1
|
Li J, Ge Z, Li C, Ran H, Zhang Y, Xiang Y. METRNL exerts cytoprotective effects on EPCs via regulation of the E2F1-TXNIP axis in obese limb ischemia. Cell Signal 2025; 126:111528. [PMID: 39603439 DOI: 10.1016/j.cellsig.2024.111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Obesity increases cardiovascular disease risk by impairing angiogenesis, primarily through dysfunction of endothelial progenitor cells (EPCs). METRNL, a recently identified secreted protein, exhibits diverse biological activities. However, its impact on EPC function and its role in obesity-related microvascular dysfunction remain unclear. This study aims to investigate the effects of METRNL on EPC function and its potential therapeutic mechanisms for promoting angiogenesis. METHOD In vitro, human EPCs derived from peripheral and umbilical cord blood were treated with recombinant METRNL protein (rMETRNL) and exposed to palmitic acid (PA). EPC proliferation, migration, and tube formation were assessed. Apoptosis and pyroptosis levels were evaluated using Western blotting, flow cytometry, scanning electron microscopy (SEM), immunofluorescence (IF), and enzyme-linked immunosorbent assay (ELISA). RNA sequencing, ChIP, and dual-luciferase assays were performed to investigate the regulatory mechanisms. In vivo, an obese mouse model with hind limb ischemia received local injections of METRNL-overexpressing EPCs in the ischemic muscle. Blood flow recovery was monitored using laser Doppler flowmetry and CD31 immunofluorescence. RESULTS Replenishment of METNRL alleviated PA-induced apoptosis and pyroptosis of EPCs, while simultaneously enhancing their proliferation, migration, and tube formation. Mechanistically, RNA sequencing revealed that rMETRNL restoration downregulated E2F1 expression, and the protective effects of METRNL were partially reversed by E2F1 overexpression. Further, E2F1 was found to bind the TXNIP promoter region, promoting TXNIP transcription. Elevated TXNIP levels counteracted the beneficial effects of rMETRNL on EPC function in the presence of PA. In vivo, the transplantation of METRNL-overexpressing EPCs into the ischemic hind limbs of obese mice promoted angiogenesis, as evidenced by improved blood flow recovery and increased CD31 immunofluorescence in the ischemic tissues. CONCLUSION Our research emphasizes the potential of METRNL in reducing EPC cellular pyroptosis and promoting angiogenesis by inhibiting the E2F1-TXNIP signaling pathway. METRNL shows promise in treating obesity-related cardiovascular diseases through angiogenic therapy.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200000, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200000, China
| | - Chengsi Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200000, China
| | - Hui Ran
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200000, China
| | - Yachen Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200000, China.
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200000, China.
| |
Collapse
|
2
|
Zhang Y, Pan R, Shou Z, Zhao Y. Xanthohumol attenuates TXNIP-mediated renal tubular injury in vitro and in vivo diabetic models. J Nat Med 2025:10.1007/s11418-024-01863-6. [PMID: 39752106 DOI: 10.1007/s11418-024-01863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025]
Abstract
Thioredoxin-interacting protein (TXNIP), as a pivotal protein in the cellular stress response, plays a significant role in the progression of diabetic nephropathy (DN). Consequently, therapeutic strategies aimed at targeting TXNIP may offer novel interventions for patients with DN. Our study is to explore the therapeutic potential of targeting TXNIP in mitigating renal tubular injury induced by hyperglycemia. Cell viability and apoptosis of renal tubular epithelial cells (RTECs) were evaluated using CCK-8, Annexin V/7-AAD, and TUNEL staining after exposure to normal glucose (NG; 5 mM), high glucose (HG; 30 mM), or treatment with TXNIP inhibitors (Xanthohumol, Xan). Furthermore, histochemical staining was utilized to assess the morphological changes in the kidney. Xan was determined to be a potential inhibitor of TXNIP due to its low binding energy value of - 7.433 kcal/mol. Both genetic inhibition of TXNIP using sh-RNA and pharmacological inhibition with Xan were found to reverse HG-induced RTEC apoptosis and inflammatory response. In diabetic mice, administration of Xan resulted in significant improvements in pathological features such as tubular atrophy, tubular injury score, and collagen deposition in the tubulointerstitium. Additionally, treatment with Xan effectively reduced the up-regulation of TXNIP protein expression caused by hyperglycemia. In conclusion, Xan, as a bioactive natural product, has been shown to attenuate hyperglycemia-induced renal tubular injury in both in vitro and in vivo models, potentially through the inhibition of TXNIP expression. Xan has the potential to serve as a therapeutic compound for the treatment of DN.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China
| | - Runzhou Pan
- Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China
| | - Zhang Shou
- Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China
| | - Yongcai Zhao
- Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China.
| |
Collapse
|
3
|
Xu YW, Yao CH, Gao XM, Wang L, Zhang MX, Yang XD, Li J, Dai WL, Yang MQ, Cai M. BAK ameliorated cerebral infarction/ischemia-reperfusion injury by activating AMPK/Nrf2 to inhibit TXNIP/NLRP3/caspase-1 axis. Neurosci Lett 2025; 844:138037. [PMID: 39515657 DOI: 10.1016/j.neulet.2024.138037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) injury is a serious vascular disease with extremely high mortality and disability rate. Bakuchiol (BAK) was found in leaves and seeds of Psoralea corylifolia Linn and has been shown to decrease inflammation and reduce oxidative stress, while the mechanism of BAK in ameliorating cerebral I/R injury remains unclear. METHODS Middle cerebral artery occlusion reperfusion (MACO/R) was used to establish mouse model. The protective effect of BAK in MCAO/R mices was detected by performing neurological deficit testing, TTC staining, and H&E staining. Oxygen/glucose deprivation and reperfusion (OGD/R) was used to stimulate SH-SY5Y cells in vitro. Protein expression was detected by western blotting, gene expression was detected by quantitative real-time polymerase chain reaction and apoptosis was detected by immunofluorescence. RESULTS Our study indicated that BAK protected ischemia-reperfusion injury in MACO/R mice, and upregulated superoxide dismutase (SOD) and the catalase (CAT) enzyme activity. BAK also inhibited the expression of TNF-α, IL-1β, IL-6, and IL-18 and suppressed apoptosis and pyroptosis both in MACO/R mice and in OGD/R SH-SY5Y cells. Further results showed that BAK could suppress TXNIP, ASC, NLRP3, and caspase-1 mRNA levels to reverse assembly of inflammasome. And BAK could also upregulate the expression of phosphorylated AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor (Nrf2). In addition, Nrf2 inhibitor ML385 reversed the BAK induced reduction of TXNIP, ASC, NLRP3, and the AMPK inhibitor also abolished BAK' the effect on the regulation of Nrf2, TXNIP, ASC, NLRP3, caspase-1, and pro-inflammatory cytokines. In conclusion, BAK, found in leaves and seeds of Psoralea corylifolia Linn, could ameliorated cerebral I/R injury through activating AMPK/Nrf2 to inhibit NLRP3 inflammasome, which might present new therapeutic strategy for cerebral I/R injury.
Collapse
Affiliation(s)
- Yue-Wei Xu
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Chang-Heng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiao-Ming Gao
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Li Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Meng-Xiang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Xiao-Dan Yang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China
| | - Jing Li
- Shuguang Hospital Anhui Branch Affiliated to Shanghai University of Traditional Chinese Medicine, Hefei, Anhui 230061, China
| | - Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Man-Qin Yang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China.
