1
|
Cui P, Lian J, Liu Y, Zhang D, Lin Y, Lu L, Ye L, Chen H, An S, Huang J, Liang H. Pan-cancer analysis of the prognostic and immunological roles of SHP-1/ptpn6. Sci Rep 2024; 14:23083. [PMID: 39367146 PMCID: PMC11452508 DOI: 10.1038/s41598-024-74037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
SHP-1, a nonreceptor protein tyrosine phosphatase encoded by ptpn6, has been regarded as a regulatory protein of hematopoietic cell biology for years. However, there is now increasing evidence to support its role in tumors. Thus, the role of ptpn6 for prognosis and immune regulation across 33 tumors was investigated, aiming to explore its functional heterogeneity and clinical significance in pan-cancer. Differential expression of ptpn6 was found between cancer and adjacent normal tissues, and its expression was significantly correlated with the prognosis of tumor patients. In most cancers, ptpn6 expression was significantly associated with immune infiltration. This was further confirmed by ptpn6-related genes/proteins enrichment analysis. Additionally, genetic alterations in ptpn6 was observed in most cancers. As for epigenetic changes, it's phosphorylation levels significantly altered in 6 tumors, while methylation levels significantly altered in 12 tumors. Notably, the methylation levels of ptpn6 were significantly decreased in 11 tumors, accompanied by its increased expression in 8 of them, suggesting that the hypomethylation may be related to its increased expression. Our results show that ptpn6 plays a specific role in tumor immunity and exerts a pleiotropic effect in a variety of tumors. It can serve as a prognostic factor for some cancers. Especially in LGG, KIRC, UCS and TGCT, the increased expression of ptpn6 is associated with poor prognosis and high immune infiltration. This aids in understanding the role of ptpn6 in tumor biology, and can provide insight into presenting a potential biomarker for poor prognosis and immune infiltration in cancers.
Collapse
Affiliation(s)
- Ping Cui
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Jie Lian
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Yang Liu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongsheng Zhang
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Yao Lin
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Lili Lu
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Life Science Institute, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
| | - Hui Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China
- Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sanqi An
- Life Science Institute, Guangxi Medical University, Nanning, China.
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China.
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China.
- School of Public Health, Guangxi Medical University, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
| | - Hao Liang
- Life Science Institute, Guangxi Medical University, Nanning, China.
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, 22, Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
2
|
Scott AF, Mohr DW, Littrell WA, Babu R, Kokosinski M, Stinnett V, Madhiwala J, Anderson J, Zou YS, Gabrielson KL. Characterization of the Rat Osteosarcoma Cell Line UMR-106 by Long-Read Technologies Identifies a Large Block of Amplified Genes Associated with Human Disease. Genes (Basel) 2024; 15:1254. [PMID: 39457378 PMCID: PMC11507229 DOI: 10.3390/genes15101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The rat osteosarcoma cell line UMR-106 is widely used for the study of bone cancer biology but it has not been well characterized with modern genomic methods. METHODS To better understand the biology of UMR-106 cells we used a combination of optical genome mapping (OGM), long-read sequencing nanopore sequencing and RNA sequencing.The UMR-106 genome was compared to a strain-matched Sprague-Dawley rat for variants associated with human osteosarcoma while expression data were contrasted with a public osteoblast dataset. RESULTS Using the COSMIC database to identify the most affected genes in human osteosarcomas we found somatic mutations in Tp53 and H3f3a. OGM identified a relatively small number of differences between the cell line and a strain-matched control animal but did detect a ~45 Mb block of amplification that included Myc on chromosome 7 which was confirmed by long-read sequencing. The amplified region showed several blocks of non-contiguous rearranged sequence implying complex rearrangements during their formation and included 14 genes reported as biomarkers in human osteosarcoma, many of which also showed increased transcription. A comparison of 5mC methylation from the nanopore reads of tumor and control samples identified genes with distinct differences including the OS marker Cdkn2a. CONCLUSIONS This dataset illustrates the value of long DNA methods for the characterization of cell lines and how inter-species analysis can inform us about the genetic nature underlying mutations that underpin specific tumor types. The data should be a valuable resource for investigators studying osteosarcoma, in general, and specifically the UMR-106 model.
Collapse
Affiliation(s)
- Alan F. Scott
- Genetic Resources Core Facility, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St., 1034 Blalock, Baltimore, MD 21287, USA; (D.W.M.)
| | - David W. Mohr
- Genetic Resources Core Facility, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St., 1034 Blalock, Baltimore, MD 21287, USA; (D.W.M.)
| | - William A. Littrell
- Genetic Resources Core Facility, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St., 1034 Blalock, Baltimore, MD 21287, USA; (D.W.M.)
| | - Reshma Babu
- Genetic Resources Core Facility, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St., 1034 Blalock, Baltimore, MD 21287, USA; (D.W.M.)
| | - Michelle Kokosinski
- Department of Genetic Medicine, Johns Hopkins Genomics, Johns Hopkins University School of Medicine, 1812 Ashland Ave., Suite 200, Baltimore, MD 21205, USA
| | - Victoria Stinnett
- Cytogenetic Laboratory, Department of Pathology, Johns Hopkins Genomics, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Halsted 281, Baltimore, MD 21287, USA (Y.S.Z.)
| | - Janvi Madhiwala
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - John Anderson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Ying S. Zou
- Cytogenetic Laboratory, Department of Pathology, Johns Hopkins Genomics, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Halsted 281, Baltimore, MD 21287, USA (Y.S.Z.)
| | - Kathleen L. Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Liu D, Li R, Wang Y, Li D, Li L. Identification and validation of genes associated with prognosis of cisplatin-resistant ovarian cancer. BMC Cancer 2024; 24:508. [PMID: 39103807 DOI: 10.1186/s12885-024-12264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/15/2024] [Indexed: 08/07/2024] Open
Abstract
PURPOSE To investigate the role of prognostic genes related to cisplatin resistance in ovarian cancer during disease progression. METHOD The gene expression profile of the NCI-60 cell line was acquired through comprehensive analysis of the GEO database accession GSE116439. We performed a thorough analysis of gene expression differences in samples from seven individuals exposed to cisplatin concentrations of 0 nM compared to seven samples exposed to 15000 nM over a 24-h period. Key genes were initially identified through LASSO regression, followed by their enrichment through differential gene function analysis (GO) and pathway enrichment analysis (KEGG). Subsequently, a prognostic risk model was established for these key genes. The prognostic model's performance was assessed through K-M survival curves and ROC curves. To examine the variance in immune cell infiltration between the high and low-risk groups, CIBERSORTx analysis was employed. Finally, validation of prognostic gene expression in cisplatin-resistant ovarian cancer was carried out using clinical samples, employing RT-qPCR and Western Blot techniques. RESULTS A total of 132 differential genes were found between cisplatin resistance and control group, and 8 key prognostic genes were selected by analysis, namely VPS13B, PLGRKT, CDKAL1, TBC1D22A, TAP1, PPP3CA, CUX1 and PPP1R15A. The efficacy of the risk assessment model derived from prognostic biomarkers, as indicated by favorable performance on both Kaplan-Meier survival curves and ROC curves. Significant variations in the abundance of Macrophages M1, T cells CD4 memory resting, T cells follicular helper, and T cells gamma delta were observed between the high and low-risk groups. To further validate our findings, RT-qPCR and Western Blot analyses were employed, confirming differential expression of the identified eight key genes between the two groups. CONCLUSION VPS13B, TBC1D22A, PPP3CA, CUX1 and PPP1R15A were identified as poor prognostic genes of cisplatin resistance in ovarian cancer, while PLGRKT, CDKAL1 and TAP1 were identified as good prognostic genes. This offers a novel perspective for future advancements in ovarian cancer treatment, suggesting potential avenues for the development of new therapeutic targets.
Collapse
Affiliation(s)
- Dajiang Liu
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Ruiyun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yidan Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Leilei Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Villodre ES, Nguyen APN, Debeb BG. NDRGs in Breast Cancer: A Review and In Silico Analysis. Cancers (Basel) 2024; 16:1342. [PMID: 38611020 PMCID: PMC11011033 DOI: 10.3390/cancers16071342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The N-myc downstream regulated gene family (NDRGs) includes four members: NDRG1, NDRG2, NDRG3, and NDRG4. These members exhibit 53-65% amino acid identity. The role of NDRGs in tumor growth and metastasis appears to be tumor- and context-dependent. While many studies have reported that these family members have tumor suppressive roles, recent studies have demonstrated that NDRGs, particularly NDRG1 and NDRG2, function as oncogenes, promoting tumor growth and metastasis. Additionally, NDRGs are involved in regulating different signaling pathways and exhibit diverse cellular functions in breast cancers. In this review, we comprehensively outline the oncogenic and tumor suppressor roles of the NDRG family members in breast cancer, examining evidence from in vitro and in vivo breast cancer models as well as tumor tissues from breast cancer patients. We also present analyses of publicly available genomic and transcriptomic data from multiple independent cohorts of breast cancer patients.
Collapse
Affiliation(s)
- Emilly S. Villodre
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.S.V.); (A.P.N.N.)
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anh P. N. Nguyen
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.S.V.); (A.P.N.N.)
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bisrat G. Debeb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.S.V.); (A.P.N.N.)
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Player A, Cunningham S, Philio D, Roy R, Haynes C, Dixon C, Thirston L, Ibikunle F, Boswell TA, Alnakhalah A, Contreras J, Bell M, McGuffery T, Bryant S, Nganya C, Kanu S. Characterization of MYBL1 Gene in Triple-Negative Breast Cancers and the Genes' Relationship to Alterations Identified at the Chromosome 8q Loci. Int J Mol Sci 2024; 25:2539. [PMID: 38473786 DOI: 10.3390/ijms25052539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The MYBL1 gene is a strong transcriptional activator involved in events associated with cancer progression. Previous data show MYBL1 overexpressed in triple-negative breast cancer (TNBC). There are two parts to this study related to further characterizing the MYBL1 gene. We start by characterizing MYBL1 reference sequence variants and isoforms. The results of this study will help in future experiments in the event there is a need to characterize functional variants and isoforms of the gene. In part two, we identify and validate expression and gene-related alterations of MYBL1, VCIP1, MYC and BOP1 genes in TNBC cell lines and patient samples selected from the Breast Invasive Carcinoma TCGA 2015 dataset available at cBioPortal.org. The four genes are located at chromosomal regions 8q13.1 to 8q.24.3 loci, regions previously identified as demonstrating a high percentage of alterations in breast cancer. We identify alterations, including changes in expression, deletions, amplifications and fusions in MYBL1, VCPIP1, BOP1 and MYC genes in many of the same patients, suggesting the panel of genes is involved in coordinated activity in patients. We propose that MYBL1, VCPIP1, MYC and BOP1 collectively be considered as genes associated with the chromosome 8q loci that potentially play a role in TNBC pathogenesis.
