP1/TAZ/TEAD-responsive DNA element (YRE) and incorporated it into a lentivirus-based reporter cell system to allow for sensitive and specific monitoring of the endogenous activity of YAP1/TAZ in terms of luciferase activity in vitro and Venus fluorescence in vivo. Furthermore, by replacing YRE with TCF- and NF-κB-binding DNA elements, we demonstrated the applicability of this reporter system to other pathways such as Wnt/β-catenin/TCF- and IL-1β/NF-κB-mediated signaling, respectively. The practicality of this system was evaluated by performing cell-based reporter screening of a chemical compound library consisting of 364 known inhibitors, using reporter-introduced cells capable of quantifying YAP1/TAZ- and β-catenin-mediated transcription activities, which led to the identification of multiple inhibitors, including previously known as well as novel modulators of these signaling pathways. We further confirmed that novel YAP1/TAZ modulators, such as potassium ionophores, Janus kinase inhibitors, platelet-derived growth factor receptor inhibitors, and genotoxic stress inducers, alter the protein level or phosphorylation of endogenous YAP1/TAZ and the expression of their target genes. Thus, this reporter system provides a powerful tool to monitor endogenous signaling activities of interest (even in living cells) and search for modulators in various cellular contexts.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Department of Biochemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kohichi Kawahara
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masako Inui
- Department of Biochemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yukichika Yasuki
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Keita Yamashita
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Kohei Otsubo
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shojiro Kitajima
- Department of Biochemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Miki Nishio
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazunari Arima
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Masanori Taira
- Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Nikhil K, Shah K. The significant others of aurora kinase a in cancer: combination is the key. Biomark Res 2024; 12:109. [PMID: 39334449 PMCID: PMC11438406 DOI: 10.1186/s40364-024-00651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
AURKA is predominantly famous as an essential mitotic kinase. Recent findings have also established its critical role in a plethora of other biological processes including ciliogenesis, mitochondrial dynamics, neuronal outgrowth, DNA replication and cell cycle progression. AURKA overexpression in numerous cancers is strongly associated with poor prognosis and survival. Still no AURKA-targeted drug has been approved yet, partially because of the associated collateral toxicity and partly due to its limited efficacy as a single agent in a wide range of tumors. Mechanistically, AURKA overexpression allows it to phosphorylate numerous pathological substrates promoting highly aggressive oncogenic phenotypes. Our review examines the most recent advances in AURKA regulation and focuses on 33 such direct cancer-specific targets of AURKA and their associated oncogenic signaling cascades. One of the common themes that emerge is that AURKA is often involved in a feedback loop with its substrates, which could be the decisive factor causing its sustained upregulation and hyperactivation in cancer cells, an Achilles heel not exploited before. This dynamic interplay between AURKA and its substrates offers potential opportunities for targeted therapeutic interventions. By targeting these substrates, it may be possible to disrupt this feedback loop to effectively reverse AURKA levels, thereby providing a promising avenue for developing safer AURKA-targeted therapeutics. Additionally, exploring the synergistic effects of AURKA inhibition with its other oncogenic and/or tumor-suppressor targets could provide further opportunities for developing effective combination therapies against AURKA-driven cancers, thereby maximizing its potential as a critical drug target.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| | - Kavita Shah
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Río-Vilariño A, García-Foncillas J, Cebrián A. Reply to Dr. Rafael Rosell: Shedding some light on the unresolved issue of YAP1 Ser397 phosphorylation in cancer. Br J Cancer 2024; 131:405-406. [PMID: 38977889 PMCID: PMC11300830 DOI: 10.1038/s41416-024-02771-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Affiliation(s)
- Anxo Río-Vilariño
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain.
| | - Arancha Cebrián
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain.
| |
Collapse
|
4
|
Marugán C, Sanz‐Gómez N, Ortigosa B, Monfort‐Vengut A, Bertinetti C, Teijo A, González M, Alonso de la Vega A, Lallena MJ, Moreno‐Bueno G, de Cárcer G. TPX2 overexpression promotes sensitivity to dasatinib in breast cancer by activating YAP transcriptional signaling. Mol Oncol 2024; 18:1531-1551. [PMID: 38357786 PMCID: PMC11161735 DOI: 10.1002/1878-0261.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer aggressiveness, providing genetic plasticity and tumor heterogeneity that allows the tumor to evolve and adapt to stress conditions. CIN is considered a cancer therapeutic biomarker because healthy cells do not exhibit CIN. Despite recent efforts to identify therapeutic strategies related to CIN, the results obtained have been very limited. CIN is characterized by a genetic signature where a collection of genes, mostly mitotic regulators, are overexpressed in CIN-positive tumors, providing aggressiveness and poor prognosis. We attempted to identify new therapeutic strategies related to CIN genes by performing a drug screen, using cells that individually express CIN-associated genes in an inducible manner. We find that the overexpression of targeting protein for Xklp2 (TPX2) enhances sensitivity to the proto-oncogene c-Src (SRC) inhibitor dasatinib due to activation of the Yes-associated protein 1 (YAP) pathway. Furthermore, using breast cancer data from The Cancer Genome Atlas (TCGA) and a cohort of cancer-derived patient samples, we find that both TPX2 overexpression and YAP activation are present in a significant percentage of cancer tumor samples and are associated with poor prognosis; therefore, they are putative biomarkers for selection for dasatinib therapy.
Collapse
Grants
- 2018-20I114 Spanish National Research Council (CSIC)
- 2021-AEP035 Spanish National Research Council (CSIC)
- 2022-20I018 Spanish National Research Council (CSIC)
- FJC2020-044620-I Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- PID2019-104644RB-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- PID2021-125705OB-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- PID2022-136854OB-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- RTI2018-095496-B-I00 Ministerio de Ciencia, Innovación, Agencia Estatal de Investigación MCIN/AEI/FEDER
- CB16/12/00295 Instituto de Salud Carlos III - CIBERONC
- LABAE16017DECA Spanish Association Against Cancer (AECC) Scientific Foundation
- POSTD234371SANZ Spanish Association Against Cancer (AECC) Scientific Foundation
- PROYE19036MOR Spanish Association Against Cancer (AECC) Scientific Foundation
- Spanish National Research Council (CSIC)
- Spanish Association Against Cancer (AECC) Scientific Foundation
Collapse
Affiliation(s)
- Carlos Marugán
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- Discovery Chemistry Research and TechnologyEli Lilly and CompanyMadridSpain
| | - Natalia Sanz‐Gómez
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Beatriz Ortigosa
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- Translational Cancer Research Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Alberto Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Ana Monfort‐Vengut
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Cristina Bertinetti
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Ana Teijo
- Pathology DepartmentMD Anderson Cancer CenterMadridSpain
| | - Marta González
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - Alicia Alonso de la Vega
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
| | - María José Lallena
- Discovery Chemistry Research and TechnologyEli Lilly and CompanyMadridSpain
| | - Gema Moreno‐Bueno
- Translational Cancer Research Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Alberto Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- MD Anderson International FoundationMadridSpain
- Biomedical Cancer Research Network (CIBERONC)MadridSpain
- CSIC Conexión‐Cáncer Hub (https://conexion‐cancer.csic.es)
| | - Guillermo de Cárcer
- Cell Cycle & Cancer Biomarkers Laboratory, Cancer DepartmentInstituto de Investigaciones Biomédicas Sols‐Morreale (IIBM) CSIC‐UAMMadridSpain
- CSIC Conexión‐Cáncer Hub (https://conexion‐cancer.csic.es)
| |
Collapse
|
5
|
Rio-Vilariño A, Cenigaonandia-Campillo A, García-Bautista A, Mateos-Gómez PA, Schlaepfer MI, Del Puerto-Nevado L, Aguilera O, García-García L, Galeano C, de Miguel I, Serrano-López J, Baños N, Fernández-Aceñero MJ, Lacal JC, Medico E, García-Foncillas J, Cebrián A. Inhibition of the AURKA/YAP1 axis is a promising therapeutic option for overcoming cetuximab resistance in colorectal cancer stem cells. Br J Cancer 2024; 130:1402-1413. [PMID: 38467828 PMCID: PMC11014903 DOI: 10.1038/s41416-024-02649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Primary resistance to anti-EGFR therapies affects 40% of metastatic colorectal cancer patients harbouring wild-type RAS/RAF. YAP1 activation is associated with this resistance, prompting an investigation into AURKA's role in mediating YAP1 phosphorylation at Ser397, as observed in breast cancer. METHODS We used transcriptomic analysis along with in vitro and in vivo models of RAS/RAF wild-type CRC to study YAP1 Ser397 phosphorylation as a potential biomarker for cetuximab resistance. We assessed cetuximab efficacy using CCK8 proliferation assays and cell cycle analysis. Additionally, we examined the effects of AURKA inhibition with alisertib and created a dominant-negative YAP1 Ser397 mutant to assess its impact on cancer stem cell features. RESULTS The RAS/RAF wild-type CRC models exhibiting primary resistance to cetuximab prominently displayed elevated YAP1 phosphorylation at Ser397 primarily mediated by AURKA. AURKA-induced YAP1 phosphorylation was identified as a key trigger for cancer stem cell reprogramming. Consequently, we found that AURKA inhibition had the capacity to effectively restore cetuximab sensitivity and concurrently suppress the cancer stem cell phenotype. CONCLUSIONS AURKA inhibition holds promise as a therapeutic approach to overcome cetuximab resistance in RAS/RAF wild-type colorectal cancer, offering a potential means to counter the development of cancer stem cell phenotypes associated with cetuximab resistance.