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China.
| |
Collapse
|
4
|
Molinar-Inglis O, Wiggins K, Varma A, Del Mundo Z, Adame JM, Cozzo A, Muñoz O, Le UV, Trinh D, Garcia AC, Cisneros-Aguirre M, Gonzalez Ramirez ML, Keyes J, Zhang J, Lawson MA, Trejo J, Nicholas DA. An optimized fractionation method reveals insulin-induced membrane surface localization of GLUT1 to increase glycolysis in LβT2 cells. Mol Cell Endocrinol 2025; 595:112405. [PMID: 39481749 PMCID: PMC11632608 DOI: 10.1016/j.mce.2024.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Insulin is an important regulator of whole-body glucose homeostasis. In insulin sensitive tissues such as muscle and adipose, insulin induces the translocation of glucose transporter 4 (GLUT4) to the cell membrane, thereby increasing glucose uptake. However, insulin also signals in tissues that are not generally associated with glucose homeostasis. In the human reproductive endocrine axis, hyperinsulinemia suppresses the secretion of gonadotropins from gonadotrope cells of the anterior pituitary, thereby linking insulin dysregulation to suboptimal reproductive health. In the mouse, gonadotropes express the insulin receptor which has the canonical signaling response of IRS, AKT, and mTOR activation. However, the functional outcomes of insulin action on gonadotropes are unclear. Here, we demonstrate through use of an optimized cell fractionation protocol that insulin stimulation of the LβT2 gonadotropic cell line results in the unexpected translocation of GLUT1 to the plasma membrane. Using our high purity fractionation protocol, we further demonstrate that though Akt signaling in response to insulin is intact, insulin-induced translocation of GLUT1 occurs independently of Akt activation in LβT2 cells.
Collapse
Affiliation(s)
- Olivia Molinar-Inglis
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kiara Wiggins
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Anjali Varma
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Zena Del Mundo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Jose M Adame
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alyssa Cozzo
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Oscar Muñoz
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Uyen-Vy Le
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Davina Trinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Alexis C Garcia
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Metztli Cisneros-Aguirre
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Monica L Gonzalez Ramirez
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jeremiah Keyes
- Department of Biology, Pennsylvania State University Erie, The Behrend College, Erie, PA, USA
| | - Jin Zhang
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mark A Lawson
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dequina A Nicholas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Osum KC, Becker SH, Krueger PD, Mitchell JS, Hong SW, Magill IR, Jenkins MK. A minority of Th1 and Tfh effector cells express survival genes shared by memory cell progeny that require IL-7 or TCR signaling to persist. Cell Rep 2024; 44:115111. [PMID: 39723889 DOI: 10.1016/j.celrep.2024.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
It is not clear how CD4+ memory T cells are formed from a much larger pool of earlier effector cells. We found that transient systemic bacterial infection rapidly generates several antigen-specific T helper (Th)1 and T follicular helper (Tfh) cell populations with different tissue residence behaviors. Although most cells of all varieties had transcriptomes indicative of cell stress and death at the peak of the response, some had already acquired a memory cell signature characterized by expression of genes involved in cell survival. Each Th1 and Tfh cell type was maintained long term by interleukin (IL)-7, except germinal center Tfh cells, which depended on a T cell antigen receptor (TCR) signal. The results indicate that acute infection induces rapid differentiation of Th1 and Tfh cells, a minority of which quickly adopt the gene expression profile of memory cells and survive by signals from the IL-7 receptor or TCR.
Collapse
Affiliation(s)
- Kevin C Osum
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Samuel H Becker
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Peter D Krueger
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Jason S Mitchell
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sung-Wook Hong
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Ian R Magill
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Elnaghy F, Shehatou GSG, Abd El-Kader EM, Saber S. Diltiazem mitigates acute liver injury by targeting NFκB-TXNIP/NLRP3 axis in Rats: New insights beyond calcium channel blockade. Int Immunopharmacol 2024; 143:113460. [PMID: 39514911 DOI: 10.1016/j.intimp.2024.113460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Acute liver injury is characterized by the rapid onset of inflammation in the liver, which in turn plays a role in the development of hypertension. Additionally, hypertension increases susceptibility to liver diseases associated with inflammatory states. Recently, the antihypertensive drug diltiazem has demonstrated anti-inflammatory properties and has been shown to inhibit the expression of the thioredoxin-interacting protein (TXNIP), an upstream regulator of the NOD-like receptor pyrin-3 (NLRP3) inflammasome pathway. In our quest for an optimal therapeutic intervention for liver inflammatory diseases, we investigated the effects of diltiazem. Herein, we employed a multi-step approach integrating computational target prediction, network analysis, and molecular docking with experimental validation to explore potential interactions between diltiazem and TXNIP. Our investigations in rats with thioacetamide-induced liver injury revealed the anti-inflammatory potential of diltiazem, likely due to the suppression of the NLRP3 signaling pathway via targeting TXNIP. Furthermore, diltiazem suppressed the priming signal induced by nuclear factor kappa-B (NFκB) activation, as well as subsequent inflammasome components, including cleaved caspase-1, gasdermin D, IL-1β, and IL-18. Consequently, diltiazem exhibited anti-pyroptotic effects in the injured liver. Additionally, diltiazem was observed to reduce BCL-2-associated X-protein (Bax) levels, increase B-Cell Lymphoma-2 (BCL2) levels, and decrease the tissue expression of cleaved caspase-3, indicating potential anti-apoptotic effects. These effects were reflected in improved liver weight-to-body weight ratio, liver histology, oxidative stress parameters, and liver function. In conclusion, diltiazem shows promise as a protective agent for liver inflammatory diseases. Further research is warranted to translate these preclinical results into effective strategies for improving liver health.
Collapse
Affiliation(s)
- Fatma Elnaghy
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - George S G Shehatou
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Eman M Abd El-Kader
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| |
Collapse
|
7
|
Hui R, Xu J, Zhou M, Xie B, Zhou M, Zhang L, Cong B, Ma C, Wen D. Betaine improves METH-induced depressive-like behavior and cognitive impairment by alleviating neuroinflammation via NLRP3 inflammasome inhibition. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111093. [PMID: 39029648 DOI: 10.1016/j.pnpbp.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Methamphetamine abuse has been associated with central nervous system damage, contributing to the development of neuropsychiatric disorders such as depressive-like behavior and cognitive impairment. With the escalating prevalence of METH abuse, there is a pressing need to explore effective therapeutic interventions. Thus, the objective of this research was to investigate whether betaine can protect against depressive-like behavior and cognitive impairment induced by METH. Following intraperitoneal injections of METH in mice, varying doses of betaine were administered. Subsequently, the behavioral responses of mice and the impact of betaine intervention on METH-induced neural damage, synaptic plasticity, microglial activation, and NLRP3 inflammatory pathway activation were assessed. Administration 30 mg/kg and 100 mg/kg of betaine ameliorated METH-induced depressive-like behaviors in the open field test, tail suspension test, forced swimming test, and sucrose preference test and cognitive impairment in the novel object recognition test and Barnes maze test. Moreover, betaine exerted protective effects against METH-induced neural damage and reversed the reduced synaptic plasticity, including the decline in dendritic spine density, as well as alterations in the expression of hippocampal PSD95 and Synapsin-1. Additionally, betaine treatment suppressed hippocampal microglial activation induced by METH. Likewise, it also inhibited the activation of the hippocampal NLRP3 inflammasome pathway and reduced IL-1β and TNF-α release. These results collectively suggest that betaine's significant role in mitigating depressive-like behavior and cognitive impairment resulting from METH abuse, presenting potential applications in the prevention and treatment of substance addiction.
Collapse
Affiliation(s)
- Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Jiabao Xu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Maijie Zhou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Meiqi Zhou
- College of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
8
|
Liu Y, Wang D, Liu X, Yuan H, Liu D, Hu Y, Ning S. Biological and pharmacological roles of pyroptosis in pulmonary inflammation and fibrosis: recent advances and future directions. Cell Commun Signal 2024; 22:586. [PMID: 39639365 PMCID: PMC11619304 DOI: 10.1186/s12964-024-01966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Pyroptosis, an inflammatory regulated cell death (RCD) mechanism, is characterized by cellular swelling, membrane rupture, and subsequent discharge of cellular contents, exerting robust proinflammatory effects. Recent studies have significantly advanced our understanding of pyroptosis, revealing that it can be triggered through inflammasome- and caspase-independent pathways, and interacts intricately with other RCD pathways (e.g., pyroptosis, necroptosis, ferroptosis, and cuproptosis). The pathogenesis of pulmonary fibrosis (PF), including idiopathic pulmonary fibrosis (IPF) and other interstitial lung diseases, involves a multifaceted interplay of factors such as pathogen infections, environmental pollutants, genetic variations, and immune dysfunction. This chronic and progressive interstitial lung disease is characterized by persistent inflammation, extracellular matrix (ECM) accumulation, and fibrotic alveolar wall thickening, which potentially contribute to deteriorated lung function. Despite recent advances in understanding pyroptosis, the mechanisms by which it regulates PF are not entirely elucidated, and effective strategies to improve clinical outcomes remain unclear. This review strives to deliver a comprehensive overview of the biological functions and molecular mechanisms of pyroptosis, exploring its roles in the pathogenesis of PF. Furthermore, it examines potential biomarkers and therapeutic agents for anti-fibrotic treatments.