Collapse
Affiliation(s)
- Audrey Player
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Sierra Cunningham
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Deshai Philio
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Renata Roy
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Cydney Haynes
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Christopher Dixon
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Lataja Thirston
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Fawaz Ibikunle
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | | | - Ayah Alnakhalah
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Juan Contreras
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Myra Bell
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Treveon McGuffery
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Sahia Bryant
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Chidinma Nganya
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Samuel Kanu
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| |
Collapse
|
6
|
Nuñez Y, Vera S, Baeza V, Gonzalez-Pecchi V. NSD3 in Cancer: Unraveling Methyltransferase-Dependent and Isoform-Specific Functions. Int J Mol Sci 2024; 25:944. [PMID: 38256018 PMCID: PMC10815784 DOI: 10.3390/ijms25020944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
NSD3 (nuclear receptor-binding SET domain protein 3) is a member of the NSD histone methyltransferase family of proteins. In recent years, it has been identified as a potential oncogene in certain types of cancer. The NSD3 gene encodes three isoforms, the long version (NSD3L), a short version (NSD3S) and the WHISTLE isoforms. Importantly, the NSD3S isoform corresponds to the N-terminal region of the full-length protein, lacking the methyltransferase domain. The chromosomal location of NSD3 is frequently amplified across cancer types, such as breast, lung, and colon, among others. Recently, this amplification has been correlated to a chromothripsis event, that could explain the different NSD3 alterations found in cancer. The fusion proteins containing NSD3 have also been reported in leukemia (NSD3-NUP98), and in NUT (nuclear protein of the testis) midline carcinoma (NSD3-NUT). Its role as an oncogene has been described by modulating different cancer pathways through its methyltransferase activity, or the short isoform of the protein, through protein interactions. Specifically, in this review we will focus on the functions that have been characterized as methyltransferase dependent, and those that have been correlated with the expression of the NSD3S isoform. There is evidence that both the NSD3L and NSD3S isoforms are relevant for cancer progression, establishing NSD3 as a therapeutic target. However, further functional studies are needed to differentiate NSD3 oncogenic activity as dependent or independent of the catalytic domain of the protein, as well as the contribution of each isoform and its clinical significance in cancer progression.
Collapse
Affiliation(s)
- Yanara Nuñez
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
- Biochemistry, Faculty of Pharmacy, Universidad de Concepción, Concepción 4070383, Chile
| | - Sebastian Vera
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| | - Victor Baeza
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| | - Valentina Gonzalez-Pecchi
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| |
Collapse
|
7
|
George Warren W, Osborn M, Yates A, Wright K, E O'Sullivan S. The emerging role of fatty acid binding protein 5 (FABP5) in cancers. Drug Discov Today 2023:103628. [PMID: 37230284 DOI: 10.1016/j.drudis.2023.103628] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Fatty acid binding protein 5 (FABP5, or epidermal FABP) is an intracellular chaperone of fatty acid molecules that regulates lipid metabolism and cell growth. In patient-derived tumours, FABP5 expression is increased up to tenfold, often co-expressed with other cancer-related proteins. High tumoral FABP5 expression is associated with poor prognosis. FABP5 activates transcription factors (TFs) leading to increased expression of proteins involved in tumorigenesis. Genetic and pharmacological preclinical studies show that inhibiting FABP5 reduces protumoral markers, whereas elevation of FABP5 promotes tumour growth and spread. Thus, FABP5 might be a valid target for novel therapeutics. The evidence base is currently strongest for liver, prostate, breast, and brain cancers, and squamous cell carcinoma (SCC), which could represent relevant patient populations for any drug discovery programme. Teaser: This review presents the growing evidence that upregulated fatty acid binding protein 5 (FABP5) plays a role in the progression of multiple cancer types, and may represent a novel therapeutic target.
Collapse
Affiliation(s)
| | | | - Andy Yates
- Artelo Biosciences, Solana Beach, CA, USA
| | - Karen Wright
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | | |
Collapse
|
8
|
Chen QW, Cai QQ, Yang Y, Dong S, Liu YY, Chen ZY, Kang CL, Qi B, Dong YW, Wu W, Zhuang LP, Shen YH, Meng ZQ, Wu XZ. LncRNA BC promotes lung adenocarcinoma progression by modulating IMPAD1 alternative splicing. Clin Transl Med 2023; 13:e1129. [PMID: 36650118 PMCID: PMC9845120 DOI: 10.1002/ctm2.1129] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The therapeutic value of targeted therapies in patients with lung cancer is reduced when tumours acquire secondary resistance after an initial period of successful treatment. However, the molecular events behind the resistance to targeted therapies in lung cancer remain largely unknown. AIMS To discover the important role and mechanism of lncRNA BC in promoting tumor metastasis and influencing clinical prognosis of LUAD. MATERIALS & METHODS Microarrays were used to screen a comprehensive set of lncRNAs with differential expression profiles in lung cancer cells. The functional role and mechanism of lncRNA were further investigated by gain- and loss-of-function assays. RNA pull-down, protein assays, and mass spectrometry were used to identify proteins that interacted with lncRNA. TaqMan PCR was used to measure lncRNA in lung adenocarcinoma and adjacent nontumor tissues from 428 patients. The clinical significance of lncRNA identified was statistically confirmed in this cohort of patients. RESULTS In this study, we show that the long non-coding RNA BC009639 (BC) is involved in acquired resistance to EGFR-targeted therapies. Among the 235 long non-coding RNAs that were differentially expressed in lung cancer cell lines, with different metastatic potentials, BC promoted growth, invasion, metastasis, and resistance to EGFR-tyrosine kinase inhibitors (EGFR-TKIs), both in vitro and in vivo. BC was highly expressed in 428 patients with lung adenocarcinoma (LUAD) and high BC expression correlated with reduced efficacy of EGFR-TKI therapy. To uncover the molecular mechanism of BC-mediated EGFR-TKI resistance in lung cancer, we screened and identified nucleolin and hnRNPK that interact with BC. BC formed the splicing complex with nucleolin and hnRNPK to facilitate the production of a non-protein-coding inositol monophosphatase domain containing 1 (IMPAD1) splice variant, instead of the protein-coding variant. The BC-mediated alternative splicing (AS) of IMPAD1 resulted in the induction of the epithelial-mesenchymal transition and resistance to EGFR-TKI in lung cancer. High BC expression correlated with clinical progress and poor survival among 402 patients with LUAD. DISSCUSSION Through alternative splicing, BC boosted the non-coding IMPAD1-203 transcript variant while suppressing the IMPAD1-201 variant. In order to control the processing of pre-mRNA, BC not only attracted RNA binding proteins (NCL, IGF2BP1) or splicing factors (hnRNPK), but also controlled the formation of the splicing-regulator complex by creating RNA-RNA-duplexes. CONCLUSION Our results reveal an important role for BC in mediating resistance to EGFR-targeted therapy in LUAD through IMPAD1 AS and in implication for the targeted therapy resistance.
Collapse
Affiliation(s)
- Qi Wen Chen
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Qian Qian Cai
- Shanghai Key Laboratory of Molecular ImagingShanghai University of Medicine and Health SciencesShanghaiP. R. China
| | - Ying Yang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| | - Shu Dong
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Yuan Yuan Liu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| | - Zhong Yi Chen
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| | - Chun Lan Kang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| | - Bing Qi
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| | - Yi Wei Dong
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| | - Wei Wu
- Department of PathologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiP. R. China
| | - Li Ping Zhuang
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Ye Hua Shen
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Zhi Qiang Meng
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Xing Zhong Wu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| |
Collapse
|
9
|
Zhao F, Huang Y, Zhang Y, Li X, Chen K, Long Y, Li F, Ma X. SQLE inhibition suppresses the development of pancreatic ductal adenocarcinoma and enhances its sensitivity to chemotherapeutic agents in vitro. Mol Biol Rep 2022; 49:6613-6621. [PMID: 35552960 DOI: 10.1007/s11033-022-07504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE In this study, we sought to explore the function of seven important enzymes (MSMO1, EBP, HMGCS1, IDI2, DHCR7, FDFT1, and SQLE) involved in cholesterol biosynthesis especially SQLE in PDAC therapy. METHODS AND RESULTS The TCGA and Oncomine dataset were used to explore the expression of the seven enzymes in normal and cancerous pancreatic individual, and their anti-proliferation efficiency against PDAC cells was measured by cell viability assay. Expression level and prognostic values of SQLE were evaluated by western blot and Kaplan-Meier analysis. The influence of SQLE knockdown by shRNA in PDAC cells was assessed by transwell, colony formation and cell cycle analysis. RNA-seq and GSEA were utilized to investigate the potential mechanisms. The synergistic effect of SQLE inhibitor, terbinafine, combined with six chemotherapeutic drugs in PDAC cells was tested by CCK-8 method. We demonstrated that downregulation of those enzymes especially SQLE significantly suppressed PDAC cells survival. SQLE was upregulated in PDAC cell lines, and the elevated level of SQLE was correlated with poor prognosis in pancreatic cancer samples. SQLE knockdown could significantly inhibit the proliferation and migration of PDAC cells. Cell cycle was blocked in S phase after SQLE silencing. Mechanistically, GSEA analysis with RNA-seq data revealed that SQLE silencing negatively mediated mTORC1 and TNFα/NF-κB signaling pathways. Besides, SQLE inhibitor terbinafine enhanced chemotherapeutic sensitivity of the six compounds. CONCLUSIONS This study demonstrated that SQLE was a novel target for PDAC therapy. The synergism role of SQLE inhibition and chemotherapy may be potential therapeutic strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Fengyun Zhao
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Yanni Huang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yingheng Zhang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xun Li
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Kaizhao Chen
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Yihao Long
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Xiaodong Ma
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, Guangdong, China.
| |
Collapse
|
10
|
ENPP2 Promoter Methylation Correlates with Decreased Gene Expression in Breast Cancer: Implementation as a Liquid Biopsy Biomarker. Int J Mol Sci 2022; 23:ijms23073717. [PMID: 35409077 PMCID: PMC8998992 DOI: 10.3390/ijms23073717] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Autotaxin (ATX), encoded by the ctonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) gene, is a key enzyme in lysophosphatidic acid (LPA) synthesis. We have recently described ENPP2 methylation profiles in health and multiple malignancies and demonstrated correlation to its aberrant expression. Here we focus on breast cancer (BrCa), analyzing in silico publicly available BrCa methylome datasets, to identify differentially methylated CpGs (DMCs) and correlate them with expression. Numerous DMCs were identified between BrCa and healthy breast tissues in the gene body and promoter-associated regions (PA). PA DMCs were upregulated in BrCa tissues in relation to normal, in metastatic BrCa in relation to primary, and in stage I BrCa in relation to normal, and this was correlated to decreased mRNA expression. The first exon DMC was also investigated in circulating cell free DNA (ccfDNA) isolated by BrCa patients; methylation was increased in BrCa in relation to ccfDNA from healthy individuals, confirming in silico results. It also differed between patient groups and was correlated to the presence of multiple metastatic sites. Our data indicate that promoter methylation of ENPP2 arrests its transcription in BrCa and introduce first exon methylation as a putative biomarker for diagnosis and monitoring which can be assessed in liquid biopsy.