Collapse
Affiliation(s)
- Anxo Rio-Vilariño
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Aiora Cenigaonandia-Campillo
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Ana García-Bautista
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Pedro A Mateos-Gómez
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá. Alcalá de Henares, Madrid, Spain
| | - Marina I Schlaepfer
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Laura Del Puerto-Nevado
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Oscar Aguilera
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Laura García-García
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Carlos Galeano
- Pathology Department, IIS-Fundación Jiménez Diaz-UAM, Madrid, Spain
| | - Irene de Miguel
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá. Alcalá de Henares, Madrid, Spain
| | | | - Natalia Baños
- Preclinical program START Madrid-FJD, Hospital Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - María Jesús Fernández-Aceñero
- Department of Pathology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Juan Carlos Lacal
- Instituto de Investigaciones Biomédicas, CSIC/UAM, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz, IDIPAZ, Madrid, Spain
| | - Enzo Medico
- Department of Oncology, Università degli Studi di Torino, Candiolo (TO), Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain.
| | - Arancha Cebrián
- Translational Oncology Division, Oncohealth Institute, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Fundación Jiménez University Hospital (IIS-FJD, UAM), Madrid, Spain.
| |
Collapse
|
6
|
Ma W, Wei L, Jin L, Ma Q, Zhang T, Zhao Y, Hua J, Zhang Y, Wei W, Ding N, Wang J, He J. YAP/Aurora A-mediated ciliogenesis regulates ionizing radiation-induced senescence via Hedgehog pathway in tumor cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167062. [PMID: 38342416 DOI: 10.1016/j.bbadis.2024.167062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Primary cilia are antenna-like organelles that play critical roles in sensing and responding to various signals. Nevertheless, the function of primary cilia in cellular response to ionizing radiation (IR) in tumor cells remains unclear. Here, we show that primary cilia are frequently expressed in tumor cells and tissues. Notably, IR promotes cilia formation and elongation in time- and dose-dependent manners. Mechanistic study shows that the suppression of YAP/Aurora A pathway contributes to IR-induced ciliogenesis, which is diminished by Aurora A overexpression. The ciliated tumor cells undergo senescence but not apoptosis in response to IR and the abrogation of cilia formation is sufficient to elevate the lethal effect of IR. Furthermore, we show that IR-induced ciliogenesis leads to the activation of Hedgehog signaling pathway to drive senescence and resist apoptosis, and its blockage enhances cellular radiosensitivity by switching senescence to apoptosis. In summary, this work shows evidence of primary cilia in coordinating cellular response to IR in tumor cells, which may help to supply a novel sensitizing target to improve the outcome of radiotherapy.
Collapse
Affiliation(s)
- Wei Ma
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor & Gansu Provincial Clinical Research Center for Laboratory Medicine, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Liangliang Jin
- Department of Pathology, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730000, China
| | - Qinglong Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tongshan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfei Zhao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
| | - Yanan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
| | - Wenjun Wei
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Lv M, Gong Y, Liu X, Wang Y, Wu Q, Chen J, Min Q, Zhao D, Li X, Chen D, Yang D, Yeerken D, Liu R, Li J, Zhang W, Zhan Q. CDK7-YAP-LDHD axis promotes D-lactate elimination and ferroptosis defense to support cancer stem cell-like properties. Signal Transduct Target Ther 2023; 8:302. [PMID: 37582812 PMCID: PMC10427695 DOI: 10.1038/s41392-023-01555-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
Reprogrammed cellular metabolism is essential for maintaining cancer stem cells (CSCs) state. Here, we report that mitochondrial D-lactate catabolism is a necessary initiating oncogenic event during tumorigenesis of esophageal squamous cell carcinoma (ESCC). We discover that cyclin-dependent kinase 7 (CDK7) phosphorylates nuclear Yes-associated protein 1 (YAP) at S127 and S397 sites and enhances its transcription function, which promotes D-lactate dehydrogenase (LDHD) protein expression. Moreover, LDHD is enriched significantly in ESCC-CSCs rather than differentiated tumor cells and high LDHD status is connected with poor prognosis in ESCC patients. Mechanistically, the CDK7-YAP-LDHD axis helps ESCC-CSCs escape from ferroptosis induced by D-lactate and generates pyruvate to satisfy energetic demands for their elevated self-renewal potential. Hence, we conclude that esophageal CSCs adopt a D-lactate elimination and pyruvate accumulation mode dependent on CDK7-YAP-LDHD axis, which drives stemness-associated hallmarks of ESCC-CSCs. Reasonably, targeting metabolic checkpoints may serve as an effective strategy for ESCC therapy.
Collapse
Affiliation(s)
- Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Ying Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dongyu Zhao
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Xianfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dongshao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Di Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Danna Yeerken
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Rui Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518036, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
8
|
Bu J, Zhang Y, Wu S, Li H, Sun L, Liu Y, Zhu X, Qiao X, Ma Q, Liu C, Niu N, Xue J, Chen G, Yang Y, Liu C. KK-LC-1 as a therapeutic target to eliminate ALDH + stem cells in triple negative breast cancer. Nat Commun 2023; 14:2602. [PMID: 37147285 PMCID: PMC10163259 DOI: 10.1038/s41467-023-38097-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/14/2023] [Indexed: 05/07/2023] Open
Abstract
Failure to achieve complete elimination of triple negative breast cancer (TNBC) stem cells after adjuvant therapy is associated with poor outcomes. Aldehyde dehydrogenase 1 (ALDH1) is a marker of breast cancer stem cells (BCSCs), and its enzymatic activity regulates tumor stemness. Identifying upstream targets to control ALDH+ cells may facilitate TNBC tumor suppression. Here, we show that KK-LC-1 determines the stemness of TNBC ALDH+ cells via binding with FAT1 and subsequently promoting its ubiquitination and degradation. This compromises the Hippo pathway and leads to nuclear translocation of YAP1 and ALDH1A1 transcription. These findings identify the KK-LC-1-FAT1-Hippo-ALDH1A1 pathway in TNBC ALDH+ cells as a therapeutic target. To reverse the malignancy due to KK-LC-1 expression, we employ a computational approach and discover Z839878730 (Z8) as an small-molecule inhibitor which may disrupt KK-LC-1 and FAT1 binding. We demonstrate that Z8 suppresses TNBC tumor growth via a mechanism that reactivates the Hippo pathway and decreases TNBC ALDH+ cell stemness and viability.
Collapse
Affiliation(s)
- Jiawen Bu
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yixiao Zhang
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Sijin Wu
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), International Biomedical Industrial Park (Phase II) 3F, 2 Hongliu Rd, Futian District, 16023, Shenzhen, China
| | - Haonan Li
- School of Bioengineering, Dalian University of Technology, 116023, Dalian, China
| | - Lisha Sun
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yang Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, Shenyang, China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Xudong Zhu
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Xinbo Qiao
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Qingtian Ma
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Chao Liu
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Nan Niu
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Jinqi Xue
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Guanglei Chen
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yongliang Yang
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
- School of Bioengineering, Dalian University of Technology, 116023, Dalian, China.
| | - Caigang Liu
- Cancer Stem Cell and Translation Medicine Lab, Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
| |
Collapse
|
9
|
Zheng D, Li J, Yan H, Zhang G, Li W, Chu E, Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm Sin B 2023. [PMID: 37521867 PMCID: PMC10372834 DOI: 10.1016/j.apsb.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Aurora kinase A (Aurora-A), a serine/threonine kinase, plays a pivotal role in various cellular processes, including mitotic entry, centrosome maturation and spindle formation. Overexpression or gene-amplification/mutation of Aurora-A kinase occurs in different types of cancer, including lung cancer, colorectal cancer, and breast cancer. Alteration of Aurora-A impacts multiple cancer hallmarks, especially, immortalization, energy metabolism, immune escape and cell death resistance which are involved in cancer progression and resistance. This review highlights the most recent advances in the oncogenic roles and related multiple cancer hallmarks of Aurora-A kinase-driving cancer therapy resistance, including chemoresistance (taxanes, cisplatin, cyclophosphamide), targeted therapy resistance (osimertinib, imatinib, sorafenib, etc.), endocrine therapy resistance (tamoxifen, fulvestrant) and radioresistance. Specifically, the mechanisms of Aurora-A kinase promote acquired resistance through modulating DNA damage repair, feedback activation bypass pathways, resistance to apoptosis, necroptosis and autophagy, metastasis, and stemness. Noticeably, our review also summarizes the promising synthetic lethality strategy for Aurora-A inhibitors in RB1, ARID1A and MYC gene mutation tumors, and potential synergistic strategy for mTOR, PAK1, MDM2, MEK inhibitors or PD-L1 antibodies combined with targeting Aurora-A kinase. In addition, we discuss the design and development of the novel class of Aurora-A inhibitors in precision medicine for cancer treatment.
Collapse
|
10
|
Brauer BL, Wiredu K, Gerber SA, Kettenbach AN. Evaluation of Quantification and Normalization Strategies for Phosphoprotein Phosphatase Affinity Proteomics: Application to Breast Cancer Signaling. J Proteome Res 2023; 22:47-61. [PMID: 36448918 PMCID: PMC10625046 DOI: 10.1021/acs.jproteome.2c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Accurate quantification of proteomics data is essential for revealing and understanding biological signaling processes. We have recently developed a chemical proteomic strategy termed phosphatase inhibitor beads and mass spectrometry (PIB-MS) to investigate endogenous phosphoprotein phosphatase (PPP) dephosphorylation signaling. Here, we compare the robustness and reproducibility of status quo quantification methods for optimal performance and ease of implementation. We then apply PIB-MS to an array of breast cancer cell lines to determine differences in PPP signaling between subtypes. Breast cancer, a leading cause of cancer death in women, consists of three main subtypes: estrogen receptor-positive (ER+), human epidermal growth factor receptor two positive (HER2+), and triple-negative (TNBC). Although there are effective treatment strategies for ER+ and HER2+ subtypes, tumors become resistant and progress. Furthermore, TNBC has few targeted therapies. Therefore, there is a need to identify new approaches for treating breast cancers. Using PIB-MS, we distinguished TNBC from non-TNBC based on subtype-specific PPP holoenzyme composition. In addition, we identified an increase in PPP interactions with Hippo pathway proteins in TNBC. These interactions suggest that phosphatases in TNBC play an inhibitory role on the Hippo pathway and correlate with increased expression of YAP/TAZ target genes both in TNBC cell lines and in TNBC patients.
