1
|
Sankar AP, Cho HM, Shin SU, Sneh T, Ramakrishnan S, Elledge C, Zhang Y, Das R, Gil-Henn H, Rosenblatt JD. Antibody-Drug Conjugate αEGFR-E-P125A Reduces Triple-negative Breast Cancer Vasculogenic Mimicry, Motility, and Metastasis through Inhibition of EGFR, Integrin, and FAK/STAT3 Signaling. CANCER RESEARCH COMMUNICATIONS 2024; 4:738-756. [PMID: 38315147 PMCID: PMC10926898 DOI: 10.1158/2767-9764.crc-23-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Primary tumor growth and metastasis in triple-negative breast cancer (TNBC) require supporting vasculature, which develop through a combination of endothelial angiogenesis and vasculogenic mimicry (VM), a process associated with aggressive metastatic behavior in which vascular-like structures are lined by tumor cells. We developed αEGFR-E-P125A, an antibody-endostatin fusion protein that delivers a dimeric, mutant endostatin (E-P125A) payload that inhibits TNBC angiogenesis and VM in vitro and in vivo. To characterize the mechanisms associated with induction and inhibition of VM, RNA sequencing (RNA-seq) of MDA-MB-231-4175 TNBC cells grown in a monolayer (two-dimensional) was compared with cells plated on Matrigel undergoing VM [three-dimensional (3D)]. We then compared RNA-seq between TNBC cells in 3D and cells in 3D with VM inhibited by αEGFR-E-P125A (EGFR-E-P125A). Gene set enrichment analysis demonstrated that VM induction activated the IL6-JAK-STAT3 and angiogenesis pathways, which were downregulated by αEGFR-E-P125A treatment.Correlative analysis of the phosphoproteome demonstrated decreased EGFR phosphorylation at Y1069, along with decreased phosphorylation of focal adhesion kinase Y397 and STAT3 Y705 sites downstream of α5β1 integrin. Suppression of phosphorylation events downstream of EGFR and α5β1 integrin demonstrated that αEGFR-E-P125A interferes with ligand-receptor activation, inhibits VM, and overcomes oncogenic signaling associated with EGFR and α5β1 integrin cross-talk. In vivo, αEGFR-E-P125A treatment decreased primary tumor growth and VM, reduced lung metastasis, and confirmed the inhibition of signaling events observed in vitro. Simultaneous inhibition of EGFR and α5β1 integrin signaling by αEGFR-E-P125A is a promising strategy for the inhibition of VM, tumor growth, motility, and metastasis in TNBC and other EGFR-overexpressing tumors. SIGNIFICANCE αEGFR-E-P125A reduces VM, angiogenesis, tumor growth, and metastasis by inhibiting EGFR and α5β1 integrin signaling, and is a promising therapeutic agent for TNBC treatment, used alone or in combination with chemotherapy.
Collapse
Affiliation(s)
- Ankita P. Sankar
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Hyun-Mi Cho
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Seung-Uon Shin
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Tal Sneh
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sundaram Ramakrishnan
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Christian Elledge
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Yu Zhang
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Rathin Das
- Synergys Biotherapeutics, Inc., Alamo, California
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Joseph D. Rosenblatt
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| |
Collapse
|
2
|
Su C, Mo J, Dong S, Liao Z, Zhang B, Zhu P. Integrinβ-1 in disorders and cancers: molecular mechanisms and therapeutic targets. Cell Commun Signal 2024; 22:71. [PMID: 38279122 PMCID: PMC10811905 DOI: 10.1186/s12964-023-01338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 01/28/2024] Open
Abstract
Integrinβ-1 (ITGB1) is a crucial member of the transmembrane glycoprotein signaling receptor family and is also central to the integrin family. It forms heterodimers with other ligands, participates in intracellular signaling and controls a variety of cellular processes, such as angiogenesis and the growth of neurons; because of its role in bidirectional signaling regulation both inside and outside the membrane, ITGB1 must interact with a multitude of substances, so a variety of interfering factors can affect ITGB1 and lead to changes in its function. Over the past 20 years, many studies have confirmed a clear causal relationship between ITGB1 dysregulation and cancer development and progression in a wide range of benign diseases and solid tumor types, which may imply that ITGB1 is a prognostic biomarker and a therapeutic target for cancer treatment that warrants further investigation. This review summarizes the biological roles of ITGB1 in benign diseases and cancers, and compiles the current status of ITGB1 function and therapy in various aspects of tumorigenesis and progression. Finally, future research directions and application prospects of ITGB1 are suggested. Video Abstract.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Shuilin Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Duan H, Li L, He S. Advances and Prospects in the Treatment of Pancreatic Cancer. Int J Nanomedicine 2023; 18:3973-3988. [PMID: 37489138 PMCID: PMC10363367 DOI: 10.2147/ijn.s413496] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Pancreatic cancer is a highly malignant and incurable disease, characterized by its aggressive nature and high fatality rate. The most common type is pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis and high mortality rate. Current treatments for pancreatic cancer mainly encompass surgery, chemotherapy, radiotherapy, targeted therapy, and combination regimens. However, despite efforts to improve prognosis, and the 5-year survival rate for pancreatic cancer remains very low. Therefore, it's urgent to explore novel therapeutic approaches. With the rapid development of therapeutic strategies in recent years, new ideas have been provided for treating pancreatic cancer. This review expositions the advancements in nano drug delivery system, molecular targeted drugs, and photo-thermal treatment combined with nanotechnology for pancreatic cancer. It comprehensively analyzes the prospects of combined drug delivery strategies for treating pancreatic cancer, aiming at a deeper understanding of the existing drugs and therapeutic approaches, promoting the development of new therapeutic drugs, and attempting to enhance the therapeutic effect for patients with this disease.
Collapse
Affiliation(s)
- Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Li Li
- Department of Hepatobiliary Pancreatic Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
4
|
Liu F, Wu Q, Dong Z, Liu K. Integrins in cancer: Emerging mechanisms and therapeutic opportunities. Pharmacol Ther 2023:108458. [PMID: 37245545 DOI: 10.1016/j.pharmthera.2023.108458] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Integrins are vital surface adhesion receptors that mediate the interactions between the extracellular matrix (ECM) and cells and are essential for cell migration and the maintenance of tissue homeostasis. Aberrant integrin activation promotes initial tumor formation, growth, and metastasis. Recently, many lines of evidence have indicated that integrins are highly expressed in numerous cancer types and have documented many functions of integrins in tumorigenesis. Thus, integrins have emerged as attractive targets for the development of cancer therapeutics. In this review, we discuss the underlying molecular mechanisms by which integrins contribute to most of the hallmarks of cancer. We focus on recent progress on integrin regulators, binding proteins, and downstream effectors. We highlight the role of integrins in the regulation of tumor metastasis, immune evasion, metabolic reprogramming, and other hallmarks of cancer. In addition, integrin-targeted immunotherapy and other integrin inhibitors that have been used in preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Fangfang Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Qiong Wu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zigang Dong
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Kangdong Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| |
Collapse
|
5
|
Poh AR, Ernst M. Functional roles of SRC signaling in pancreatic cancer: Recent insights provide novel therapeutic opportunities. Oncogene 2023:10.1038/s41388-023-02701-x. [PMID: 37120696 DOI: 10.1038/s41388-023-02701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis, and drug resistance. Strategies to inhibit SRC signaling include suppressing its catalytic activity, inhibiting protein stability, or by interfering with signaling components of the SRC signaling pathway including suppressing protein interactions of SRC. In this review, we discuss the molecular and immunological mechanisms by which aberrant SRC activity promotes PDAC tumorigenesis. We also provide a comprehensive update of SRC inhibitors in the clinic, and discuss the clinical challenges associated with targeting SRC in pancreatic cancer.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| |
Collapse
|
6
|
Borodins O, Broghammer F, Seifert M, Cordes N. Meta-analysis of expression and the targeting of cell adhesion associated genes in nine cancer types - A one research lab re-evaluation. Comput Struct Biotechnol J 2023; 21:2824-2836. [PMID: 37206618 PMCID: PMC10189096 DOI: 10.1016/j.csbj.2023.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer presents as a highly heterogeneous disease with partly overlapping and partly distinct (epi)genetic characteristics. These characteristics determine inherent and acquired resistance, which need to be overcome for improving patient survival. In line with the global efforts in identifying druggable resistance factors, extensive preclinical research of the Cordes lab and others designated the cancer adhesome as a critical and general therapy resistance mechanism with multiple druggable cancer targets. In our study, we addressed pancancer cell adhesion mechanisms by connecting the preclinical datasets generated in the Cordes lab with publicly available transcriptomic and patient survival data. We identified similarly changed differentially expressed genes (scDEGs) in nine cancers and their corresponding cell models relative to normal tissues. Those scDEGs interconnected with 212 molecular targets from Cordes lab datasets generated during two decades of research on adhesome and radiobiology. Intriguingly, integrative analysis of adhesion associated scDEGs, TCGA patient survival and protein-protein network reconstruction revealed a set of overexpressed genes adversely affecting overall cancer patient survival and specifically the survival in radiotherapy-treated cohorts. This pancancer gene set includes key integrins (e.g. ITGA6, ITGB1, ITGB4) and their interconnectors (e.g. SPP1, TGFBI), affirming their critical role in the cancer adhesion resistome. In summary, this meta-analysis demonstrates the importance of the adhesome in general, and integrins together with their interconnectors in particular, as potentially conserved determinants and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Olegs Borodins
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Felix Broghammer
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
| | - Nils Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
7
|
Rapetti-Mauss R, Nigri J, Berenguier C, Finetti P, Tubiana SS, Labrum B, Allegrini B, Pellissier B, Efthymiou G, Hussain Z, Bousquet C, Dusetti N, Bertucci F, Guizouarn H, Melnyk P, Borgese F, Tomasini R, Soriani O. SK2 channels set a signalling hub bolstering CAF-triggered tumourigenic processes in pancreatic cancer. Gut 2023; 72:722-735. [PMID: 36882214 DOI: 10.1136/gutjnl-2021-326610] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/12/2022] [Indexed: 03/09/2023]
Abstract
OBJECTIVE Intercellular communication within pancreatic ductal adenocarcinoma (PDAC) dramatically contributes to metastatic processes. The underlying mechanisms are poorly understood, resulting in a lack of targeted therapy to counteract stromal-induced cancer cell aggressiveness. Here, we investigated whether ion channels, which remain understudied in cancer biology, contribute to intercellular communication in PDAC. DESIGN We evaluated the effects of conditioned media from patient-derived cancer-associated fibroblasts (CAFs) on electrical features of pancreatic cancer cells (PCC). The molecular mechanisms were deciphered using a combination of electrophysiology, bioinformatics, molecular and biochemistry techniques in cell lines and human samples. An orthotropic mouse model where CAF and PCC were co-injected was used to evaluate tumour growth and metastasis dissemination. Pharmacological studies were carried out in the Pdx1-Cre, Ink4afl/fl LSL-KrasG12D (KICpdx1) mouse model. RESULTS We report that the K+ channel SK2 expressed in PCC is stimulated by CAF-secreted cues (8.84 vs 2.49 pA/pF) promoting the phosphorylation of the channel through an integrin-epidermal growth factor receptor (EGFR)-AKT (Protein kinase B) axis. SK2 stimulation sets a positive feedback on the signalling pathway, increasing invasiveness in vitro (threefold) and metastasis formation in vivo. The CAF-dependent formation of the signalling hub associating SK2 and AKT requires the sigma-1 receptor chaperone. The pharmacological targeting of Sig-1R abolished CAF-induced activation of SK2, reduced tumour progression and extended the overall survival in mice (11.7 weeks vs 9.5 weeks). CONCLUSION We establish a new paradigm in which an ion channel shifts the activation level of a signalling pathway in response to stromal cues, opening a new therapeutic window targeting the formation of ion channel-dependent signalling hubs.