Collapse
|
11
|
Abascal MF, Elía A, Alvarez M, Pataccini G, Sequeira G, Riggio M, Figueroa V, Lamb CA, Rojas PA, Spengler E, Martínez-Vazquez P, Burruchaga J, Liguori M, Sahores A, Wargon V, Molinolo A, Hewitt S, Lombes M, Sartorius C, Vanzulli SI, Giulianelli S, Lanari C. Progesterone receptor isoform ratio dictates antiprogestin/progestin effects on breast cancer growth and metastases: A role for NDRG1. Int J Cancer 2021; 150:1481-1496. [PMID: 34935137 DOI: 10.1002/ijc.33913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Progesterone receptors (PR) ligands are being tested in luminal breast cancer. There are mainly two PR isoforms, PRA and PRB, and their ratio (PRA/PRB) may be predictive of antiprogestin response. Our aim was to investigate: the impact of the PR isoform ratio on metastatic behavior, the PR isoform ratio in paired primary tumors and lymph node metastases (LNM) and, the effect of antiprogestin/progestins on metastatic growth. Using murine and human metastatic models, we demonstrated that tumors with PRB > PRA (PRB-H) have a higher proliferation index but less metastatic ability than those with PRA > PRB (PRA-H). Antiprogestins and progestins inhibited metastatic burden in PRA-H and PRB-H models, respectively. In breast cancer samples, LNM retained the same PRA/PRB ratio as their matched primary tumors. Moreover, PRA-H LNM expressed higher total PR levels than the primary tumors. The expression of NDRG1, a metastasis suppressor protein, was higher in PRB-H compared with PRA-H tumors and was inversely regulated by antiprogestins/progestins. The binding of the corepressor SMRT at the progesterone responsive elements of the NDRG1 regulatory sequences, together with PRA, impeded its expression in PRA-H cells. Antiprogestins modulate the interplay between SMRT and AIB1 recruitment in PRA-H or PRB-H contexts regulating NDRG1 expression and thus, metastasis. In conclusion, we provide a mechanistic interpretation to explain the differential role of PR isoforms in metastatic growth and highlight the therapeutic benefit of using antiprogestins in PRA-H tumors. The therapeutic effect of progestins in PRB-H tumors is suggested. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Andrés Elía
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Michelle Alvarez
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires
| | - Gabriela Pataccini
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Gonzalo Sequeira
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.,Hospital Público de Gestión Descentralizada Dr. Arturo Oñativia, Argentina
| | - Marina Riggio
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Virginia Figueroa
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Paola A Rojas
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Eunice Spengler
- Hospital de Agudos "Magdalena V de Martínez", General Pacheco, Argentina
| | | | - Javier Burruchaga
- Hospital de Agudos "Magdalena V de Martínez", General Pacheco, Argentina
| | - Marcos Liguori
- Hospital de Agudos "Magdalena V de Martínez", General Pacheco, Argentina
| | - Ana Sahores
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Victoria Wargon
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | | | | | - Marc Lombes
- INSERM and Fac Med Paris-Sud, Université Paris Saclay, UMR-S 1185, Le Kremlin-Bicêtre, France
| | - Carol Sartorius
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.,Instituto de Biología de Organismos Marinos, IBIOMAR-CCT CENPAT-CONICET, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| |
Collapse
|
12
|
ENPP2 Methylation in Health and Cancer. Int J Mol Sci 2021; 22:ijms222111958. [PMID: 34769391 PMCID: PMC8585013 DOI: 10.3390/ijms222111958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Autotaxin (ATX) encoded by Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) is a key enzyme in Lysophosphatidic Acid (LPA) synthesis implicated in cancer. Although its aberrant expression has been reported, ENPP2 methylation profiles in health and malignancy are not described. We examined in silico the methylation of ENPP2 analyzing publicly available methylome datasets, to identify Differentially Methylated CpGs (DMCs) which were then correlated with expression at gene and isoform levels. Significance indication was set to be FDR corrected p-value < 0.05. Healthy tissues presented methylation in all gene body CGs and lower levels in Promoter Associated (PA) regions, whereas in the majority of the tumors examined (HCC, melanoma, CRC, LC and PC) the methylation pattern was reversed. DMCs identified in the promoter were located in sites recognized by multiple transcription factors, suggesting involvement in gene expression. Alterations in methylation were correlated to an aggressive phenotype in cancer cell lines. In prostate and lung adenocarcinomas, increased methylation of PA CGs was correlated to decreased ENPP2 mRNA expression and to poor prognosis parameters. Collectively, our results corroborate that methylation is an active level of ATX expression regulation in cancer. Our study provides an extended description of the methylation status of ENPP2 in health and cancer and points out specific DMCs of value as prognostic biomarkers.
Collapse
|
13
|
Giacomini I, Gianfanti F, Desbats MA, Orso G, Berretta M, Prayer-Galetti T, Ragazzi E, Cocetta V. Cholesterol Metabolic Reprogramming in Cancer and Its Pharmacological Modulation as Therapeutic Strategy. Front Oncol 2021; 11:682911. [PMID: 34109128 PMCID: PMC8181394 DOI: 10.3389/fonc.2021.682911] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is a ubiquitous sterol with many biological functions, which are crucial for proper cellular signaling and physiology. Indeed, cholesterol is essential in maintaining membrane physical properties, while its metabolism is involved in bile acid production and steroid hormone biosynthesis. Additionally, isoprenoids metabolites of the mevalonate pathway support protein-prenylation and dolichol, ubiquinone and the heme a biosynthesis. Cancer cells rely on cholesterol to satisfy their increased nutrient demands and to support their uncontrolled growth, thus promoting tumor development and progression. Indeed, transformed cells reprogram cholesterol metabolism either by increasing its uptake and de novo biosynthesis, or deregulating the efflux. Alternatively, tumor can efficiently accumulate cholesterol into lipid droplets and deeply modify the activity of key cholesterol homeostasis regulators. In light of these considerations, altered pathways of cholesterol metabolism might represent intriguing pharmacological targets for the development of exploitable strategies in the context of cancer therapy. Thus, this work aims to discuss the emerging evidence of in vitro and in vivo studies, as well as clinical trials, on the role of cholesterol pathways in the treatment of cancer, starting from already available cholesterol-lowering drugs (statins or fibrates), and moving towards novel potential pharmacological inhibitors or selective target modulators.
Collapse
Affiliation(s)
- Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Gianfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, VIMM, Padova, Italy
| | | | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Tommaso Prayer-Galetti
- Department of Surgery, Oncology and Gastroenterology - Urology, University of Padova, Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Iqbal W, Demidova EV, Serrao S, ValizadehAslani T, Rosen G, Arora S. RRM2B Is Frequently Amplified Across Multiple Tumor Types: Implications for DNA Repair, Cellular Survival, and Cancer Therapy. Front Genet 2021; 12:628758. [PMID: 33868369 PMCID: PMC8045241 DOI: 10.3389/fgene.2021.628758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/23/2021] [Indexed: 01/21/2023] Open
Abstract
RRM2B plays a crucial role in DNA replication, repair and oxidative stress. While germline RRM2B mutations have been implicated in mitochondrial disorders, its relevance to cancer has not been established. Here, using TCGA studies, we investigated RRM2B alterations in cancer. We found that RRM2B is highly amplified in multiple tumor types, particularly in MYC-amplified tumors, and is associated with increased RRM2B mRNA expression. We also observed that the chromosomal region 8q22.3–8q24, is amplified in multiple tumors, and includes RRM2B, MYC along with several other cancer-associated genes. An analysis of genes within this 8q-amplicon showed that cancers that have both RRM2B-amplified along with MYC have a distinct pattern of amplification compared to cancers that are unaltered or those that have amplifications in RRM2B or MYC only. Investigation of curated biological interactions revealed that gene products of the amplified 8q22.3–8q24 region have important roles in DNA repair, DNA damage response, oxygen sensing, and apoptosis pathways and interact functionally. Notably, RRM2B-amplified cancers are characterized by mutation signatures of defective DNA repair and oxidative stress, and at least RRM2B-amplified breast cancers are associated with poor clinical outcome. These data suggest alterations in RR2MB and possibly the interacting 8q-proteins could have a profound effect on regulatory pathways such as DNA repair and cellular survival, highlighting therapeutic opportunities in these cancers.
Collapse
Affiliation(s)
- Waleed Iqbal
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University College of Engineering, Philadelphia, PA, United States
| | - Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Samantha Serrao
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Taha ValizadehAslani
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, United States
| | - Gail Rosen
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, United States
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
15
|
Yang F, Kou J, Liu Z, Li W, Du W. MYC Enhances Cholesterol Biosynthesis and Supports Cell Proliferation Through SQLE. Front Cell Dev Biol 2021; 9:655889. [PMID: 33791309 PMCID: PMC8006431 DOI: 10.3389/fcell.2021.655889] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Oncogene c-Myc (referred in this report as MYC) promotes tumorigenesis in multiple human cancers. MYC regulates numerous cellular programs involved in cell growth and cell metabolism. Tumor cells exhibit obligatory dependence on cholesterol metabolism, which provides essential membrane components and metabolites to support cell growth. To date, how cholesterol biosynthesis is delicately regulated to promote tumorigenesis remains unclear. Here, we show that MYC enhances cholesterol biosynthesis and promotes cell proliferation. Through transcriptional upregulation of SQLE, a rate-limiting enzyme in cholesterol synthesis pathway, MYC increases cholesterol production and promotes tumor cell growth. SQLE overexpression restores the cellular cholesterol levels in MYC-knockdown cells. More importantly, in SQLE-depleted cells, enforced expression of MYC has no effect on cholesterol levels. Therefore, our findings reveal that SQLE is critical for MYC-mediated cholesterol synthesis, and further demonstrate that SQLE may be a potential therapeutic target in MYC-amplified cancers.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Junjie Kou
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zizhao Liu
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Li
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wenjing Du
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Kim NI, Park MH, Kweon SS, Cho N, Lee JS. Squalene epoxidase expression is associated with breast tumor progression and with a poor prognosis in breast cancer. Oncol Lett 2021; 21:259. [PMID: 33664822 PMCID: PMC7882892 DOI: 10.3892/ol.2021.12520] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Differentially expressed genes (DEGs) have been previously identified using massive parallel RNA sequencing in matched normal, breast cancer (BC) and nodal metastatic tissues. Squalene epoxidase (SQLE), one of these DEGs, is a key enzyme in cholesterol synthesis. The aim of the present study was to investigate the potential involvement of SQLE in the tumorigenic process of BC and to determine its association with the clinical outcome of BC. SQLE mRNA expression was measured using reverse transcription-quantitative PCR in 10 pairs of ductal carcinoma in situ (DCIS) and BC tissues and their adjacent normal tissues. Immunohistochemical staining of SQLE on tissue microarray was performed in 26 normal breast, 79 DCIS and 198 BC samples. The role of SQLE as a prognostic biomarker in patients with BC has been verified using BreastMark. SQLE mRNA expression was significantly increased in DCIS and BC tissues compared with that in their adjacent normal tissues. High SQLE expression was detected in 0, 48.1 and 40.4% of normal breast, DCIS and BC tissues, respectively. SQLE expression in DCIS and BC tissues was significantly higher than that in normal breast tissues. High SQLE expression was observed in DCIS with higher nuclear grade, comedo-type necrosis and HER2 positivity. High SQLE expression in BC was associated with larger tumor size, nodal metastases, higher stage, HER2 subtype and distant metastatic relapse. High SQLE expression was associated with poor disease-free and overall survival, and independently predicted poor disease-free survival in patients with BC. Following BreastMark analysis, high SQLE mRNA expression in BC was significantly associated with a poor prognosis in the ‘all’, lymph node negative, lymph node positive, luminal A subtype and luminal B subtype groups. Therefore, SQLE expression may be upregulated during the tumorigenic process of BC, and high SQLE expression may be a useful biomarker for predicting a poor prognosis in patients with BC.