Collapse
Affiliation(s)
- Brooke L. Brauer
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Kwame Wiredu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Scott A. Gerber
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| |
Collapse
|
11
|
Kim YJ, Go YH, Jeong HC, Kwon EJ, Kim SM, Cheong HS, Kim W, Shin HD, Lee H, Cha HJ. TPX2 prompts mitotic survival via the induction of BCL2L1 through YAP1 protein stabilization in human embryonic stem cells. Exp Mol Med 2023; 55:32-42. [PMID: 36596852 PMCID: PMC9898288 DOI: 10.1038/s12276-022-00907-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/07/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2023] Open
Abstract
Genetic alterations have been reported for decades in most human embryonic stem cells (hESCs). Survival advantage, a typical trait acquired during long-term in vitro culture, results from the induction of BCL2L1 upon frequent copy number variation (CNV) at locus 20q11.21 and is one of the strongest candidates associated with genetic alterations that occur via escape from mitotic stress. However, the underlying mechanisms for BCL2L1 induction remain unknown. Furthermore, abnormal mitosis and the survival advantage that frequently occur in late passage are associated with the expression of BCL2L1, which is in locus 20q11.21. In this study, we demonstrated that the expression of TPX2, a gene located in 20q11.21, led to BCL2L1 induction and consequent survival traits under mitotic stress in isogenic pairs of hESCs and human induced pluripotent stem cells (iPSCs) with normal and 20q11.21 CNVs. High Aurora A kinase activity by TPX2 stabilized the YAP1 protein to induce YAP1-dependent BCL2L1 expression. A chemical inhibitor of Aurora A kinase and knockdown of YAP/TAZ significantly abrogated the high tolerance to mitotic stress through BCL2L1 suppression. These results suggest that the collective expression of TPX2 and BCL2L1 from CNV at loci 20q11.21 and a consequent increase in YAP1 signaling promote genome instability during long-term in vitro hESC culture.
Collapse
Affiliation(s)
- Yun-Jeong Kim
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Young-Hyun Go
- grid.263736.50000 0001 0286 5954Department of Life Sciences, Sogang University, Seoul, 04107 Republic of Korea
| | - Ho-Chang Jeong
- grid.263736.50000 0001 0286 5954Department of Life Sciences, Sogang University, Seoul, 04107 Republic of Korea
| | - Eun-Ji Kwon
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Seong-Min Kim
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun Sub Cheong
- grid.412670.60000 0001 0729 3748Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Wantae Kim
- grid.254230.20000 0001 0722 6377Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Hyoung Doo Shin
- grid.263736.50000 0001 0286 5954Department of Life Sciences, Sogang University, Seoul, 04107 Republic of Korea
| | - Haeseung Lee
- grid.262229.f0000 0001 0719 8572College of Pharmacy, Pusan National University, Busan, 46241 Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Biswas S, Mahapatra E, Das S, Roy M, Mukherjee S. PEITC: A resounding molecule averts metastasis in breast cancer cells in vitro by regulating PKCδ/Aurora A interplay. Heliyon 2022; 8:e11656. [PMID: 36458309 PMCID: PMC9706142 DOI: 10.1016/j.heliyon.2022.e11656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background/aim Intricate association and aberrant activation of serine/threonine kinase (STK) family proteins like Polo-like kinase (PLK1) and Aurora kinase (Aurora A abruptly regulate mitotic entry whereas activation of PKCδ), another important member of STK family conversely induces apoptosis which is preceded by cell cycle arrest. These STKs are considered as major determinant of oncogenicity. Therefore, the contributory role of Aurora A/PLK-1 axis in mitotic control and PKCδ in apoptosis control and their reciprocity in cancer research is an emerging area to explore. The present study investigated the intricate involvement of STKs in breast cancer cells (MCF-7 and MDA-MB-231) and their disruption by PEITC. Methods Both MCF-7 and MDA-MB-231 cells were checked for clonogenic assay, cell-cycle analysis and the results were compared with normal MCF-10A, Western blotting, TUNEL & DNA-fragmentation assay, wound healing, transwell migration assays in presence and absence of PEITC. Results PEITC was found to increase the expression of PKCδ with subsequent nuclear translocation. Nuclear translocation of PKCδ was accompanied by inhibition of nuclear lamin vis a vis phosphorylation of Nrf2 at Ser 40 alongside nuclear accumulation of phospho-Nrf2. Activated PKCδ furthermore exerted its apoptotic effect by negatively regulating Aurora A and consequentially PLK1; indicating activation of PLK1 by Aurora A. Involvement of PEITC induced PKCδ activation and Aurora A inhibition was ascertained by using Rottlerin/Aurora A Inhibitor. Discussion & conclusion Natural isothiocyanates like PEITC efficiently altered the functional abilities of STKs concerning their entangled functional interplay. Such alterations in protein expression by PEITC was chaperoned with inhibition of the aggressiveness of breast cancer cells and ultimately induction of apoptosis.
Collapse
Affiliation(s)
- Souvick Biswas
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| | - Elizabeth Mahapatra
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| | - Salini Das
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| | - Madhumita Roy
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| | - Sutapa Mukherjee
- Dept of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700 026, India
| |
Collapse
|
13
|
Yang Y, Santos DM, Pantano L, Knipe R, Abe E, Logue A, Pronzati G, Black KE, Spinney JJ, Giacona F, Bieler M, Godbout C, Nicklin P, Wyatt D, Tager AM, Seither P, Herrmann FE, Medoff BD. Screening for Inhibitors of YAP Nuclear Localization Identifies Aurora Kinase A as a Modulator of Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 67:36-49. [PMID: 35377835 PMCID: PMC9798384 DOI: 10.1165/rcmb.2021-0428oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/04/2022] [Indexed: 01/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease with limited therapeutic options that is characterized by pathological fibroblast activation and aberrant lung remodeling with scar formation. YAP (Yes-associated protein) is a transcriptional coactivator that mediates mechanical and biochemical signals controlling fibroblast activation. We previously identified HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors (statins) as YAP inhibitors based on a high-throughput small-molecule screen in primary human lung fibroblasts. Here we report that several Aurora kinase inhibitors were also identified from the top hits of this screen. MK-5108, a highly selective inhibitor for AURKA (Aurora kinase A), induced YAP phosphorylation and cytoplasmic retention and significantly reduced profibrotic gene expression in human lung fibroblasts. The inhibitory effect on YAP nuclear translocation and profibrotic gene expression is specific to inhibition of AURKA, but not Aurora kinase B or C, and is independent of the Hippo pathway kinases LATS1 and LATS2 (Large Tumor Suppressor 1 and 2). Further characterization of the effects of MK-5108 demonstrate that it inhibits YAP nuclear localization indirectly via effects on actin polymerization and TGFβ (Transforming Growth Factor β) signaling. In addition, MK-5108 treatment reduced lung collagen deposition in the bleomycin mouse model of pulmonary fibrosis. Our results reveal a novel role for AURKA in YAP-mediated profibrotic activity in fibroblasts and highlight the potential of small-molecule screens for YAP inhibitors for identification of novel agents with antifibrotic activity.
Collapse
Affiliation(s)
- Yang Yang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Daniela M Santos
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lorena Pantano
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Rachel Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Abe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda Logue
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gina Pronzati
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Katharine E Black
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jillian J Spinney
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Francesca Giacona
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Franziska E Herrmann
- Immunology and Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Cheng Y, Mao M, Lu Y. The biology of YAP in programmed cell death. Biomark Res 2022; 10:34. [PMID: 35606801 PMCID: PMC9128211 DOI: 10.1186/s40364-022-00365-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
In the last few decades, YAP has been shown to be critical in regulating tumor progression. YAP activity can be regulated by many kinase cascade pathways and proteins through phosphorylation and promotion of cytoplasmic localization. Other factors can also affect YAP activity by modulating its binding to different transcription factors (TFs). Programmed cell death (PCD) is a genetically controlled suicide process present with the scope of eliminating cells unnecessary or detrimental for the proper development of the organism. In some specific states, PCD is activated and facilitates the selective elimination of certain types of tumor cells. As a candidate oncogene correlates with many regulatory factors, YAP can inhibit or induce different forms of PCD, including apoptosis, autophagy, ferroptosis and pyroptosis. Furthermore, YAP may act as a bridge between different forms of PCD, eventually leading to different outcomes regarding tumor development. Researches on YAP and PCD may benefit the future development of novel treatment strategies for some diseases. Therefore, in this review, we provide a general overview of the cellular functions of YAP and the relationship between YAP and PCD.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong Lu
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China.
| |
Collapse
|
15
|
HJURP regulates cell proliferation and chemo-resistance via YAP1/NDRG1 transcriptional axis in triple-negative breast cancer. Cell Death Dis 2022; 13:396. [PMID: 35459269 PMCID: PMC9033877 DOI: 10.1038/s41419-022-04833-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023]
Abstract
Triple-negative breast cancer is still a difficult point in clinical treatment at present, and a deep study of its pathogenesis has great clinical value. Therefore, our research mainly focuses on exploring the progression of triple-negative breast cancer and determines the important role of the HJURP/YAP1/NDRG1 transcriptional regulation axis in triple-negative breast cancer. We observed significantly increased HJURP expression levels in triple-negative breast cancer compared to other subtypes. HJURP could affect the level of ubiquitination modification of YAP1 protein and then regulate its downstream transcriptional activity. Mechanistically, we found that YAP1 positively regulates NDRG1 transcription by binding the promoter region of the NDRG1 gene. And HJURP/YAP1/NDRG1 axis could affect cell proliferation and chemotherapy sensitivity in triple-negative breast cancer. Taken together, these findings provide insights into the transcriptional regulation axis of HJURP/YAP1/NDRG1 in triple-negative breast cancer progression and therapeutic response.