Collapse
Affiliation(s)
| | - Jérémy Nigri
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS UMR7258, Université Aix-Marseille, Marseille, France
| | | | - Pascal Finetti
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS UMR7258, Université Aix-Marseille, Marseille, France
| | - Sarah Simha Tubiana
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS UMR7258, Université Aix-Marseille, Marseille, France
| | - Bonnie Labrum
- Université Côte d'azur, CNRS, Inserm, iBV, Nice, France
| | | | | | - Georgios Efthymiou
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS UMR7258, Université Aix-Marseille, Marseille, France
| | - Zainab Hussain
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS UMR7258, Université Aix-Marseille, Marseille, France
| | - Corinne Bousquet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Université de Toulouse, Toulouse, France
| | - Nelson Dusetti
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS UMR7258, Université Aix-Marseille, Marseille, France
| | - François Bertucci
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS UMR7258, Université Aix-Marseille, Marseille, France
| | | | - Patricia Melnyk
- Lille Neuroscience and Cognition Research Center UMR-S 1172, University of Lille, INSERM, CHU Lille, Lille, France
| | | | - Richard Tomasini
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS UMR7258, Université Aix-Marseille, Marseille, France
| | | |
Collapse
|
8
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
9
|
Aragón-Vela J, Alcalá-Bejarano Carrillo J, Moreno-Racero A, Plaza-Diaz J. The Role of Molecular and Hormonal Factors in Obesity and the Effects of Physical Activity in Children. Int J Mol Sci 2022; 23:15413. [PMID: 36499740 PMCID: PMC9737554 DOI: 10.3390/ijms232315413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity and overweight are defined as abnormal fat accumulations. Adipose tissue consists of more than merely adipocytes; each adipocyte is closely coupled with the extracellular matrix. Adipose tissue stores excess energy through expansion. Obesity is caused by the abnormal expansion of adipose tissue as a result of adipocyte hypertrophy and hyperplasia. The process of obesity is controlled by several molecules, such as integrins, kindlins, or matrix metalloproteinases. In children with obesity, metabolomics studies have provided insight into the existence of unique metabolic profiles. As a result of low-grade inflammation in the system, abnormalities were observed in several metabolites associated with lipid, carbohydrate, and amino acid pathways. In addition, obesity and related hormones, such as leptin, play an instrumental role in regulating food intake and contributing to childhood obesity. The World Health Organization states that physical activity benefits the heart, the body, and the mind. Several noncommunicable diseases, such as cardiovascular disease, cancer, and diabetes, can be prevented and managed through physical activity. In this work, we reviewed pediatric studies that examined the molecular and hormonal control of obesity and the influence of physical activity on children with obesity or overweight. The purpose of this review was to examine some orchestrators involved in this disease and how they are related to pediatric populations. A larger number of randomized clinical trials with larger sample sizes and long-term studies could lead to the discovery of new key molecules as well as the detection of significant factors in the coming years. In order to improve the health of the pediatric population, omics analyses and machine learning techniques can be combined in order to improve treatment decisions.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Jesús Alcalá-Bejarano Carrillo
- Department of Health, University of the Valley of Mexico, Robles 600, Tecnologico I, San Luis Potosí 78220, Mexico
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain
| | - Aurora Moreno-Racero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Instituto de Investigación Biosanitaria IBS, Granada, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|
10
|
Douyère M, Gong C, Richard M, Pellegrini-Moïse N, Daouk J, Pierson J, Chastagner P, Boura C. NRP1 inhibition modulates radiosensitivity of medulloblastoma by targeting cancer stem cells. Cancer Cell Int 2022; 22:377. [PMID: 36457009 PMCID: PMC9714111 DOI: 10.1186/s12935-022-02796-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common pediatric malignant brain tumor. Despite current therapies, the morbidity and recurrent risk remains significant. Neuropilin-1 receptor (NRP1) has been implicated in the tumor progression of MB. Our recent study showed that NRP1 inhibition stimulated MB stem cells differentiation. Consequently, we hypothesized that targeting NRP1 in medulloblastoma could improve current treatments. METHODS NRP1 inhibition with a novel peptidomimetic agent, MR438, was evaluated with radiotherapy (RT) in MB models (DAOY, D283-Med and D341-Med) in vitro on cancer stem-like cells as well as in vivo on heterotopic and orthotopic xenografts. RESULTS We show that NRP1 inhibition by MR438 radiosensitizes MB stem-like cells in vitro. In heterotopic DAOY models, MR438 improves RT efficacy as measured by tumor growth and mouse survival. In addition, clonogenic assays after tumor dissociation showed a significant reduction in cancer stem cells with the combination treatment. In the same way, a benefit of the combined therapy was observed in the orthotopic model only for a low cumulative irradiation dose of 10 Gy but not for 20 Gy. CONCLUSIONS Finally, our results demonstrated that targeting NRP1 with MR438 could be a potential new strategy and could limit MB progression by decreasing the stem cell number while reducing the radiation dose.