Collapse
Affiliation(s)
- Nah Ihm Kim
- Department of Pathology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Shin Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
17
|
Qin Y, Hou Y, Liu S, Zhu P, Wan X, Zhao M, Peng M, Zeng H, Li Q, Jin T, Cui X, Liu M. A Novel Long Non-Coding RNA lnc030 Maintains Breast Cancer Stem Cell Stemness by Stabilizing SQLE mRNA and Increasing Cholesterol Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002232. [PMID: 33511005 PMCID: PMC7816696 DOI: 10.1002/advs.202002232] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/30/2020] [Indexed: 05/29/2023]
Abstract
Cancer stem cells (CSCs) are considered the roots of cancer metastasis and recurrence (CSCs), due in part to their self-renewal and therapy resistance properties. However, the underlying mechanisms for the regulation of CSC stemness are poorly understood. Recently, increasing evidence shows that long non-coding RNAs (lncRNAs) are critical regulators for cancer cell function in various malignancies including breast cancer, but how lncRNAs regulate the function of breast cancer stem cells (BCSCs) remains to be determined. Herein, using lncRNA/mRNA microarray assays, a novel lncRNA (named lnc030) is identified, which is highly expressed in BCSCs in vitro and in vivo, as a pivotal regulator in maintaining BCSC stemness and promoting tumorigenesis. Mechanistically, lnc030 cooperates with poly(rC) binding protein 2(PCBP2) to stabilize squalene epoxidase (SQLE) mRNA, resulting in an increase of cholesterol synthesis. The increased cholesterol in turn actives PI3K/Akt signaling, which governs BCSC stemness. In summary, these findings demonstrate that a new, lnc030-based mechanism for regulating cholesterol synthesis and stemness properties of BCSCs. The lnc030-SQLE-cholesterol synthesis pathway may serve as an effective therapeutic target for BCSC elimination and breast cancer treatment.
Collapse
Affiliation(s)
- Yilu Qin
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Yixuan Hou
- Experimental Teaching Center of Basic Medicine ScienceChongqing Medical UniversityChongqing400016China
| | - Shuiqing Liu
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Pengpeng Zhu
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Maojia Zhao
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Huan Zeng
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Qiao Li
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Ting Jin
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| | - Xiaojiang Cui
- Department of SurgerySamuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterLos AngelesCA90048USA
| | - Manran Liu
- Key Laboratory of Laboratory Medical DiagnosticsChinese Ministry of EducationChongqing Medical UniversityChongqing400016China
| |
Collapse
|
18
|
Shen T, Lu Y, Zhang Q. High Squalene Epoxidase in Tumors Predicts Worse Survival in Patients With Hepatocellular Carcinoma: Integrated Bioinformatic Analysis on NAFLD and HCC. Cancer Control 2020; 27:1073274820914663. [PMID: 32216563 PMCID: PMC7137641 DOI: 10.1177/1073274820914663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study aimed to identify candidate biomarkers for predicting outcomes in
nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC).
Using Gene Expression Omnibus and The Cancer Genome Atlas (TCGA) databases, we
identified common upregulated differential expressed genes (DEGs) in patients
with NAFLD/nonalcoholic steatohepatitis (NASH) and HCC and conducted survival
analysis of these upregulated DEGs with HCC outcomes. Two common upregulated
DEGs including squalene epoxidase (SQLE) and EPPK1 messenger RNA (mRNA) were
significantly upregulated in NAFLD, NASH, and HCC tissues, both in GSE45436
(P < .001) and TCGA profile (P <
.001). Both SQLE and EPPK1 mRNA were upregulated in 15.56% and 8.06% patients
with HCC in TCGA profile. Overexpression of SQLE in tumors was significantly
associated with worse overall survival (OS) and disease-free survival (DFS) in
patients with HCC (log-rank P = .027 and log-rank
P = .048, respectively), while no statistical significances
of OS and DFS were found in EPPK1 groups (both log-rank P >
.05). For validation, SQLE upregulation contributed to significantly worse OS in
patients wih HCC using Kaplan-Meier plotter analysis (hazard ratio = 1.43, 95%
confidence interval: 1.01-2.02, log-rank P = .043). In
addition, high level of SQLE significantly associated with advanced neoplasm
histologic grade, advanced AJCC stage, and α-fetoprotein elevation
(P = .036, .045, and .029, respectively). Squalene
epoxidase is associated with OS and DFS and serves as a novel prognostic
biomarker for patients with HCC.
Collapse
Affiliation(s)
- Tingting Shen
- Department of Infectious Disease, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunfei Lu
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qin Zhang
- Department of Infectious Disease, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Mateo L, Duran-Frigola M, Gris-Oliver A, Palafox M, Scaltriti M, Razavi P, Chandarlapaty S, Arribas J, Bellet M, Serra V, Aloy P. Personalized cancer therapy prioritization based on driver alteration co-occurrence patterns. Genome Med 2020; 12:78. [PMID: 32907621 PMCID: PMC7488324 DOI: 10.1186/s13073-020-00774-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Identification of actionable genomic vulnerabilities is key to precision oncology. Utilizing a large-scale drug screening in patient-derived xenografts, we uncover driver gene alteration connections, derive driver co-occurrence (DCO) networks, and relate these to drug sensitivity. Our collection of 53 drug-response predictors attains an average balanced accuracy of 58% in a cross-validation setting, rising to 66% for a subset of high-confidence predictions. We experimentally validated 12 out of 14 predictions in mice and adapted our strategy to obtain drug-response models from patients’ progression-free survival data. Our strategy reveals links between oncogenic alterations, increasing the clinical impact of genomic profiling.
Collapse
Affiliation(s)
- Lidia Mateo
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Miquel Duran-Frigola
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Albert Gris-Oliver
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain
| | - Marta Palafox
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA.,Department of Pathology, MSKCC, New York, NY, 10065, USA
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA.,Breast Medicine Service, Department of Medicine, MSKCC and Weill-Cornell Medical College, New York, NY, 10065, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA.,Breast Medicine Service, Department of Medicine, MSKCC and Weill-Cornell Medical College, New York, NY, 10065, USA
| | - Joaquin Arribas
- Growth Factors Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,CIBERONC, Barcelona, Spain
| | - Meritxell Bellet
- Breast Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain.,Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain.,CIBERONC, Barcelona, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
20
|
Bajaj R, Kundu ST, Grzeskowiak CL, Fradette JJ, Scott KL, Creighton CJ, Gibbons DL. IMPAD1 and KDELR2 drive invasion and metastasis by enhancing Golgi-mediated secretion. Oncogene 2020; 39:5979-5994. [PMID: 32753652 PMCID: PMC7539228 DOI: 10.1038/s41388-020-01410-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 01/12/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide, due in part to its proclivity to metastasize. Identifying novel drivers of invasion and metastasis holds therapeutic potential for the disease. We conducted a gain-of-function invasion screen, which identified two separate hits, IMPAD1 and KDELR2, as robust, independent drivers of lung cancer invasion and metastasis. Given that IMPAD1 and KDELR2 are known to be localized to the ER-Golgi pathway, we studied their common mechanism of driving in vitro invasion and in vivo metastasis and demonstrated that they enhance Golgi-mediated function and secretion. Therapeutically inhibiting matrix metalloproteases (MMPs) suppressed both IMPAD1- and KDELR2-mediated invasion. The hits from this unbiased screen and the mechanistic validation highlight Golgi function as one of the key cellular features altered during invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kenneth L Scott
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
22
|
Chua NK, Coates HW, Brown AJ. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res 2020; 79:101033. [DOI: 10.1016/j.plipres.2020.101033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
23
|
Stastny I, Zubor P, Kajo K, Kubatka P, Golubnitschaja O, Dankova Z. Aberrantly Methylated cfDNA in Body Fluids as a Promising Diagnostic Tool for Early Detection of Breast Cancer. Clin Breast Cancer 2020; 20:e711-e722. [PMID: 32792225 DOI: 10.1016/j.clbc.2020.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/29/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
Breast malignancies are the leading type of cancer among women. Its prevention and early detection, particularly in young women, remains challenging. To this end, cell-free DNA (cfDNA) detected in body fluids demonstrates great potential for early detection of tissue transformation and altered molecular setup, such as epigenetic profiles. Aberrantly methylated cfDNA in body fluids could therefore serve as a potential diagnostic and prognostic tool in breast cancer management. Abnormal methylation may lead to both an activation of oncogenes via hypomethylation and an inactivation of tumor suppressor genes by hypermethylation. We update the state of the art in the area of aberrant cfDNA methylation analyses as a diagnostic and prognostic tool in breast cancer, report on the main technological challenges, and provide an outlook for advancing the overall management of breast malignancies based on cfDNA as a target for diagnosis and tailored therapies.
Collapse
Affiliation(s)
- Igor Stastny
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Obstetrics and Gynaecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Pavol Zubor
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Gynecologic Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Karol Kajo
- Department of Pathology, St Elizabeth Cancer Institute Hospital, Bratislava, Slovak Republic; Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Kubatka
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Olga Golubnitschaja
- Radiological Hospital, Rheinische, Excellence University of Bonn, Bonn, Germany; Breast Cancer Research Centre, Rheinische, Excellence University of Bonn, Bonn, Germany; Centre for Integrated Oncology, Cologne-Bonn, Excellence University of Bonn, Bonn, Germany
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
24
|
Ge Q, Feng F, Liu L, Chen L, Lv P, Ma S, Chen K, Yao Q. RNA-Seq analysis of the pathogenesis of STZ-induced male diabetic mouse liver. J Diabetes Complications 2020; 34:107444. [PMID: 31757765 DOI: 10.1016/j.jdiacomp.2019.107444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Diabetes mellitus (DM) is a chronic disease characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The liver is a key organ involved in glucose metabolism, and the major target proteins' changes in the pathogenesis are still unknown. METHODS A diabetic mouse model was induced by intraperitoneal injection of streptozotocin (STZ) solution and the RNA-Seq analysis was used to evaluate the transcription differences in the livers of diabetic mice of this study. And then, the differentially expressed genes were validated between a normal mouse group (n = 6) and a diabetic mouse group (n = 6) using quantitative real-time PCR (qRT-PCR) and Western blotting analysis. In addition, we also constructed protein-protein interacting (PPI) networks of up-regulated and down-regulated genes. RESULTS Transcriptome sequencing analysis revealed 370 up-regulated differentially expressed genes and 281 down-regulated differentially expressed genes in the diabetes model. The gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis results showed that the differentially expressed genes were mainly involved in immunity, enzyme activity, metabolism, and steroid synthesis. PPI analysis results indicated that the main 15 core differential proteins (Cyp51a1, Acsl4, Ugt1a1, Stat1, Gsta2, Cbr1, Aldh1a1, Fasn, Ces1, Camk2b, Tap1, Egr1, Sqle, Lpin1, Fabp5) were involved in the pathogenesis of diabetes. The qRT-PCR results showed that expression changes of four genes (Acsl4, Stat1, Gsta2, Fabp5) were in different directions from those of RNA-Seq. Western blotting results indicated that Sqle expression change at the protein level was in opposition direction from qRT-PCR, and we speculated that Sqle may be involved in the post-transcriptional modification process. CONCLUSIONS Our data speculated that the pathogenesis of diabetes may be mediated mainly through steroid biosynthesis, metabolic processes, and immune responses. Further researches on these pathways may provide new targets for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Qi Ge
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Fan Feng
- The Fourth Affiliated Hospital of Jiangsu University, 20# Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Peng Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Qin Yao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
25
|
Li Q, An X, Man X, Chu M, Zhao T, Yu H, Li Z. Transcriptome analysis reveals that cyclophosphamide induces premature ovarian failure by blocking cholesterol biosynthesis pathway. Life Sci 2019; 239:116999. [PMID: 31654746 DOI: 10.1016/j.lfs.2019.116999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023]
Abstract
AIMS The present study aimed to investigate the effects of cyclophosphamide (Cytoxan, CTX) on premature ovarian failure (POF) in mice and its regulatory mechanisms by transcriptome analysis. MAIN METHODS Female C57BL/6 mice were treated with a single intraperitoneal injection of 70 mg/kg CTX. Serum levels of estradiol (E2) and follicle stimulating hormone (FSH) were measured by enzyme-linked immunosorbent assay (ELISA), and follicular structure differences were observed by hematoxylin and eosin (H&E) staining. The main mechanism of POF was investigated by RNA-seq data, protein-protein interaction (PPI) networks and qPCR analysis. KEY FINDINGS The serum levels of E2 were significantly decreased and those of FSH were significantly increased compared to the control group. The ovarian weights of the mice in the CTX group were reduced, and abnormal follicular structures were also observed in the CTX group. The RNA-seq data show that the downregulated genes were related to the cholesterol biosynthesis pathway. The PPI network and qPCR analyses further confirm that the PPAR signaling pathway and the ovarian infertility genes were also involved in blocking the cholesterol biosynthesis pathway. The differences were statistically significant. SIGNIFICANCE Our results indicate that CTX may exert its anti-tumor effects by inactivating the cholesterol biosynthesis pathway, and simultaneously reducing the supply of estrogen precursor materials, ultimately leading to the occurrence of POF. Our data provided a preliminary theoretical basis for resolving the clinical toxicity and side effects of CTX.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, China.
