1
|
Shubhra QTH. Gasdermin D unlocks metabolic pathways to enhance tissue regeneration. Cell Mol Immunol 2025; 22:1-3. [PMID: 39572781 DOI: 10.1038/s41423-024-01239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 01/01/2025] Open
Affiliation(s)
- Quazi T H Shubhra
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
2
|
Chen Y, Liu J, Sun Y, Li M, Fan X, Gu X. Multi-omics study reveals Shuangshen Pingfei formula regulates EETs metabolic reprogramming to exert its therapeutic effect on pulmonary fibrosis. Int Immunopharmacol 2024; 143:113275. [PMID: 39395378 DOI: 10.1016/j.intimp.2024.113275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/05/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
As a clinical formula derived from Renshen Pingfei San, Shuangshen Pingfei formula (SSPF) has been used to treat pulmonary fibrosis (PF). However, its in-depth mechanism of action remains unknown. In this study, the effect of SSPF was evaluated by applying a rat model of PF caused by intratracheal drip bleomycin. To characterize the molecular changes related to PF and reveal therapeutic targets for SSPF, we performed transcriptomic and metabolomic analyses on rat lung. Finally, western blotting and qPCR experiments were used to validate the multi-omics results. As a result, a significant reduction in inflammation and fibrosis caused by BLM was observed when SSPF was administered. Widespread changes in gene expression and metabolic programming were observed in the lungs of PF rats through RNA-seq and untargeted metabolomic analysis. Combined transcriptomic and metabolomic analyses revealed the involvement of arachidonic acid (AA) metabolism pathways in PF. Further validation of AA metabolite synthase genes and protein levels showed a significant decrease in the levels of epoxyeicosatrienoic acids (EETs) synthases, including Cyp2j2, Cyp2b1, in the PF lungs. SSPF treatment regulated the above changes in gene expression and metabolic programming, particularly the regulation of EETs. This study is the first to investigate the mechanism of action of SSPF in the treatment of PF from the perspective of regulating the synthesis of EETs in AA metabolism.
Collapse
Affiliation(s)
- Yeqing Chen
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jiayi Liu
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yubo Sun
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengwen Li
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinsheng Fan
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xin Gu
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Zhao Y, Shi Y, Zhang J, Zhang H, Wang Z, Wu S, Zhang M, Liu M, Ye X, Gu H, Jiang C, Ye X, Zhu H, Li Q, Huang X, Cao M. The potential lipid biomarker 5-HETE for acute exacerbation identified by metabolomics in patients with idiopathic pulmonary fibrosis. Respirology 2024. [PMID: 39681341 DOI: 10.1111/resp.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Acute exacerbation (AE) is often the fatal complication of idiopathic pulmonary fibrosis (IPF). Emerging evidence indicates that metabolic reprogramming and dysregulation of lipid metabolism are distinctive characteristics of IPF. However, the lipid metabolic mechanisms that underlie the pathophysiology of AE-IPF remain elusive. METHODS Serum samples for pilot study were collected from 34 Controls, 37 stable IPF (S-IPF) cases and 41 AE-IPF patients. UHPLC-MS/MS was utilized to investigate metabolic variations and identify lipid biomarkers in serum. ELISA, quantitative PCR and western blot were employed to validate the identified biomarkers. RESULTS There were 32 lipid metabolites and 5 lipid metabolism pathways enriched in all IPF patients compared to Controls. In AE-IPF versus S-IPF, 19 lipid metabolites and 12 pathways were identified, with 5-hydroxyeicosatetraenoic Acid (5-HETE) significantly elevated in AE-IPF. Both in internal and external validation cohorts, the serum levels of 5-HETE were significantly elevated in AE-IPF patients compared to S-IPF subjects. Consequently, the indicators related to 5-HETE in lipid metabolic pathway were significantly changed in AE-IPF patients compared with S-IPF cases in the lung tissues. The serum level of 5-HETE was significantly correlated with the disease severity (CT score and PaO2/FiO2 ratio) and survival time. Importantly, the receiver operating characteristic (ROC) curve, Kaplan-Meier analysis and Multivariate Cox regression analysis demonstrated that 5-HETE represents a promising lipid biomarker for the diagnosis and prognosis of AE-IPF. CONCLUSION Our study highlights lipid reprogramming as a novel therapeutic approach for IPF, and 5-HETE may be a potential biomarker of AE-IPF patients.
Collapse
Affiliation(s)
- Yichao Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanchen Shi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ji Zhang
- Department of Lung Transplant, The First Affiliated Hospital College of Medicine, Zhejiang University, Hangzhou, China
| | - Huizhe Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zimu Wang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Shufei Wu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingrui Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengying Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xu Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huimin Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Cheng Jiang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huihui Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Institute of Respiratory Diseases, Nanjing, China
| |
Collapse
|
4
|
Yu X, Xiong T, Yu L, Liu G, Yang F, Li X, Wei Y, Wang X, Wei S, Jiang Y, Kong X, Ren S, Shi Y. Gut microbiome and metabolome profiling in coal workers' pneumoconiosis: potential links to pulmonary function. Microbiol Spectr 2024; 12:e0004924. [PMID: 39283109 PMCID: PMC11537036 DOI: 10.1128/spectrum.00049-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/02/2024] [Indexed: 11/07/2024] Open
Abstract
Coal workers' pneumoconiosis (CWP) is a severe occupational disease resulting from prolonged exposure to coal dust. However, its pathogenesis remains elusive, compounded by a lack of early detection markers and effective treatments. Although the impact of gut microbiota on lung diseases is acknowledged, its specific role in CWP is unclear. This study aims to explore changes in the gut microbiome and metabolome in CWP, while also assessing the correlation between gut microbes and alterations in lung function. Fecal specimens from 43 CWP patients and 48 dust-exposed workers (DEW) were examined using 16S rRNA gene sequencing for microbiota and liquid chromatography-mass spectrometry for metabolite profiling. We observed similar gut microbial α-diversity but significant differences in flora composition (β-diversity) between patients with CWP and the DEW group. After adjusting for age using multifactorial linear regression analysis (MaAsLin2), the distinct gut microbiome profile in CWP patients revealed an increased presence of pro-inflammatory microorganisms such as Klebsiella and Haemophilus. Furthermore, in CWP patients, alterations in gut microbiota-particularly reduced α-diversity and changes in microbial composition-were significantly correlated with impaired pulmonary function, a relationship not observed in DEW. This underscores the specific impact of gut microbiota on pulmonary health in individuals with CWP. Metabolomic analysis of fecal samples from CWP patients and DEW identified 218 differential metabolites between the two groups, with a predominant increase in metabolites in CWP patients, suggesting enhanced metabolic activity in CWP. Key altered metabolites included various lipids, amino acids, and organic compounds, with silibinin emerging as a potential biomarker. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis linked these metabolites to pathways relevant to the development of pulmonary fibrosis. Additionally, studies on the interaction between microbiota and metabolites showed positive correlations between certain bacteria and increased metabolites in CWP, further elucidating the complex interplay in this disease state. Our findings suggest a potential contributory role of gut microbiota in CWP pathogenesis through metabolic regulation, with implications for diagnostic biomarkers and understanding disease mechanisms, warranting further molecular investigation. IMPORTANCE The findings have significant implications for the early diagnosis and treatment of coal workers' pneumoconiosis, highlighting the potential of gut microbiota as diagnostic biomarkers. They pave the way for new research into gut microbiota-based therapeutic strategies, potentially focusing on modifying gut microbiota to mitigate disease progression.