Collapse
Affiliation(s)
- Manon Douyère
- grid.462787.80000 0001 2151 8763Université de Lorraine, CNRS, CRAN, UMR 7039, 54000 Nancy, France
| | - Caifeng Gong
- grid.462787.80000 0001 2151 8763Université de Lorraine, CNRS, CRAN, UMR 7039, 54000 Nancy, France ,grid.506261.60000 0001 0706 7839Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Can-Cer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Bei-Jing, 100021 China
| | - Mylène Richard
- Université de Lorraine, CNRS, L2CM, UMR 7053, Campus Science, 54500 Vandœuvre-Lès-Nancy, France
| | - Nadia Pellegrini-Moïse
- Université de Lorraine, CNRS, L2CM, UMR 7053, Campus Science, 54500 Vandœuvre-Lès-Nancy, France
| | - Joël Daouk
- grid.462787.80000 0001 2151 8763Université de Lorraine, CNRS, CRAN, UMR 7039, 54000 Nancy, France
| | - Julien Pierson
- grid.462787.80000 0001 2151 8763Université de Lorraine, CNRS, CRAN, UMR 7039, 54000 Nancy, France
| | - Pascal Chastagner
- grid.462787.80000 0001 2151 8763Université de Lorraine, CNRS, CRAN, UMR 7039, 54000 Nancy, France ,grid.410527.50000 0004 1765 1301Service d’Onco-Hématologie Pédiatrique, CHRU-Nancy, 54000 Nancy, France
| | - Cédric Boura
- grid.462787.80000 0001 2151 8763Université de Lorraine, CNRS, CRAN, UMR 7039, 54000 Nancy, France
| |
Collapse
|
11
|
Li J, Peng L, Chen Q, Ye Z, Zhao T, Hou S, Gu J, Hang Q. Integrin β1 in Pancreatic Cancer: Expressions, Functions, and Clinical Implications. Cancers (Basel) 2022; 14:cancers14143377. [PMID: 35884437 PMCID: PMC9318555 DOI: 10.3390/cancers14143377] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer (PC) is a highly aggressive malignant tumor with an extremely poor prognosis. Early diagnosis and treatment are key to improving the survival rate of PC patients. Emerging studies show that integrins might contribute to the pathogenesis of PC. This review presents the various signaling pathways that are mediated by integrins in PC and emphasizes the multiple functions of integrin β1 in malignant behaviors of PC. It also discusses the clinical significance of integrin β1 as well as integrin β1-based therapy in PC patients. Abstract Pancreatic cancer (PC) is characterized by rapid progression and a high mortality rate. The current treatment is still based on surgical treatment, supplemented by radiotherapy and chemotherapy, and new methods of combining immune and molecular biological treatments are being explored. Despite this, the survival rate of PC patients is still very disappointing. Therefore, clarifying the molecular mechanism of PC pathogenesis and developing precisely targeted drugs are key to improving PC prognosis. As the most common β subunit of the integrin family, integrin β1 has been proved to be closely related to the vascular invasion, distant metastasis, and survival of PC patients, and treatment targeting integrin β1 in PC has gained initial success in animal models. In this review, we summarize the various signaling pathways by which integrins are involved in PC, focusing on the roles of integrin β1 in the malignant behaviors of PC. Additionally, recent studies regarding the feasibility of integrin β1 as a diagnostic and prognostic biomarker in PC are also discussed. Finally, we present the progress of several integrin β1-based clinical trials to highlight the potential of integrin β1 as a target for personalized therapy in PC.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
| | - Liyao Peng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Ziping Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Tiantian Zhao
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Sicong Hou
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| |
Collapse
|
12
|
Görte J, Danen E, Cordes N. Therapy-Naïve and Radioresistant 3-Dimensional Pancreatic Cancer Cell Cultures Are Effectively Radiosensitized by β1 Integrin Targeting. Int J Radiat Oncol Biol Phys 2021; 112:487-498. [PMID: 34481933 DOI: 10.1016/j.ijrobp.2021.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a cancer with unmet needs. The role of highly conformal radiation therapy is still under debate for PDAC. Owing to its desmoplastic nature, integrin-mediated interactions between PDAC cells and extracellular matrix (ECM) profoundly contribute to PDAC therapy resistance. In this study, we investigated the radiochemosensitizing potential of β1 integrin targeting in therapy-naïve and radioresistant PDAC cell cultures grown in 3-dimensional (3D) ECM. METHODS AND MATERIALS In a panel of 3D, ECM-based PDAC cell cultures, β1 integrin was inhibited by antibodies or siRNA-mediated knockdown. Together with x-ray irradiation and specific chemotherapies, we determined 3D colony formation capacity in therapy-naïve and radioresistant PDAC cultures. We used kinome profiling, Western blotting, and immunofluorescence stainings to characterize these cell lines. Various siRNA screens were conducted to identify novel therapeutic targets. RESULTS We found a significant radiosensitizing potential of β1 integrin inhibition both in therapy-naïve and radioresistant PDAC cell cultures. Kinome profiling upon β1 integrin targeting identified a generally declined tyrosine and serine/threonine kinase activity, which presented less prominent in radioresistant than in therapy-naïve PDAC cells. siRNA screens employing the top 34 deregulated kinases in combination with β1 integrin inhibition revealed less efficacy and less radiosensitization in radioresistant relative to therapy-naïve PDAC cell cultures. Triple inhibition of β1 integrin, protein kinase D1, and rearranged during transfection turned out to be most effective in reducing 3D colony formation of radioresistant PDAC cells. CONCLUSIONS Our study clearly shows that β1 integrins are robust targets for overcoming radioresistance in PDAC. This seems to apply equally to therapy-sensitive and radioresistant cells. Concerning tumor heterogeneity, this dual therapy-sensitizing potential might be exploitable for a significant improvement of patient survival.
Collapse
Affiliation(s)
- Josephine Görte
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Erik Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology-OncoRay, Dresden, Germany; German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Muyinda IJ, Park JG, Jang EJ, Yoo BC. KRAS, A Prime Mediator in Pancreatic Lipid Synthesis through Extra Mitochondrial Glutamine and Citrate Metabolism. Int J Mol Sci 2021; 22:5070. [PMID: 34064761 PMCID: PMC8150642 DOI: 10.3390/ijms22105070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven pancreatic cancer is very lethal, with a five-year survival rate of <9%, irrespective of therapeutic advances. Different treatment modalities including chemotherapy, radiotherapy, and immunotherapy demonstrated only marginal efficacies because of pancreatic tumor specificities. Surgery at the early stage of the disease remains the only curative option, although only in 20% of patients with early stage disease. Clinical trials targeting the main oncogenic driver, KRAS, have largely been unsuccessful. Recently, global metabolic reprogramming has been identified in patients with pancreatic cancer and oncogenic KRAS mouse models. The newly reprogrammed metabolic pathways and oncometabolites affect the tumorigenic environment. The development of methods modulating metabolic reprogramming in pancreatic cancer cells might constitute a new approach to its therapy. In this review, we describe the major metabolic pathways providing acetyl-CoA and NADPH essential to sustain lipid synthesis and cell proliferation in pancreatic cancer cells.
Collapse
Affiliation(s)
- Isaac James Muyinda
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
- Uganda Cancer Institute, Mulago-Kampala 3935, Uganda
| | - Jae-Gwang Park
- Department of Translational Science, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Eun-Jung Jang
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
| | - Byong-Chul Yoo
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
- Department of Translational Science, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| |
Collapse
|
14
|
Datta R, Lizama CO, Soltani AK, Mckleroy W, Podolsky MJ, Yang CD, Huynh TL, Cautivo KM, Wang B, Koliwad SK, Abumrad NA, Atabai K. Autoregulation of insulin receptor signaling through MFGE8 and the αvβ5 integrin. Proc Natl Acad Sci U S A 2021; 118:e2102171118. [PMID: 33903257 PMCID: PMC8106306 DOI: 10.1073/pnas.2102171118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The role of integrins, in particular αv integrins, in regulating insulin resistance is incompletely understood. We have previously shown that the αvβ5 integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) regulates cellular uptake of fatty acids. In this work, we evaluated the impact of MFGE8 on glucose homeostasis. We show that acute blockade of the MFGE8/β5 pathway enhances while acute augmentation dampens insulin-stimulated glucose uptake. Moreover, we find that insulin itself induces cell-surface enrichment of MFGE8 in skeletal muscle, which then promotes interaction between the αvβ5 integrin and the insulin receptor leading to dampening of skeletal-muscle insulin receptor signaling. Blockade of the MFGE8/β5 pathway also enhances hepatic insulin sensitivity. Our work identifies an autoregulatory mechanism by which insulin-stimulated signaling through its cognate receptor is terminated through up-regulation of MFGE8 and its consequent interaction with the αvβ5 integrin, thereby establishing a pathway that can potentially be targeted to improve insulin sensitivity.
Collapse
Affiliation(s)
- Ritwik Datta
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Amin K Soltani
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Lung Biology Center, University of California, San Francisco, CA 94158
| | - William Mckleroy
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Lung Biology Center, University of California, San Francisco, CA 94158
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
| | - Michael J Podolsky
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
| | - Christopher D Yang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Tony L Huynh
- Department of Radiology and Biomedical imaging, University of California, San Francisco, CA 94107
| | - Kelly M Cautivo
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Biao Wang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Suneil K Koliwad
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
- Diabetes Center, University of California, San Francisco, CA 94143
| | - Nada A Abumrad
- Diabetes Research Center, Department of Medicine and Cell Biology, Washington University in St. Louis, St. Louis, MO 63110
| | - Kamran Atabai
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158;
- Lung Biology Center, University of California, San Francisco, CA 94158
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94158
| |
Collapse
|
15
|
Mészáros B, Sámano-Sánchez H, Alvarado-Valverde J, Čalyševa J, Martínez-Pérez E, Alves R, Shields DC, Kumar M, Rippmann F, Chemes LB, Gibson TJ. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci Signal 2021; 14:eabd0334. [PMID: 33436497 PMCID: PMC7928535 DOI: 10.1126/scisignal.abd0334] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the μ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin β3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Elizabeth Martínez-Pérez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Laboratorio de bioinformática estructural, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Renato Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Denis C Shields
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Friedrich Rippmann
- Computational Chemistry & Biology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, CP1650 San Martín, Buenos Aires, Argentina.