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, China.
| | - Xiaxia Man
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, China.
| | - Meiran Chu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Tianchuang Zhao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, China.
| |
Collapse
|
26
|
Abstract
Sulfur is present in the amino acids cysteine and methionine and in a large range of essential coenzymes and cofactors and is therefore essential for all organisms. It is also a constituent of sulfate esters in proteins, carbohydrates, and numerous cellular metabolites. The sulfation and desulfation reactions modifying a variety of different substrates are commonly known as sulfation pathways. Although relatively little is known about the function of most sulfated metabolites, the synthesis of activated sulfate used in sulfation pathways is essential in both animal and plant kingdoms. In humans, mutations in the genes encoding the sulfation pathway enzymes underlie a number of developmental aberrations, and in flies and worms, their loss-of-function is fatal. In plants, a lower capacity for synthesizing activated sulfate for sulfation reactions results in dwarfism, and a complete loss of activated sulfate synthesis is also lethal. Here, we review the similarities and differences in sulfation pathways and associated processes in animals and plants, and we point out how they diverge from bacteria and yeast. We highlight the open questions concerning localization, regulation, and importance of sulfation pathways in both kingdoms and the ways in which findings from these "red" and "green" experimental systems may help reciprocally address questions specific to each of the systems.
Collapse
Affiliation(s)
- Süleyman Günal
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Rebecca Hardman
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany.
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom.
| |
Collapse
|
27
|
Biermann J, Nemes S, Parris TZ, Engqvist H, Werner Rönnerman E, Kovács A, Karlsson P, Helou K. A 17-marker panel for global genomic instability in breast cancer. Genomics 2019; 112:1151-1161. [PMID: 31260745 DOI: 10.1016/j.ygeno.2019.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022]
Abstract
Genomic instability is a hallmark of cancer that plays a pivotal role in breast cancer development and evolution. A number of existing prognostic gene expression signatures for breast cancer are based on proliferation-related genes. Here, we identified a 17-marker panel associated with genome stability. A total of 136 primary breast carcinomas were stratified by genome stability. Matched gene expression profiles showed an innate segregation based on genome stability. We identified a 17-marker panel stratifying the training and validation cohorts into high- and low-risk patients. The 17 genes associated with genomic instability strongly impacted clinical outcome in breast cancer. Pathway analyses determined chromosome organisation, cell cycle regulation, and RNA processing as the underlying biological processes, thereby offering options for drug development and treatment tailoring. Our work supports the applicability of the 17-marker panel to improve clinical outcome prediction for breast cancer patients based on a signature accounting for genomic instability.
Collapse
Affiliation(s)
- Jana Biermann
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Szilárd Nemes
- Swedish Hip Arthroplasty Register, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Chen J, Haanpää MK, Gruber JJ, Jäger N, Ford JM, Snyder MP. High-Resolution Bisulfite-Sequencing of Peripheral Blood DNA Methylation in Early-Onset and Familial Risk Breast Cancer Patients. Clin Cancer Res 2019; 25:5301-5314. [PMID: 31175093 DOI: 10.1158/1078-0432.ccr-18-2423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/11/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Understanding and explaining hereditary predisposition to cancer has focused on the genetic etiology of the disease. However, mutations in known genes associated with breast cancer, such as BRCA1 and BRCA2, account for less than 25% of familial cases of breast cancer. Recently, specific epigenetic modifications at BRCA1 have been shown to promote hereditary breast cancer, but the broader potential for epigenetic contribution to hereditary breast cancer is not yet well understood. EXPERIMENTAL DESIGN We examined DNA methylation through deep bisulfite sequencing of CpG islands and known promoter or regulatory regions in peripheral blood DNA from 99 patients with familial or early-onset breast or ovarian cancer, 6 unaffected BRCA mutation carriers, and 49 unaffected controls. RESULTS In 9% of patients, we observed altered methylation in the promoter regions of genes known to be involved in cancer, including hypermethylation at the tumor suppressor PTEN and hypomethylation at the proto-oncogene TEX14. These alterations occur in the form of allelic methylation that span up to hundreds of base pairs in length. CONCLUSIONS Our observations suggest a broader role for DNA methylation in early-onset, familial risk breast cancer. Further studies are warranted to clarify these mechanisms and the benefits of DNA methylation screening for early risk prediction of familial cancers.
Collapse
Affiliation(s)
- Justin Chen
- Department of Genetics, Stanford University, Stanford, California
| | - Maria K Haanpää
- Department of Medicine, Oncology Division, Stanford University, Stanford, California
| | - Joshua J Gruber
- Department of Genetics, Stanford University, Stanford, California.,Department of Medicine, Oncology Division, Stanford University, Stanford, California
| | - Natalie Jäger
- Department of Genetics, Stanford University, Stanford, California
| | - James M Ford
- Department of Genetics, Stanford University, Stanford, California. .,Department of Medicine, Oncology Division, Stanford University, Stanford, California
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California.
| |
Collapse
|
29
|
Importance of Copy Number Alterations of FGFR1 and C-MYC Genes in Triple Negative Breast Cancer. J Med Biochem 2019; 38:63-70. [PMID: 30820185 PMCID: PMC6298449 DOI: 10.2478/jomb-2018-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/18/2018] [Indexed: 12/31/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is characterized by aggressive clinical course and is unresponsive to anti-HER2 and endocrine therapy. TNBC is difficult to treat and is often lethal. Given the need to find new targets for therapy we explored clinicopathological significance of copy number gain of FGFR1 and c-MYC. Our aim was to determine the impact of FGFR1 and c-MYC copy number gain on clinical course and outcome of TNBC. Methods FGFR1 and c-MYC gene copy number alterations were evaluated in 78 archive TNBC samples using TaqMan based quantitative real time PCR assays. Results 50% of samples had increased c-MYC copy number. c-MYC copy number gain was associated with TNBC in contrast to ER positive cancers. Our results showed significant correlation between c-MYC copy number gain and high grade of TNBCs. This suggests that c-MYC copy number could be an useful prognostic marker for TNBC patients. c-MYC copy number gain was associated with high pTNM stage as well as lobular and medullary tumor subtypes. 43% of samples had increased FGFR1 copy number. No correlations between FGFR1 copy number gain and clinicopathological variables were observed. Conclusions We identified c-MYC copy number gain as a prognostic marker for TNBC. Our results indicate that c- MYC may contribute to TNBC progression. We observed no significant association between c-MYC and/or FGFR1 copy number status and patient survival.
Collapse
|
30
|
Liu L, Zhang S, Liu X, Liu J. Aberrant promoter 2 methylation‑mediated downregulation of protein tyrosine phosphatase, non‑receptor type 6, is associated with progression of esophageal squamous cell carcinoma. Mol Med Rep 2019; 19:3273-3282. [PMID: 30816454 DOI: 10.3892/mmr.2019.9971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/05/2019] [Indexed: 11/05/2022] Open
Abstract
The human protein tyrosine phosphatase, non‑receptor type 6 (PTPN6) gene is located on chromosome 12p13 and encodes an Mr 68,000 non‑receptor type protein‑tyrosine phosphatase. The PTPN6 gene has been considered as a candidate tumor suppressor in hematological and solid malignancies, and promoter methylation may be an epigenetic modification silencing its expression. However, the detailed role of PTPN6 and its promoter methylation status in the pathogenesis of esophageal squamous cell carcinoma (ESCC) has not been fully elucidated. The aim of the present study was to investigate PTPN6 expression in ESCC tissues and esophageal cancer cell lines, detect the effect of CpG hypermethylation on the activity of PTPN6, and additionally elucidate the role and prognostic significance of PTPN6 in ESCC tumorigenesis and progression. The expression of PTPN6 was identified to be significantly downregulated in esophageal cancer cell lines and ESCC tissues. Marked upregulation of PTPN6 was detected in 5‑aza‑2'‑deoxycytidine‑treated esophageal cancer cells, and frequent hypermethylation of the CpG sites within the P2 promoter (P2) was detected in ESCC tissues and esophageal cancer cell lines. The expression and methylation status of PTPN6 was associated with tumor node metastasis stage, pathological differentiation and lymph node metastasis in patients with ESCC. Aberrant hypermethylation of the P2 exhibited marked tumor specificity and was identified to be associated with the expression level of PTPN6. Downregulation and hypermethylation of PTPN6 were identified to be associated with poor ESCC patient survival. Furthermore, upregulation of PTPN6 inhibited the proliferation and invasion of esophageal cancer cells in vitro. The results of the present study suggest that PTPN6 may serve as a tumor suppressor in ESCC, and it may serve as a potential target for antitumor therapy.
Collapse
Affiliation(s)
- Lei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shaowei Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xinbo Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Junfeng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
31
|
Kechavarzi BD, Wu H, Doman TN. Bottom-up, integrated -omics analysis identifies broadly dosage-sensitive genes in breast cancer samples from TCGA. PLoS One 2019; 14:e0210910. [PMID: 30653567 PMCID: PMC6336338 DOI: 10.1371/journal.pone.0210910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/03/2019] [Indexed: 11/18/2022] Open
Abstract
The massive genomic data from The Cancer Genome Atlas (TCGA), including proteomics data from Clinical Proteomic Tumor Analysis Consortium (CPTAC), provides a unique opportunity to study cancer systematically. While most observations are made from a single type of genomics data, we apply big data analytics and systems biology approaches by simultaneously analyzing DNA amplification, mRNA and protein abundance. Using multiple genomic profiles, we have discovered widespread dosage compensation for the extensive aneuploidy observed in TCGA breast cancer samples. We do identify 11 genes that show strong correlation across all features (DNA/mRNA/protein) analogous to that of the well-known oncogene HER2 (ERBB2). These genes are generally less well-characterized regarding their role in cancer and we advocate their further study. We also discover that shRNA knockdown of these genes has an impact on cancer cell growth, suggesting a vulnerability that could be used for cancer therapy. Our study shows the advantages of systematic big data methodologies and also provides future research directions.