Collapse
|
16
|
Molecular targets and therapeutics in chemoresistance of triple-negative breast cancer. Med Oncol 2021; 39:14. [PMID: 34812991 DOI: 10.1007/s12032-021-01610-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer (BC), which shows immunohistochemically negative expression of hormone receptor i.e., Estrogen receptor and Progesterone receptor along with the absence of Human Epidermal Growth Factor Receptor-2 (HER2/neu). In Indian scenario the prevalence of BC is 26.3%, whereas, in West Bengal the cases are of 18.4%. But the rate of TNBC has increased up to 31% and shows 27% of total BC. Conventional chemotherapy is effective only in the initial stages but with progression of the disease the effectivity gets reduced and shown almost no effect in later or advanced stages of TNBC. Thus, TNBC patients frequently develop resistance and metastasis, due to its peculiar triple-negative nature most of the hormonal therapies also fails. Development of chemoresistance may involve various factors, such as, TNBC heterogeneity, cancer stem cells (CSCs), signaling pathway deregulation, DNA repair mechanism, hypoxia, and other molecular factors. To overcome the challenges to treat TNBC various targets and molecules have been exploited including CSCs modulator, drug efflux transporters, hypoxic factors, apoptotic proteins, and regulatory signaling pathways. Moreover, to improve the targets and efficacy of treatments researchers are emphasizing on targeted therapy for TNBC. In this review, an effort has been made to focus on phenotypic and molecular variations in TNBC along with the role of conventional as well as newly identified pathways and strategies to overcome challenge of chemoresistance.
Collapse
|
17
|
Kamgar-Dayhoff P, Brelidze TI. Multifaceted effect of chlorpromazine in cancer: implications for cancer treatment. Oncotarget 2021; 12:1406-1426. [PMID: 34262651 PMCID: PMC8274723 DOI: 10.18632/oncotarget.28010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in 1951, chlorpromazine (CPZ) has been one of the most widely used antipsychotic medications for treating schizophrenia and other psychiatric disorders. In addition to its antipsychotic effect, many studies in the last several decades have found that CPZ has a potent antitumorigenic effect. These studies have shown that CPZ affects a number of molecular oncogenic targets through multiple pathways, including the regulation of cell cycle, cancer growth and metastasis, chemo-resistance and stemness of cancer cells. Here we review studies on molecular mechanisms of CPZ’s action on key proteins involved in cancer, including p53, YAP, Ras protein, ion channels, and MAPKs. We discuss common and overlapping signaling pathways of CPZ’s action, its cancer-type specificity, antitumorigenic effects of CPZ reported in animal models and population studies on the rate of cancer in psychiatric patients. We also discuss the potential benefits and limitations of repurposing CPZ for cancer treatment.
Collapse
Affiliation(s)
- Pareesa Kamgar-Dayhoff
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| |
Collapse
|
18
|
Koh SB, Ross K, Isakoff SJ, Melkonjan N, He L, Matissek KJ, Schultz A, Mayer EL, Traina TA, Carey LA, Rugo HS, Liu MC, Stearns V, Langenbucher A, Saladi SV, Ramaswamy S, Lawrence MS, Ellisen LW. RASAL2 Confers Collateral MEK/EGFR Dependency in Chemoresistant Triple-Negative Breast Cancer. Clin Cancer Res 2021; 27:4883-4897. [PMID: 34168046 DOI: 10.1158/1078-0432.ccr-21-0714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE While chemotherapy remains the standard treatment for triple-negative breast cancer (TNBC), identifying and managing chemoresistant tumors has proven elusive. We sought to discover hallmarks and therapeutically actionable features of refractory TNBC through molecular analysis of primary chemoresistant TNBC specimens. EXPERIMENTAL DESIGN We performed transcriptional profiling of tumors from a phase II clinical trial of platinum chemotherapy for advanced TNBC (TBCRC-009), revealing a gene expression signature that identified de novo chemorefractory tumors. We then employed pharmacogenomic data mining, proteomic and other molecular studies to define the therapeutic vulnerabilities of these tumors. RESULTS We reveal the RAS-GTPase-activating protein (RAS-GAP) RASAL2 as an upregulated factor that mediates chemotherapy resistance but also an exquisite collateral sensitivity to combination MAP kinase kinase (MEK1/2) and EGFR inhibitors in TNBC. Mechanistically, RASAL2 GAP activity is required to confer kinase inhibitor sensitivity, as RASAL2-high TNBCs sustain basal RAS activity through suppression of negative feedback regulators SPRY1/2, together with EGFR upregulation. Consequently, RASAL2 expression results in failed feedback compensation upon co-inhibition of MEK1/2 and EGFR that induces synergistic apoptosis in vitro and in vivo. In patients with TNBC, high RASAL2 levels predict clinical chemotherapy response and long-term outcomes, and are associated via direct transcriptional regulation with activated oncogenic Yes-Associated Protein (YAP). Accordingly, chemorefractory patient-derived TNBC models exhibit YAP activation, high RASAL2 expression, and tumor regression in response to MEK/EGFR inhibitor combinations despite well-tolerated intermittent dosing. CONCLUSIONS These findings identify RASAL2 as a mediator of TNBC chemoresistance that rewires MAPK feedback and cross-talk to confer profound collateral sensitivity to combination MEK1/2 and EGFR inhibitors.
Collapse
Affiliation(s)
- Siang-Boon Koh
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kenneth Ross
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Nsan Melkonjan
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Lei He
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Karina J Matissek
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Andrew Schultz
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Erica L Mayer
- Harvard Medical School, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Lisa A Carey
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hope S Rugo
- University of California San Francisco, San Francisco, California
| | - Minetta C Liu
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Vered Stearns
- Johns Hopkins University and Sidney Kimmel Cancer Center, Baltimore, Maryland
| | - Adam Langenbucher
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Srinivas Vinod Saladi
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts.,Ludwig Center at Harvard, Harvard University, Boston, Massachusetts
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Harvard, Harvard University, Boston, Massachusetts
| |
Collapse
|
19
|
New Insights into YES-Associated Protein Signaling Pathways in Hematological Malignancies: Diagnostic and Therapeutic Challenges. Cancers (Basel) 2021; 13:cancers13081981. [PMID: 33924049 PMCID: PMC8073623 DOI: 10.3390/cancers13081981] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary YES-associated protein (YAP) is a co-transcriptional activator that binds to transcriptional factors to increase the rate of transcription of a set of genes, and it can intervene in the onset and progression of different tumors. Most of the data in the literature refer to the effects of the YAP system in solid neoplasms. In this review, we analyze the possibility that YAP can also intervene in hematological neoplasms such as lymphomas, multiple myeloma, and acute and chronic leukemias, modifying the phenomena of cell proliferation and cell death. The possibilities of pharmacological intervention related to the YAP system in an attempt to use its modulation therapeutically are also discussed. Abstract The Hippo/YES-associated protein (YAP) signaling pathway is a cell survival and proliferation-control system with its main activity that of regulating cell growth and organ volume. YAP operates as a transcriptional coactivator in regulating the onset, progression, and treatment response in numerous human tumors. Moreover, there is evidence suggesting the involvement of YAP in the control of the hematopoietic system, in physiological conditions rather than in hematological diseases. Nevertheless, several reports have proposed that the effects of YAP in tumor cells are cell-dependent and cell-type-determined, even if YAP usually interrelates with extracellular signaling to stimulate the onset and progression of tumors. In the present review, we report the most recent findings in the literature on the relationship between the YAP system and hematological neoplasms. Moreover, we evaluate the possible therapeutic use of the modulation of the YAP system in the treatment of malignancies. Given the effects of the YAP system in immunosurveillance, tumorigenesis, and chemoresistance, further studies on interactions between the YAP system and hematological malignancies will offer very relevant information for the targeting of these diseases employing YAP modifiers alone or in combination with chemotherapy drugs.