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
16
|
Angom RS, Mondal SK, Wang F, Madamsetty VS, Wang E, Dutta SK, Gulani Y, Sarabia-Estrada R, Sarkaria JN, Quiñones-Hinojosa A, Mukhopadhyay D. Ablation of neuropilin-1 improves the therapeutic response in conventional drug-resistant glioblastoma multiforme. Oncogene 2020; 39:7114-7126. [PMID: 33005016 DOI: 10.1038/s41388-020-01462-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly proliferative and locally invasive cancer with poor prognosis and a high recurrence rate. Although anti-VEGF (vascular endothelial growth factor) therapy offers short-term benefit to GBM patients, this approach fails as the tumor develops into a more invasive and drug-resistant phenotype and ultimately recurs. Recently, both glioma stemlike cells (GSCs) and brain tumor-initiating cells (BTICs) have been implicated in GBM recurrence and its resistance to therapy. We observed that patient-derived GBM cells expressing shRNAs of VEGF or neuropilin-1 (NRP-1) attenuate cancer stem cell markers, inhibit the tumor-initiating cell's neurosphere-forming capacity, and migration. Furthermore, both VEGF and NRP-1 knockdown inhibit the growth of patient-derived GBM xenografts in both zebrafish and mouse models. Interestingly, NRP-1-depleted patient-derived GBM xenografts substantially prolonged survival in mice compared to that of VEGF depletion. Our results also demonstrate that NRP-1 ablation of patient-derived GBM cells improves the sensitivity of TMZ and enhances the overall survival of the respective tumor-bearing mice. This improved outcome may provide insight into the inhibition of GBM progression and effective treatment strategies by targeting NRP-1 in addition to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Sujan Kumar Mondal
- Department of Neurosurgery, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA.,Department of Pathology, University of Pittsburgh Medical Center, UPMC Hillman Center, Pittsburgh, PA, USA
| | - Fei Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA.,Department of Neurosurgery, Inner Mongolia Medical University Affiliated Hospital, 010050, Inner Mongolia, China
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Shamit K Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Yash Gulani
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Rachel Sarabia-Estrada
- Department of Neurosurgery, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA.
| |
Collapse
|
17
|
Su CY, Li JQ, Zhang LL, Wang H, Wang FH, Tao YW, Wang YQ, Guo QR, Li JJ, Liu Y, Yan YY, Zhang JY. The Biological Functions and Clinical Applications of Integrins in Cancers. Front Pharmacol 2020; 11:579068. [PMID: 33041823 PMCID: PMC7522798 DOI: 10.3389/fphar.2020.579068] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are the adhesion molecules and receptors of extracellular matrix (ECM). They mediate the interactions between cells-cells and cells-ECM. The crosstalk between cancer cells and their microenvironment triggers a variety of critical signaling cues and promotes the malignant phenotype of cancer. As a type of transmembrane protein, integrin-mediated cell adhesion is essential in regulating various biological functions of cancer cells. Recent evidence has shown that integrins present on tumor cells or tumor-associated stromal cells are involved in ECM remodeling, and as mechanotransducers sensing changes in the biophysical properties of the ECM, which contribute to cancer metastasis, stemness and drug resistance. In this review, we outline the mechanism of integrin-mediated effects on biological changes of cancers and highlight the current status of clinical treatments by targeting integrins.
Collapse
Affiliation(s)
- Chao-Yue Su
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing-Quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ling-Ling Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Feng-Hua Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi-Wen Tao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu-Qing Wang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qiao-Ru Guo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jia-Jun Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yun Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan-Yan Yan
- Institute of Immunology and School of Medicine, Shanxi Datong University, Datong, China
| | - Jian-Ye Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.,The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
18
|
Dumond A, Pagès G. Neuropilins, as Relevant Oncology Target: Their Role in the Tumoral Microenvironment. Front Cell Dev Biol 2020; 8:662. [PMID: 32766254 PMCID: PMC7380111 DOI: 10.3389/fcell.2020.00662] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is one of the key mechanisms involved in tumor growth and metastatic dissemination. The vascular endothelial growth factor (VEGF) and its receptors (VEGFR) represent one of the major signaling pathways which mediates angiogenesis. The VEGF/VEGFR axis was intensively targeted by monoclonal antibodies or by tyrosine kinase inhibitors to destroy the tumor vascular network. By inhibiting oxygen and nutrient supply, this strategy was supposed to cure cancers. However, despite a lengthening of the progression free survival in several types of tumors including colon, lung, breast, kidney, and ovarian cancers, modest improvements in overall survival were reported. Anti-angiogenic therapies targeting VEGF/VEGFR are still used in colon and ovarian cancer and remain reference treatments for renal cell carcinoma. Although the concept of inhibiting angiogenesis remains relevant, new targets need to be discovered to improve the therapeutic index of anti-VEGF/VEGFR. Neuropilin 1 and 2 (NRP1/2), initially described as neuronal receptors, stimulate angiogenesis, lymphangiogenesis and immune tolerance. Moreover, overexpression of NRPs in several tumors is synonymous of patients' shorter survival. This article aims to overview the different roles of NRPs in cells constituting the tumor microenvironment to highlight the therapeutic relevance of their targeting.
Collapse
Affiliation(s)
- Aurore Dumond
- Medical Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Gilles Pagès
- Medical Biology Department, Centre Scientifique de Monaco, Monaco, Monaco.,Inserm U1081, CNRS UMR 7284, Centre Antoine Lacassagne, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Université Côte d'Azur, Nice, France
| |
Collapse
|
19
|
Ko JH, Kwon HS, Kim B, Min G, Shin C, Yang SW, Lee SW, Lee Y, Hong D, Kim YS. Preclinical Efficacy and Safety of an Anti-Human VEGFA and Anti-Human NRP1 Dual-Targeting Bispecific Antibody (IDB0076). Biomolecules 2020; 10:biom10060919. [PMID: 32560565 PMCID: PMC7356919 DOI: 10.3390/biom10060919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 01/13/2023] Open
Abstract
Although bevacizumab (Avastin®) has been approved as an antiangiogenic agent against some cancers, the efficacy is transient and unsatisfactory in other cancers most likely owing to the presence of alternative proangiogenic factors. Therefore, simultaneous blocking of several proangiogenic factors may be a promising strategy for antiangiogenic cancer therapeutics. Accordingly, neuropilin-1 (NRP1) is an attractive target because it serves as a multifunctional receptor for the vascular endothelial growth factor (VEGF) family. Here, we aimed to generate and test an anti-VEGFA and anti-NRP1 dual-targeting bispecific antibody (named as IDB0076) by genetic fusion of an NRP1-targeting peptide to the C-terminus of the bevacizumab heavy chain. Similar to the parental antibody (bevacizumab), IDB0076 suppressed VEGFA-induced migration of human endothelial cells. In contrast, IDB0076 inhibited endothelial-cell migration induced by other angiogenesis growth factors and manifested a more potent antitumor activity than that of bevacizumab in a murine tumor xenograft model. When toxicity was preliminarily evaluated in cynomolgus monkeys, IDB0076 showed no substantial adverse effects, e.g., the absence of noticeable nephrotoxicity, which has previously been documented for the combination therapy of bevacizumab and an anti-NRP1 antibody. Thus, VEGFA-and-NRP1 dual-targeting bispecific antibody IDB0076 may be a potent and safe anticancer agent worthy of further preclinical and clinical studies.
Collapse
Affiliation(s)
- Jong-Hee Ko
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong 18449, Korea; (J.-H.K.); (H.-S.K.); (B.K.); (G.M.); (C.S.); (S.-W.Y.); (S.W.L.); (Y.L.); (D.H.)
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hyuk-Sang Kwon
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong 18449, Korea; (J.-H.K.); (H.-S.K.); (B.K.); (G.M.); (C.S.); (S.-W.Y.); (S.W.L.); (Y.L.); (D.H.)
| | - Bomin Kim
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong 18449, Korea; (J.-H.K.); (H.-S.K.); (B.K.); (G.M.); (C.S.); (S.-W.Y.); (S.W.L.); (Y.L.); (D.H.)
| | - Gihong Min
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong 18449, Korea; (J.-H.K.); (H.-S.K.); (B.K.); (G.M.); (C.S.); (S.-W.Y.); (S.W.L.); (Y.L.); (D.H.)
| | - Chorong Shin
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong 18449, Korea; (J.-H.K.); (H.-S.K.); (B.K.); (G.M.); (C.S.); (S.-W.Y.); (S.W.L.); (Y.L.); (D.H.)
| | - Seok-Woo Yang
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong 18449, Korea; (J.-H.K.); (H.-S.K.); (B.K.); (G.M.); (C.S.); (S.-W.Y.); (S.W.L.); (Y.L.); (D.H.)
| | - Seong Wook Lee
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong 18449, Korea; (J.-H.K.); (H.-S.K.); (B.K.); (G.M.); (C.S.); (S.-W.Y.); (S.W.L.); (Y.L.); (D.H.)
| | - Youngmin Lee
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong 18449, Korea; (J.-H.K.); (H.-S.K.); (B.K.); (G.M.); (C.S.); (S.-W.Y.); (S.W.L.); (Y.L.); (D.H.)
| | - Dahae Hong
- Research Laboratory, ILDONG Pharmaceutical Co., Ltd., Hwaseong 18449, Korea; (J.-H.K.); (H.-S.K.); (B.K.); (G.M.); (C.S.); (S.-W.Y.); (S.W.L.); (Y.L.); (D.H.)
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82 31-219-2662
| |
Collapse
|
20
|
Shin SM, Kim JS, Park SW, Jun SY, Kweon HJ, Choi DK, Lee D, Cho YB, Kim YS. Direct targeting of oncogenic RAS mutants with a tumor-specific cytosol-penetrating antibody inhibits RAS mutant-driven tumor growth. SCIENCE ADVANCES 2020; 6:eaay2174. [PMID: 31998840 PMCID: PMC6962039 DOI: 10.1126/sciadv.aay2174] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/08/2019] [Indexed: 05/07/2023]
Abstract
Oncogenic RAS mutant (RASMUT) proteins have been considered undruggable via conventional antibody regimens owing to the intracellular location restricting conventional-antibody accessibility. Here, we report a pan-RAS-targeting IgG antibody, inRas37, which directly targets the intracellularly activated form of various RASMUT subtypes after tumor cell-specific internalization into the cytosol to block the interactions with effector proteins, thereby suppressing the downstream signaling. Systemic administration of inRas37 exerted a potent antitumor activity in a subset of RASMUT tumor xenografts in mice, but little efficacy in RASMUT tumors with concurrent downstream PI3K mutations, which were overcome by combination with a PI3K inhibitor. The YAP1 protein was up-regulated as an adaptive resistance-inducing response to inRas37 in RASMUT-dependent colorectal tumors; accordingly, a combination of inRas37 with a YAP1 inhibitor manifested synergistic antitumor effects in vitro and in vivo. Our study offers a promising pan-RAS-targeting antibody and the corresponding therapeutic strategy against RASMUT tumors.