Collapse
Affiliation(s)
- Bobak D. Kechavarzi
- Indiana University Purdue University Indianapolis, School of Informatics and Computing, Indianapolis, IN, United States of America
- Eli Lilly, Indianapolis, IN, United States of America
- * E-mail:
| | - Huanmei Wu
- Indiana University Purdue University Indianapolis, School of Informatics and Computing, Indianapolis, IN, United States of America
| | - Thompson N. Doman
- Indiana University Purdue University Indianapolis, School of Informatics and Computing, Indianapolis, IN, United States of America
- Eli Lilly, Indianapolis, IN, United States of America
| |
Collapse
|
32
|
Terrazas M, Sánchez D, Battistini F, Villegas N, Brun-Heath I, Orozco M. A multifunctional toolkit for target-directed cancer therapy. Chem Commun (Camb) 2019; 55:802-805. [PMID: 30574643 DOI: 10.1039/c8cc08823c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present 2shRNA, a shRNA-based nanobinder, which can simultaneously attack two therapeutic targets involved in drug resistance pathways and can additionally bind accessory molecules such as cell targeting peptides or fluorophores. We create 2shRNAs designed to specifically kill HER2+ breast cancer cells in the absence of a transfecting agent.
Collapse
Affiliation(s)
- Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
33
|
Ninou I, Magkrioti C, Aidinis V. Autotaxin in Pathophysiology and Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:180. [PMID: 29951481 PMCID: PMC6008954 DOI: 10.3389/fmed.2018.00180] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Abstract
Lysophospholipid signaling is emerging as a druggable regulator of pathophysiological responses, and especially fibrosis, exemplified by the relative ongoing clinical trials in idiopathic pulmonary fibrosis (IPF) patients. In this review, we focus on ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2), or as more widely known Autotaxin (ATX), a secreted lysophospholipase D (lysoPLD) largely responsible for extracellular lysophosphatidic acid (LPA) production. In turn, LPA is a bioactive phospholipid autacoid, forming locally upon increased ATX levels and acting also locally through its receptors, likely guided by ATX's structural conformation and cell surface associations. Increased ATX activity levels have been detected in many inflammatory and fibroproliferative conditions, while genetic and pharmacologic studies have confirmed a pleiotropic participation of ATX/LPA in different processes and disorders. In pulmonary fibrosis, ATX levels rise in the broncheoalveolar fluid (BALF) and stimulate LPA production. LPA engagement of its receptors activate multiple G-protein mediated signal transduction pathways leading to different responses from pulmonary cells including the production of pro-inflammatory signals from stressed epithelial cells, the modulation of endothelial physiology, the activation of TGF signaling and the stimulation of fibroblast accumulation. Genetic or pharmacologic targeting of the ATX/LPA axis attenuated disease development in animal models, thus providing the proof of principle for therapeutic interventions.
Collapse
Affiliation(s)
- Ioanna Ninou
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Christiana Magkrioti
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| |
Collapse
|
34
|
Parris TZ, Rönnerman EW, Engqvist H, Biermann J, Truvé K, Nemes S, Forssell-Aronsson E, Solinas G, Kovács A, Karlsson P, Helou K. Genome-wide multi-omics profiling of the 8p11-p12 amplicon in breast carcinoma. Oncotarget 2018; 9:24140-24154. [PMID: 29844878 PMCID: PMC5963621 DOI: 10.18632/oncotarget.25329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
Genomic instability contributes to the neoplastic phenotype by deregulating key cancer-related genes, which in turn can have a detrimental effect on patient outcome. DNA amplification of the 8p11-p12 genomic region has clinical and biological implications in multiple malignancies, including breast carcinoma where the amplicon has been associated with tumor progression and poor prognosis. However, oncogenes driving increased cancer-related death and recurrent genetic features associated with the 8p11-p12 amplicon remain to be identified. In this study, DNA copy number and transcriptome profiling data for 229 primary invasive breast carcinomas (corresponding to 185 patients) were evaluated in conjunction with clinicopathological features to identify putative oncogenes in 8p11-p12 amplified samples. Illumina paired-end whole transcriptome sequencing and whole-genome SNP genotyping were subsequently performed on 23 samples showing high-level regional 8p11-p12 amplification to characterize recurrent genetic variants (SNPs and indels), expressed gene fusions, gene expression profiles and allelic imbalances. We now show previously undescribed chromothripsis-like patterns spanning the 8p11-p12 genomic region and allele-specific DNA amplification events. In addition, recurrent amplification-specific genetic features were identified, including genetic variants in the HIST1H1E and UQCRHL genes and fusion transcripts containing MALAT1 non-coding RNA, which is known to be a prognostic indicator for breast cancer and stimulated by estrogen. In summary, these findings highlight novel candidate targets for improved treatment of 8p11-p12 amplified breast carcinomas.
Collapse
Affiliation(s)
- Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Pathology and Genetics, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jana Biermann
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Katarina Truvé
- Bioinformatics Core Facility, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Szilárd Nemes
- Swedish Hip Arthroplasty Register, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Sahlgrenska University Hospital, Department of Clinical Pathology and Genetics, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Cigarette smoke and chewing tobacco alter expression of different sets of miRNAs in oral keratinocytes. Sci Rep 2018; 8:7040. [PMID: 29728663 PMCID: PMC5935709 DOI: 10.1038/s41598-018-25498-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/23/2018] [Indexed: 12/17/2022] Open
Abstract
Carcinogenic effect of tobacco in oral cancer is through chewing and/or smoking. Significant differences exist in development of oral cancer between tobacco users and non-users. However, molecular alterations induced by different forms of tobacco are yet to be fully elucidated. We developed cellular models of chronic exposure to chewing tobacco and cigarette smoke using immortalized oral keratinocytes. Chronic exposure to tobacco resulted in increased cell scattering and invasiveness in immortalized oral keratinocytes. miRNA sequencing using Illumina HiSeq 2500 resulted in the identification of 10 significantly dysregulated miRNAs (4 fold; p ≤ 0.05) in chewing tobacco treated cells and 6 in cigarette smoke exposed cells. We integrated this data with global proteomic data and identified 36 protein targets that showed inverse expression pattern in chewing tobacco treated cells and 16 protein targets that showed inverse expression in smoke exposed cells. In addition, we identified 6 novel miRNAs in chewing tobacco treated cells and 18 novel miRNAs in smoke exposed cells. Integrative analysis of dysregulated miRNAs and their targets indicates that signaling mechanisms leading to oncogenic transformation are distinct between both forms of tobacco. Our study demonstrates alterations in miRNA expression in oral cells in response to two frequently used forms of tobacco.
Collapse
|
36
|
Magkrioti C, Oikonomou N, Kaffe E, Mouratis MA, Xylourgidis N, Barbayianni I, Megadoukas P, Harokopos V, Valavanis C, Chun J, Kosma A, Stathopoulos GT, Bouros E, Bouros D, Syrigos K, Aidinis V. The Autotaxin-Lysophosphatidic Acid Axis Promotes Lung Carcinogenesis. Cancer Res 2018; 78:3634-3644. [PMID: 29724718 DOI: 10.1158/0008-5472.can-17-3797] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/27/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
Pathogenesis and progression of lung cancer are governed by complex interactions between the environment and host genetic susceptibility, which is further modulated by genetic and epigenetic changes. Autotaxin (ATX, ENPP2) is a secreted glycoprotein that catalyzes the extracellular production of lysophosphatidic acid (LPA), a growth-factor-like phospholipid that is further regulated by phospholipid phosphatases (PLPP). LPA's pleiotropic effects in almost all cell types are mediated through at least six G-protein coupled LPA receptors (LPAR) that exhibit overlapping specificities, widespread distribution, and differential expression profiles. Here we use both preclinical models of lung cancer and clinical samples (from patients and healthy controls) to investigate the expression levels, activity, and biological role of the above components of the ATX/LPA axis in lung cancer. ENPP2 was genetically altered in 8% of patients with lung cancer, whereas increased ATX staining and activity were detected in patient biopsies and sera, respectively. Moreover, PLPP3 expression was consistently downregulated in patients with lung cancer. Comparable observations were made in the two most widely used animal models of lung cancer, the carcinogen urethane-induced and the genetically engineered K-rasG12D -driven models, where genetic deletion of Enpp2 or Lpar1 resulted in disease attenuation, thus confirming a procarcinogenic role of LPA signaling in the lung. Expression profiling data analysis suggested that metabolic rewiring may be implicated in the procarcinogenic effects of the ATX/LPA axis in K-ras- G12D -driven lung cancer pathogenesis.Significance: These findings establish the role of ATX/LPA in lung carcinogenesis, thus expanding the mechanistic links between pulmonary fibrosis and cancer. Cancer Res; 78(13); 3634-44. ©2018 AACR.
Collapse
Affiliation(s)
- Christiana Magkrioti
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | - Nikos Oikonomou
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | - Eleanna Kaffe
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | | | - Nikos Xylourgidis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | - Iliana Barbayianni
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | - Petros Megadoukas
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | - Vaggelis Harokopos
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece
| | | | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Alexandra Kosma
- First Pulmonary Clinic, Papanikolaou General Hospital, Greece
| | - Georgios T Stathopoulos
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, Patras, Greece.,Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilian University and Helmholtz Zentrum München, Germany
| | - Evangelos Bouros
- Academic Department of Pneumonology, University of Athens, Athens, Greece
| | - Demosthenes Bouros
- Academic Department of Pneumonology, University of Athens, Athens, Greece
| | - Konstantinos Syrigos
- Oncology Unit, Sotiria Hospital, School of Medicine, University of Athens, Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming," Greece.
| |
Collapse
|
37
|
Cirmena G, Franceschelli P, Isnaldi E, Ferrando L, De Mariano M, Ballestrero A, Zoppoli G. Squalene epoxidase as a promising metabolic target in cancer treatment. Cancer Lett 2018; 425:13-20. [PMID: 29596888 DOI: 10.1016/j.canlet.2018.03.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
Oncogenic alteration of the cholesterol synthesis pathway is a recognized mechanism of metabolic adaptation. In the present review, we focus on squalene epoxidase (SE), one of the two rate-limiting enzymes in cholesterol synthesis, retracing its history since its discovery as an antimycotic target to its description as an emerging metabolic oncogene by amplification with clinical relevance in cancer. We review the published literature assessing the association between SE over-expression and poor prognosis in this disease. We assess the works demonstrating how SE promotes tumor cell proliferation and migration, and displaying evidence of cancer cell demise in presence of human SE inhibitors in in vitro and in vivo models. Taken together, robust scientific evidence has by now accumulated pointing out SE as a promising novel therapeutic target in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Ballestrero
- Department of Internal Medicine, University of Genoa, Italy; Ospedale Policlinico San Martino, Genoa, Italy.