Collapse
Affiliation(s)
- Ya Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital (The Affiliated Hospital of Hunan University), Xiangtan, 411100, China
| | - Danxia Wang
- Department of Pharmacy, People's Hospital of Ningxiang City, Hunan University of Chinese Medicine, Changsha, 410600, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital (The Affiliated Hospital of Hunan University), Xiangtan, 411100, China
| | - Haibin Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Dan Liu
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Yixiang Hu
- Department of Clinical Pharmacy, Xiangtan Central Hospital (The Affiliated Hospital of Hunan University), Xiangtan, 411100, China.
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
9
|
Zhang Y, Li B, Fu Y, Cai H, Zheng Y. Txnip promotes autophagic apoptosis in diabetic cardiomyopathy by upregulating FoxO1 and its acetylation. Cell Signal 2024; 124:111469. [PMID: 39396562 DOI: 10.1016/j.cellsig.2024.111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Autophagy dysfunction and apoptosis exacerbate the risk of heart failure in patients with diabetic cardiomyopathy (DCM). However, the interactions between autophagy and apoptosis in DCM and their underlying mechanisms remain poorly understood. This study induced type 1 DCM in C57BL/6 mice via streptozotocin injection and exposed H9C2 cells to high glucose to investigate these mechanisms. The study revealed a significant elevation in autophagic vesicles and compromised autophagic flux, accompanied by pronounced myocardial cell apoptosis in the myocardium of diabetic mice. Long-term exposure to high glucose in H9C2 cells led to enhanced autophagosome formation and impaired autophagic flux, while inhibition of autophagy with 3-MA reduced cell apoptosis. Additionally, we observed an increase in Txnip expression in the myocardium of diabetic mice and in high glucose-treated H9C2 cells, which regulates autophagic apoptosis in high glucose-treated H9C2 cells. Furthermore, Txnip regulates autophagic apoptosis through the modulation of forkhead box-1 (FoxO1) expression and acetylation. Prolonged high glucose exposure resulted in increased levels of phosphorylated sirtuin 1 (SIRT1) and reduced SIRT1/FoxO1 interaction, changes that were ameliorated by Txnip knockdown. Txnip overexpression elevated FoxO1 levels, which could be suppressed by NAC and GSH. These findings revealed that Txnip mediates autophagic apoptosis in DCM by upregulating FoxO1 via ROS and enhancing FoxO1 acetylation through the suppression of SIRT1 activity. The discovery of this new mechanism provides new perspectives and potential therapeutic targets for understanding and treating DCM.
Collapse
Affiliation(s)
- Yaoting Zhang
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China.
| | - Bing Li
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yu Fu
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China.
| | - He Cai
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yang Zheng
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
10
|
Van Roy Z, Kak G, Korshoj LE, Menousek JP, Heim CE, Fallet RW, Campbell JR, Geary CR, Liu B, Gorantla S, Poluektova LY, Duan B, Campbell WS, Thorell WE, Kielian T. Single-cell profiling reveals a conserved role for hypoxia-inducible factor signaling during human craniotomy infection. Cell Rep Med 2024; 5:101790. [PMID: 39426374 PMCID: PMC11604514 DOI: 10.1016/j.xcrm.2024.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/16/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Neurosurgeries complicated by infection are associated with prolonged treatment and significant morbidity. Craniotomy is a common neurosurgical procedure; however, the cellular and molecular signatures associated with craniotomy infection in human subjects are unknown. A retrospective study of over 2,500 craniotomies reveals diverse patient demographics, pathogen identity, and surgical landscapes associated with infection. Leukocyte profiling in patient tissues from craniotomy infection characterizes a predominance of granulocytic myeloid-derived suppressor cells that may arise from transmigrated blood neutrophils, based on single-cell RNA sequencing (scRNA-seq) trajectory analysis. Single-cell transcriptomic analysis identifies metabolic shifts in tissue leukocytes, including a conserved hypoxia-inducible factor (HIF) signature. The importance of HIF signaling was validated using a mouse model of Staphylococcus aureus craniotomy infection, where HIF inhibition increases chemokine production and leukocyte recruitment, exacerbating tissue pathology. These findings establish conserved metabolic and transcriptional signatures that may represent promising future therapeutic targets for human craniotomy infection in the face of increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gunjan Kak
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lee E Korshoj
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph P Menousek
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cortney E Heim
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rachel W Fallet
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James R Campbell
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carol R Geary
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bo Liu
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - W Scott Campbell
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - William E Thorell
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
11
|
Peng YH, Li CW, Wu KH, Li JP, Yang SF, Chao YH. Up-Regulated Expression of Thioredoxin-Interacting Protein (TXNIP) in Mesenchymal Stem Cells Associated with Severe Aplastic Anemia in Children. Int J Mol Sci 2024; 25:12298. [PMID: 39596362 PMCID: PMC11594798 DOI: 10.3390/ijms252212298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The pathogenic mechanisms of severe aplastic anemia (SAA) in children are not completely elucidated. The insufficiency of the bone marrow microenvironment, in which mesenchymal stem cells (MSCs) are an important element, can be a potential factor associated with hematopoietic impairment in SAA. In the present study, we compared bone marrow MSCs from five children with SAA and five controls. We found a higher intensity of senescence-associated β-galactosidase activity in SAA MSCs, indicating the increased senescence in these cells. Further RNA sequencing analysis identified a distinctive profile of transcriptomes in SAA MSCs. After conducting a survey of the differentially expressed genes, we found that the up-regulated expression of TXNIP may compromise the proliferative potential of MSCs and probably relate to the pathogenesis of SAA. These results were validated by qPCR. To explore the molecular mechanism involving aberrant TXNIP regulation in SAA MSCs, the expression levels of IGF-1 and IGFBP-1 were measured. A significant increase in IGFBP-1 expression was noted in SAA MSCs despite the wide range of IGF-1 expressions. Accordingly, we postulated a novel pathogenic mechanism of SAA: a compensated increase in the expression of IGF-1 in MSCs to down-regulate TXNIP expression in the face of SAA, which is offset by the up-regulated expression of IGFBP-1.
Collapse
Affiliation(s)
- Ying-Hsuan Peng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (Y.-H.P.); (K.-H.W.); (J.-P.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Chang-Wei Li
- Department of Research and Development, AllBio Life Incorporation, Taichung 402, Taiwan;
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (Y.-H.P.); (K.-H.W.); (J.-P.L.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (Y.-H.P.); (K.-H.W.); (J.-P.L.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (Y.-H.P.); (K.-H.W.); (J.-P.L.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
12
|
Mick GJ, McCormick KL. The role of GABA in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1453396. [PMID: 39619323 PMCID: PMC11604429 DOI: 10.3389/fendo.2024.1453396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Gamma aminobutyric acid (GABA) is synthesized from glutamate by glutamic decarboxylase (GAD). The entero-pancreatic biology of GABA, which is produced by pancreatic islets, GAD-expressing microbiota, enteric immune cells, or ingested through diet, supports an essential physiologic role of GABA in the health and disease. Outside the central nervous system (CNS), GABA is uniquely concentrated in pancreatic β-cells. They express GAD65, which is a type 1 diabetes (T1D) autoantigen. Glutamate constitutes 10% of the amino acids in dietary protein and is preeminently concentrated in human milk. GABA is enriched in many foods, such as tomato and fermented cheese, and is an over-the-counter supplement. Selected microbiota in the midgut have the enzymatic capacity to produce GABA. Intestinal microbiota interact with gut-associated lymphoid tissue to maintain host defenses and immune tolerance, which are implicated in autoimmune disease. Although GABA is a widely known inhibitory neurotransmitter, oral GABA does not cross the blood brain barrier. Three diabetes-related therapeutic actions are ascribed to GABA, namely, increasing pancreatic β-cell content, attenuating excess glucagon and tamping down T-cell immune destruction. These salutary actions have been observed in numerous rodent diabetes models that usually employed high or near-continuous GABA doses. Clinical studies, to date, have identified positive effects of oral GABA on peripheral blood mononuclear cell cytokine release and plasma glucagon. Going forward, it is reassuring that oral GABA therapy has been well-tolerated and devoid of serious adverse effects.