Collapse
Affiliation(s)
- Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Tao Xiong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lu Yu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaisheng Liu
- Quality Control Office, Xishan Occupational Disease Prevention and Control Institute, Taiyuan, China
| | - Fan Yang
- Quality Control Office, Xishan Occupational Disease Prevention and Control Institute, Taiyuan, China
| | - Xueqin Li
- Department of Respiratory Medicine, Jincheng General Hospital, Shanxi, China
| | - Yangyang Wei
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaojing Wang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuting Wei
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Jiang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shouan Ren
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yiwei Shi
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Li X, Kempf S, Delgado Lagos F, Ukan Ü, Popp R, Hu J, Frömel T, Günther S, Weigert A, Fleming I. A regulatory loop involving the cytochrome P450-soluble epoxide hydrolase axis and TGF-β signaling. iScience 2024; 27:110938. [PMID: 39398242 PMCID: PMC11466655 DOI: 10.1016/j.isci.2024.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Fatty acid metabolites, produced by cytochrome P450 enzymes and soluble epoxide hydrolase (sEH), regulate inflammation. Here, we report that the transforming growth factor β (TGF-β)-induced polarization of macrophages to a pro-resolving phenotype requires Alk5 and Smad2 activation to increase sEH expression and activity. Macrophages lacking sEH showed impaired repolarization, reduced phagocytosis, and maintained a pro-inflammatory gene expression profile. 11,12-Epoxyeicosatrienoic acid (EET) was one altered metabolite in sEH-/- macrophages and mimicked the effect of sEH deletion on gene expression. Notably, 11,12-EET also reduced Alk5 expression, inhibiting TGF-β-induced Smad2 phosphorylation by triggering the cytosolic translocation of the E3 ligase Smurf2. These findings suggest that sEH expression is controlled by TGF-β and that sEH activity, which lowers 11,12-EET levels and promotes TGF-β signaling by metabolizing 11,12-EET to prevent Alk5 degradation. Thus, an autocrine loop between sEH/11,12-EET and TGF-β1 regulates macrophage function.
Collapse
Affiliation(s)
- Xiaoming Li
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Sebastian Kempf
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Fredy Delgado Lagos
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Ürün Ukan
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Rüdiger Popp
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Jiong Hu
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
- Department of Embryology and Histology, School of Basic Medicine, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Timo Frömel
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andreas Weigert
- Goethe University, Institute of Biochemistry I, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Rong Y, Kang Y, Wen J, Gong Q, Zhang W, Sun K, Shuang W. Time-dependent arachidonic acid metabolism and functional changes in rats bladder tissue after suprasacral spinal cord injury. Exp Neurol 2024; 383:114989. [PMID: 39424042 DOI: 10.1016/j.expneurol.2024.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND A critical aspect affecting the quality of life in Traumatic spinal cord injury (TSCI) patients is bladder dysfunction. Metabolities in arachidonic acid are crucial lipid signaling molecules involved innumerous physiological processes. In this study, We are the first use eicosanoid metabolomics detrusor contraction examine, to assess the effect of the arachidonic acid metabolic in bladder dysfunction following TSCI. In additon, we explore the time of inflammatory and function changes in bladder tissue. METHODS Adult male Sprague-Dawley rats were subjected to improved Weight Drop method surgeries. Detrusor contraction examination, urodynamic examination, eicosanoid metabolomics, transmission electron microscopy, Elisa and histological staining were performed to assess the change of inflammatory, metabolic and function variation over time after TSCI. RESULTS Following TSCI, before the variations of bladder function, inflammatory changes including the increase of inflammatory factors, mitochondrial damage, and slight lipid peroxidation, occurred in bladder tissue. And the inflammatory changes gradually decreases over time. However, From the third day after TSCI, secondary lesions appeared in bladder tissue. Not only did inflammation-related indexes increase again, the degree of mitochondrial damage and lipid peroxidation increased, but also the contractility of detrusor began to change significantly. We also found that the content of metabolites in arachidonic acid metabolic pathway and the degree of detrusor contractility change showed a strong correlation. In addition, we found that rats had moved beyond the spinal shock stage on the seventh day after TSCI. CONCLUSION Altogether, we are the first to demonstrate that abnormal arachidonic acid metabolism plays an important role in bladder dysfunction after TSCI. We also demonstrate that 3d is a critical juncture for changes in rat bladder tissue, which indicates it is an important juncture in the treatment of neurogenic bladder.
Collapse
Affiliation(s)
- Yi Rong
- The First Hospital of Shanxi Medical University, Jiefang Rd, Shanxi 030000, China; First Clinical Medical College, Shanxi Medical University, Jiefang Rd, Shanxi 030000, China
| | - Yinbo Kang
- The First Hospital of Shanxi Medical University, Jiefang Rd, Shanxi 030000, China; First Clinical Medical College, Shanxi Medical University, Jiefang Rd, Shanxi 030000, China
| | - Jie Wen
- The First Hospital of Shanxi Medical University, Jiefang Rd, Shanxi 030000, China; First Clinical Medical College, Shanxi Medical University, Jiefang Rd, Shanxi 030000, China
| | - Qian Gong
- The First Hospital of Shanxi Medical University, Jiefang Rd, Shanxi 030000, China; First Clinical Medical College, Shanxi Medical University, Jiefang Rd, Shanxi 030000, China
| | - Wenlong Zhang
- The First Hospital of Shanxi Medical University, Jiefang Rd, Shanxi 030000, China; First Clinical Medical College, Shanxi Medical University, Jiefang Rd, Shanxi 030000, China
| | - Ke Sun
- The First Hospital of Shanxi Medical University, Jiefang Rd, Shanxi 030000, China; First Clinical Medical College, Shanxi Medical University, Jiefang Rd, Shanxi 030000, China
| | - Weibing Shuang
- The First Hospital of Shanxi Medical University, Jiefang Rd, Shanxi 030000, China.
| |
Collapse
|
7
|
Li W, Wang N, Lv X, Wang D, Chen H, Wei F. Mass spectrometry unveils heat-induced changes in yolk oxylipins and key lipid molecules during home cooking. J Adv Res 2024:S2090-1232(24)00459-4. [PMID: 39414228 DOI: 10.1016/j.jare.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Oxylipins, as a widespread class of metabolic markers following oxidative stress, and several studies have reported dietary regulation of lipid metabolism. However, there is a lack of investigation of dietary oxylipins, especially cooking-induced changes in food lipid oxidation. OBJECTIVES Investigated the effects of cooking methods and lipid profiles on polyunsaturated fatty acids derived oxylipins generation within egg yolks. METHODS The lipid profile of egg yolk was determined by UPLC-QTOF-MS/MS, oxylipins were detected by HPLC-QTRAP-MS/MS, while the total fatty acid content was quantified by GC-FID. Random Forest (RF) and Partial Least Squares (PLS) regression models were employed to explore the association between oxidized lipids and key lipid species. RESULTS Heating reduced egg yolk docosahexaenoic acid (DHA) content, and no consistent trends for arachidonic acid (AA), linoleic acid (LA), and linolenic acid (ALA). Yolk lipid composition affected triacylglycerol (TG), phosphatidylethanolamine (PE), and LA-monoepoxide contents after cooking. 9- and 13-HODE (hydroxyoctadecadienoic acid), 9,10,13-TriHOME (trihydroxyoctadecenoic acid), 9,10- and 12,13-EpOME (epoxyoctadecenoic acid), 9,10- and 12,13-DiHOME (dihydroxyoctadecenoic acid), 5-HETE (hydroxyeicosatetraenoic acid), and 4-HDHA (hydroxydocosahexaenoic acid) were the prevalent oxylipins with high concentrations, accounting for 1.08 %-29.58 % of the total content of 29 oxylipins. Steaming resulted in a 1.9-fold increase in oxylipin concentrations in yolks compared to raw yolks, and boiling with or without shells (poaching) resulted in a 1.30- to 1.76-fold increase in oxylipin concentrations. In contrast, pan-fried yolks exhibited the lowest and least variable levels of total oxylipins, while still retaining some epoxides, including epoxyeicosatrienoic acid (EET) and EpOME. Utilizing big data analysis, we mapped the oxylipin network in both ordinary and DHA-enriched egg yolks, revealing a strong correlation between cooking-induced oxylipin production and variations in 24 lipid species. CONCLUSION Revealed the potential mechanisms and key lipid molecules for heating-induced oxylipin production of yolk through lipidomics and big data analysis.