Collapse
Affiliation(s)
- Seung-Min Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ji-Sun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seong-Wook Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sei-Yong Jun
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hye-Jin Kweon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dong-Ki Choi
- Orum Therapeutics Inc., Daejeon 34050, Republic of Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
21
|
Activation of Src mediates acquired cisplatin resistance in human lung carcinoma cells. Anticancer Drugs 2019; 31:123-130. [PMID: 31815763 DOI: 10.1097/cad.0000000000000829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cisplatin (CDDP) is the most effective chemotherapeutic drug against lung carcinoma. However, the emergence of resistant clones has severely limited its clinical application. We found that the cisplatin-resistant lung carcinoma cell line A549/CDDP had increased levels of the phosphorylated gap junction protein Cx43 and SRC tyrosine kinase, and low levels of total Cx43 protein and reduced gap junction formation. The SRC kinase inhibitor PP2 increased the expression of total Cx43 protein and enhanced cisplatin sensitivity, indicating that activated SRC kinase induces chemoresistance by decrease total Cx43 level. Furthermore, Cx43 gene silencing in the drug-resistant cell lines abrogated the sensitizing effect of PP2. Taken together, targeting SRC kinase by PP2 reverses cisplatin resistance by upregulating Cx43 protein levels, indicating a novel pathway of cisplatin resistance that may be amenable to therapeutic intervention.
Collapse
|
22
|
Kim YJ, Baek DS, Lee S, Park D, Kang HN, Cho BC, Kim YS. Dual-targeting of EGFR and Neuropilin-1 attenuates resistance to EGFR-targeted antibody therapy in KRAS-mutant non-small cell lung cancer. Cancer Lett 2019; 466:23-34. [DOI: 10.1016/j.canlet.2019.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023]
|
23
|
Extracellular matrix-cell interactions: Focus on therapeutic applications. Cell Signal 2019; 66:109487. [PMID: 31778739 DOI: 10.1016/j.cellsig.2019.109487] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Extracellular matrix (ECM) macromolecules together with a multitude of different molecules residing in the extracellular space play a vital role in the regulation of cellular phenotype and behavior. This is achieved via constant reciprocal interactions between the molecules of the ECM and the cells. The ECM-cell interactions are mediated via cell surface receptors either directly or indirectly with co-operative molecules. The ECM is also under perpetual remodeling process influencing cell-signaling pathways on its part. The fragmentation of ECM macromolecules provides even further complexity for the intricate environment of the cells. However, as long as the interactions between the ECM and the cells are in balance, the health of the body is retained. Alternatively, any dysregulation in these interactions can lead to pathological processes and finally to various diseases. Thus, therapeutic applications that are based on retaining normal ECM-cell interactions are highly rationale. Moreover, in the light of the current knowledge, also concurrent multi-targeting of the complex ECM-cell interactions is required for potent pharmacotherapies to be developed in the future.
Collapse
|
24
|
Morimoto M, Horikoshi Y, Nakaso K, Kurashiki T, Kitagawa Y, Hanaki T, Sakamoto T, Honjo S, Umekita Y, Fujiwara Y, Matsura T. Oncogenic role of TYRO3 receptor tyrosine kinase in the progression of pancreatic cancer. Cancer Lett 2019; 470:149-160. [PMID: 31765735 DOI: 10.1016/j.canlet.2019.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023]
Abstract
The expression and functions of TYRO3, a member of the TAM receptor tyrosine kinase family, in pancreatic cancer (PC) have not been specifically elucidated. In this study, we confirmed TYRO3 expression in five human PC cell lines (PANC-1, MIA PaCa-2, BxPC-3, AsPC-1, and PK-9) using Western blotting. TYRO3 silencing and overexpression studies have revealed that TYRO3 promotes cell proliferation and invasion in PC via phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinase (ERK). Using a mouse xenograft model, we showed that tumor growth was significantly suppressed in mice subcutaneously inoculated with TYRO3-knockdown PC cells compared with mice inoculated with control PC cells. Furthermore, TYRO3 expression was examined in PC tissues obtained from 106 patients who underwent pancreatic resection for invasive ductal carcinoma through immunohistochemical staining. TYRO3-positive patients had poor prognoses for overall survival and disease-specific survival compared with TYRO3-negative patients. Multivariate analysis revealed that TYRO3 expression is an independent prognostic factor for overall survival. Our study demonstrates the critical role of TYRO3 in PC progression through Akt and ERK activation and suggests TYRO3 as a novel promising target for therapeutic strategies against PC.
Collapse
Affiliation(s)
- Masaki Morimoto
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan; Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yosuke Horikoshi
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Kazuhiro Nakaso
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Tatsuyuki Kurashiki
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan; Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yoshinori Kitagawa
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan; Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Takehiko Hanaki
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Teruhisa Sakamoto
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Soichiro Honjo
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yoshihisa Umekita
- Division of Organ Pathology, Department of Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Yoshiyuki Fujiwara
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Tatsuya Matsura
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan.
| |
Collapse
|
25
|
McDaid WJ, Greene MK, Johnston MC, Pollheimer E, Smyth P, McLaughlin K, Van Schaeybroeck S, Straubinger RM, Longley DB, Scott CJ. Repurposing of Cetuximab in antibody-directed chemotherapy-loaded nanoparticles in EGFR therapy-resistant pancreatic tumours. NANOSCALE 2019; 11:20261-20273. [PMID: 31626255 PMCID: PMC6861736 DOI: 10.1039/c9nr07257h] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The anti-Epidermal Growth Factor Receptor (EGFR) antibody Cetuximab (CTX) has demonstrated limited anti-cancer efficacy in cells overexpressing EGFR due to activating mutations in RAS in solid tumours, such as pancreatic cancer. The utilisation of antibodies as targeting components of antibody-drug conjugates, such as trastuzumab emtansine (Kadcyla), demonstrates that antibodies may be repurposed to direct therapeutic agents to antibody-resistant cancers. Here we investigated the use of CTX as a targeting agent for camptothecin (CPT)-loaded polymeric nanoparticles (NPs) directed against KRAS mutant CTX-resistant cancer cells. CPT was encapsulated within poly(lactic-co-glycolic acid) (PLGA) NPs using the solvent evaporation method. CTX conjugation improved NP binding and delivery of CPT to CTX-resistant cancer cell lines. CTX successfully targeted CPT-loaded NPs to mutant KRAS PANC-1 tumours in vivo and reduced tumour growth. This study highlights that CTX can be repurposed as a targeting agent against CTX-resistant cancers and that antibody repositioning may be applicable to other antibodies restricted by resistance.
Collapse
Affiliation(s)
- William J McDaid
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| | - Michelle K Greene
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| | - Michael C Johnston
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| | - Ellen Pollheimer
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| | - Peter Smyth
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| | - Kirsty McLaughlin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| | | | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200, USA
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| | - Christopher J Scott
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
26
|
He S, Huang Q, Hu J, Li L, Xiao Y, Yu H, Han Z, Wang T, Zhou W, Wei H, Xiao J. EWS-FLI1-mediated tenascin-C expression promotes tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation in Ewing sarcoma. Br J Cancer 2019; 121:922-933. [PMID: 31649319 PMCID: PMC6889507 DOI: 10.1038/s41416-019-0608-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The extracellular matrix has been critically associated with the tumorigenesis and progression of Ewing sarcoma (ES). However, the regulatory and prognostic roles of tenascin-C (TNC) in ES remain unclear. METHODS TNC expression was examined in specimens by immunohistochemistry, and the association of TNC expression with ES patient survival was also analysed. TNC-knockout cell lines were constructed using CRISPR/Cas9 methods. In vitro experiments and in vivo bioluminescent imaging using BALB/c nude mice were conducted to evaluate the effect of TNC on ES tumour progression. RNA sequencing was performed, and the underlying mechanism of TNC was further explored. RESULTS TNC was overexpressed in ES tissue and cell lines, and TNC overexpression was associated with poor survival in ES patients. TNC enhanced cell proliferation, migration and angiogenesis in vitro and promoted ES metastasis in vivo. The oncoprotein EWS-FLI1 profoundly increased TNC expression by directly binding to the TNC promoter region. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) upregulation induced by Yes-associated protein (YAP) activation was responsible for TNC-regulated ES tumour progression. Activated integrin α5β1 signalling might be correlated with YAP dephosphorylation and nuclear translocation. CONCLUSIONS TNC may promote ES tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation.