Collapse
Affiliation(s)
- Gail J. Mick
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
13
|
Kim WI, Pak SW, Lee SJ, Park SH, Lim JO, Kim DI, Shin IS, Kim SH, Kim JC. Copper oxide nanoparticles exacerbate chronic obstructive pulmonary disease by activating the TXNIP-NLRP3 signaling pathway. Part Fibre Toxicol 2024; 21:46. [PMID: 39529109 PMCID: PMC11552314 DOI: 10.1186/s12989-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Although copper oxide nanoparticles (CuONPs) offer certain benefits to humans, they can be toxic to organs and exacerbate underlying diseases upon exposure. Chronic obstructive pulmonary disease (COPD), induced by smoking, can worsen with exposure to various harmful particles. However, the specific impact of CuONPs on COPD and the underlying mechanisms remain unknown. In this study, we investigated the toxic effects of CuONPs on the respiratory tract, the pathophysiology of CuONPs exposure-induced COPD, and the mechanism of CuONPs toxicity, focusing on thioredoxin-interacting protein (TXNIP) signaling using a cigarette smoke condensate (CSC)-induced COPD model. RESULTS In the toxicity study, CuONPs exposure induced an inflammatory response in the respiratory tract, including inflammatory cell infiltration, cytokine production, and mucus secretion, which were accompanied by increased TXNIP, NOD-like receptor protein 3 (NLRP3), caspase-1, and interleukin (IL)-1β. In the COPD model, CuONPs exposure induced the elevation of various indexes related to COPD, as well as increased TXNIP expression. Additionally, TNXIP-knockout (KO) mice showed a significantly decreased expression of NLRP3, caspase-1, and IL-1β and inflammatory responses in CuONPs-exposed COPD mice. These results were consistent with the results of an in vitro experiment using H292 cells. By contrast, TNXIP-overexpressed mice had a markedly increased expression of NLRP3, caspase-1, and IL-1β and inflammatory responses in CuONPs-exposed COPD mice. CONCLUSIONS We elucidated the exacerbating effect of CuONPs exposure on the respiratory tract with underlying COPD, as well as related signaling transduction via TXNIP regulation. CuONPs exposure significantly increased inflammatory responses in the respiratory tract, which was correlated with elevated TXNIP-NLRP3 signaling.
Collapse
Affiliation(s)
- Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sin-Hyang Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Je-Oh Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
| | - Dong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
14
|
Kang M, Kwon H, Song J, Jang Y, Yang SH, Cha SM, Moon JH, Kim YC, Kim HJ. Spatial Transcriptomic Signatures of Early Acute T Cell-mediated Rejection in Kidney Transplants. Transplant Direct 2024; 10:e1705. [PMID: 39399058 PMCID: PMC11469874 DOI: 10.1097/txd.0000000000001705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 10/15/2024] Open
Abstract
Background Kidney transplantation significantly improves the quality of life for those with end-stage renal failure, yet allograft rejection resulting from immune cell interactions remains a persistent challenge. Although T cell-directed immunosuppressive drugs effectively contain graft rejection in most patients, a notable proportion still experiences acute T cell-mediated rejection (TCMR). Despite an emphasis on suppressing T cell-mediated immune responses, successful control over TCMR is not always achieved, suggesting the potential involvement of factors beyond T cells. Methods Biopsy samples from suspicious (borderline) for acute TCMR (borderline TCMR) and non-TCMR patients were obtained 9 d postsurgery, and spatial transcriptomics profiling was conducted using the GeoMx Digital Spatial Profiler platform. Regions of interest in the glomerulus and interstitium were selected on the basis of immunohistochemistry staining anti-CD3 to identify areas with T-lymphocyte infiltration. Differential gene expression analysis was performed using unpaired t tests. Results Unbiased clustering of transcriptional profiles across all regions of interest showed distinct transcriptional profiles between glomeruli and interstitium in non-TCMR samples, whereas borderline TCMR samples displayed no distinct transcriptional profiles between these regions. Contrary to the prevailing T cell-centric view, we observed pathways and genes associated with innate immunity-related inflammatory conditions expressed in glomerular regions of borderline TCMR biopsies. Immunofluorescence staining for CD68 confirmed the presence of macrophages in the glomeruli of the post-TCMR sample in a validation cohort, indicating macrophage involvement in the glomerular response after TCMR. Conclusions Activation of the innate immune response in borderline TCMR appears to impact not only the interstitium but also the glomerulus. Glomerulus-specific immune signatures suggest the role of the innate immune system in rejection. This nuanced understanding proposes the necessity for tailored therapeutic interventions targeting both innate and adaptive immune pathways to enhance transplant outcomes.
Collapse
Affiliation(s)
- Minji Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Haeyoon Kwon
- Department of Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeongin Song
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, South Korea
| | - Yunyoung Jang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Transplantation Center, Seoul National University Hospital, Seoul, South Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul, South South Korea
| | - Seung-Min Cha
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Ji Hwan Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Transplantation Center, Seoul National University Hospital, Seoul, South Korea
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University
| |
Collapse
|
15
|
Taru V, Szabo G, Mehal W, Reiberger T. Inflammasomes in chronic liver disease: Hepatic injury, fibrosis progression and systemic inflammation. J Hepatol 2024; 81:895-910. [PMID: 38908436 DOI: 10.1016/j.jhep.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Chronic liver disease leads to hepatocellular injury that triggers a pro-inflammatory state in several parenchymal and non-parenchymal hepatic cell types, ultimately resulting in liver fibrosis, cirrhosis, portal hypertension and liver failure. Thus, an improved understanding of inflammasomes - as key molecular drivers of liver injury - may result in the development of novel diagnostic or prognostic biomarkers and effective therapeutics. In liver disease, innate immune cells respond to hepatic insults by activating cell-intrinsic inflammasomes via toll-like receptors and NF-κB, and by releasing pro-inflammatory cytokines (such as IL-1β, IL-18, TNF-α and IL-6). Subsequently, cells of the adaptive immune system are recruited to fuel hepatic inflammation and hepatic parenchymal cells may undergo gasdermin D-mediated programmed cell death, termed pyroptosis. With liver disease progression, there is a shift towards a type 2 inflammatory response, which promotes tissue repair but also fibrogenesis. Inflammasome activation may also occur at extrahepatic sites, such as the white adipose tissue in MASH (metabolic dysfunction-associated steatohepatitis). In end-stage liver disease, flares of inflammation (e.g., in severe alcohol-related hepatitis) that spark on a dysfunctional immune system, contribute to inflammasome-mediated liver injury and potentially result in organ dysfunction/failure, as seen in ACLF (acute-on-chronic liver failure). This review provides an overview of current concepts regarding inflammasome activation in liver disease progression, with a focus on related biomarkers and therapeutic approaches that are being developed for patients with liver disease.
Collapse
Affiliation(s)
- Vlad Taru
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Iuliu Hatieganu University of Medicine and Pharmacy, 4(th) Dept. of Internal Medicine, Cluj-Napoca, Romania
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Wajahat Mehal
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA; West Haven Veterans Medical Center, West Haven, CT, USA.