Collapse
|
20
|
O’Shaughnessy J, McIntyre K, Wilks S, Ma L, Block M, Andorsky D, Danso M, Locke T, Scales A, Wang Y. Efficacy and Safety of Weekly Paclitaxel With or Without Oral Alisertib in Patients With Metastatic Breast Cancer: A Randomized Clinical Trial. JAMA Netw Open 2021; 4:e214103. [PMID: 33877311 PMCID: PMC8058641 DOI: 10.1001/jamanetworkopen.2021.4103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
IMPORTANCE Elevated expression of AURKA adversely affects prognosis in estrogen receptor (ER)-positive and ERBB2 (formerly HER2)-negative and triple-negative breast cancer and is associated with resistance to taxanes. OBJECTIVE To compare paclitaxel alone vs paclitaxel plus alisertib in patients with ER-positive and ERBB2-negative or triple-negative metastatic breast cancer (MBC). DESIGN, SETTING, AND PARTICIPANTS In this randomized clinical trial conducted with the US Oncology Network, participants were randomized to intravenous (IV) paclitaxel 90 mg/m2 on days 1, 8, and 15 on a 28-day cycle or IV paclitaxel 60 mg/m2 on days 1, 8, and 15 plus oral alisertib 40 mg twice daily on days 1 to 3, 8 to 10, and 15 to 17 on a 28-day cycle. Stratification was by prior neo or adjuvant taxane and by line of metastatic therapy. Eligible patients were those who had undergone endocrine therapy, 0 or 1 prior chemotherapy regimens for MBC, more than 12 months treatment-free interval from neo or adjuvant taxane therapy, and with measurable or evaluable lytic bone-disease. Data were analyzed from March 2019 through May 2019. MAIN OUTCOMES AND MEASURES The main outcome was progression-free survival (PFS) with secondary end points of overall survival (OS), overall response rate, clinical benefit rate, safety, and analysis of archival breast cancer tissues for molecular markers associated with benefit from alisertib. RESULTS A total of 174 patients were randomized, including with 86 randomized to paclitaxel and 88 patients randomized to paclitaxel plus alisertib, and 169 patients received study treatment. The final cohort included 139 patients with a median (interquartile range [IQR]) age of 62 (27-84) years with ER-positive and ERBB2-negative MBC, with 70 randomized to paclitaxel and 69 randomized to paclitaxel plus alisertib. The TNBC cohort closed with only 35 patients enrolled due to slow accrual and were not included in efficacy analyses. The median (IQR) follow-up was 22 (10.6-25.1) months, and median (IQR) PFS was 10.2 (3.8-15.7) months with paclitaxel plus alisertib vs 7.1 (3.8-10.6) months with paclitaxel alone (HR, 0.56; 95% CI, 0.37-0.84; P = .005). Median (IQR) OS was 26.3 (12.4-37.2) months for patients who received paclitaxel plus alisertib vs 25.1 (11.0-31.4) months for paclitaxel alone (HR, 0.89; 95% CI, 0.58-1.38; P = .61). Grade 3 or 4 adverse events occurred in 56 patients (84.8%) receiving paclitaxel plus alisertib vs 34 patients (48.6%) receiving paclitaxel alone. The main grade 3 or 4 adverse events with paclitaxel plus alisertib vs paclitaxel alone were neutropenia (50 patients [59.5%] vs 14 patients [16.4%]), anemia (8 patients [9.5%] vs 1 patient [1.2%]), diarrhea (9 patients [10.7%] vs 0 patients), and stomatitis or oral mucositis (13 patients [15.5%] vs 0 patients). One patient receiving paclitaxel plus alisertib died of sepsis. CONCLUSIONS AND RELEVANCE This randomized clinical trial found that the addition of oral alisertib to a reduced dose of weekly paclitaxel significantly improved PFS compared with paclitaxel alone, and toxic effects with paclitaxel plus alisertib were manageable with alisertib dose reduction. These data support further evaluation of alisertib in patients with ER-positive, ERBB2-negative MBC. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02187991.
Collapse
Affiliation(s)
- Joyce O’Shaughnessy
- Baylor University Medical Center, Dallas, Texas
- Texas Oncology, Dallas
- US Oncology, Houston, Texas
| | | | - Sharon Wilks
- Texas Oncology, Dallas
- US Oncology, Houston, Texas
| | - Ling Ma
- US Oncology, Houston, Texas
- Rocky Mountain Cancer Centers, Lakewood, Colorado
| | - Margaret Block
- US Oncology, Houston, Texas
- Nebraska Cancer Specialists, Omaha
| | - David Andorsky
- US Oncology, Houston, Texas
- Rocky Mountain Cancer Centers, Boulder, Colorado
| | - Michael Danso
- US Oncology, Houston, Texas
- Virginia Oncology Associates, Norfolk
| | | | | | | |
Collapse
|
21
|
Fresques T, LaBarge MA. <PE-AT>Contributions of Yap and Taz dysfunction to breast cancer initiation, progression, and aging-related susceptibility. ACTA ACUST UNITED AC 2021; 1:5-18. [PMID: 33693435 DOI: 10.1002/aac2.12011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Yap and Taz are co-transcription factors that have been implicated in the development of many cancers. Here, we review the literature that analyzes the function of Yap/Taz in normal breast and breast cancer contexts. Our review of the literature suggests that that Yap and Taz are involved in breast cancer and Taz, in particular, is involved in the triple negative subtype. Nevertheless, the precise contexts in which Yap/Taz contribute to specific breast cancer phenotypes remains unclear. Indeed, Yap/Taz dysregulation acts differentially and in multiple epithelial cell types during early breast cancer progression. We propose Yap/Taz activation promotes breast cancer phenotypes in breast cancer precursor cells. Further, Yap dysregulation as a result of aging in breast tissue may result in microenvironments that increase the fitness of breast cancer precursor cells relative to the normal epithelia. <PE-FRONTEND>.
Collapse
Affiliation(s)
- Tara Fresques
- Beckman Research Institute at City of Hope, City of Hope National Medical Center, Duarte, CA USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Mark A LaBarge
- Beckman Research Institute at City of Hope, City of Hope National Medical Center, Duarte, CA USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA.,Center for Cancer Biomarkers Research, University of Bergen, Norway
| |
Collapse
|
22
|
Extracts of Perilla frutescens var. Acuta (Odash.) Kudo Leaves Have Antitumor Effects on Breast Cancer Cells by Suppressing YAP Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5619761. [PMID: 33628300 PMCID: PMC7899781 DOI: 10.1155/2021/5619761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022]
Abstract
Yes-associated protein (YAP)/WW domain-containing transcription factor (TAZ) is critical for cell proliferation, survival, and self-renewal. It has been shown to play a crucial oncogenic role in many different types of tumors. In this study, we investigated the antitumor effect of the extracts of Perilla frutescens var. acuta (Odash.) Kudo leaves (PLE) on Hippo-YAP/TAZ signaling. PLE induced the phosphorylation of YAP/TAZ, thereby inhibiting their activity. In addition, the treatment suppresses YAP/TAZ transcriptional activity via the dissociation of the YAP/TAZ-TEAD complex. To elucidate the molecular mechanism of PLE in the regulation of YAP activity, we treated WT and cell lines with gene knockout (KO) for Hippo pathway components with PLE. The inhibitory effects of PLE on YAP-TEAD target genes were significantly attenuated in LATS1/2 KO cells. Moreover, we found the antitumor effect of PLE on MDA-MB-231 and BT549, both of which are triple-negative breast cancer (TNBC) cell lines. PLE reduced the viability of TNBC cells in a dose-dependent manner and induced cell apoptosis. Further, PLE inhibited the migration ability in MDA-MB-231 cells. This ability was weakened in YAP and TEAD-activated clones suggesting that the inhibition of migration by PLE is mainly achieved by regulating YAP activity. Taken together, the results of this study indicate that PLE suppressed cell growth and increased the apoptosis of breast cancer (BC) cells via inactivation of YAP activity in a LATS1/2-dependent manner.
Collapse
|
23
|
Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer 2021; 20:15. [PMID: 33451333 PMCID: PMC7809767 DOI: 10.1186/s12943-020-01305-3] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Aurora kinase A (AURKA) belongs to the family of serine/threonine kinases, whose activation is necessary for cell division processes via regulation of mitosis. AURKA shows significantly higher expression in cancer tissues than in normal control tissues for multiple tumor types according to the TCGA database. Activation of AURKA has been demonstrated to play an important role in a wide range of cancers, and numerous AURKA substrates have been identified. AURKA-mediated phosphorylation can regulate the functions of AURKA substrates, some of which are mitosis regulators, tumor suppressors or oncogenes. In addition, enrichment of AURKA-interacting proteins with KEGG pathway and GO analysis have demonstrated that these proteins are involved in classic oncogenic pathways. All of this evidence favors the idea of AURKA as a target for cancer therapy, and some small molecules targeting AURKA have been discovered. These AURKA inhibitors (AKIs) have been tested in preclinical studies, and some of them have been subjected to clinical trials as monotherapies or in combination with classic chemotherapy or other targeted therapies.
Collapse
Affiliation(s)
- Ruijuan Du
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
| | - Chuntian Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China. .,College of medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
24
|
Wang T, Gautam P, Rousu J, Aittokallio T. Systematic mapping of cancer cell target dependencies using high-throughput drug screening in triple-negative breast cancer. Comput Struct Biotechnol J 2020; 18:3819-3832. [PMID: 33335681 PMCID: PMC7720026 DOI: 10.1016/j.csbj.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022] Open
Abstract
While high-throughput drug screening offers possibilities to profile phenotypic responses of hundreds of compounds, elucidation of the cell context-specific mechanisms of drug action requires additional analyses. To that end, we developed a computational target deconvolution pipeline that identifies the key target dependencies based on collective drug response patterns in each cell line separately. The pipeline combines quantitative drug-cell line responses with drug-target interaction networks among both intended on- and potent off-targets to identify pharmaceutically actionable and selective therapeutic targets. To demonstrate its performance, the target deconvolution pipeline was applied to 310 small molecules tested on 20 genetically and phenotypically heterogeneous triple-negative breast cancer (TNBC) cell lines to identify cell line-specific target mechanisms in terms of cytotoxic and cytostatic drug target vulnerabilities. The functional essentiality of each protein target was quantified with a target addiction score (TAS), as a measure of dependency of the cell line on the therapeutic target. The target dependency profiling was shown to capture inhibitory information that is complementary to that obtained from the structure or sensitivity of the drugs. Comparison of the TAS profiles and gene essentiality scores from CRISPR-Cas9 knockout screens revealed that certain proteins with low gene essentiality showed high target addictions, suggesting that they might be functioning as protein groups, and therefore be resistant to single gene knock-out. The comparative analysis discovered protein groups of potential multi-target synthetic lethal interactions, for instance, among histone deacetylases (HDACs). Our integrated approach also recovered a number of well-established TNBC cell line-specific drivers and known TNBC therapeutic targets, such as HDACs and cyclin-dependent kinases (CDKs). The present work provides novel insights into druggable vulnerabilities for TNBC, and opportunities to identify multi-target synthetic lethal interactions for further studies.