| | - Gabriele Zoppoli
- Department of Internal Medicine, University of Genoa, Italy; Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
38
|
Dolezal JM, Dash AP, Prochownik EV. Diagnostic and prognostic implications of ribosomal protein transcript expression patterns in human cancers. BMC Cancer 2018. [PMID: 29530001 PMCID: PMC5848553 DOI: 10.1186/s12885-018-4178-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Ribosomes, the organelles responsible for the translation of mRNA, are comprised of four rRNAs and ~ 80 ribosomal proteins (RPs). Although canonically assumed to be maintained in equivalent proportions, some RPs have been shown to possess differential expression across tissue types. Dysregulation of RP expression occurs in a variety of human diseases, notably in many cancers, and altered expression of some RPs correlates with different tumor phenotypes and patient survival. Little work has been done, however, to characterize overall patterns of RP transcript (RPT) expression in human cancers. Methods To investigate the impact of global RPT expression patterns on tumor phenotypes, we analyzed RPT expression of ~ 10,000 human tumors and over 700 normal tissues from The Cancer Genome Atlas (TCGA) using t-distributed stochastic neighbor embedding (t-SNE). Clusters of tumors identified by t-SNE were then analyzed with chi-squared and t-tests to compare phenotypic data, ANOVA to compare individual RPT expression, and Kaplan-Meier curves to assess survival differences. Results Normal tissues and cancers possess distinct and readily discernible RPT expression patterns that are independent of their absolute levels of expression. In tumors, RPT patterning is distinct from that of normal tissues, identifies heretofore unrecognized tumor subtypes, and in many cases correlates with molecular, pathological, and clinical features, including survival. Conclusions RPT expression patterns are both tissue-specific and tumor-specific. These could be used as a powerful and novel method of tumor classification, offering a potential clinical tool for prognosis and therapeutic stratification. Electronic supplementary material The online version of this article (10.1186/s12885-018-4178-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James M Dolezal
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.
| | - Arie P Dash
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center; The University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Hu J, Su P, Jiao M, Bai X, Qi M, Liu H, Wu Z, Sun J, Zhou G, Han B. TRPS1 Suppresses Breast Cancer Epithelial-mesenchymal Transition Program as a Negative Regulator of SUZ12. Transl Oncol 2018; 11:416-425. [PMID: 29471243 PMCID: PMC5884189 DOI: 10.1016/j.tranon.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is among the most common malignant diseases and metastasis is the handcuff of treatment. Cancer metastasis is a multistep process associated with the epithelial-mesenchymal transition (EMT) program. Several studies have demonstrated that transcriptional repressor GATA binding 1 (TRPS1) played important roles in development and progression of primary BC. In this study we sought to identify the mechanisms responsible for this function of TRPS1 in the continuum of the metastatic cascade. Here we described that TRPS1 was significantly associated with BC metastasis using public assessable datasets. Clinically, loss of TRPS1 expression in BC was related to higher histological grade. In vitro functional study and bioinformatics analysis revealed that TRPS1 inhibited cell migration and EMT in BC. Importantly, we identified SUZ12 as a novel target of TRPS1 related to EMT program. ChIP assay demonstrated TRPS1 directly inhibited SUZ12 transcription by binding to the SUZ12 promoter. Loss of TRPS1 resulted in increased SUZ12 binding and H3K27 tri-methylation at the CDH1 promoter and repression of E-cadherin. In all, our data indicated that TRPS1 maintained the expression of E-cadherin by inhibiting SUZ12, which might provide novel insight into how loss of TRPS1 contributed to BC progression.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Peng Su
- Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Meng Jiao
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Xinnuo Bai
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Hui Liu
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Zhen Wu
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Jingtian Sun
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China
| | - Gengyin Zhou
- Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Bo Han
- Department of Pathology, Shandong University, School of Basic Medicine, Jinan, 250012, China; Department of Pathology, Shandong University Qilu Hospital, Jinan, 250012, China.
| |
Collapse
|
40
|
Zamò A, Pischimarov J, Horn H, Ott G, Rosenwald A, Leich E. The exomic landscape of t(14;18)-negative diffuse follicular lymphoma with 1p36 deletion. Br J Haematol 2017; 180:391-394. [PMID: 29193015 DOI: 10.1111/bjh.15041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Predominantly diffuse t(14;18) negative follicular lymphoma (FL) with 1p36 deletion shows distinctive clinical, morphological and molecular features that distinguish it from classical FL. In order to investigate whether it possesses a unique mutation profile, we performed whole exome sequencing of six well-characterised cases. Our analysis showed that the mutational landscape of this subtype is largely distinct from classical FL. It appears to harbour several recurrent mutations, affecting STAT6, CREBBP and basal membrane protein genes with high frequency. Our data support the view that this FL subtype should be considered a separate entity from classical FL.
Collapse
Affiliation(s)
- Alberto Zamò
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy.,Alexander von Humboldt Fellow, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Jordan Pischimarov
- Institute of Pathology and Comprehensive Cancer Center Mainfranken (CCC MF), University of Würzburg, Würzburg, Germany
| | - Heike Horn
- Dr Margarete Fischer-Bosch-Institute for Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Andreas Rosenwald
- Institute of Pathology and Comprehensive Cancer Center Mainfranken (CCC MF), University of Würzburg, Würzburg, Germany
| | - Ellen Leich
- Institute of Pathology and Comprehensive Cancer Center Mainfranken (CCC MF), University of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Biermann J, Nemes S, Parris TZ, Engqvist H, Rönnerman EW, Forssell-Aronsson E, Steineck G, Karlsson P, Helou K. A Novel 18-Marker Panel Predicting Clinical Outcome in Breast Cancer. Cancer Epidemiol Biomarkers Prev 2017; 26:1619-1628. [PMID: 28877888 DOI: 10.1158/1055-9965.epi-17-0606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022] Open
Abstract
Background: Gene expression profiling has made considerable contributions to our understanding of cancer biology and clinical care. This study describes a novel gene expression signature for breast cancer-specific survival that was validated using external datasets.Methods: Gene expression signatures for invasive breast carcinomas (mainly luminal B subtype) corresponding to 136 patients were analyzed using Cox regression, and the effect of each gene on disease-specific survival (DSS) was estimated. Iterative Bayesian model averaging was applied on multivariable Cox regression models resulting in an 18-marker panel, which was validated using three external validation datasets. The 18 genes were analyzed for common pathways and functions using the Ingenuity Pathway Analysis software. This study complied with the REMARK criteria.Results: The 18-gene multivariable model showed a high predictive power for DSS in the training and validation cohort and a clear stratification between high- and low-risk patients. The differentially expressed genes were predominantly involved in biological processes such as cell cycle, DNA replication, recombination, and repair. Furthermore, the majority of the 18 genes were found to play a pivotal role in cancer.Conclusions: Our findings demonstrated that the 18 molecular markers were strong predictors of breast cancer-specific mortality. The stable time-dependent area under the ROC curve function (AUC(t)) and high C-indices in the training and validation cohorts were further improved by fitting a combined model consisting of the 18-marker panel and established clinical markers.Impact: Our work supports the applicability of this 18-marker panel to improve clinical outcome prediction for breast cancer patients. Cancer Epidemiol Biomarkers Prev; 26(11); 1619-28. ©2017 AACR.
Collapse
Affiliation(s)
- Jana Biermann
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Szilárd Nemes
- Swedish Hip Arthroplasty Register, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Steineck
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
42
|
TRPS1 gene alterations in human subependymoma. J Neurooncol 2017; 134:133-138. [DOI: 10.1007/s11060-017-2496-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/14/2017] [Indexed: 11/25/2022]
|
43
|
Li XX, Shi L, Zhou XJ, Wu J, Xia TS, Zhou WB, Sun X, Zhu L, Wei JF, Ding Q. The role of c-Myc-RBM38 loop in the growth suppression in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:49. [PMID: 28399911 PMCID: PMC5387383 DOI: 10.1186/s13046-017-0521-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
Background RNA-binding protein 38 (RBM38) is a member of the RNA recognition motif (RRM) family of RNA-binding proteins (RBPs). RBM38 often exerts its function by forming regulatory loops with relevant genes. c-Myc is an oncogenic transcription factor that is upregulated in one-third of breast cancers and involved in many cellular processes in this malignancy. In our previous study, RBM38 was identified as a tumor suppressor in breast cancer. In the present study, we investigated the mechanisms underlying the regulation of this tumor suppressor. Methods Lentivirus transfections, Western blotting analysis, qRT-PCR and immunohistochemistry were employed to study the expression of c-Myc and RBM38. Chromatin immunoprecipitation and dual-luciferase reporter assays were performed to investigate the direct relationship between c-Myc protein and the RBM38 gene. RNA immunoprecipitation combined with dual-luciferase reporter assays was conducted to confirm the direct relationship between the RBM38 protein and the c-Myc transcript. Results Knockdown of c-Myc increased RBM38 expression by binding directly to specific DNA sequences (5′-CACGTG-3′), known as the E-box motif, in the promoter region of RBM38 gene. Additionally, RBM38 destabilized the c-Myc transcript by directly targeting AU-rich elements (AREs) in the 3′-untranslated region (3′-UTR) of c-Myc mRNA to suppress c-Myc expression. Moreover, specific inhibitors of c-Myc transcriptional activity inhibited RBM38-induced suppression of growth, implying that RBM38 acts as a tumor suppressor via a mechanism that depends, at least partially, on the reduction of c-Myc expression in breast cancer. Conclusions RBM38 and c-Myc form a unique mutually antagonistic RBM38-c-Myc loop in breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0521-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Xia Li
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Liang Shi
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xu-Jie Zhou
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing Wu
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Tian-Song Xia
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wen-Bin Zhou
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xi Sun
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Lei Zhu
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Qiang Ding
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
44
|
Zhang Y, Wilson R, Heiss J, Breitling LP, Saum KU, Schöttker B, Holleczek B, Waldenberger M, Peters A, Brenner H. DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nat Commun 2017; 8:14617. [PMID: 28303888 PMCID: PMC5357865 DOI: 10.1038/ncomms14617] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
DNA methylation (DNAm) has been revealed to play a role in various diseases. Here we performed epigenome-wide screening and validation to identify mortality-related DNAm signatures in a general population-based cohort with up to 14 years follow-up. In the discovery panel in a case-cohort approach, 11,063 CpGs reach genome-wide significance (FDR<0.05). 58 CpGs, mapping to 38 well-known disease-related genes and 14 intergenic regions, are confirmed in a validation panel. A mortality risk score based on ten selected CpGs exhibits strong association with all-cause mortality, showing hazard ratios (95% CI) of 2.16 (1.10–4.24), 3.42 (1.81–6.46) and 7.36 (3.69–14.68), respectively, for participants with scores of 1, 2–5 and 5+ compared with a score of 0. These associations are confirmed in an independent cohort and are independent from the ‘epigenetic clock'. In conclusion, DNAm of multiple disease-related genes are strongly linked to mortality outcomes. The DNAm-based risk score might be informative for risk assessment and stratification. DNA methylation is modulated by environmental factors and has a role in many complex diseases. Here, the authors find that methylation at specific DNA sites is associated with all-cause mortality, and a methylation-based risk score may be informative for risk assessment and stratification.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Research Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Center for Environmental Health, D-85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Jonathan Heiss
- Division of Clinical Epidemiology and Aging Research, German Research Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Lutz P Breitling
- Division of Clinical Epidemiology and Aging Research, German Research Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Kai-Uwe Saum
- Division of Clinical Epidemiology and Aging Research, German Research Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Research Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.,Network Ageing Research, University of Heidelberg, Bergheimer Strasse 20, D-69115 Heidelberg, Germany
| | - Bernd Holleczek
- Saarland Cancer Registry, Präsident Baltz Strasse 5, D-66119 Saarbrücken, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Center for Environmental Health, D-85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Center for Environmental Health, D-85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Research Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
45
|
Qin Y, Zhang Y, Tang Q, Jin L, Chen Y. SQLE induces epithelial-to-mesenchymal transition by regulating of miR-133b in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2017; 49:138-148. [PMID: 28069586 DOI: 10.1093/abbs/gmw127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that microRNAs, which control gene expression at the post-transcriptional level, are aberrantly expressed in cancers and play significant roles in carcinogenesis and cancer progression. In this study, we show differential miR-133b down-expression in human esophageal squamous cell carcinoma (ESCC) cells and tissues. In addition, squalene epoxidase (SQLE), a key enzyme of cholesterol synthesis, is identified as the direct downstream target gene of miR-133b by luciferase gene reporter assay. Furthermore, ectogenic miR-133b expression and SQLE knockdown can inhibit proliferation, invasion, and metastasis, and diminish epithelial-to-mesenchymal transition (EMT) traits of ESCC in vitro, implying that miR-133b-dependent SQLE can induce tumorigenicity and that SQLE is an EMT inducer. Xenograft experiment results also proved the biological function of SQLE in vivo. Therefore, we conclude that miR-133b-dependent SQLE plays a critical role in the potential metastasis mechanisms in ESCC.