Collapse
Affiliation(s)
- Wenting Li
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Nian Wang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Dan Wang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
8
|
A Isse F, Helal S, El-Sherbeni AA, Brocks DR, El-Kadi AOS. Quantification of Epoxyeicosatrienoic acids Enantiomers: The development of reliable and practical liquid chromatography mass Spectrometry assay. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124346. [PMID: 39461018 DOI: 10.1016/j.jchromb.2024.124346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Epoxyeicosatrienoic acids (EETs) are increasingly recognized as key metabolites in the arachidonic acid (AA) metabolic pathway. EETs are epoxy derivatives of AA with two chiral centers formed by cytochrome P450 (CYP) enzymes. EETs have reported biological activities as racemates; however, knowledge on specific optical isomers of EET is lacking. A main reason is the absence of practical assay to quantify EETs isomers associated with specific pathological conditions and enzymes. The reported underivatized chiral LC-MS/MS assays utilize different mobile phases and flow rates or required long run times to achieve separation of EET stereoisomers. Others incorporated a derivatization step before the separation of EETs in their assays. Therefore, the objective of this study was to develop and validate a stereoselective assay for the simultaneous quantitation of underivatized EET enantiomers using Liquid Chromatography Mass Spectrometry (LC-MS/MS) with an optimum baseline separation using binary mobile phase and gradient elution. Herein, we report the development and validation of an LC-MS/MS assay, and its application to quantify the formation of EET enantiomers mediated by human liver microsomes. Assay linearity extends over 10-600 ng/mL with r2 > 0.99 for all EETs enantiomers. The inter-run accuracy was within ± 15 %, and precision was ≤ 15 %, and < 20 % for the LLOQ. The matrix effect for the current assay was within ≤ ±20 %, and the mean recovery for quantitative methods was 70-125 %. The assay proved to be reliable and practical for chiral analysis.
Collapse
MESH Headings
- Stereoisomerism
- Reproducibility of Results
- Tandem Mass Spectrometry/methods
- Chromatography, Liquid/methods
- Linear Models
- Limit of Detection
- Humans
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/analysis
- 8,11,14-Eicosatrienoic Acid/metabolism
- Microsomes, Liver/metabolism
- Microsomes, Liver/chemistry
- Animals
- Liquid Chromatography-Mass Spectrometry
Collapse
Affiliation(s)
- Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Sara Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Clinical Pharmacy, Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Ahmed A El-Sherbeni
- Department of Clinical Pharmacy, Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Dion R Brocks
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Zhang WQ, Sun JX, Lan ST, Sun XM, Guo YJ, Wen BC, Chen J, Liu G. Regulation of Fuzheng Huayu capsule on inhibiting the fibrosis-associated hepatocellular carcinogenesis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1219-1238. [PMID: 38780602 DOI: 10.1080/10286020.2024.2355132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
In the current study, bioinformatics analysis of the hepatocellular carcinoma (HCC) dataset was conducted with the hepatoprotective effect of the Fuzheng Huayu (FZHY) capsule against the diethylnitrosamine-induced HCC progression analyzed. Eight cell clusters were defined and tanshinone IIA, arachidonic acid, and quercetin, compounds of the FZHY capsule, inhibit HCC progression-related fibrosis by regulating the expression of PLAU and IGFBP3. Combined with the ameliorative effect of the FZHY capsule against liver dysfunctions and expression of PLAU and IGFBP3, our study confirmed the effect of the FZHY capsule on inhibiting the fibrosis-associated HCC progression via regulating the expression of PLAU and IGFBP3.
Collapse
Affiliation(s)
- Wen-Qi Zhang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Jia-Xin Sun
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Shu-Ting Lan
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiao-Mei Sun
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Yi-Jing Guo
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Bi-Chao Wen
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Jie Chen
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|
10
|
Kojima A, Nadai M, Murayama N, Yamazaki H, Katoh M. Effects of tyrosine kinase inhibitors used for the treatment of non-small cell lung carcinoma on cytochrome P450 2J2 activities. Xenobiotica 2024; 54:642-647. [PMID: 39105612 DOI: 10.1080/00498254.2024.2389401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Cytochrome P450 (CYP) 2J2 is responsible for the epoxidation of arachidonic acid, producing epoxyeicosatrienoic acids (EETs) that are known to enhance tumorigenesis. CYP2J2 is prominently expressed in the heart and also found in the lungs. Furthermore, the expression level of CYP2J2 in tumour tissues is higher than that in adjacent normal tissues. Non-small cell lung carcinoma is a common cancer, and tyrosine kinase inhibitors (TKIs) are powerful tools for its treatment. This study aimed to elucidate the inhibitory effects of 17 TKIs on CYP2J2 activity using LC-MS/MS.Seventeen TKIs exhibited different inhibitory effects on CYP2J2-catalysed astemizole O-demethylation in recombinant CYP2J2. Pralsetinib and selpercatinib showed strong competitive inhibition, with inhibition constant values of 0.48 and 1.1 µM, respectively. They also inhibited other CYP2J2 activities, including arachidonic acid epoxidation, hydroxyebastine carboxylation, and rivaroxaban hydroxylation.In conclusion, we showed that pralsetinib and selpercatinib strongly inhibit CYP2J2 activity. Inhibition of 14,15-EET production by these TKIs may be a novel mechanism for suppressing tumour growth and proliferation. Additionally, when these TKIs are co-administered with a CYP2J2 substrate, we may consider the possibility of drug-drug interactions via CYP2J2 inhibition.
Collapse
Affiliation(s)
- Ayaka Kojima
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masayuki Nadai
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Miki Katoh
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
11
|
Wen J, Yang Y, Li L, Xie J, Yang J, Zhang F, Duan L, Hao J, Tong Y, He Y. Magnoflorine alleviates dextran sulfate sodium-induced ulcerative colitis via inhibiting JAK2/STAT3 signaling pathway. Phytother Res 2024; 38:4592-4613. [PMID: 39079890 DOI: 10.1002/ptr.8271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 10/25/2024]
Abstract
Magnoflorine (Mag), a natural alkaloid component originating from the Ranunculaceae Juss. Family, has a various of pharmacological activities. This study aimed to investigate the therapeutic effects and potential mechanism of Mag on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) based on comprehensive approaches. Therapeutic effects of Mag on 3% DSS-induced UC mice were analyzed. UHPLC-Q-TOF/MS was performed to investigate the potential metabolites and signaling pathway of Mag on DSS-induced UC. Furthermore, the predicted mRNA and protein levels of JAK2/STAT3 signaling pathway in colon tissue were verified and assessed by qRT-PCR and Western Blotting, respectively. Therapeutic effects of Mag on UC mice were presented in down-regulation serum biochemical indices, alleviating histological damage of colon tissue. Serum untargeted metabolomics analysis showed that the potential mechanism of Mag on UC is mainly associated with the regulation of six biomarkers and 11 pathways, which may be responsible for the therapeutic efficacy of UC. The "component-metabolites-targets" interactive network indicated that Mag exerts its anti-UC effect by regulating PTGS1 and PTGS2, thereby regulating arachidonic acid. Moreover, the results of qRT-PCR showed that Mag could substantially decrease the relative mRNA expression level of Hub genes. In addition, it was found that Mag could inhibit the relative mRNA and protein expression of JAK2/STAT3 signaling pathway. The present results highlighted the role of Mag ameliorated colon injury in DSS-induced UC mice by inhibiting the JAK2/STAT3 signaling pathway. These results suggest that Mag may be an effective agent for the treatment of UC.