Collapse
Affiliation(s)
- Tianduanyi Wang
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juho Rousu
- Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland.,Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.,Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Mediratta K, El-Sahli S, D’Costa V, Wang L. Current Progresses and Challenges of Immunotherapy in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:E3529. [PMID: 33256070 PMCID: PMC7761500 DOI: 10.3390/cancers12123529] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
With improved understanding of the immunogenicity of triple-negative breast cancer (TNBC), immunotherapy has emerged as a promising candidate to treat this lethal disease owing to the lack of specific targets and effective treatments. While immune checkpoint inhibition (ICI) has been effectively used in immunotherapy for several types of solid tumor, monotherapies targeting programmed death 1 (PD-1), its ligand PD-L1, or cytotoxic T lymphocyte-associated protein 4 (CTLA-4) have shown little efficacy for TNBC patients. Over the past few years, various therapeutic candidates have been reviewed, attempting to improve ICI efficacy on TNBC through combinatorial treatment. In this review, we describe the clinical limitations of ICI and illustrate candidates from an immunological, pharmacological, and metabolic perspective that may potentiate therapy to improve the outcomes of TNBC patients.
Collapse
Affiliation(s)
- Karan Mediratta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Vanessa D’Costa
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
26
|
Sarmasti Emami S, Zhang D, Yang X. Interaction of the Hippo Pathway and Phosphatases in Tumorigenesis. Cancers (Basel) 2020; 12:E2438. [PMID: 32867200 PMCID: PMC7564220 DOI: 10.3390/cancers12092438] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
The Hippo pathway is an emerging tumor suppressor signaling pathway involved in a wide range of cellular processes. Dysregulation of different components of the Hippo signaling pathway is associated with a number of diseases including cancer. Therefore, identification of the Hippo pathway regulators and the underlying mechanism of its regulation may be useful to uncover new therapeutics for cancer therapy. The Hippo signaling pathway includes a set of kinases that phosphorylate different proteins in order to phosphorylate and inactivate its main downstream effectors, YAP and TAZ. Thus, modulating phosphorylation and dephosphorylation of the Hippo components by kinases and phosphatases play critical roles in the regulation of the signaling pathway. While information regarding kinase regulation of the Hippo pathway is abundant, the role of phosphatases in regulating this pathway is just beginning to be understood. In this review, we summarize the most recent reports on the interaction of phosphatases and the Hippo pathway in tumorigenesis. We have also introduced challenges in clarifying the role of phosphatases in the Hippo pathway and future direction of crosstalk between phosphatases and the Hippo pathway.
Collapse
Affiliation(s)
| | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (D.Z.)
| |
Collapse
|
27
|
Yamaguchi H, Taouk GM. A Potential Role of YAP/TAZ in the Interplay Between Metastasis and Metabolic Alterations. Front Oncol 2020; 10:928. [PMID: 32596154 PMCID: PMC7300268 DOI: 10.3389/fonc.2020.00928] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) are the downstream effectors of the Hippo signaling pathway that play a crucial role in various aspects of cancer progression including metastasis. Metastasis is the multistep process of disseminating cancer cells in a body and responsible for the majority of cancer-related death. Emerging evidence has shown that cancer cells reprogram their metabolism to gain proliferation, invasion, migration, and anti-apoptotic abilities and adapt to various environment during metastasis. Moreover, it has increasingly been recognized that YAP/TAZ regulates cellular metabolism that is associated with the phenotypic changes, and recent studies suggest that the YAP/TAZ-mediated metabolic alterations contribute to metastasis. In this review, we will introduce the latest knowledge of YAP/TAZ regulation and function in cancer metastasis and metabolism, and discuss possible links between the YAP/TAZ-mediated metabolic reprogramming and metastasis.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Cancer Research Center, College of Health and Life Sciences, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ghina M Taouk
- Cancer Research Center, College of Health and Life Sciences, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
28
|
Kyriazoglou A, Liontos M, Zakopoulou R, Kaparelou M, Tsiara A, Papatheodoridi AM, Georgakopoulou R, Zagouri F. The Role of the Hippo Pathway in Breast Cancer Carcinogenesis, Prognosis, and Treatment: A Systematic Review. Breast Care (Basel) 2020; 16:6-15. [PMID: 33716627 DOI: 10.1159/000507538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background The Hippo pathway is a developmental pathway recently discovered in Drosophila melanogaster; in mammals it normally controls organ development and wound healing. Hippo signaling is deregulated in breast cancer (BC). MST1/2 and LATS1/2 kinases are the upstream molecular elements of Hippo signaling which phosphorylate and regulate the two effectors of Hippo signaling, YAP1 and TAZ cotranscriptional activators. The two molecular effectors of the Hippo pathway facilitate their activity through TEAD transcription factors. Several molecular pathways with known oncogenic functions cross-talk with the Hippo pathway. Methods A systematic review studying the correlation of the Hippo pathway with BC tumorigenesis, prognosis, and treatment was performed. Results Recent literature highlights the critical role of Hippo signaling in a wide spectrum of biological mechanisms in BC. Discussion The Hippo pathway has a crucial position in BC molecular biology, cellular behavior, and response to treatment. Targeting the Hippo pathway could potentially improve the prognosis and outcome of BC patients.
Collapse
Affiliation(s)
| | - Michalis Liontos
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Roubini Zakopoulou
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Maria Kaparelou
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Anna Tsiara
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | | | | | - Flora Zagouri
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| |
Collapse
|
29
|
Regulation of Hippo signaling and triple negative breast cancer progression by an ubiquitin ligase RNF187. Oncogenesis 2020; 9:36. [PMID: 32198343 PMCID: PMC7083878 DOI: 10.1038/s41389-020-0220-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is the most common malignancy for women worldwide, while Triple Negative Breast Cancer (TNBC) accounts for 20% in all patients. Compared with estrogen receptor positive breast cancer, which could be effectively controlled via endocrine therapy, TNBC is more aggressive and worse in prognosis. It is therefore urgent and necessary to develop a novel therapeutic strategy for TNBC treatment. Recent studies identified Hippo signaling is highly activated in TNBC, which could be a driving pathway for TNBC progression. In our study, we determine RNF187 as a negative regulator for Hippo signaling activation. RNF187 depletion significantly decreases cell migration and invasion capacity in TNBC. These effects could be rescued by further YAP depletion. Depletion of RNF187 increases the YAP protein level and Hippo signaling target genes, such as CTGF and CYR61 in TNBC. Immuno-precipitation assay shows that RNF187 associates with YAP, promoting its degradation possibly via inducing YAP K48-dependent poly-ubiquitination. Interestingly, Our clinical data reveals that RNF187 reversely correlates with YAP protein level and Hippo target genes. RNF187 tends to correlate with good prognosis in TNBC patients. Our study provides evidence to establish a proteolytic mechanism in regulation Hippo signaling activation in TNBC.
Collapse
|
30
|
Fan C, Zhong T, Yang H, Yang Y, Wang D, Yang X, Xu Y, Fan Y. Design, synthesis, biological evaluation of 6-(2-amino-1H-benzo[d]imidazole-6-yl)quinazolin-4(3H)-one derivatives as novel anticancer agents with Aurora kinase inhibition. Eur J Med Chem 2020; 190:112108. [PMID: 32058239 DOI: 10.1016/j.ejmech.2020.112108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Aurora A kinase, a member of the Aurora kinase family, is frequently overexpressed in various human cancers. In addition, Overexpression of Aurora A kinase is associated with drug resistance and poor prognosis in many cancers including breast cancer. Therefore, Aurora A kinase has been considered as an attractive anticancer target for the treatment of human cancers. Herein, A series of 6-(2-amino-1H-benzo[d]imidazole-6-yl)quinazolin-4(3H)-one derivatives were designed, synthesized, and evaluated as Aurora A kinase inhibitors. The cell-based cytotoxicity assays showed that compound 16h was the most potent cytotoxic agent against all tested cancer cells and had a lower IC50 value than ENMD-2076 against MDA-MB-231 cells. Meanwhile, Aurora A kinase assay and Western blot analysis showed that 16h inhibited Aurora A kinase with an IC50 value of 21.94 nM and suppressed the phosphorylation of Histone H3 on Ser10 and Aurora A kinase on Thr288, which were consistent with the activation of Aurora A kinase. Accordingly, 16h caused aberrant mitotic phenotypes and obvious G2/M phase arrest in MDA-MB-231 cells and induced caspase-dependent apoptosis in MDA-MB-231 cells. These results demonstrated that 16h is a potential candidate for the development of anticancer agents targeting Aurora A kinase.