Collapse
Affiliation(s)
- Yi Qin
- Department of Gastroenterology, First People's Hospital of Yancheng City, Yancheng 224001, China
| | - Yi Zhang
- Department of Oncology, Jimin Hospital, Shanghai 200052, China
| | - Qinting Tang
- College of Nursing, Yancheng Vocational Institute of Health Sciences, Yancheng 224006, China
| | - Li Jin
- Sichuan Cancer Hospital, Chengdu 610041, China
| | - Yong'an Chen
- Department of Oncology, Jimin Hospital, Shanghai 200052, China
| |
Collapse
|
46
|
Vassilev B, Louhimo R, Ikonen E, Hautaniemi S. Language-Agnostic Reproducible Data Analysis Using Literate Programming. PLoS One 2016; 11:e0164023. [PMID: 27711123 PMCID: PMC5053501 DOI: 10.1371/journal.pone.0164023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/19/2016] [Indexed: 01/15/2023] Open
Abstract
A modern biomedical research project can easily contain hundreds of analysis steps and lack of reproducibility of the analyses has been recognized as a severe issue. While thorough documentation enables reproducibility, the number of analysis programs used can be so large that in reality reproducibility cannot be easily achieved. Literate programming is an approach to present computer programs to human readers. The code is rearranged to follow the logic of the program, and to explain that logic in a natural language. The code executed by the computer is extracted from the literate source code. As such, literate programming is an ideal formalism for systematizing analysis steps in biomedical research. We have developed the reproducible computing tool Lir (literate, reproducible computing) that allows a tool-agnostic approach to biomedical data analysis. We demonstrate the utility of Lir by applying it to a case study. Our aim was to investigate the role of endosomal trafficking regulators to the progression of breast cancer. In this analysis, a variety of tools were combined to interpret the available data: a relational database, standard command-line tools, and a statistical computing environment. The analysis revealed that the lipid transport related genes LAPTM4B and NDRG1 are coamplified in breast cancer patients, and identified genes potentially cooperating with LAPTM4B in breast cancer progression. Our case study demonstrates that with Lir, an array of tools can be combined in the same data analysis to improve efficiency, reproducibility, and ease of understanding. Lir is an open-source software available at github.com/borisvassilev/lir.
Collapse
Affiliation(s)
- Boris Vassilev
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Riku Louhimo
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
47
|
Co-localized genomic regulation of miRNA and mRNA via DNA methylation affects survival in multiple tumor types. Cancer Genet 2016; 209:463-473. [DOI: 10.1016/j.cancergen.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/23/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
|
48
|
Haider S, McIntyre A, van Stiphout RGPM, Winchester LM, Wigfield S, Harris AL, Buffa FM. Genomic alterations underlie a pan-cancer metabolic shift associated with tumour hypoxia. Genome Biol 2016; 17:140. [PMID: 27358048 PMCID: PMC4926297 DOI: 10.1186/s13059-016-0999-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/06/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Altered metabolism is a hallmark of cancer. However, the role of genomic changes in metabolic genes driving the tumour metabolic shift remains to be elucidated. Here, we have investigated the genomic and transcriptomic changes underlying this shift across ten different cancer types. RESULTS A systematic pan-cancer analysis of 6538 tumour/normal samples covering ten major cancer types identified a core metabolic signature of 44 genes that exhibit high frequency somatic copy number gains/amplifications (>20 % cases) associated with increased mRNA expression (ρ > 0.3, q < 10(-3)). Prognostic classifiers using these genes were confirmed in independent datasets for breast and kidney cancers. Interestingly, this signature is strongly associated with hypoxia, with nine out of ten cancer types showing increased expression and five out of ten cancer types showing increased gain/amplification of these genes in hypoxic tumours (P ≤ 0.01). Further validation in breast and colorectal cancer cell lines highlighted squalene epoxidase, an oxygen-requiring enzyme in cholesterol biosynthesis, as a driver of dysregulated metabolism and a key player in maintaining cell survival under hypoxia. CONCLUSIONS This study reveals somatic genomic alterations underlying a pan-cancer metabolic shift and suggests genomic adaptation of these genes as a survival mechanism in hypoxic tumours.
Collapse
Affiliation(s)
- Syed Haider
- />Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford, UK
- />Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alan McIntyre
- />Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ruud G. P. M. van Stiphout
- />Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford, UK
| | - Laura M. Winchester
- />Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford, UK
- />Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Simon Wigfield
- />Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adrian L. Harris
- />Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Francesca M. Buffa
- />Computational Biology and Integrative Genomics, Department of Oncology, University of Oxford, Oxford, UK
- />Molecular Oncology Laboratories, Department of Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Simigdala N, Gao Q, Pancholi S, Roberg-Larsen H, Zvelebil M, Ribas R, Folkerd E, Thompson A, Bhamra A, Dowsett M, Martin LA. Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Res 2016; 18:58. [PMID: 27246191 PMCID: PMC4888666 DOI: 10.1186/s13058-016-0713-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
Background Therapies targeting estrogenic stimulation in estrogen receptor-positive (ER+) breast cancer (BC) reduce mortality, but resistance remains a major clinical problem. Molecular studies have shown few high-frequency mutations to be associated with endocrine resistance. In contrast, expression profiling of primary ER+ BC samples has identified several promising signatures/networks for targeting. Methods To identify common adaptive mechanisms associated with resistance to aromatase inhibitors (AIs), we assessed changes in global gene expression during adaptation to long-term estrogen deprivation (LTED) in a panel of ER+ BC cell lines cultured in 2D on plastic (MCF7, T47D, HCC1428, SUM44 and ZR75.1) or in 3D on collagen (MCF7) to model the stromal compartment. Furthermore, dimethyl labelling followed by LC-MS/MS was used to assess global changes in protein abundance. The role of target genes/proteins on proliferation, ER-mediated transcription and recruitment of ER to target gene promoters was analysed. Results The cholesterol biosynthesis pathway was the common upregulated pathway in the ER+ LTED but not the ER– LTED cell lines, suggesting a potential mechanism dependent on continued ER expression. Targeting the individual genes of the cholesterol biosynthesis pathway with siRNAs caused a 30–50 % drop in proliferation. Further analysis showed increased expression of 25-hydroxycholesterol (HC) in the MCF7 LTED cells. Exogenous 25-HC or 27-HC increased ER-mediated transcription and expression of the endogenous estrogen-regulated gene TFF1 in ER+ LTED cells but not in the ER– LTED cells. Additionally, recruitment of the ER and CREB-binding protein (CBP) to the TFF1 and GREB1 promoters was increased upon treatment with 25-HC and 27-HC. In-silico analysis of two independent studies of primary ER+ BC patients treated with neoadjuvant AIs showed that increased expression of MSMO1, EBP, LBR and SQLE enzymes, required for cholesterol synthesis and increased in our in-vitro models, was significantly associated with poor response to endocrine therapy. Conclusion Taken together, these data provide support for the role of cholesterol biosynthesis enzymes and the cholesterol metabolites, 25-HC and 27-HC, in a novel mechanism of resistance to endocrine therapy in ER+ BC that has potential as a therapeutic target. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0713-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikiana Simigdala
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Qiong Gao
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Sunil Pancholi
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | | | - Marketa Zvelebil
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Ricardo Ribas
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Elizabeth Folkerd
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.,Academic Department of Biochemistry, Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Andrew Thompson
- Proteomics Core Facility, Institute of Cancer Research, London, SW3 6JB, UK
| | - Amandeep Bhamra
- Proteomics Core Facility, Institute of Cancer Research, London, SW3 6JB, UK
| | - Mitch Dowsett
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.,Academic Department of Biochemistry, Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Lesley-Ann Martin
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
50
|
Brown DN, Caffa I, Cirmena G, Piras D, Garuti A, Gallo M, Alberti S, Nencioni A, Ballestrero A, Zoppoli G. Squalene epoxidase is a bona fide oncogene by amplification with clinical relevance in breast cancer. Sci Rep 2016; 6:19435. [PMID: 26777065 PMCID: PMC4726025 DOI: 10.1038/srep19435] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022] Open
Abstract
SQLE encodes squalene epoxidase, a key enzyme in cholesterol synthesis. SQLE has sporadically been reported among copy-number driven transcripts in multi-omics cancer projects. Yet, its functional relevance has never been subjected to systematic analyses. Here, we assessed the correlation of SQLE copy number (CN) and gene expression (GE) across multiple cancer types, focusing on the clinico-pathological associations in breast cancer (BC). We then investigated whether any biological effect of SQLE inhibition could be observed in BC cell line models. Breast, ovarian, and colorectal cancers showed the highest CN driven GE among 8,783 cases from 22 cancer types, with BC presenting the strongest one. SQLE overexpression was more prevalent in aggressive BC, and was an independent prognostic factor of unfavorable outcome. Through SQLE pharmacological inhibition and silencing in a panel of BC cell lines portraying the diversity of SQLE CN and GE, we demonstrated that SQLE inhibition resulted in a copy-dosage correlated decrease in cell viability, and in a noticeable increase in replication time, only in lines with detectable SQLE transcript. Altogether, our results pinpoint SQLE as a bona fide metabolic oncogene by amplification, and as a therapeutic target in BC. These findings could have implications in other cancer types.
Collapse
Affiliation(s)
- David N Brown
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Brussels BE
| | - Irene Caffa
- Department of Internal Medicine (Di.M.I.), University of Genova, Genova IT
| | - Gabriella Cirmena
- Department of Internal Medicine (Di.M.I.), University of Genova, Genova IT
| | - Daniela Piras
- Department of Internal Medicine (Di.M.I.), University of Genova, Genova IT
| | - Anna Garuti
- Department of Internal Medicine (Di.M.I.), University of Genova, Genova IT
| | - Maurizio Gallo
- Department of Internal Medicine (Di.M.I.), University of Genova, Genova IT
| | - Saverio Alberti
- Unità di Patologia Oncologica CeSI, Università "G. D'Annunzio", Chieti Scalo (Chieti) IT
| | - Alessio Nencioni
- Department of Internal Medicine (Di.M.I.), University of Genova, Genova IT.,Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera-Universitaria San Martino and National Cancer Institute, Genova IT
| | - Alberto Ballestrero
- Department of Internal Medicine (Di.M.I.), University of Genova, Genova IT.,Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera-Universitaria San Martino and National Cancer Institute, Genova IT
| | - Gabriele Zoppoli
- Department of Internal Medicine (Di.M.I.), University of Genova, Genova IT.,Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera-Universitaria San Martino and National Cancer Institute, Genova IT
| |
Collapse
|