Collapse
Affiliation(s)
- Jianxia Wen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Yi Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Lu Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Jiachen Xie
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Junjie Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Fangling Zhang
- School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liting Duan
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Junjie Hao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuling Tong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Yuxin He
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| |
Collapse
|
12
|
Li D, Zhang X, Song Z, Zhao S, Huang Y, Qian W, Cai X. Advances in common in vitro cellular models of pulmonary fibrosis. Immunol Cell Biol 2024; 102:557-569. [PMID: 38714318 DOI: 10.1111/imcb.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/24/2023] [Accepted: 04/09/2024] [Indexed: 05/09/2024]
Abstract
The development of in vitro models is essential for a comprehensive understanding and investigation of pulmonary fibrosis (PF) at both cellular and molecular levels. This study presents a literature review and an analysis of various cellular models used in scientific studies, specifically focusing on their applications in elucidating the pathogenesis of PF. Our study highlights the importance of taking a comprehensive approach to studing PF, emphasizing the necessity of considering multiple cell types and organs and integrating diverse analytical perspectives. Notably, primary cells demonstrate remarkable cell growth characteristics and gene expression profiles; however, their limited availability, maintenance challenges, inability for continuous propagation and susceptibility to phenotypic changes over time significantly limit their utility in scientific investigation. By contrast, immortalized cell lines are easily accessible, cultured and continuously propagated, although they may have some phenotypic differences from primary cells. Furthermore, in vitro coculture models offer a more practical and precise method to explore complex interactions among cells, tissues and organs. Consequently, when developing models of PF, researchers should thoroughly assess the advantages, limitations and relevant mechanisms of different cell models to ensure their selection is consistent with the research objectives.
Collapse
Affiliation(s)
- Die Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinyue Zhang
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ziqiong Song
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong, China
| | - Shan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuan Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Weibin Qian
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinrui Cai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
13
|
McDonald OF, Wagner JG, Lewandowski RP, Heine LK, Estrada V, Pourmand E, Singhal M, Harkema JR, Lee KSS, Pestka JJ. Impact of soluble epoxide hydrolase inhibition on silica-induced pulmonary fibrosis, ectopic lymphoid neogenesis, and autoantibody production in lupus-prone mice. Inhal Toxicol 2024; 36:442-460. [PMID: 39418113 PMCID: PMC11606782 DOI: 10.1080/08958378.2024.2413373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Acute intranasal (IN) instillation of lupus-prone NZBWF1 mice with crystalline silica (cSiO2) triggers robust lung inflammation that drives autoimmunity. Prior studies in other preclinical models show that soluble epoxide hydrolase (sEH) inhibition upregulates pro-resolving lipid metabolites that are protective against pulmonary inflammation. Herein, we assessed in NZBWF1 mice how acute IN cSiO2 exposure with or without the selective sEH inhibitor TPPU influences lipidomic, transcriptomic, proteomic, and histopathological biomarkers of inflammation, fibrosis, and autoimmunity. METHODS Female 6-week-old NZBWF1 mice were fed control or TPPU-supplemented diets for 2 weeks then IN instilled with 2.5 mg cSiO2 or saline vehicle. Cohorts were terminated at 7 or 28 days post-cSiO2 instillation (PI) and lungs analyzed for prostaglandins, cytokines/chemokines, gene expression, differential cell counts, histopathology, and autoantibodies. RESULTS cSiO2-treatment induced prostaglandins, cytokines/chemokine, proinflammatory gene expression, CD206+ monocytes, Ly6B.2+ neutrophils, CD3+ T cells, CD45R+ B cells, centriacinar inflammation, collagen deposition, ectopic lymphoid structure neogenesis, and autoantibodies. While TPPU effectively inhibited sEH as reflected by skewed lipidomic profile in lung and decreased cSiO2-induced monocytes, neutrophils, and lymphocytes in lung lavage fluid, it did not significantly impact other biomarkers. DISCUSSION cSiO2 evoked robust pulmonary inflammation and fibrosis in NZBWF1 mice that was evident at 7 days PI and progressed to ELS development and autoimmunity by 28 days PI. sEH inhibition by TPPU modestly suppressed cSiO2-induced cellularity changes and pulmonary fibrosis. However, TPPU did not affect ELS formation or autoantibody responses, suggesting sEH minimally impacts cSiO2-triggered lung inflammation, fibrosis, and early autoimmunity in our model.
Collapse
Affiliation(s)
- Olivia F. McDonald
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - James G. Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Lauren K. Heine
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Vanessa Estrada
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Megha Singhal
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jack R. Harkema
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
14
|
Oh JH, Chae G, Song JW. Blood lipid profiles as a prognostic biomarker in idiopathic pulmonary fibrosis. Respir Res 2024; 25:285. [PMID: 39026259 PMCID: PMC11264581 DOI: 10.1186/s12931-024-02905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Dysregulation of lipid metabolism is implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, the association between the blood lipid profiles and the prognosis of IPF is not well defined. We aimed to identify the impacts of lipid profiles on prognosis in patients with IPF. METHODS Clinical data of 371 patients with IPF (145 and 226 in the derivation and validation cohorts, respectively), including serum lipid profiles (total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein A-I [Apo A-I], and apolipoprotein B), were retrospectively collected. The association with mortality was analyzed using the Cox proportional hazard model. RESULTS In the derivation cohort, the mean age was 67.5 years, 86.2% were men, and 30.3% died during the follow-up (median: 18.0 months). Non-survivors showed lower lung function and greater gender-age-physiology scores than survivors. Among the serum lipid profiles, the levels of triglyceride and Apo A-I were significantly lower in non-survivors than in survivors. In the multivariate Cox analysis, low Apo A-I levels (< 140 mg/dL) were independently associated with the risk of mortality (hazard ratio 3.910, 95% confidence interval 1.170-13.069; P = 0.027), when adjusted for smoking history, body mass index, GAP score, and antifibrotic agent use. In both derivation and validation cohorts, patients with low Apo A-I levels (< 140 mg/dL) had worse survival (median survival: [derivation] 34.0 months vs. not reached, P = 0.003; [validation] 40.0 vs. 53.0 months, P = 0.027) than those with high Apo A-I levels in the Kaplan-Meier survival analysis. CONCLUSIONS Our results indicate that low serum Apo A-1 levels are an independent predictor of mortality in patients with IPF, suggesting the utility of serum Apo A-I as a prognostic biomarker in IPF.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Department of Pulmonology and Critical Care Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Ganghee Chae
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jin Woo Song
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpagu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
15
|
Lv D, He W, Liu W, Cheng Y, Cui Y, Zhou X, Xue Y, Yu S, Zhang N, Meng H, Guan Y, Sun JH, Shi XM. CD-MOF-1 Growth on Polysaccharide Gels through Only C2-OH/C3-OH or C5-O/C6-OH Group Formed Four-Coordinated K + Ions for Developing Porous Biogels. Biomacromolecules 2024; 25:4449-4468. [PMID: 38819927 DOI: 10.1021/acs.biomac.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The γ-cyclodextrin (γ-CD) metal-organic frameworks (CD-MOF-1) consist of γ-CD and potassium (K+) ions through coordinating an eight-coordinated K+ ion with two C5-linked oxygen and C6-linked hydroxyl (C5-O/C6-OH) groups in the primary faces of adjacent γ-CD units and two C2- and C3-linked hydroxyl (C2-OH/C3-OH) groups in the secondary faces. Herein, we found polysaccharide gels with only C2-OH/C3-OH or C5-O/C6-OH groups in pyranoid rings can form four-coordinated K+ ions and then coordinate γ-CD in a KOH solution for CD-MOF-1 growth. Exposure of C2-OH/C3-OH or C5-O/C6-OH groups in polysaccharide gels is important to form active four-coordinated K+ ions. Mechanism supporting this work is that four-coordinated K+ ion sites are first formed after coordinating C2-OH/C3-OH groups in pectin and then coordinating C5-O/C6-OH groups in the primary faces of γ-CD units. Alternatively, four-coordinated K+ ions with C5-O/C6-OH groups in chitosan can coordinate the C2-OH/C3-OH groups in the secondary faces of γ-CD units. Mechanism of CD-MOF-1 growing on pectin and chitosan gels through the proposed four-coordinated K+ ions is also universally applicable to other polysaccharide gels with similar C2-OH/C3-OH or C5-O/C6-OH groups such as alginate gel. Based on this mechanism, we developed pectin and chitosan gel-based CD-MOF-1 composites and exemplified applications of them in antibacterial and organic dye removal. To help future research and applications of this mechanism, we share our theoretical assumption for further investigations that any matrices with an ortho-hydroxyl carbon chain or ortho-hydroxyl ether structures may form four-coordinated K+ ions for CD-MOF-1 growth. The proposed mechanism will broaden the development of novel CD-MOF-1 composites in various fields.