Collapse
Affiliation(s)
- Shaohui He
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Quan Huang
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Jinbo Hu
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Yanbin Xiao
- Department of Orthopaedics, Musculoskeletal Tumor Center of Yunnan Province, the Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650106, Yunnan, P. R. China
| | - Hongyu Yu
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Zhitao Han
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Ting Wang
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Wang Zhou
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China. .,School of Medicine, Tsinghua University, Beijing, 100084, P. R. China.
| | - Haifeng Wei
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China.
| | - Jianru Xiao
- Spinal Tumor Center, Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, P. R. China.
| |
Collapse
|
27
|
Ma L, Zhai B, Zhu H, Li W, Jiang W, Lei L, Zhang S, Qiao H, Jiang X, Sun X. The miR-141/neuropilin-1 axis is associated with the clinicopathology and contributes to the growth and metastasis of pancreatic cancer. Cancer Cell Int 2019; 19:248. [PMID: 31572065 PMCID: PMC6764122 DOI: 10.1186/s12935-019-0963-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022] Open
Abstract
Background Neuropilin-1 (NRP-1) is a non-tyrosine kinase receptor interacting with multiple signaling pathways that underpin the biological behavior and fate of cancer cells. However, in pancreatic cancer, the mechanisms underlying the function of NRP-1 in cell proliferation and metastasis and the involvement of regulatory upstream miRNAs remain unclear. Methods Potential miRNAs were mined by using multiple bioinformatics prediction tools and validated by luciferase assays. The expression of NRP-1 and miRNA-141 (miR-141) in pancreatic tissues and cells was examined by immunohistochemistry, immunoblotting and/or real-time RT-PCR. Stable transfected cells depleted of NRP-1 were generated, and regulatory effects of miR-141 were investigated by transfecting cells with miR-141 mimics and anti-miR-141. Assays of cell viability, proliferation, cell cycle distribution, transwell migration and cell scratch were employed. Xenograft tumor models were established to assess the effects of NRP-1 depletion on tumorigenesis and liver metastasis, and therapeutic effects of miR-141 on tumor growth. The role of miR-141/NRP-1 axis in regulating epithelial–mesenchymal transition (EMT) by co-interacting the TGF-β pathway was examined. Results In this study, of 12 candidate miRNAs identified, miR-141 showed the strongest ability to regulate NRP-1. In pancreatic cancer tissues and cells, the expression level of NRP-1 was negatively correlated with that of miR-141. NRP-1 was highly expressed in pancreatic cancer tissues compared with normal pancreatic tissues, and its expression levels were positively correlated with tumor grade, lymph metastasis and AJCC staging. NRP-1 depletion inhibited cell proliferation by inducing cell cycle arrest at the G0/G1 phase through upregulating p27 and downregulating cyclin E and cyclin-dependent kinase 2, and reduced cell migration by inhibiting EMT through upregulating E-cadherin and downregulating Snail and N-cadherin. Through downregulating NRP-1, miR-141 mimics showed a similar effect as NRP-1 depletion on cell proliferation and migration. NRP-1 depletion suppressed tumor growth and liver metastasis and miR-141 mimics inhibited the growth of established tumors in mice. NRP-1 depletion and/or miR-141 mimics inhibited the activation of the TGF-β pathway stimulated by TGF-β ligand. Conclusions The present results indicate that NRP-1 is negatively regulated by miR-141 and the miR-141/NRP-1 axis may serve as potentially valuable biomarkers and therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Lixin Ma
- 1Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Bo Zhai
- 2Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China.,3The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Huaqiang Zhu
- 4Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Jinan, 250021 China
| | - Weidong Li
- 2Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China.,3The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Wenjing Jiang
- 3The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Liwang Lei
- 1Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Shujun Zhang
- 5Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Haiquan Qiao
- 1Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Xian Jiang
- 1Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 China.,3The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Xueying Sun
- 3The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| |
Collapse
|
28
|
Jung K, Kim JA, Kim YJ, Lee HW, Kim CH, Haam S, Kim YS. A Neuropilin-1 Antagonist Exerts Antitumor Immunity by Inhibiting the Suppressive Function of Intratumoral Regulatory T Cells. Cancer Immunol Res 2019; 8:46-56. [PMID: 31554638 DOI: 10.1158/2326-6066.cir-19-0143] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/06/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
Abstract
Regulatory T cells (Treg) are targeted for cancer immunotherapy because they suppress antitumor immunity. Although the importance of neuropilin-1 (NRP1) in the stability and function of intratumoral Tregs is well-documented, targeting of NRP1+ Tregs for anticancer immunotherapy has not been well explored. Here, we found that an NRP1 antagonist [Fc(AAG)-TPP11], generated by fusion of the NRP1-specific binding peptide TPP11 with the C-terminus of an effector function-deficient immunoglobulin Fc(AAG) variant, inhibits intratumoral NRP1+ Treg function and stability. Fc(AAG)-TPP11 triggered the internalization of NRP1, reducing its surface expression on Tregs and thereby inhibiting the suppressive function of Tregs. In two murine syngeneic tumor models, Fc(AAG)-TPP11 retarded tumor growth, comparable with a Treg-depleting anti-CTLA-4 antibody, without noticeable toxicity. Fc(AAG)-TPP11 inhibited NRP1-dependent Treg function, inducing unstable intratumoral Tregs, with reduced expression of Foxp3 and enhanced production of IFNγ, which subsequently increased the functionality and frequency of intratumoral CD8+ T cells. We also observed selective expression of NRP1 on Tregs isolated from human tumors, but not from the blood of healthy donors and patients with cancer, as well as ex vivo inhibition of intratumoral NRP1+ Treg function by Fc(AAG)-TPP11. Our results suggest that the NRP1 antagonist Fc(AAG)-TPP11 has therapeutic potential for the inhibition of intratumoral NRP1+ Tregs with limited unfavorable effects on peripheral Tregs.
Collapse
Affiliation(s)
- Keunok Jung
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jeong-Ah Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ye-Jin Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hyun Woo Lee
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea. .,Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Yong-Sung Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea. .,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
29
|
Uzawa K, Amelio AL, Kasamatsu A, Saito T, Kita A, Fukamachi M, Sawai Y, Toeda Y, Eizuka K, Hayashi F, Kato-Kase I, Sunohara M, Iyoda M, Koike K, Nakashima D, Ogawara K, Endo-Sakamoto Y, Shiiba M, Takiguchi Y, Yamauchi M, Tanzawa H. Resveratrol Targets Urokinase-Type Plasminogen Activator Receptor Expression to Overcome Cetuximab-Resistance in Oral Squamous Cell Carcinoma. Sci Rep 2019; 9:12179. [PMID: 31434965 PMCID: PMC6704133 DOI: 10.1038/s41598-019-48717-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/12/2019] [Indexed: 11/09/2022] Open
Abstract
Drug resistance to anti-cancer agents is a major concern regarding the successful treatment of malignant tumors. Recent studies have suggested that acquired resistance to anti-epidermal growth factor receptor (EGFR) therapies such as cetuximab are in part caused by genetic alterations in patients with oral squamous cell carcinoma (OSCC). However, the molecular mechanisms employed by other complementary pathways that govern resistance remain unclear. In the current study, we performed gene expression profiling combined with extensive molecular validation to explore alternative mechanisms driving cetuximab-resistance in OSCC cells. Among the genes identified, we discovered that a urokinase-type plasminogen activator receptor (uPAR)/integrin β1/Src/FAK signal circuit converges to regulate ERK1/2 phosphorylation and this pathway drives cetuximab-resistance in the absence of EGFR overexpression or acquired EGFR activating mutations. Notably, the polyphenolic phytoalexin resveratrol, inhibited uPAR expression and consequently the signaling molecules ERK1/2 downstream of EGFR thus revealing additive effects on promoting OSCC cetuximab-sensitivity in vitro and in vivo. The current findings indicate that uPAR expression plays a critical role in acquired cetuximab resistance of OSCC and that combination therapy with resveratrol may provide an attractive means for treating these patients.
Collapse
Affiliation(s)
- Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan.
| | - Antonio L Amelio
- Division of Oral and Craniofacial Health Sciences, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7455, USA. .,Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7455, USA. .,Biomedical Research Imaging Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7455, USA.
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Tomoaki Saito
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Akihiro Kita
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Megumi Fukamachi
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuki Sawai
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuriko Toeda
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Keitaro Eizuka
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Fumihiko Hayashi
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ikuko Kato-Kase
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Manabu Iyoda
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Kazuyuki Koike
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Dai Nakashima
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Katsunori Ogawara
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7455, USA
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| |
Collapse
|
30
|
Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol 2019; 14:141. [PMID: 31395068 PMCID: PMC6688256 DOI: 10.1186/s13014-019-1345-6] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/24/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence. Late detection and a particularly aggressive biology are the major challenges which determine therapeutic failure. In this review, we present the current status and the recent advances in PDAC treatment together with the biological and immunological hallmarks of this cancer entity. On this basis, we discuss new concepts combining distinct treatment modalities in order to improve therapeutic efficacy and clinical outcome - with a specific focus on protocols involving radio(chemo)therapeutic approaches.