Collapse
Affiliation(s)
- Chengcheng Fan
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Huarong Yang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Ying Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Daoping Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Xiaosheng Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| |
Collapse
|
31
|
Kobayashi Y, Lim SO, Yamaguchi H. Oncogenic signaling pathways associated with immune evasion and resistance to immune checkpoint inhibitors in cancer. Semin Cancer Biol 2019; 65:51-64. [PMID: 31874279 DOI: 10.1016/j.semcancer.2019.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/03/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) are novel class of anti-cancer drugs that exhibit significant therapeutic effects even in patients with advanced-stage cancer. However, the efficacy of ICIs is limited due to resistance. Therefore, appropriate biomarkers to select patients who are likely to respond to these drugs as well as combination therapy to overcome the resistance are urgently necessary. Cancer is caused by various genetic alterations that lead to abnormalities in oncogenic signaling pathways. The aberrant oncogenic signaling pathways serve as not only prognostic and predictive biomarkers, but also targets for molecularly targeted therapy. Growing evidence shows that the aberrant oncogenic signaling pathways in cancer cells facilitate the resistance to ICIs by modulating the regulation of immune checkpoint and cancer immune surveillance. Indeed, it has been demonstrated that some molecular targeted therapies significantly improve the efficacy of ICIs in preclinical and clinical studies. In this review, we highlighted several oncogenic signaling pathways including receptor tyrosine kinases (RTKs), MAPK, PI3K-AKT-mTOR, JAK-STAT, Hippo, and Wnt pathways, and summarized the recent findings of the mechanisms underlying the regulation of cancer immunity and the ICI resistance induced by these aberrant oncogenic signaling pathways in cancer cells. Moreover, we discussed potential combination therapies with ICIs and molecularly targeted drugs to overcome the resistance and increase the efficacy of ICIs.
Collapse
Affiliation(s)
- Yoshie Kobayashi
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Seung-Oe Lim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Hirohito Yamaguchi
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
32
|
Cho YS, Li S, Wang X, Zhu J, Zhuo S, Han Y, Yue T, Yang Y, Jiang J. CDK7 regulates organ size and tumor growth by safeguarding the Hippo pathway effector Yki/Yap/Taz in the nucleus. Genes Dev 2019; 34:53-71. [PMID: 31857346 PMCID: PMC6938674 DOI: 10.1101/gad.333146.119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
Abstract
Hippo signaling controls organ size and tumor progression through a conserved pathway leading to nuclear translocation of the transcriptional effector Yki/Yap/Taz. Most of our understanding of Hippo signaling pertains to its cytoplasmic regulation, but how the pathway is controlled in the nucleus remains poorly understood. Here we uncover an evolutionarily conserved mechanism by which CDK7 promotes Yki/Yap/Taz stabilization in the nucleus to sustain Hippo pathway outputs. We found that a modular E3 ubiquitin ligase complex CRL4DCAF12 binds and targets Yki/Yap/Taz for ubiquitination and degradation, whereas CDK7 phosphorylates Yki/Yap/Taz at S169/S128/S90 to inhibit CRL4DCAF12 recruitment, leading to Yki/Yap/Taz stabilization. As a consequence, inactivation of CDK7 reduced organ size and inhibited tumor growth, which could be reversed by restoring Yki/Yap activity. Our study identifies an unanticipated layer of Hippo pathway regulation, defines a novel mechanism by which CDK7 regulates tissue growth, and implies CDK7 as a drug target for Yap/Taz-driven cancer.
Collapse
Affiliation(s)
- Yong Suk Cho
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shuang Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xiaohui Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Boston, Massachusetts 02215, USA
| | - Jian Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shu Zhuo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tao Yue
- Center for the Genetics and Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Boston, Massachusetts 02215, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
33
|
Nakhjavani M, Hardingham JE, Palethorpe HM, Price TJ, Townsend AR. Druggable Molecular Targets for the Treatment of Triple Negative Breast Cancer. J Breast Cancer 2019; 22:341-361. [PMID: 31598336 PMCID: PMC6769384 DOI: 10.4048/jbc.2019.22.e39] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Breast cancer (BC) is still the most common cancer among women worldwide. Amongst the subtypes of BC, triple negative breast cancer (TNBC) is characterized by deficient expression of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. These patients are therefore not given the option of targeted therapy and have worse prognosis as a result. Consequently, much research has been devoted to identifying specific molecular targets that can be utilized for targeted cancer therapy, thereby limiting the progression and metastasis of this invasive tumor, and improving patient outcomes. In this review, we have focused on the molecular targets in TNBC, categorizing these into targets within the immune system such as immune checkpoint modulators, intra-nuclear targets, intracellular targets, and cell surface targets. The aim of this review is to introduce and summarize the known targets and drugs under investigation in phase II or III clinical trials, while introducing additional possible targets for future drug development. This review brings a tangible benefit to cancer researchers who seek a comprehensive comparison of TNBC treatment options.
Collapse
Affiliation(s)
- Maryam Nakhjavani
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Jennifer E Hardingham
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Helen M Palethorpe
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Tim J Price
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Medical Oncology, The Queen Elizabeth Hospital, Woodville South, Australia
| | - Amanda R Townsend
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Medical Oncology, The Queen Elizabeth Hospital, Woodville South, Australia
| |
Collapse
|
34
|
Yang N, Wang C, Wang J, Wang Z, Huang D, Yan M, Kamran M, Liu Q, Xu B. Aurora kinase A stabilizes FOXM1 to enhance paclitaxel resistance in triple-negative breast cancer. J Cell Mol Med 2019; 23:6442-6453. [PMID: 31359594 PMCID: PMC6714217 DOI: 10.1111/jcmm.14538] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has a relatively poor outcome. Acquired chemoresistance is a major clinical challenge for TNBC patients. Previously, we reported that kinase-dead Aurora kinase A (Aurora-A) could effectively transactivate the FOXM1 promoter. Here, we demonstrate an additional pathway through which Aurora-A stabilizes FOXM1 by attenuating its ubiquitin in TNBC. Specifically, Aurora-A stabilizes FOXM1 in late M phase and early G1 phase of the cell cycle, which promotes proliferation of TNBC cells. Knock-down of Aurora-A significantly suppresses cell proliferation in TNBC cell lines and can be rescued by FOXM1 overexpression. We observe that paclitaxel-resistant TNBC cells exhibit high expression of Aurora-A and FOXM1. Overexpression of Aurora-A offers TNBC cells an additional growth advantage and protection against paclitaxel. Moreover, Aurora-A and FOXM1 could be simultaneously targeted by thiostrepton. Combination of thiostrepton and paclitaxel treatment reverses paclitaxel resistance and significantly inhibits cell proliferation. In conclusion, our study reveals additional mechanism through which Aurora-A regulates FOXM1 and provides a new therapeutic strategy to treat paclitaxel-resistant triple-negative breast cancer.
Collapse
Affiliation(s)
- Na Yang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chang Wang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jian Wang
- Department of Pathology, GanZhou Municipal People's Hospital, NanChang University, GanZhou, China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Di Huang
- Department of Breast Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Min Yan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Muhammad Kamran
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Quentin Liu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - BangLao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
35
|
Activation of Aurora A kinase increases YAP stability via blockage of autophagy. Cell Death Dis 2019; 10:432. [PMID: 31160567 PMCID: PMC6547697 DOI: 10.1038/s41419-019-1664-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Transcription cofactor Yes-associated protein (YAP) plays an important role in cancer progression. Here, we found that Aurora A kinase expression was positively correlated with YAP in lung cancer. Aurora A depletion suppresses lung cancer cell colony formation, which could be reversed by YAP ectopic overexpression. In addition, activation of Aurora A increases YAP protein abundance through maintaining its protein stability. Consistently, the transcriptional activity of YAP is increased upon Aurora A activation. We further showed that shAURKA suppressed YAP expression in the absence of Lats1/2, indicating that Aurora A regulates YAP independently of Hippo pathway. Instead, Aurora A induced blockage of autophagy to up-regulate YAP expression. Collectively, our findings provide insights into regulatory mechanisms of YAP expression in lung cancer development.
Collapse
|
36
|
hnRNPK S379 phosphorylation participates in migration regulation of triple negative MDA-MB-231 cells. Sci Rep 2019; 9:7611. [PMID: 31110205 PMCID: PMC6527834 DOI: 10.1038/s41598-019-44063-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
We have previously identified a novel Aurora-A-mediated Serine 379 (S379) phosphorylation of a poly(C)-binding protein, hnRNPK, the overexpression of which is frequently observed in various cancers. It is known that the oncogenic Aurora-A kinase promotes the malignancy of cancer cells. This study aims to investigate the unexplored functions of hnRNPK S379 phosphorylation using MDA-MB-231 cells, a triple negative breast cancer cell that has amplification of the Aurora-A kinase gene. Accordingly, we established two cell lines in which the endogenous hnRNPK was replaced with either S379D or S379A hnRNPK respectively. Notably, we found that a phosphorylation-mimic S379D mutant of hnRNPK suppressed cell migration and, conversely, a phosphorylation-defective S379A mutant promoted migration. Moreover, Twist was downregulated upon hnRNPK S379 phosphorylation, whereas β-catenin and MMP12 were increased when there was loss of hnRNPK S379 phosphorylation in MDA-MB-231 cells. Furthermore, S379A hnRNPK increases stability of β-catenin in MDA-MB-231 cells. In conclusion, our results suggest that hnRNPK S379 phosphorylation regulates migration via the EMT signaling pathway.