Collapse
Affiliation(s)
- Danyu Lv
- Department of Food Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanjun He
- Department of Food Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Cui
- Department of Food Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiujuan Zhou
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yanwen Xue
- Instrumental Analysis Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Siming Yu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Ningjin Zhang
- Shanghai Academy of Science & Technology, Shanghai 201203, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongguang Guan
- Department of Food Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-He Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xian-Ming Shi
- Department of Food Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Lv B, Yang L, Gao Y, Li G. Epoxyeicosatrienoic Acids Attenuate LPS-Induced NIH/3T3 Cell Fibrosis through the A 2AR and PI3K/Akt Signaling Pathways. Bull Exp Biol Med 2024; 177:185-189. [PMID: 39090469 DOI: 10.1007/s10517-024-06153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 08/04/2024]
Abstract
Inflammation plays a crucial role in progression of fibrosis. Epoxyeicosatrienoic acids (EET) have multiple protective effects in different diseases, but their ability to inhibit the development of LPS-induced fibrosis remains unknown. The potential therapeutic effects of 11,12-EET were studied in in vitro model of LPS-induced fibrosis. Mouse embryonic fibroblast cells NIH/3T3 were pre-incubated with 1 μM 11,12-EET and/or a structural analogue and selective EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid before exposing to LPS. The effect of EET was evaluated by the protein and mRNA expression of NF-κB, collagens I and III, and α-smooth muscle actin by Western blotting and quantitative reverse transcription PCR, respectively. LPS provoked inflammation and fibrosis-like changes accompanied by elevated expression of NF-κB and collagens in NIH/3T3 cells. We also studied the effects of 11,12-EET on the A2AR and PI3K/Akt signaling pathways in intact and LPS-treated NIH/3T3 cells. 11,12-EET prevented inflammation and fibrosis-like changes through up-regulation of A2AR and PI3K/Akt signaling pathways. Our findings demonstrate the potential antifibrotic effects of 11,12-EET, which can be natural antagonists of tissue fibrosis.
Collapse
Affiliation(s)
- B Lv
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Diseases, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - L Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Diseases, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Y Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Diseases, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - G Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Diseases, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
17
|
Edin ML, Gruzdev A, Graves JP, Lih FB, Morisseau C, Ward JM, Hammock BD, Bosio CM, Zeldin DC. Effects of sEH inhibition on the eicosanoid and cytokine storms in SARS-CoV-2-infected mice. FASEB J 2024; 38:e23692. [PMID: 38786655 PMCID: PMC11141730 DOI: 10.1096/fj.202302202rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves an initial viral infection phase followed by a host-response phase that includes an eicosanoid and cytokine storm, lung inflammation and respiratory failure. While vaccination and early anti-viral therapies are effective in preventing or limiting the pathogenic host response, this latter phase is poorly understood with no highly effective treatment options. Inhibitors of soluble epoxide hydrolase (sEH) increase levels of anti-inflammatory molecules called epoxyeicosatrienoic acids (EETs). This study aimed to investigate the impact of sEH inhibition on the host response to SARS-CoV-2 infection in a mouse model with human angiotensin-converting enzyme 2 (ACE2) expression. Mice were infected with SARS-CoV-2 and treated with either vehicle or the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU). At day 5 post-infection, SARS-CoV-2 induced weight loss, clinical signs, a cytokine storm, an eicosanoid storm, and severe lung inflammation with ~50% mortality on days 6-8 post-infection. SARS-CoV-2 infection induced lung expression of phospholipase A2 (PLA2), cyclooxygenase (COX) and lipoxygenase (LOX) pathway genes, while suppressing expression of most cytochrome P450 genes. Treatment with the sEH inhibitor TPPU delayed weight loss but did not alter clinical signs, lung cytokine expression or overall survival of infected mice. Interestingly, TPPU treatment significantly reversed the eicosanoid storm and attenuated viral-induced elevation of 39 fatty acids and oxylipins from COX, LOX and P450 pathways, which suggests the effects at the level of PLA2 activation. The suppression of the eicosanoid storm by TPPU without corresponding changes in lung cytokines, lung inflammation or mortality reveals a surprising dissociation between systemic oxylipin and cytokine signaling pathways during SARS-CoV-2 infection and suggests that the cytokine storm is primarily responsible for morbidity and mortality in this animal model.
Collapse
Affiliation(s)
- Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Joan P. Graves
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Fred. B. Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, USA
| | - James M. Ward
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, USA
| | - Catharine M. Bosio
- Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
18
|
Xia Q, Gao W, Yang J, Xing Z, Ji Z. The deregulation of arachidonic acid metabolism in ovarian cancer. Front Oncol 2024; 14:1381894. [PMID: 38764576 PMCID: PMC11100328 DOI: 10.3389/fonc.2024.1381894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
Arachidonic acid (AA) is a crucial polyunsaturated fatty acid in the human body, metabolized through the pathways of COX, LOX, and cytochrome P450 oxidase to generate various metabolites. Recent studies have indicated that AA and its metabolites play significant regulatory roles in the onset and progression of ovarian cancer. This article examines the recent research advancements on the correlation between AA metabolites and ovarian cancer, both domestically and internationally, suggesting their potential use as biological markers for early diagnosis, targeted therapy, and prognosis monitoring.
Collapse
Affiliation(s)
- Qiuyi Xia
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Gao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jintao Yang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhifang Xing
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaodong Ji
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Kang Y, Kim D, Lee S, Kim H, Kim T, Cho JA, Lee T, Choi EY. Innate Immune Training Initiates Efferocytosis to Protect against Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308978. [PMID: 38279580 PMCID: PMC11005705 DOI: 10.1002/advs.202308978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 01/28/2024]
Abstract
Innate immune training involves myelopoiesis, dynamic gene modulation, and functional reprogramming of myeloid cells in response to secondary heterologous challenges. The present study evaluates whether systemic innate immune training can protect tissues from local injury. Systemic pretreatment of mice with β-glucan, a trained immunity agonist, reduces the mortality rate of mice with bleomycin-induced lung injury and fibrosis, as well as decreasing collagen deposition in the lungs. β-Glucan pretreatment induces neutrophil accumulation in the lungs and enhances efferocytosis. Training of mice with β-glucan results in histone modification in both alveolar macrophages (AMs) and neighboring lung epithelial cells. Training also increases the production of RvD1 and soluble mediators by AMs and efferocytes. Efferocytosis increases trained immunity in AMs by stimulating RvD1 release, thus inducing SIRT1 expression in neighboring lung epithelial cells. Elevated epithelial SIRT1 expression is associated with decreased epithelial cell apoptosis after lung injury, attenuating tissue damage. Further, neutrophil depletion dampens the effects of β-glucan on macrophage accumulation, epigenetic modification in lung macrophages, epithelial SIRT1 expression, and injury-mediated fibrosis in the lung. These findings provide mechanistic insights into innate immune training and clues to the potential ability of centrally trained immunity to protect peripheral organs against injury-mediated disorders.