Collapse
|
31
|
Jia T, Ciccione J, Jacquet T, Maurel M, Montheil T, Mehdi A, Martinez J, Eymin B, Subra G, Coll JL. The presence of PEG on nanoparticles presenting the c[RGDfK]- and/or ATWLPPR peptides deeply affects the RTKs-AKT-GSK3β-eNOS signaling pathway and endothelial cells survival. Int J Pharm 2019; 568:118507. [PMID: 31299336 DOI: 10.1016/j.ijpharm.2019.118507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Covering the surface of a nanoparticle with polyethylene glycol (PEG) is a common way to prevent non-specific interactions but how its presence impacts on the activity of targeting ligands is still poorly documented. We synthesized a set of 9 silica nanoparticles grafted with c[RGDfK]-, a peptide targeting integrin αvß3 (cRGD), and/or with ATWLPPR, an anti-neuropilin 1 peptide (ATW). We then added various PEGs, and studied NPs binding on primary endothelial cells, the downstream activated signaling pathways and the impact on apoptosis. Our results show that the presence of PEG2000 on cRGD/ATW nanoparticles moderately improves cell binding but induces a 6000 times augmentation of AKT-dependent cell response due to the recruitment of other Receptor Tyrosine Kinases. Augmenting the length of the spacer that separates the peptides from the silica (using PEG3000) mainly resulted in a loss of specificity. Finally, the PEG-mediated hyperactivation of AKT did not protect endothelial cell from dying in the absence of serum, while its moderate activation obtained without PEG did. Finally, PEGylation of cRGD/ATW-NPs can generate nanoparticles with potent capacities to activate the AKT-GSK3β-eNOS cascade and to affect the resistance of endothelial cells to apoptosis. Thus, the impact of PEGylation should be precisely considered in order to avoid the apparition of counter-productive biological responses.
Collapse
Affiliation(s)
- Tao Jia
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, F-38600 La Tronche, France; Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France
| | - Jéremy Ciccione
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France; ICGM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thibault Jacquet
- Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France
| | - Manon Maurel
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Titouan Montheil
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ahmad Mehdi
- ICGM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Béatrice Eymin
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, F-38600 La Tronche, France; Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France
| | - Gilles Subra
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Luc Coll
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, F-38600 La Tronche, France; Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France.
| |
Collapse
|
32
|
Cruz da Silva E, Dontenwill M, Choulier L, Lehmann M. Role of Integrins in Resistance to Therapies Targeting Growth Factor Receptors in Cancer. Cancers (Basel) 2019; 11:cancers11050692. [PMID: 31109009 PMCID: PMC6562376 DOI: 10.3390/cancers11050692] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Integrins contribute to cancer progression and aggressiveness by activating intracellular signal transduction pathways and transducing mechanical tension forces. Remarkably, these adhesion receptors share common signaling networks with receptor tyrosine kinases (RTKs) and support their oncogenic activity, thereby promoting cancer cell proliferation, survival and invasion. During the last decade, preclinical studies have revealed that integrins play an important role in resistance to therapies targeting RTKs and their downstream pathways. A remarkable feature of integrins is their wide-ranging interconnection with RTKs, which helps cancer cells to adapt and better survive therapeutic treatments. In this context, we should consider not only the integrins expressed in cancer cells but also those expressed in stromal cells, since these can mechanically increase the rigidity of the tumor microenvironment and confer resistance to treatment. This review presents some of these mechanisms and outlines new treatment options for improving the efficacy of therapies targeting RTK signaling.
Collapse
Affiliation(s)
- Elisabete Cruz da Silva
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Monique Dontenwill
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Laurence Choulier
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Maxime Lehmann
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
33
|
Napolitano V, Tamagnone L. Neuropilins Controlling Cancer Therapy Responsiveness. Int J Mol Sci 2019; 20:ijms20082049. [PMID: 31027288 PMCID: PMC6515012 DOI: 10.3390/ijms20082049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
Neuropilins (NRPs) are cell surface glycoproteins, acting as co-receptors for secreted Semaphorins (SEMAs) and for members of the vascular endothelial growth factor (VEGF) family; they have been initially implicated in axon guidance and angiogenesis regulation, and more recently in cancer progression. In addition, NRPs have been shown to control many other fundamental signaling pathways, especially mediated by tyrosine kinase receptors (RTKs) of growth factors, such as HGF (hepatocyte growth factor), PDGF (platelet derived growth factor) and EGF (epidermal growth factor). This enables NRPs to control a range of pivotal mechanisms in the cancer context, from tumor cell proliferation and metastatic dissemination, to tumor angiogenesis and immune escape. Moreover, cancer treatment failures due to resistance to innovative oncogene-targeted drugs is typically associated with the activity of alternative RTK-dependent pathways; and neuropilins’ capacity to control oncogenic signaling cascades supports the hypothesis that they could elicit such mechanisms in cancer cells, in order to escape cytotoxic stress and therapeutic attacks. Intriguingly, several studies have recently assayed the impact of NRPs inhibition in combination with diverse anti-cancer drugs. In this minireview, we will discuss the state-of-art about the relevance of NRPs as potential predictive biomarkers of drug response, and the rationale to target these proteins in combination with other anticancer therapies.
Collapse
Affiliation(s)
- Virginia Napolitano
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy.
| | - Luca Tamagnone
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, 10168 Rome, Italy.
- Fondazione Policlinico Universitario Agostino Gemelli, 10168 Rome, Italy.
| |
Collapse
|
34
|
Gurrapu S, Tamagnone L. Semaphorins as Regulators of Phenotypic Plasticity and Functional Reprogramming of Cancer Cells. Trends Mol Med 2019; 25:303-314. [PMID: 30824197 DOI: 10.1016/j.molmed.2019.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023]
Abstract
Semaphorins, initially found as neuronal guidance cues in embryo development, are now appreciated as major regulators of tissue morphogenesis and homeostasis, as well as of cancer progression. In fact, semaphorin signals have a profound impact on cell morphology, which has been commonly associated with the ability to regulate monomeric GTPases, cell-substrate adhesion, and cytoskeletal dynamics. Recently, however, several reports have indicated a novel and additional function of diverse semaphorins in the regulation of gene expression and cell phenotype plasticity. In this review article, we discuss these novel findings, focusing on the role of semaphorin signals in the regulation of bi-directional epithelial-mesenchymal transitions, stem cell properties, and drug resistance, which greatly contribute to the pathogenesis of cancer.
Collapse
Affiliation(s)
- Sreeharsha Gurrapu
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy. .,Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
35
|
Taddei ML, Cavallini L, Ramazzotti M, Comito G, Pietrovito L, Morandi A, Giannoni E, Raugei G, Chiarugi P. Stromal-induced downregulation of miR-1247 promotes prostate cancer malignancy. J Cell Physiol 2018; 234:8274-8285. [PMID: 30378132 DOI: 10.1002/jcp.27679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022]
Abstract
Cancer progression is strictly dependent on the relationship between tumor cells and the surrounding stroma, which supports cancer malignancy promoting several crucial steps of tumor progression, including the execution of the epithelial to mesenchymal transition (EMT) associated with enhancement in cell invasion, resistance to both anoikis and chemotherapeutic treatments. Recently it has been highlighted the central role of microRNAs (miRNAs) as regulators of tumor progression. Notably, in several tumors a strong deregulation of miRNAs is observed, supporting proliferation, invasion, and metabolic reprogramming of tumor cells. Here we demonstrated that cancer-associated fibroblasts induce a downregulation of miR-1247 in prostate cancer (PCa) cells. We proved that miR-1247 repression is functional for the achievement of EMT and increased cell invasion as well as stemness traits. These phenomena contribute to promote the metastatic potential of PCa cells as demonstrated by increased lung colonization in in vivo experiments. Moreover, as a consequence of miR-1247 downregulation, we observed a correlated increased expression level of neuropilin-1, a miR-1247 target involved as a coreceptor in the epidermal growth factor receptor signaling. Taken together, our data highlight miR-1247 as a potential target for molecular therapies aimed to block the progression and diffusion of PCa.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Cavallini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Laura Pietrovito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Tuscany Tumor Institute and "Center for Research, Transfer and High Education DenoTHE", Florence, Italy
| |
Collapse
|
36
|
Matkar PN, Jong ED, Ariyagunarajah R, Prud'homme GJ, Singh KK, Leong-Poi H. Jack of many trades: Multifaceted role of neuropilins in pancreatic cancer. Cancer Med 2018; 7:5036-5046. [PMID: 30216699 PMCID: PMC6198212 DOI: 10.1002/cam4.1715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/04/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
Neuropilins (NRPs) have been described as receptors for class 3 semaphorins and coreceptors for a plethora of ligands, such as members of the vascular endothelial growth factor (VEGF) family of angiogenic cytokines and transforming growth factor (TGF). Initial studies using genetic models have indicated that neuropilin-1 (NRP-1) is essential for axonal guidance during neuronal and cardiovascular development, regulated via semaphorins and VEGF, respectively, whereas the other homolog of neuropilin, NRP-2, has been shown to play a more specific role in neuronal patterning and lymphangiogenesis. Pancreatic ductal adenocarcinoma (PDAC) remains a significant cause of cancer mortality with the lowest five-year survival rate compared to other types of cancer. Recent findings have indicated that NRPs are abundantly expressed in pancreatic cancer cell lines and pancreatic tumor tissues, where they mediate several essential cancer-initiating and cancer-promoting functional responses through their unique ability to bind multiple ligands. Specifically, NRPs have been implicated in numerous biological processes such as cancer cell proliferation, survival, invasion, and tumor growth. More recently, several other protumorigenic roles mediated by NRPs have emerged, advocating NRPs as ideal therapeutic targets against PDAC.