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Science, Vienna, Austria
| |
Collapse
|
16
|
El-Masry TA, El-Nagar MMF, Oriquat GA, Alotaibi BS, Saad HM, El Zahaby EI, Ibrahim HA. Therapeutic efficiency of Tamoxifen/Orlistat nanocrystals against solid ehrlich carcinoma via targeting TXNIP/HIF1-α/MMP-9/P27 and BAX/Bcl2/P53 signaling pathways. Biomed Pharmacother 2024; 180:117429. [PMID: 39293373 DOI: 10.1016/j.biopha.2024.117429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Orlistat (Orli) is an anti-obesity medication that has been approved by the US Food and Drug Administration. It has relatively limited oral bioavailability with promising inhibitory effects on cell proliferation as well as reducing the growth of tumors. AIMS This investigation was done to evaluate the potential protective effect of Tamoxifen/Orlistat nanocrystals alone or in combination against Solid Ehrlich Carcinoma (SEC) and to clarify the possible underlying influences. MATERIALS AND METHODS The liquid antisolvent precipitation technique (bottom-up technology) was utilized to manufacture Orlistat Nanocrystals. To explore potential causes for the anti-tumor action, female Swiss Albino mice bearing SEC were randomly assigned into five equal groups (n = 6). Group 1: Tumor control group, group 2: Tam group: tamoxifen (0.01 g/kg, IP), group 3: Free-Orli group: orlistat (0.24 g/kg, IP), group 4: Nano-Orli: orlistat nanocrystals (0.24 g/kg, IP), group 5: Tam-Nano-Orli: Both doses of Tam and Nano-Orli. All treatments were administered for 16 days. KEY FINDINGS The untreated mice showed development in the tumor volume and weight. As well as histopathology results from these mice revealed many tumor large cells as well as solid sheets of malignant cells. Also, untreated mice showed raised VEGF and TGF-1beta content. Moreover, results of gene expression in the SEC-bearing mice noted upregulation in HIF-1α, MMP-9, Bcl-2, and P27 gene expression and downregulation of TXNIP, BAX, and P53 gene expression. On the other hand, administrated TAM, Free-Orli, Nano-Orli, and a combination of Tam-Nano-Orli distinctly suppressed the tumor effects on estimated parameters with special reference to Tam-Nano-Orli. SIGNIFICANCE The developed Tamoxifen/Orlistat nanocrystals combination could be considered a promising approach to augment antitumor effects.
Collapse
Affiliation(s)
- Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Maysa M F El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Ghaleb Ali Oriquat
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Cairo 51511, Egypt.
| | - Enas I El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt.
| | - Hanaa A Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
17
|
Khalifa AK, Abdelrahim DS, Mekawy DM, Hamed RMR, Mohamed WR, Ramadan NM, Wael M, Ellackany R, Albadawi EA, Osman WA. New horizon of the combined BCG vaccine with probiotic and liraglutide in augmenting beta cell survival via suppression of TXNIP/NLRP3 pyroptosis signaling in Streptozocin-Induced diabetes mellitestype-1 in rats. Heliyon 2024; 10:e38932. [PMID: 39640632 PMCID: PMC11620097 DOI: 10.1016/j.heliyon.2024.e38932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 12/07/2024] Open
Abstract
Background An ideal anti-diabetic type-1 pharmacotherapy should combine abrogation of beta cell pyroptosis with enhancement of beta cell mass. Objectives The study investigated the potential synergism from combining the Bacillus Calmette-Guerin (BCG) vaccine with liraglutide (LIR) and probiotics in mitigating Streptozocin (STZ)-induced Type1diabetes mellitus in albino rats via suppression of TXNIP/NLRP3 signaling. Methods: Induction of diabetes was performed by two I.V. injections of 50 mg/kg of STZ in male Wistar rats. Forty-eight rats were randomly allocated into six groups: Normal control group; STZ -diabetic group; BCG group; BCG + LIR group; BCG + probiotic group; BCG + LIR + probiotic group. The rats were sacrificed after 8 weeks of treatment. Results The STZ-diabetic group exhibited significant elevation of fasting blood sugar and HbA1c with remarkably decreased serum insulin along with a considerable increase in pancreatic proinflammatory cytokines (TNF-α, NLRP3, IL-1β, and NFκB) and apoptotic markers (ASK-1, IAPP, TXNIP, and Caspase-3) with prominently compromised oxidative scavenging capacity in addition to structural alteration in the pancreatic histoarchitecture with decreased insulin immunostaining. Conversely, diabetic-treated groups, especially the BCG + LIR + probiotic group, were superior in amelioration of STZ-induced pyroptosis of pancreatic islets evidenced by a significant decline in inflammatory cytokines and apoptotic markers with a remarkable upgrade in redox balance, Furthermore, the mitigation in the altered histopathological picture of the pancreas with enhanced insulin immunostaining has been was mirrored on the significant improvement of glucose homeostasis parameters. Conclusions Noteworthy, BCG combination with liraglutide and probiotic might be a promising repurposed therapeutic modality in the management of type-1 diabetes mellites via targeting pancreatic TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Amira Karam Khalifa
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, El- Manial, Cairo 11562, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Nahda University, 62521, Beni Suef, Egypt
| | - Dina Sayed Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Dina Mohamed Mekawy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Wafaa Rabee Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Egypt
- Department of Histology and Cell Biology, Faculty of Medicine, Modern University for Technology and Information, Egypt
| | - Nagwa Mahmoud Ramadan
- Department of Physiology, Faculty of Medicine, Cairo University, El Manial, Cairo 11562, Egypt
| | - Mostafa Wael
- Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Rawan Ellackany
- Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Emad Ali Albadawi
- Department of Basic Medical Science, College of Medicine, Taibah University, KSA, Saudi Arabia
| | - Walla'a A. Osman
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, El- Manial, Cairo 11562, Egypt
| |
Collapse
|
18
|
Hill C, McKnight AJ, Smyth LJ. Integrated multiomic analyses: An approach to improve understanding of diabetic kidney disease. Diabet Med 2024:e15447. [PMID: 39460977 DOI: 10.1111/dme.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
AIM Diabetes is increasing in prevalence worldwide, with a 20% rise in prevalence predicted between 2021 and 2030, bringing an increased burden of complications, such as diabetic kidney disease (DKD). DKD is a leading cause of end-stage kidney disease, with significant impacts on patients, families and healthcare providers. DKD often goes undetected until later stages, due to asymptomatic disease, non-standard presentation or progression, and sub-optimal screening tools and/or provision. Deeper insights are needed to improve DKD diagnosis, facilitating the identification of higher-risk patients. Improved tools to stratify patients based on disease prognosis would facilitate the optimisation of resources and the individualisation of care. This review aimed to identify how multiomic approaches provide an opportunity to understand the complex underlying biology of DKD. METHODS This review explores how multiomic analyses of DKD are improving our understanding of DKD pathology, and aiding in the identification of novel biomarkers to detect disease earlier or predict trajectories. RESULTS Effective multiomic data integration allows novel interactions to be uncovered and empathises the need for harmonised studies and the incorporation of additional data types, such as co-morbidity, environmental and demographic data to understand DKD complexity. This will facilitate a better understanding of kidney health inequalities, such as social-, ethnicity- and sex-related differences in DKD risk, onset and progression. CONCLUSION Multiomics provides opportunities to uncover how lifetime exposures become molecularly embodied to impact kidney health. Such insights would advance DKD diagnosis and treatment, inform preventative strategies and reduce the global impact of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Amy Jayne McKnight
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Laura J Smyth
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
19
|
Capolupo I, Miranda MR, Musella S, Di Sarno V, Manfra M, Ostacolo C, Bertamino A, Campiglia P, Ciaglia T. Exploring Endocannabinoid System: Unveiling New Roles in Modulating ER Stress. Antioxidants (Basel) 2024; 13:1284. [PMID: 39594426 PMCID: PMC11591047 DOI: 10.3390/antiox13111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is the organelle mainly involved in maintaining cellular homeostasis and driving correct protein folding. ER-dependent defects or dysfunctions are associated with the genesis/progression of several pathological conditions, including cancer, inflammation, and neurodegenerative disorders, that are directly or indirectly correlated to a wide set of events collectively named under the term "ER stress". Despite the recent increase in interest concerning ER activity, further research studies are needed to highlight all the mechanisms responsible for ER failure. In this field, recent discoveries paved the way for the comprehension of the strong interaction between ER stress development and the endocannabinoid system. The activity of the endocannabinoid system is mediated by the activation of cannabinoid receptors (CB), G protein-coupled receptors that induce a decrease in cAMP levels, with downstream anti-inflammatory effects. CB activation drives, in most cases, the recovery of ER homeostasis through the regulation of ER stress hallmarks PERK, ATF6, and IRE1. In this review, we focus on the CB role in modulating ER stress, with particular attention to the cellular processes leading to UPR activation and oxidative stress response extinguishment, and to the mechanisms underlying natural cannabinoids' modulation of this complex cellular machine.