Collapse
Affiliation(s)
- Yoon‐Young Kang
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Department of MicrobiologyUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Dong‐Young Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Present address:
Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität Dresden01307DresdenGermany
| | - Sang‐Yong Lee
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Department of MicrobiologyUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Hee‐Joong Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Department of MicrobiologyUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Taehawn Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Jeong A. Cho
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Taewon Lee
- Division of Applied Mathematical SciencesCollege of Science and TechnologyKorea UniversitySejong30019Republic of Korea
| | - Eun Young Choi
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Department of MicrobiologyUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| |
Collapse
|
20
|
Kurumiya E, Iwata M, Kasuya Y, Tatsumi K, Honda T, Murayama T, Nakamura H. Eliglustat exerts anti-fibrotic effects by activating SREBP2 in TGF-β1-treated myofibroblasts derived from patients with idiopathic pulmonary fibrosis. Eur J Pharmacol 2024; 966:176366. [PMID: 38296153 DOI: 10.1016/j.ejphar.2024.176366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive chronic lung disease. Myofibroblasts play a critical role in fibrosis. These cells produce the extracellular matrix (ECM), which contributes to tissue regeneration; however, excess ECM production can cause fibrosis. Transforming growth factor-β (TGF-β)/Smad signaling induces ECM production by myofibroblasts; therefore, the inhibition of TGF-β/Smad signaling may be an effective strategy for IPF treatment. We recently reported that miglustat, an inhibitor of glucosylceramide synthase (GCS), ameliorates pulmonary fibrosis by inhibiting the nuclear translocation of Smad2/3. In the present study, we examined the anti-fibrotic effects of another GCS inhibitor, eliglustat, a clinically approved drug for treating Gaucher disease type 1, in myofibroblasts derived from patient with IPF (IPF-MyoFs). We found that eliglustat exerted anti-fibrotic effects independent of GCS inhibition, and inhibited TGF-β1-induced expression of α-smooth muscle actin, a marker of fibrosis, without suppressing the phosphorylation and nuclear translocation of Smad2/3. RNA sequencing analysis of eliglustat-treated human lung fibroblasts identified sterol regulatory element-binding protein 2 (SREBP2) activation. Transient overexpression of SREBP2 attenuated the TGF-β1-induced increase in the expression of Smad target genes in IPF-MyoFs, and SREBP2 knockdown nullified the inhibitory effect of eliglustat on TGF-β1-induced expression of α-SMA. These results suggested that eliglustat exerts its anti-fibrotic effects through SREBP2 activation. The findings of this study may contribute to the development of novel therapeutic strategies for IPF treatment.
Collapse
Affiliation(s)
- Eon Kurumiya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Mayuu Iwata
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Yoshitoshi Kasuya
- Deprtment of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan; Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
21
|
Kwon SH, Chung H, Seo JW, Kim HS. Genistein alleviates pulmonary fibrosis by inactivating lung fibroblasts. BMB Rep 2024; 57:143-148. [PMID: 37817434 PMCID: PMC10979345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Pulmonary fibrosis is a serious lung disease that occurs predominantly in men. Genistein is an important natural soybeanderived phytoestrogen that affects various biological functions, such as cell migration and fibrosis. However, the antifibrotic effects of genistein on pulmonary fibrosis are largely unknown. The antifibrotic effects of genistein were evaluated using in vitro and in vivo models of lung fibrosis. Proteomic data were analyzed using nano-LC-ESI-MS/MS. Genistein significantly reduced transforming growth factor (TGF)-β1-induced expression of collagen type I and α-smooth muscle actin (SMA) in MRC-5 cells and primary fibroblasts from patients with idiopathic pulmonary fibrosis (IPF). Genistein also reduced TGF-β1-induced expression of p-Smad2/3 and p-p38 MAPK in fibroblast models. Comprehensive protein analysis confirmed that genistein exerted an anti-fibrotic effect by regulating various molecular mechanisms, such as unfolded protein response, epithelial mesenchymal transition (EMT), mammalian target of rapamycin complex 1 (mTORC1) signaling, cell death, and several metabolic pathways. Genistein was also found to decrease hydroxyproline levels in the lungs of BLM-treated mice. Genistein exerted an anti-fibrotic effect by preventing fibroblast activation, suggesting that genistein could be developed as a pharmacological agent for the prevention and treatment of pulmonary fibrosis. [BMB Reports 2024; 57(3): 143-148].
Collapse
Affiliation(s)
- Seung-hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Korea
| | - Hyunju Chung
- Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Jung-Woo Seo
- Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Hak Su Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Korea
| |
Collapse
|
22
|
Hu P, Yuan M, Guo B, Lin J, Yan S, Huang H, Chen JL, Wang S, Ma Y. Citric Acid Promotes Immune Function by Modulating the Intestinal Barrier. Int J Mol Sci 2024; 25:1239. [PMID: 38279237 PMCID: PMC10817003 DOI: 10.3390/ijms25021239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Amidst increasing concern about antibiotic resistance resulting from the overuse of antibiotics, there is a growing interest in exploring alternative agents. One such agent is citric acid, an organic compound commonly used for various applications. Our research findings indicate that the inclusion of citric acid can have several beneficial effects on the tight junctions found in the mouse intestine. Firstly, the study suggests that citric acid may contribute to weight gain by stimulating the growth of intestinal epithelial cells (IE-6). Citric acid enhances the small intestinal villus-crypt ratio in mice, thereby promoting intestinal structural morphology. Additionally, citric acid has been found to increase the population of beneficial intestinal microorganisms, including Bifidobacterium and Lactobacillus. It also promotes the expression of important protein genes such as occludin, ZO-1, and claudin-1, which play crucial roles in maintaining the integrity of the tight junction barrier in the intestines. Furthermore, in infected IEC-6 cells with H9N2 avian influenza virus, citric acid augmented the expression of genes closely associated with the influenza virus infection. Moreover, it reduces the inflammatory response caused by the viral infection and thwarted influenza virus replication. These findings suggest that citric acid fortifies the intestinal tight junction barrier, inhibits the replication of influenza viruses targeting the intestinal tract, and boosts intestinal immune function.
Collapse
Affiliation(s)
- Pengcheng Hu
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.H.); (M.Y.); (S.Y.); (J.-L.C.); (S.W.)
| | - Meng Yuan
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.H.); (M.Y.); (S.Y.); (J.-L.C.); (S.W.)
| | - Bolun Guo
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| | - Jiaqi Lin
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| | - Shihong Yan
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.H.); (M.Y.); (S.Y.); (J.-L.C.); (S.W.)
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| | - Huiqing Huang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| | - Ji-Long Chen
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.H.); (M.Y.); (S.Y.); (J.-L.C.); (S.W.)
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| | - Song Wang
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.H.); (M.Y.); (S.Y.); (J.-L.C.); (S.W.)
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| | - Yanmei Ma
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.H.); (M.Y.); (S.Y.); (J.-L.C.); (S.W.)
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.G.); (J.L.); (H.H.)
| |
Collapse
|
23
|
Hong JR, Zhang CY, Zhong WJ, Yang HH, Xiong JB, Deng P, Yang NSY, Chen H, Jin L, Guan CX, Duan JX, Zhou Y. Epoxyeicosatrienoic acids alleviate alveolar epithelial cell senescence by inhibiting mitophagy through NOX4/Nrf2 pathway. Biomed Pharmacother 2023; 169:115937. [PMID: 38007934 DOI: 10.1016/j.biopha.2023.115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Alveolar epithelial cell (AEC) senescence is considered to be a universal pathological feature of many chronic pulmonary diseases. Our previous study found that epoxyeicosatrienoic acids (EETs), produced from arachidonic acid (ARA) through the cytochrome P450 cyclooxygenase (CYP) pathway, have significant negative regulatory effects on cellular senescence in AECs. However, the exact mechanisms by which EETs alleviate the senescence of AECs still need to be further explored. In the present study, we observed that bleomycin (BLM) induced enhanced mitophagy accompanied by increased mitochondrial ROS (mito-ROS) content in the murine alveolar epithelial cell line MLE12. While EETs reduced BLM-induced mitophagy and mito-ROS content in MLE12 cells, and the mechanism was related to the regulation of NOX4/Nrf2-mediated redox imbalance. Furthermore, we found that inhibition of EETs degradation could significantly inhibit mitophagy and regulate NOX4/Nrf2 balance to exert anti-oxidant effects in D-galactose-induced premature aging mice. Collectively, these findings may provide new ideas for treating age-related pulmonary diseases by targeting EETs to improve mitochondrial dysfunction and reduce oxidative stress.