Collapse
Affiliation(s)
- Pratiek N Matkar
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Eric D Jong
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | | | - Gerald J Prud'homme
- Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Krishna K Singh
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Vascular Surgery, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Howard Leong-Poi
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Birnbaum DJ, Bertucci F, Finetti P, Birnbaum D, Mamessier E. Molecular classification as prognostic factor and guide for treatment decision of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2018; 1869:248-255. [PMID: 29499330 DOI: 10.1016/j.bbcan.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023]
Abstract
Clinico-pathological factors fail to consistently predict the outcome after pancreatic resection for pancreatic ductal adenocarcinoma (PDAC). PDACs show a high level of inter- and intra- tumor genetic heterogeneity. A molecular classification should help sort patients into less heterogeneous and more appropriate groups regarding the metastatic risk and the therapeutic response, with the consequences of better predicting evolution and better orienting the treatment. PDAC can be classified based on mutational subtypes and 18gene alterations. Whole-genome sequencing identified mutational signatures, mutational burden and hyper-mutated tumors with specific DNA repair defects. Their overlap/similarities allow the definition of molecular subtypes. DNA and RNA classifications can be used in prognosis assessment. They are useful in therapeutic choice for they allow the design of approaches that can predict the respective drug sensitivity of each molecular subtype. This review provides a comprehensive analysis of available molecular classifications in PDAC and how this can help guide clinical decisions.
Collapse
Affiliation(s)
- David J Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France; Département de Chirurgie Générale et Viscérale, AP-HM, Marseille, France.
| | - François Bertucci
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France; Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Emilie Mamessier
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France
| |
Collapse
|
38
|
Baek DS, Kim JH, Kim YJ, Kim YS. Immunoglobulin Fc-Fused Peptide without C-Terminal Arg or Lys Residue Augments Neuropilin-1-Dependent Tumor Vascular Permeability. Mol Pharm 2017; 15:394-402. [PMID: 29232521 DOI: 10.1021/acs.molpharmaceut.7b00761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuropilin-1 (NRP1), which functions as a coreceptor for vascular endothelial growth factor (VEGF) and is implicated in vascular permeability and tumorigenesis, has been targeted by peptides that specifically bind to the VEGF-binding region on NRP1. Like natural VEGF ligands, all known peptides with NRP1-binding activity bind only through a carboxy (C)-terminal R/K-x-x-R/K sequence motif (x stands for any amino acids); this strict requirement is called the C-end rule (CendR). Here, we report immunoglobulin Fc-fused NRP1-specific peptides deviating from CendR. We screened a yeast surface-displayed Fc-fused non-CendR peptide library against NRP1 and isolated Fc-V12, wherein V12 peptide comprising 12 amino acids has a PPRV sequence at its C-terminal end. Although Fc-V12 lacked the CendR motif, it showed selective binding to the VEGF-binding region of NRP1 and triggered cellular internalization of NRP1, which resulted in enhanced extravasation into tumor tissues and tumor tissue penetration of the Fc-fused peptide along with the coinjected chemical drug in tumor-bearing mice. Through a saturation mutagenesis study, we identified that the Val residue at the C-terminus of Fc-V12 is crucial for NRP1 binding. We further improved NRP1 affinity of Fc-V12 (KD = ∼761 nM) through directed evolution of the upstream sequence of PPRV to obtain Fc-V12-33 (KD = ∼17.4 nM), which exhibited enhanced NRP1-mediated vascular permeability as compared with Fc-V12. Our results provide functional Fc-fused non-CendR peptides, which bind to the VEGF-binding region of NRP1 and enhance vascular permeability, expanding the sequence space of NRP1-targeting peptides.
Collapse
Affiliation(s)
- Du-San Baek
- Department of Molecular Science and Technology, Ajou University , Suwon 16499, Republic of Korea
| | - Jeong-Ho Kim
- Department of Molecular Science and Technology, Ajou University , Suwon 16499, Republic of Korea
| | - Ye-Jin Kim
- Department of Molecular Science and Technology, Ajou University , Suwon 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University , Suwon 16499, Republic of Korea
| |
Collapse
|
39
|
Seo WY, Kim JH, Baek DS, Kim SJ, Kang S, Yang WS, Song JA, Lee MS, Kim S, Kim YS. Production of recombinant human procollagen type I C-terminal propeptide and establishment of a sandwich ELISA for quantification. Sci Rep 2017; 7:15946. [PMID: 29162919 PMCID: PMC5698462 DOI: 10.1038/s41598-017-16290-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/10/2017] [Indexed: 12/26/2022] Open
Abstract
Procollagen type I carboxy-terminal propeptide (PICP), derived from type I procollagen, has been identified as an indicator of type I collagen synthesis in bone matrix formation and skin recovery. PICP is a heterotrimeric glycoprotein consisting of two α1 chains (PICPα1) and one α2 chain (PICPα2). Here, we report the recombinant expression of human PICP using a mammalian expression system. Co-expression of PICPα1 and PICPα2 in HEK293F cells resulted in the production of functional PICP in the correctly assembled heterotrimeric form. Using the recombinant PICP as an antigen, we isolated PICP-specific human monoclonal antibodies from phage-displayed antibody libraries and raised rabbit polyclonal antibodies. Using those antibodies, we then developed a sandwich ELISA for PICP with a limit of detection of 1 ng/mL and a measurable range of 1-640 ng/mL. Both intra- and inter-assay imprecision values were <10%. For measuring PICP levels in human fibroblast cellular extracts and culture supernatants and a human serum, the developed ELISA kit displayed comparable performance to that of a commercialized kit. Our results provide an efficient production strategy for recombinant PICP, facilitating the generation of PICP-specific antibodies and development of PICP sandwich ELISA, with potential use in clinical diagnosis of serum samples and testing of cosmeceutical ingredients in fibroblast cell cultures.
Collapse
Affiliation(s)
- Woo-Young Seo
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Jeong-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Du-San Baek
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Su-Jung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Sujin Kang
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Won Suk Yang
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Ji-Ae Song
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea
| | - Moo-Seung Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, 16229, Korea.
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| |
Collapse
|
40
|
Huang LX, Hu CY, Jing L, Wang MC, Xu M, Wang J, Wang Y, Nan KJ, Wang SH. microRNA-219-5p inhibits epithelial-mesenchymal transition and metastasis of colorectal cancer by targeting lymphoid enhancer-binding factor 1. Cancer Sci 2017; 108:1985-1995. [PMID: 28771881 PMCID: PMC5623737 DOI: 10.1111/cas.13338] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/13/2017] [Accepted: 07/30/2017] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of microRNAs (miRs) has been shown to play a critical role in the pathogenesis and progression of tumors. microRNA‐219‐5p (miR‐219‐5p) has been reported to be abnormally expressed in some types of human tumors. However, the mechanism between miR‐219‐5p and colorectal cancer (CRC) metastasis remains unclear. In the present study, miR‐219‐5p was found to be downregulated in CRC tissue compared with matched normal tissue. Through luciferase reporter assay, we demonstrated lymphoid enhancer‐binding factor 1 (LEF1) as a direct target of miR‐219‐5p. Overexpression of miR‐219‐5p could inhibit motility, migration and invasion of CRC cells, and inhibit epithelial‐mesenchymal transition (EMT). Furthermore, silencing LEF1 phenocopied this metastasis‐suppressive function. The recovery experiment showed that re‐expression of LEF1 rescued this suppressive effect on tumor metastasis and reversed the expression of EMT markers caused by miR‐219‐5p. Additionally, we demonstrated that miR‐219‐5p exerted this tumor‐suppressive function by blocking activation of the AKT and ERK pathways. Finally, a nude mice experiment showed that miR‐219‐5p reduced the lung metastasis ability of CRC cells. Taken together, our findings indicate that miR‐219‐5p inhibits metastasis and EMT of CRC by targeting LEF1 and suppressing the AKT and ERK pathways, which may provide a new antitumor strategy to delay CRC metastasis.
Collapse
Affiliation(s)
- Lan-Xuan Huang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chun-Yan Hu
- Department of Gynecology, North-western Women's and Children's Hospital, Xi'an, Shaanxi Province, China
| | - Li Jing
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Min-Cong Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Meng Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jing Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yu Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ke-Jun Nan
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shu-Hong Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
41
|
Shin SM, Choi DK, Jung K, Bae J, Kim JS, Park SW, Song KH, Kim YS. Antibody targeting intracellular oncogenic Ras mutants exerts anti-tumour effects after systemic administration. Nat Commun 2017; 8:15090. [PMID: 28489072 PMCID: PMC5436137 DOI: 10.1038/ncomms15090] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/28/2017] [Indexed: 12/24/2022] Open
Abstract
Oncogenic Ras mutants, frequently detected in human cancers, are high-priority anticancer drug targets. However, direct inhibition of oncogenic Ras mutants with small molecules has been extremely challenging. Here we report the development of a human IgG1 format antibody, RT11, which internalizes into the cytosol of living cells and selectively binds to the activated GTP-bound form of various oncogenic Ras mutants to block the interactions with effector proteins, thereby suppressing downstream signalling and exerting anti-proliferative effects in a variety of tumour cells harbouring oncogenic Ras mutants. When systemically administered, an RT11 variant with an additional tumour-associated integrin binding moiety for tumour tissue targeting significantly inhibits the in vivo growth of oncogenic Ras-mutated tumour xenografts in mice, but not wild-type Ras-harbouring tumours. Our results demonstrate the feasibility of developing therapeutic antibodies for direct targeting of cytosolic proteins that are inaccessible using current antibody technology.
Collapse
Affiliation(s)
- Seung-Min Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dong-Ki Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Keunok Jung
- Priority Research Center for Molecular Science &Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jeomil Bae
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ji-Sun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seong-Wook Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ki-Hoon Song
- Department of Allergy and Clinical Immunology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|