Collapse
Affiliation(s)
- Ilaria Capolupo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Michele Manfra
- Department of Health Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| |
Collapse
|
20
|
Mohammad-Sadeghipour M, Nematollahi MH, Ahmadinia H, Hajizadeh MR, Mahmoodi M. The activation of the G-protein-coupled estrogen receptor promotes the aggressiveness of MDA-MB231 cells by targeting the IRE1α/TXNIP pathway. Res Pharm Sci 2024; 19:606-621. [PMID: 39691302 PMCID: PMC11648343 DOI: 10.4103/rps.rps_96_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 12/19/2024] Open
Abstract
Background and purpose This study investigated modulating the G protein-coupled estrogen receptor (GPER) on the IRElα/TXNIP pathway and its role in drug resistance in MDA-MB231 cells. Experimental approach To determine the optimal concentrations of G1 and 4-hydroxytamoxifen (TAM), GPER expression and ERK1/2 phosphorylation were analyzed using qRT-PCR and western blotting, respectively. Cells were treated with individual concentrations of G1 (1000 nM), G15 (1000 nM), and TAM (2000 nM), as well as combinations of these treatments (G1 + G15, TAM + G15, and G1 + TAM) for 24 and 48 h. The expression levels of GPER, IRE1α, miR-17-5p, TXNIP, ABCB1, and ABCC1 genes and TXNIP protein expression were evaluated. Finally, apoptosis and cell migration were examined using flow cytometry and the wound-healing assay, respectively. Findings/Results Activating GPER with its specific agonist G1 and TAM significantly increased IRE1α levels in MDA-MB231 cells. IRE1α through splicing XBP1 led to unfolded protein response. In addition, decreased TXNIP gene and protein expression reduced apoptosis, increased migration, and upregulated the genes associated with drug resistance. Conclusion and implication Our investigation revealed that blocking the GPER/IRE1α/TXNIP pathway in MDA-MB231 cells could enhance treatment efficacy and improve chemotherapy responsiveness. The distinct unfolded protein response observed in MDA-MB231 cells may stem from the unique characteristics of these cells, which lack receptors for estrogen, progesterone, and HER2/neu hormones, possessing only the GPER receptor (ER-/PR-/HER2-/GPER+). This study introduced a new pathway in TNBC cells, indicating that targeting GPER could be crucial in comprehensive therapeutic strategies in TNBC cells.
Collapse
Affiliation(s)
- Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hassan Ahmadinia
- Department of Epidemiology and Biostatistics, School of Health, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Hajizadeh
- Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
21
|
Jiao A, Liu H, Wang H, Yu J, Gong L, Zhang H, Fu L. piR112710 attenuates diabetic cardiomyopathy through inhibiting Txnip/NLRP3-mediated pyroptosis in db/db mice. Cell Signal 2024; 122:111333. [PMID: 39102928 DOI: 10.1016/j.cellsig.2024.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are involved in the regulation of hypertrophic cardiomyopathy, heart failure and myocardial methylation. However, their functions and the underlying molecular mechanisms in diabetic cardiomyopathy (DCM) have yet to be fully elucidated. In the present study, a pyroptosis-associated piRNA (piR112710) was identified that ameliorates cardiac remodeling through targeting the activation of inflammasomes and mitochondrial dysfunction that are mediated via the thioredoxin-interacting protein (Txnip)/NLRP3 signaling axis. Subsequently, the cardioprotective effects of piR112710 on both the myocardium from db/db mice and cardiomyocytes from neonatal mice that were incubated with a high concentration of glucose combined with palmitate were examined. piR112710 was found to significantly improve cardiac dysfunction in db/db mice, characterized by improved echocardiography, lower levels of fibrosis, attenuated expression levels of inflammatory factors and pyroptosis-associated proteins (namely, Txnip, ASC, NLRP3, caspase-1 and GSDMD-N), and enhanced myocardial mitochondrial respiratory functions. In cultured neonatal mice cardiomyocytes, piR112710 deficiency and high glucose along with palmitate treatment led to significantly upregulated expression levels of pyroptosis associated proteins and collagens, oxidative stress, mitochondrial dysfunction and increased levels of inflammatory factors. Supplementation with piR112710, however, led to a reversal of the aforementioned changes induced by high glucose and palmitate. Mechanistically, the cardioprotective effect of piR112710 appears to be dependent upon effective elimination of reactive oxygen species and inactivation of the Txnip/NLRP3 signaling axis. Taken together, the findings of the present study have revealed that the piRNA-mediated inhibitory mechanism involving the Txnip/NLRP3 axis may participate in the regulation of pyroptosis, which protects against DCM both in vivo and in vitro. piR112710 may therefore be a potential therapeutic target for the reduction of myocardial injury caused by cardiomyocyte pyroptosis in DCM.
Collapse
Affiliation(s)
- Ande Jiao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Huaxing Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Huihui Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, Heilongjiang 161041, China
| | - Jiaqi Yu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, China
| | - Lu Gong
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, China
| | - Honglian Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161003, China
| | - Lu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
22
|
Nishitha-Hiresha V, Varsha R, Srinidhi S, Jayasuriya R, Harithpriya K, Chakraborty P, Ramkumar KM. Effect of Bis (methyl glycol) phthalate on endoplasmic reticulum stress in endothelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104569. [PMID: 39326718 DOI: 10.1016/j.etap.2024.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Phthalate-based polymeric plasticizers are widely used for their durability, transparency, and odorless nature, resulting in human exposure through inhalation, ingestion, or contaminated water. Epidemiological studies have identified bis-phthalate as a potential cardiovascular disease risk factor, though its mechanisms remain unclear. This study investigates the effects of bis-phthalate on endothelial dysfunction (ED), an early event in cardiovascular complications, with a focus on Endoplasmic Reticulum (ER) stress pathways. We observed dose- and time-dependent cytotoxicity in endothelial cells exposed to bis-phthalate, accompanied by elevated expression of ER stress markers (GRP78, IRE-1α, CHOP) and oxidative stress markers (TXNIP, P22phox), as measured by qPCR. Reactive oxygen species (ROS) levels also increased dose-dependently, as determined by H2DCFDA using flow cytometry. These findings suggest that bis-phthalate exposure induces both oxidative and ER stress, leading to the development of ED, providing insights into its potential role in cardiovascular disease progression.
Collapse
Affiliation(s)
- Verma Nishitha-Hiresha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Raghavan Varsha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - S Srinidhi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Paromita Chakraborty
- Environmental Science and Technology Research Group, Centre for Research in Environment, Sustainability Advocacy and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| |
Collapse
|
23
|
Sunilkumar S, Dennis MD. REDD1 Is a Promising Therapeutic Target to Combat the Development of Diabetes Complications: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2024; 73:1553-1562. [PMID: 38976480 PMCID: PMC11417436 DOI: 10.2337/dbi24-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
The stress response protein regulated in development and DNA damage response 1 (REDD1) has emerged as a key player in the pathogenesis of diabetes. Diabetes upregulates REDD1 in a variety of insulin-sensitive tissues, where the protein acts to inhibit signal transduction downstream of the insulin receptor. REDD1 functions as a cytosolic redox sensor that suppresses Akt/mTORC1 signaling to reduce energy expenditure in response to cellular stress. Whereas a transient increase in REDD1 contributes to an adaptive cellular response, chronically elevated REDD1 levels are implicated in disease progression. Recent studies highlight the remarkable benefits of both whole-body and tissue-specific REDD1 deletion in preclinical models of type 1 and type 2 diabetes. In particular, REDD1 is necessary for the development of glucose intolerance and the consequent rise in oxidative stress and inflammation. Here, we review studies that support a role for chronically elevated REDD1 levels in the development of diabetes complications, reflect on limitations of prior therapeutic approaches targeting REDD1 in patients, and discuss potential opportunities for future interventions to improve the lives of people living with diabetes. This article is part of a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
24
|
Lai W, Zhang J, Sun J, Min T, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Oxidative stress in alcoholic liver disease, focusing on proteins, nucleic acids, and lipids: A review. Int J Biol Macromol 2024; 278:134809. [PMID: 39154692 DOI: 10.1016/j.ijbiomac.2024.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Oxidative stress is one of the important factors in the development of alcoholic liver disease. The production of reactive oxygen species and other free radicals is an important feature of alcohol metabolism in the liver and an important substance in liver injury. When large amounts of ROS are produced, the homeostasis of the liver REDOX system will be disrupted and liver injury will be caused. Oxidative stress can damage proteins, nucleic acids and lipids, liver dysfunction. In addition, damaging factors produced by oxidative damage to liver tissue can induce the occurrence of inflammation, thereby aggravating the development of ALD. This article reviews the oxidative damage of alcohol on liver proteins, nucleic acids, and lipids, and provides new insights and summaries of the oxidative stress process. We also discussed the relationship between oxidative stress and inflammation in alcoholic liver disease from different perspectives. Finally, the research status of antioxidant therapy in alcoholic liver disease was summarized, hoping to provide better help for learning and developing the understanding of alcoholic liver disease.