Collapse
Affiliation(s)
- Jie-Ru Hong
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China
| | - Jian-Bing Xiong
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Ping Deng
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China
| | - Hui Chen
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China
| | - Ling Jin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
24
|
Kim JH, Park JH, Koo SC, Huh YC, Hur M, Park WT, Moon YH, Kim TI, Cho BO. Inhibitory Activity of Natural cis-Khellactone on Soluble Epoxide Hydrolase and Proinflammatory Cytokine Production in Lipopolysaccharides-Stimulated RAW264.7 Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3656. [PMID: 37896119 PMCID: PMC10610198 DOI: 10.3390/plants12203656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The pursuit of anti-inflammatory agents has led to intensive research on the inhibition of soluble epoxide hydrolase (sEH) and cytokine production using medicinal plants. In this study, we evaluated the efficacy of cis-khellactone, a compound isolated for the first time from the roots of Peucedanum japonicum. The compound was found to be a competitive inhibitor of sEH, exhibiting an IC50 value of 3.1 ± 2.5 µM and ki value of 3.5 µM. Molecular docking and dynamics simulations illustrated the binding pose of (-)cis-khellactone within the active site of sEH. The results suggest that binding of the inhibitor to the enzyme is largely dependent on the Trp336-Gln384 loop within the active site. Further, cis-khellactone was found to inhibit pro-inflammatory cytokines, including NO, iNOS, IL-1β, and IL-4. These findings affirm that cis-khellactone could serve as a natural therapeutic candidate for the treatment of inflammation.
Collapse
Affiliation(s)
- Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Chungcheongbuk-do, Republic of Korea; (J.H.K.); (S.C.K.); (Y.-C.H.); (M.H.); (W.T.P.); (Y.-H.M.); (T.I.K.)
| | - Ji Hyeon Park
- Institute of Health Science, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea;
| | - Sung Cheol Koo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Chungcheongbuk-do, Republic of Korea; (J.H.K.); (S.C.K.); (Y.-C.H.); (M.H.); (W.T.P.); (Y.-H.M.); (T.I.K.)
| | - Yun-Chan Huh
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Chungcheongbuk-do, Republic of Korea; (J.H.K.); (S.C.K.); (Y.-C.H.); (M.H.); (W.T.P.); (Y.-H.M.); (T.I.K.)
| | - Mok Hur
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Chungcheongbuk-do, Republic of Korea; (J.H.K.); (S.C.K.); (Y.-C.H.); (M.H.); (W.T.P.); (Y.-H.M.); (T.I.K.)
| | - Woo Tae Park
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Chungcheongbuk-do, Republic of Korea; (J.H.K.); (S.C.K.); (Y.-C.H.); (M.H.); (W.T.P.); (Y.-H.M.); (T.I.K.)
| | - Youn-Ho Moon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Chungcheongbuk-do, Republic of Korea; (J.H.K.); (S.C.K.); (Y.-C.H.); (M.H.); (W.T.P.); (Y.-H.M.); (T.I.K.)
| | - Tae Il Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Chungcheongbuk-do, Republic of Korea; (J.H.K.); (S.C.K.); (Y.-C.H.); (M.H.); (W.T.P.); (Y.-H.M.); (T.I.K.)
| | - Byoung Ok Cho
- Institute of Health Science, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea;
| |
Collapse
|
25
|
Chen ST, Shi WW, Lin YQ, Yang ZS, Wang Y, Li MY, Li Y, Liu AX, Hu Y, Yang ZM. Embryo-derive TNF promotes decidualization via fibroblast activation. eLife 2023; 12:e82970. [PMID: 37458359 PMCID: PMC10374279 DOI: 10.7554/elife.82970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
Decidualization is a process in which endometrial stromal fibroblasts differentiate into specialized secretory decidual cells and essential for the successful establishment of pregnancy. The underlying mechanism during decidualization still remains poorly defined. Because decidualization and fibroblast activation share similar characteristics, this study was to examine whether fibroblast activation is involved in decidualization. In our study, fibroblast activation-related markers are obviously detected in pregnant decidua and under in vitro decidualization. ACTIVIN A secreted under fibroblast activation promotes in vitro decidualization. We showed that arachidonic acid released from uterine luminal epithelium can induce fibroblast activation and decidualization through PGI2 and its nuclear receptor PPARδ. Based on the significant difference of fibroblast activation-related markers between pregnant and pseudopregnant mice, we found that embryo-derived TNF promotes CPLA2α phosphorylation and arachidonic acid release from luminal epithelium. Fibroblast activation is also detected under human in vitro decidualization. Similar arachidonic acid-PGI2-PPARδ-ACTIVIN A pathway is conserved in human endometrium. Collectively, our data indicate that embryo-derived TNF promotes CPLA2α phosphorylation and arachidonic acid release from luminal epithelium to induce fibroblast activation and decidualization.
Collapse
Affiliation(s)
- Si-Ting Chen
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, Guizhou University; College of Animal Science, Guizhou University, Guiyang, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Wen Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu-Qian Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen-Shan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ai-Xia Liu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zeng-Ming Yang
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, Guizhou University; College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
26
|
Thatcher TH, Freeberg MAT, Myo YPA, Sime PJ. Is there a role for specialized pro-resolving mediators in pulmonary fibrosis? Pharmacol Ther 2023; 247:108460. [PMID: 37244406 PMCID: PMC10335230 DOI: 10.1016/j.pharmthera.2023.108460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Pulmonary fibrotic diseases are characterized by proliferation of lung fibroblasts and myofibroblasts and excessive deposition of extracellular matrix proteins. Depending on the specific form of lung fibrosis, there can be progressive scarring of the lung, leading in some cases to respiratory failure and/or death. Recent and ongoing research has demonstrated that resolution of inflammation is an active process regulated by families of small bioactive lipid mediators termed "specialized pro-resolving mediators." While there are many reports of beneficial effects of SPMs in animal and cell culture models of acute and chronic inflammatory and immune diseases, there have been fewer reports investigating SPMs and fibrosis, especially pulmonary fibrosis. Here, we will review evidence that resolution pathways are impaired in interstitial lung disease, and that SPMs and other similar bioactive lipid mediators can inhibit fibroblast proliferation, myofibroblast differentiation, and accumulation of excess extracellular matrix in cell culture and animal models of pulmonary fibrosis, and we will consider future therapeutic implications of SPMs in fibrosis.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Margaret A T Freeberg
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricia J Sime
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
27
|
Zhang CY, Zhong WJ, Liu YB, Duan JX, Jiang N, Yang HH, Ma SC, Jin L, Hong JR, Zhou Y, Guan CX. EETs alleviate alveolar epithelial cell senescence by inhibiting endoplasmic reticulum stress through the Trim25/Keap1/Nrf2 axis. Redox Biol 2023; 63:102765. [PMID: 37269686 DOI: 10.1016/j.redox.2023.102765] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Alveolar epithelial cell (AEC) senescence is a key driver of a variety of chronic lung diseases. It remains a challenge how to alleviate AEC senescence and mitigate disease progression. Our study identified a critical role of epoxyeicosatrienoic acids (EETs), downstream metabolites of arachidonic acid (ARA) by cytochrome p450 (CYP), in alleviating AEC senescence. In vitro, we found that 14,15-EET content was significantly decreased in senescent AECs. Exogenous EETs supplementation, overexpression of CYP2J2, or inhibition of EETs degrading enzyme soluble epoxide hydrolase (sEH) to increase EETs alleviated AECs' senescence. Mechanistically, 14,15-EET promoted the expression of Trim25 to ubiquitinate and degrade Keap1 and promoted Nrf2 to enter the nucleus to exert an anti-oxidant effect, thereby inhibiting endoplasmic reticulum stress (ERS) and alleviating AEC senescence. Furthermore, in D-galactose (D-gal)-induced premature aging mouse model, inhibiting the degradation of EETs by Trifluoromethoxyphenyl propionylpiperidin urea (TPPU, an inhibitor of sEH) significantly inhibited the protein expression of p16, p21, and γH2AX. Meanwhile, TPPU reduced the degree of age-related pulmonary fibrosis in mice. Our study has confirmed that EETs are novel anti-senescence substances for AECs, providing new targets for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Chen-Yu Zhang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Yu-Biao Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Nan Jiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Sheng-Chao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China; The School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Ling Jin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Jie-Ru Hong
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China.