Collapse
|
37
|
Yang CE, Lee WY, Cheng HW, Chung CH, Mi FL, Lin CW. The antipsychotic chlorpromazine suppresses YAP signaling, stemness properties, and drug resistance in breast cancer cells. Chem Biol Interact 2019; 302:28-35. [DOI: 10.1016/j.cbi.2019.01.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/23/2019] [Accepted: 01/26/2019] [Indexed: 01/06/2023]
|
38
|
Ding N, Huang T, Yuan J, Mao J, Duan Y, Liao W, Xiao Z. Yes-associated protein expression in paired primary and local recurrent breast cancer and its clinical significance. Curr Probl Cancer 2019; 43:429-437. [PMID: 30678988 DOI: 10.1016/j.currproblcancer.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/18/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023]
Abstract
Yes-associated protein (YAP) protein acts as tumorigenic factor in many solid tumors, but the situation in breast cancer is under debate. Here, we would analyze its status in breast cancer. YAP expression in the 110 primary breast cancer and their paired local recurrent tumors was investigated. Clinicopathologic data for age, histologic grading, hormone status, lymph nodes and HER2 status were also gathered and analyzed. 46.4% (51/110) primary breast cancer tissues were positive for total YAP expression which was significantly higher than that in the recurrent tissues (10.9%; P < 0.05). The expression of total YAP protein in the primary breast cancer tissues was positively associated with the tumor size, especially in triple negative breast cancer (TNBC) subtype (P < 0.05). Higher total or nuclear YAP expression in the primary tumor was correlated with poor disease-free survival among patients with TNBC (P < 0.05). In the multivariate models, nuclear YAP expression was an independently prognostic factor in TNBC. High total or nuclear YAP expression predicts poor prognosis among patients with TNBC. It might be a therapeutic target for TNBC in the future.
Collapse
Affiliation(s)
- Nianhua Ding
- Radiology Department, Xiangya Hospital, Central South University, Changsha, China; Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Huang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Yuan
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Mao
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yumei Duan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Liao
- Radiology Department, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Xiao
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Breast Cancer Control and Prevention In Human Province, Changsha, China.
| |
Collapse
|
39
|
Long L, Wang YH, Zhuo JX, Tu ZC, Wu R, Yan M, Liu Q, Lu G. Structure-based drug design: Synthesis and biological evaluation of quinazolin-4-amine derivatives as selective Aurora A kinase inhibitors. Eur J Med Chem 2018; 157:1361-1375. [DOI: 10.1016/j.ejmech.2018.08.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 11/26/2022]
|
40
|
He Z, Zhao TT, Jin F, Li JG, Xu YY, Dong HT, Liu Q, Xing P, Zhu GL, Xu H, Miao ZF. Downregulation of RASSF6 promotes breast cancer growth and chemoresistance through regulation of Hippo signaling. Biochem Biophys Res Commun 2018; 503:2340-2347. [DOI: 10.1016/j.bbrc.2018.06.159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|
41
|
Cho YS, Zhu J, Li S, Wang B, Han Y, Jiang J. Regulation of Yki/Yap subcellular localization and Hpo signaling by a nuclear kinase PRP4K. Nat Commun 2018; 9:1657. [PMID: 29695716 PMCID: PMC5916879 DOI: 10.1038/s41467-018-04090-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/03/2018] [Indexed: 12/23/2022] Open
Abstract
Hippo (Hpo) signaling pathway controls tissue growth by regulating the subcellular localization of Yorkie (Yki)/Yap via a cytoplasmic kinase cassette containing an upstream kinase Hpo/MST1/2 and a downstream kinase Warts (Wts)/Lats1/2. Here we show that PRP4K, a kinase involved in mRNA splicing, phosphorylates Yki/Yap in the nucleus to prevent its nuclear accumulation and restrict Hpo pathway target gene expression. PRP4K inactivation accelerates whereas excessive PRP4K inhibits Yki-driven tissue overgrowth. PRP4K phosphorylates a subset of Wts/Lats1/2 sites on Yki/Yap to inhibit the binding of Yki/Yap to the Scalloped (Sd)/TEAD transcription factor and exclude Yki/Yap nuclear localization depending on nuclear export. Furthermore, PRP4K inhibits proliferation and invasiveness of cultured breast cancer cells and its high expression correlates with good prognosis in breast cancer patients. Our study unravels an unanticipated layer of Hpo pathway regulation and suggests that PRP4K-mediated Yki/Yap phosphorylation in the nucleus provides a fail-safe mechanism to restrict aberrant pathway activation. The Hippo signaling pathway controls tissue growth by regulating the subcellular localization of Yorkie /Yap. Here the authors show that PRP4K, a kinase involved in mRNA splicing, phosphorylates Yki/Yap in the nucleus, which prevents its nuclear accumulation and inhibits Hippo signaling.
Collapse
Affiliation(s)
- Yong Suk Cho
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jian Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.,Henan Key Laboratory of immunology and targeted therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, People's Republic of China
| | - Shuangxi Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Bing Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, TX, 75390, Dallas, USA.
| |
Collapse
|
42
|
Liu H, Murphy CJ, Karreth FA, Emdal KB, White FM, Elemento O, Toker A, Wulf GM, Cantley LC. Identifying and Targeting Sporadic Oncogenic Genetic Aberrations in Mouse Models of Triple-Negative Breast Cancer. Cancer Discov 2018; 8:354-369. [PMID: 29203461 PMCID: PMC5907916 DOI: 10.1158/2159-8290.cd-17-0679] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancers (TNBC) are genetically characterized by aberrations in TP53 and a low rate of activating point mutations in common oncogenes, rendering it challenging in applying targeted therapies. We performed whole-exome sequencing (WES) and RNA sequencing (RNA-seq) to identify somatic genetic alterations in mouse models of TNBCs driven by loss of Trp53 alone or in combination with Brca1 Amplifications or translocations that resulted in elevated oncoprotein expression or oncoprotein-containing fusions, respectively, as well as frameshift mutations of tumor suppressors were identified in approximately 50% of the tumors evaluated. Although the spectrum of sporadic genetic alterations was diverse, the majority had in common the ability to activate the MAPK/PI3K pathways. Importantly, we demonstrated that approved or experimental drugs efficiently induce tumor regression specifically in tumors harboring somatic aberrations of the drug target. Our study suggests that the combination of WES and RNA-seq on human TNBC will lead to the identification of actionable therapeutic targets for precision medicine-guided TNBC treatment.Significance: Using combined WES and RNA-seq analyses, we identified sporadic oncogenic events in TNBC mouse models that share the capacity to activate the MAPK and/or PI3K pathways. Our data support a treatment tailored to the genetics of individual tumors that parallels the approaches being investigated in the ongoing NCI-MATCH, My Pathway Trial, and ESMART clinical trials. Cancer Discov; 8(3); 354-69. ©2017 AACR.See related commentary by Natrajan et al., p. 272See related article by Matissek et al., p. 336This article is highlighted in the In This Issue feature, p. 253.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Charles J Murphy
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kristina B Emdal
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Forest M White
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Alex Toker
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, and Ludwig Center at Harvard, Boston, Massachusetts
| | - Gerburg M Wulf
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
43
|
García-Aranda M, Redondo M. Protein Kinase Targets in Breast Cancer. Int J Mol Sci 2017; 18:ijms18122543. [PMID: 29186886 PMCID: PMC5751146 DOI: 10.3390/ijms18122543] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
With 1.67 million new cases and 522,000 deaths in the year 2012, breast cancer is the most common type of diagnosed malignancy and the second leading cause of cancer death in women around the world. Despite the success of screening programs and the development of adjuvant therapies, a significant percentage of breast cancer patients will suffer a metastatic disease that, to this day, remains incurable and justifies the research of new therapies to improve their life expectancy. Among the new therapies that have been developed in recent years, the emergence of targeted therapies has been a milestone in the fight against cancer. Over the past decade, many studies have shown a causal role of protein kinase dysregulations or mutations in different human diseases, including cancer. Along these lines, cancer research has demonstrated a key role of many protein kinases during human tumorigenesis and cancer progression, turning these molecules into valid candidates for new targeted therapies. The subsequent discovery and introduction in 2001 of the kinase inhibitor imatinib, as a targeted treatment for chronic myelogenous leukemia, revolutionized cancer genetic pathways research, and lead to the development of multiple small-molecule kinase inhibitors against various malignancies, including breast cancer. In this review, we analyze studies published to date about novel small-molecule kinase inhibitors and evaluate if they would be useful to develop new treatment strategies for breast cancer patients.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
- Biochemistry Department, Facultad de Medicina de la Universidad de Málaga, Bulevar Louis Pasteur 32, 29010 Málaga, Spain.
| |
Collapse
|
44
|
Abstract
Alzheimer's disease (AD) is characterized by accumulation of the β-amyloid peptide (Aβ), which is generated through sequential proteolysis of the amyloid precursor protein (APP), first by the action of β-secretase, generating the β-C-terminal fragment (βCTF), and then by the Presenilin 1 (PS1) enzyme in the γ-secretase complex, generating Aβ. γ-Secretase is an intramembranous protein complex composed of Aph1, Pen2, Nicastrin, and Presenilin 1. Although it has a central role in the pathogenesis of AD, knowledge of the mechanisms that regulate PS1 function is limited. Here, we show that phosphorylation of PS1 at Ser367 does not affect γ-secretase activity, but has a dramatic effect on Aβ levels in vivo. We identified CK1γ2 as the endogenous kinase responsible for the phosphorylation of PS1 at Ser367. Inhibition of CK1γ leads to a decrease in PS1 Ser367 phosphorylation and an increase in Aβ levels in cultured cells. Transgenic mice in which Ser367 of PS1 was mutated to Ala, show dramatic increases in Aβ peptide and in βCTF levels in vivo. Finally, we show that this mutation impairs the autophagic degradation of βCTF, resulting in its accumulation and increased levels of Aβ peptide and plaque load in the brain. Our results demonstrate that PS1 regulates Aβ levels by a unique bifunctional mechanism. In addition to its known role as the catalytic subunit of the γ-secretase complex, selective phosphorylation of PS1 on Ser367 also decreases Aβ levels by increasing βCTF degradation through autophagy. Elucidation of the mechanism by which PS1 regulates βCTF degradation may aid in the development of potential therapies for Alzheimer's disease.
Collapse
|