Collapse
Affiliation(s)
- Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
25
|
Yan H, Ding H, Xie RX, Liu ZQ, Yang XQ, Xie LL, Liu CX, Liu XD, Chen LY, Huang XP. Research progress of exosomes from different sources in myocardial ischemia. Front Cardiovasc Med 2024; 11:1436764. [PMID: 39350967 PMCID: PMC11440518 DOI: 10.3389/fcvm.2024.1436764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
Ischemic heart disease refers to the imbalance between the supply and demand of myocardial blood; it has various causes and results in a class of clinical diseases characterized by myocardial ischemia (MI). In recent years, the incidence of cardiovascular disease has become higher and higher, and the number of patients with ischemic heart disease has also increased year by year. Traditional treatment methods include drug therapy and surgical treatment, both of which have limitations. The former maybe develop risks of drug resistance and has more significant side effects, while the latter may damage blood vessels and risk infection. At this stage, a new cell-free treatment method needs to be explored. Many research results have shown that exosomes from different cell sources can protect the ischemic myocardium via intercellular action methods, such as promoting angiogenesis, inhibiting myocardial fibrosis, apoptosis and pyroptosis, and providing a new basis for the treatment of MI. In this review, we briefly introduce the formation and consequences of myocardial ischemia and the biology of exosomes, and then focus on the role and mechanism of exosomes from different sources in MI. We also discuss the role and mechanism of exosomes pretreated with Chinese and Western medicines on myocardial ischemia. We also discuss the potential of exosomes as diagnostic markers and therapeutic drug for MI.
Collapse
Affiliation(s)
- Huan Yan
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Huang Ding
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ruo-Xi Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi-Qing Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Qian Yang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ling-Li Xie
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Cai-Xia Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Dan Liu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Li-Yuan Chen
- Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Xiao-Ping Huang
- Hunan Provincial Key Laboratory for Prevention and Treatment of Integrated Traditional Chinese and Western Medicine on Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
26
|
Altahla R, Tao X. Thioredoxin-Interacting Protein's Role in NLRP3 Activation and Osteoarthritis Pathogenesis by Pyroptosis Pathway: In Vivo Study. Metabolites 2024; 14:488. [PMID: 39330495 PMCID: PMC11433649 DOI: 10.3390/metabo14090488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Thioredoxin-interacting protein (TXNIP) has been involved in oxidative stress and activation of the NOD-like receptor protein-3 (NLRP3) inflammasome, directly linking it to the pyroptosis pathway. Furthermore, pyroptosis may contribute to the inflammatory process in osteoarthritis (OA). The purpose of this study was to investigate the role of TXNIP in activating the NLRP3 inflammasome through the pyroptosis pathway in an OA rat model. Destabilization of the medial meniscus (DMM) was induced in the OA model with intra-articular injections of adeno-associated virus (AAV) overexpressing (OE) or knocking down (KD) TXNIP. A total of 48 healthy rats were randomly divided into six groups (N = 8 each). During the experiment, the rats' weights, mechanical pain thresholds, and thermal pain thresholds were measured weekly. Morphology staining, micro-CT, 3D imaging, and immunofluorescence (IF) staining were used to measure the expression level of TXNIP, and ELISA techniques were employed. OE-TXNIP-AAV in DMM rats aggravated cartilage destruction and subchondral bone loss, whereas KD-TXNIP slowed the progression of OA. The histological results showed that DMM modeling and OE-TXNIP-AAV intra-articular injection caused joint structure destruction, decreased anabolic protein expression, and increased catabolic protein expression and pyroptosis markers. Conversely, KD-TXNIP-AAV slowed joint degeneration. OE-TXNIP-AVV worsened OA by accelerating joint degeneration and damage, while KD-TXNIP-AAV treatment had a protective effect.
Collapse
Affiliation(s)
- Ruba Altahla
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Tao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
27
|
Prud’homme GJ, Wang Q. Anti-Inflammatory Role of the Klotho Protein and Relevance to Aging. Cells 2024; 13:1413. [PMID: 39272986 PMCID: PMC11394293 DOI: 10.3390/cells13171413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The α-Klotho protein (hereafter Klotho) is an obligate coreceptor for fibroblast growth factor 23 (FGF23). It is produced in the kidneys, brain and other sites. Klotho insufficiency causes hyperphosphatemia and other anomalies. Importantly, it is associated with chronic pathologies (often age-related) that have an inflammatory component. This includes atherosclerosis, diabetes and Alzheimer's disease. Its mode of action in these diseases is not well understood, but it inhibits or regulates multiple major pathways. Klotho has a membrane form and a soluble form (s-Klotho). Cytosolic Klotho is postulated but not well characterized. s-Klotho has endocrine properties that are incompletely elucidated. It binds to the FGF receptor 1c (FGFR1c) that is widely expressed (including endothelial cells). It also attaches to soluble FGF23, and FGF23/Klotho binds to FGFRs. Thus, s-Klotho might be a roaming FGF23 coreceptor, but it has other functions. Notably, Klotho (cell-bound or soluble) counteracts inflammation and appears to mitigate related aging (inflammaging). It inhibits NF-κB and the NLRP3 inflammasome. This inflammasome requires priming by NF-κB and produces active IL-1β, membrane pores and cell death (pyroptosis). In accord, Klotho countered inflammation and cell injury induced by toxins, damage-associated molecular patterns (DAMPs), cytokines, and reactive oxygen species (ROS). s-Klotho also blocks the TGF-β receptor and Wnt ligands, which lessens fibrotic disease. Low Klotho is associated with loss of muscle mass (sarcopenia), as occurs in aging and chronic diseases. s-Klotho counters the inhibitory effects of myostatin and TGF-β on muscle, reduces inflammation, and improves muscle repair following injury. The inhibition of TGF-β and other factors may also be protective in diabetic retinopathy and age-related macular degeneration (AMD). This review examines Klotho functions especially as related to inflammation and potential applications.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 220 Walmer Rd, Toronto, ON M5R 3R7, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai 200030, China
- Shanghai Innogen Pharmaceutical Co., Ltd., Shanghai 201318, China
| |
Collapse
|
28
|
Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X, Gu X, Qiao Y, Wu Q, Xie T, Sui X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med 2024; 19:110. [PMID: 39164783 PMCID: PMC11334420 DOI: 10.1186/s13020-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.