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
28
|
A novel mutation (p.Y24N) in NHP2 leads to idiopathic pulmonary fibrosis and lung carcinoma chronic obstructive lung disease by disrupting the expression and nucleocytoplasmic localization of NHP2. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166692. [PMID: 36933847 DOI: 10.1016/j.bbadis.2023.166692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
|
29
|
Chen Y, Li X, Fan X. Integrated proteomics and metabolomics reveal variations in pulmonary fibrosis development and the potential therapeutic effect of Shuangshen Pingfei formula. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115894. [PMID: 36356715 DOI: 10.1016/j.jep.2022.115894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/18/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuangshen Pingfei formula (SSPF), a Chinese medicine prescription, has been prescribed to alleviate PF. However, little is known about the molecular mechanism underlying PF progression and the regulatory mechanism in SSPF. AIMS OF THE STUDY To discriminate the molecular alterations underlying the development of pulmonary fibrosis (PF) and reveal the regulatory mechanism of Shuangshen Pingfei formula (SSPF). MATERIALS AND METHODS An integrated analysis of a time-course pathology combined with proteomics and metabolomics was performed to investigate changes in body weight, survival rate, lung coefficient, histopathology, proteins, and metabolites of lung tissues at different time points upon bleomycin (BLM) exposure and SSPF treatment. RESULTS The results showed that PF progression was characterized by gradually aggravated fibrosis accompanied by inflammation with extended exposure (7, 14, and 21 days). SSPF significantly attenuated lung fibrosis, as evidenced by increased weight, and reduced lung coefficients and fibrosis scores. Moreover, 368 common differentially expressed proteins (DEPs) were identified, and 102 DEPs were continuously and monotonically upregulated via proteomics among the three BLM treatments. The DEPs were principally involved in extracellular matrix (ECM) remodeling and arginine and proline (AP) metabolic reprogramming. Additionally, metabolomics analyses revealed that BLM exposure mainly affected six metabolism pathways, including 34 differentially regulated metabolites (DRMs). Furthermore, correlation analysis found that several DEPs and DRMs, including L-ornithine, S-adenosyl-L-methionine, ARG, and AOC1, were associated with arginine and proline metabolism, and 8,9-EET, 8,9-DHET, CYP2B, etc., were involved in arachidonic acid (AA) metabolism, suggesting that these two pathways play a critical role in the development of fibrosis. After SSPF treatment, the related protein expression and metabolic disorders were regulated, implying that SSPF provides potential solutions to target these pathways for benefit in the treatment of PF. CONCLUSION Our data suggest that ECM remodeling, and metabolic reprogramming of AP and AA are distinctive features of PF development. Simultaneously, we confirmed that SSPF could effectively regulate metabolic disorders, indicating its potential clinical application for PF therapy. Our findings using multiple approaches provide a molecular-scale perspective on the mechanisms of PF progression and the amelioration of SSPF.
Collapse
Affiliation(s)
- Yeqing Chen
- College of Integrated Chinese and Western Medicine, College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaolin Li
- College of Integrated Chinese and Western Medicine, College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinsheng Fan
- College of Integrated Chinese and Western Medicine, College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
30
|
Cellular and Molecular Mechanisms in Idiopathic Pulmonary Fibrosis. Adv Respir Med 2023; 91:26-48. [PMID: 36825939 PMCID: PMC9952569 DOI: 10.3390/arm91010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The respiratory system is a well-organized multicellular organ, and disruption of cellular homeostasis or abnormal tissue repair caused by genetic deficiency and exposure to risk factors lead to life-threatening pulmonary disease including idiopathic pulmonary fibrosis (IPF). Although there is no clear etiology as the name reflected, its pathological progress is closely related to uncoordinated cellular and molecular signals. Here, we review the advances in our understanding of the role of lung tissue cells in IPF pathology including epithelial cells, mesenchymal stem cells, fibroblasts, immune cells, and endothelial cells. These advances summarize the role of various cell components and signaling pathways in the pathogenesis of idiopathic pulmonary fibrosis, which is helpful to further study the pathological mechanism of the disease, provide new opportunities for disease prevention and treatment, and is expected to improve the survival rate and quality of life of patients.
Collapse
|
31
|
Epoxyeicosatrienoic Acids Inhibit the Activation of Murine Fibroblasts by Blocking the TGF-β1-Smad2/3 Signaling in a PPARγ-Dependent Manner. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7265486. [PMID: 36275905 PMCID: PMC9584742 DOI: 10.1155/2022/7265486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
Abstract
Background Epoxyeicosatrienoic acids (EETs), the metabolite of arachidonic acid by cytochrome P450 (CYP), reportedly serve as a vital endogenous protective factor in several chronic diseases. EETs are metabolized by soluble epoxide hydrolase (sEH). We have observed that prophylactic blocking sEH alleviates bleomycin- (BLM-) induced pulmonary fibrosis (PF) in mice. However, the underlying mechanism and therapeutic effects of EETs on PF remain elusive. Objective In this study, we investigated the effect of CYP2J2/EETs on the activation of murine fibroblasts and their mechanisms. Results we found that administration of the sEH inhibitor (TPPU) 7 days after the BLM injection also reversed the morphology changes and collagen deposition in the lungs of BLM-treated mice, attenuating PF. Fibroblast activation is regarded as a critical role of PF. Therefore, we investigated the effects of EETs on the proliferation and differentiation of murine fibroblasts. Results showed that the overexpression of CYP2J2 reduced the cell proliferation and the expressions of α-SMA and PCNA induced by transforming growth factor- (TGF-) β1 in murine fibroblasts. Then, we found that EETs inhibited the proliferation and differentiation of TGF-β1-treated-NIH3T3 cells and primary murine fibroblasts. Mechanistically, we found that 14,15-EET disrupted the phosphorylation of Smad2/3 murine fibroblasts by activating PPARγ, which was completely abolished by a PPARγ inhibitor GW9662. Conclusion our study shows that EETs inhibit the activation of murine fibroblasts by blocking the TGF-β1-Smad2/3 signaling in a PPARγ-dependent manner. Regulating CYP2J2-EET-sEH metabolic pathway may be a potential therapeutic option in PF.
Collapse
|
32
|
V Ganesh G, Ganesan K, Xu B, Ramkumar KM. Nrf2 driven macrophage responses in diverse pathophysiological contexts: Disparate pieces from a shared molecular puzzle. Biofactors 2022; 48:795-812. [PMID: 35618963 DOI: 10.1002/biof.1867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022]
Abstract
The wide anatomical distribution of macrophages and their vast array of functions match various polarization states and their involvement in homeostasis and disease. The confluence of different cellular signaling networks, including direct involvement in inflammation, at the doorstep of the transcription factor Nuclear Factor- erythroid (NF-E2) p45-related factor 2 (Nrf2) activation raises the importance of deciphering the molecular circuitry at the background of multiple-discrete and antagonistic yet flexible and contextual pathways. While we primarily focus on wound healing and repair mechanisms that are affected in diabetic foot ulcers (DFUs), we strive to explore the striking similarities and differences in molecular events including inflammation, angiogenesis, and fibrosis during tissue injury and wound persistence that accumulates pro-inflammatory senescent macrophages, as a means to identify possible targets or cellular mediators to lessen DFU disease burden. In addition, the role of iron in the modulation of Nrf2 response in macrophages is crucial and reviewed here. Targeted approaches, unlike conventional treatments, in DFU management will require the review and re-assessment of mediators with relevance to other pathological conditions.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Baojun Xu
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|