Collapse
Affiliation(s)
- Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qinyi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zijing Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yunhao Qiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
29
|
Wang S, Wang X, Qin C, Liang C, Li W, Ran A, Ma Q, Pan X, Yang F, Ren J, Huang B, Liu Y, Zhang Y, Li H, Ning H, Jiang Y, Xiao B. PTBP1 knockdown impairs autophagy flux and inhibits gastric cancer progression through TXNIP-mediated oxidative stress. Cell Mol Biol Lett 2024; 29:110. [PMID: 39153986 PMCID: PMC11330137 DOI: 10.1186/s11658-024-00626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent malignant tumor, and the RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) has been identified as a crucial factor in various tumor types. Moreover, abnormal autophagy levels have been shown to significantly impact tumorigenesis and progression. Despite this, the precise regulatory mechanism of PTBP1 in autophagy regulation in GC remains poorly understood. METHODS To assess the expression of PTBP1 in GC, we employed a comprehensive approach utilizing western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and bioinformatics analysis. To further identify the downstream target genes that bind to PTBP1 in GC cells, we utilized RNA immunoprecipitation coupled with sequencing (si-PTBP1 RNA-seq). To evaluate the impact of PTBP1 on gastric carcinogenesis, we conducted CCK-8 assays, colony formation assays, and GC xenograft mouse model assays. Additionally, we utilized a transmission electron microscope, immunofluorescence, flow cytometry, western blot, RT-qPCR, and GC xenograft mouse model experiments to elucidate the specific mechanism underlying PTBP1's regulation of autophagy in GC. RESULTS Our findings indicated that PTBP1 was significantly overexpressed in GC tissues compared with adjacent normal tissues. Silencing PTBP1 resulted in abnormal accumulation of autophagosomes, thereby inhibiting GC cell viability both in vitro and in vivo. Mechanistically, interference with PTBP1 promoted the stability of thioredoxin-interacting protein (TXNIP) mRNA, leading to increased TXNIP-mediated oxidative stress. Consequently, this impaired lysosomal function, ultimately resulting in blockage of autophagic flux. Furthermore, our results suggested that interference with PTBP1 enhanced the antitumor effects of chloroquine, both in vitro and in vivo. CONCLUSION PTBP1 knockdown impairs GC progression by directly binding to TXNIP mRNA and promoting its expression. Based on these results, PTBP1 emerges as a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Shimin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaolin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Changhong Qin
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ce Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wei Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Ai Ran
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qiang Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaojuan Pan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Junwu Ren
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Yuying Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuying Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haiping Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hao Ning
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
30
|
Henedak NT, El-Abhar HS, Soubh AA, Abdallah DM. NLRP3 Inflammasome: A central player in renal pathologies and nephropathy. Life Sci 2024; 351:122813. [PMID: 38857655 DOI: 10.1016/j.lfs.2024.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The cytoplasmic oligomer NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome has been implicated in most inflammatory and autoimmune diseases. Here, we highlight the significance of NLRP3 in diverse renal disorders, demonstrating its activation in macrophages and non-immune tubular epithelial and mesangial cells in response to various stimuli. This activation leads to the release of pro-inflammatory cytokines, contributing to the development of acute kidney injury (AKI), chronic renal injury, or fibrosis. In AKI, NLRP3 inflammasome activation and pyroptotic renal tubular cell death is driven by contrast and chemotherapeutic agents, sepsis, and rhabdomyolysis. Nevertheless, inflammasome is provoked in disorders such as crystal and diabetic nephropathy, obesity-related renal fibrosis, lupus nephritis, and hypertension-induced renal damage that induce chronic kidney injury and/or fibrosis. The mechanisms by which the inflammatory NLRP3/ Apoptosis-associated Speck-like protein containing a Caspase recruitment domain (ASC)/caspase-1/interleukin (IL)-1β & IL-18 pathway can turn on renal fibrosis is also comprehended. This review further outlines the involvement of dopamine and its associated G protein-coupled receptors (GPCRs), including D1-like (D1, D5) and D2-like (D2-D4) subtypes, in regulating this inflammation-linked renal dysfunction pathway. Hence, we identify D-related receptors as promising targets for renal disease management by inhibiting the functionality of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Nada T Henedak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Ayman A Soubh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Giza, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
31
|
Mishra Y, Kumar A, Kaundal RK. Mitochondrial Dysfunction is a Crucial Immune Checkpoint for Neuroinflammation and Neurodegeneration: mtDAMPs in Focus. Mol Neurobiol 2024:10.1007/s12035-024-04412-0. [PMID: 39115673 DOI: 10.1007/s12035-024-04412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 01/03/2025]
Abstract
Neuroinflammation is a pivotal factor in the progression of both age-related and acute neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and stroke. Mitochondria, essential for neuronal health due to their roles in energy production, calcium buffering, and oxidative stress regulation, become increasingly susceptible to dysfunction under conditions of metabolic stress, aging, or injury. Impaired mitophagy in aged or injured neurons leads to the accumulation of dysfunctional mitochondria, which release mitochondrial-derived damage-associated molecular patterns (mtDAMPs). These mtDAMPs act as immune checkpoints, activating pattern recognition receptors (PRRs) and triggering innate immune signaling pathways. This activation initiates inflammatory responses in neurons and brain-resident immune cells, releasing cytokines and chemokines that damage adjacent healthy neurons and recruit peripheral immune cells, further amplifying neuroinflammation and neurodegeneration. Long-term mitochondrial dysfunction perpetuates a chronic inflammatory state, exacerbating neuronal injury and contributing additional immunogenic components to the extracellular environment. Emerging evidence highlights the critical role of mtDAMPs in initiating and sustaining neuroinflammation, with circulating levels of these molecules potentially serving as biomarkers for disease progression. This review explores the mechanisms of mtDAMP release due to mitochondrial dysfunction, their interaction with PRRs, and the subsequent activation of inflammatory pathways. We also discuss the role of mtDAMP-triggered innate immune responses in exacerbating both acute and chronic neuroinflammation and neurodegeneration. Targeting dysfunctional mitochondria and mtDAMPs with pharmacological agents presents a promising strategy for mitigating the initiation and progression of neuropathological conditions.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India.
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
32
|
He X, Dou L, Wang J, Xia L, Miao J, Yan Y. Nobiletin regulates the proliferation and migration of ovarian cancer A2780 cells via DPP4 and TXNIP. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03334-x. [PMID: 39102034 DOI: 10.1007/s00210-024-03334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Nobiletin is an active compound extracted from citrus fruits. Research has indicated that nobiletin has a potential inhibitory effect on ovarian cancer (OV). However, the mechanism of action remains unclear. The OV A2780 cells were treated using nobiletin, cell viability was examined using a cell counting kit-8 experiment, and cell migration was examined with a wound healing experiment. Nobiletin targets were retrieved from target databases. Differentially expressed genes (DEG) and weighted gene co-expression network analysis (WGCNA) were conducted on GSE26712 (OV). The intersection of the critical genes for nobiletin's action on OV and gene enrichment and immune infiltration analyses were performed. The Cancer Genome Atlas-OV data and molecular docking helped validate the findings. After adding nobiletin, cell viability and migration significantly decreased (P < 0.01). A total of 88 nobiletin targets and 1288 DEG were identified. The intersection genes were enriched inflammatory response and response to hypoxia. The most related module obtained from WGCNA contained 414 genes (correlation coefficient = 0.77, P < 0.01). DPP4 and TXNIP were recognized as the hub genes. The abundance of macrophages M2 and mast cells activated significantly enhanced with increased DPP4 expression (P < 0.05). The binding energy between DPP4/TXNIP and nobiletin was - 7.012/ - 7.184 kcal/mol, forming 5/2 hydrogen bonds. Nobiletin effectively suppresses the viability and migration of OV A2780 cells. In this process, DPP4 and TXNIP are the key target, immune regulation, and oxidative stress playing significant roles.
Collapse
Affiliation(s)
- Xiuzhen He
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Lu Dou
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Jie Wang
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Lili Xia
- The Third Surgery, Chongqing City Wanzhou District Shanghai Hospital, Chongqing, 404120, China
| | - Jiawei Miao
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Yongbo Yan
- Pharmacy Department, The People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing Three Gorges Medical College, No. 27, Guoben Road, Wanzhou District, Chongqing, 404197, China.
| |
Collapse
|
33
|
McGarry S, Kover K, De Luca F. Thioredoxin Interacting Protein Expressed in Osteoblasts Mediates the Anti-Proliferative Effects of High Glucose and Modulates the Expression of Osteocalcin. J Bone Metab 2024; 31:209-218. [PMID: 39307521 PMCID: PMC11416880 DOI: 10.11005/jbm.2024.31.3.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Hyperglycemia is associated with impaired bone health in patients with diabetes mellitus. Although a direct detrimental effect of hyperglycemia on the bone has been previously reported, the specific molecular mediator(s) responsible for the inhibitory effect of high glucose levels on the bone remains unclear. We hypothesized that thioredoxin-interacting protein (Txnip), an essential mediator of oxidative stress, is such a mediator. METHODS We cultured MG-63 cells (immortalized human osteoblasts) with normal or high glucose concentrations and transfected them with scrambled or Txnip-specific small interfering RNA (siRNA). RESULTS High glucose levels increased Txnip expression and reduced MG-63 cell proliferation. The high-glucose level mediated reduction in cell proliferation was prevented in Txnip siRNA-transfected cells. In addition, we demonstrated that silencing Txnip mRNA expression in osteoblasts reduced the expression of the osteocalcin gene. Our results suggest that high glucose levels or silencing of Txnip mRNA expression may induce apoptosis in osteoblasts. CONCLUSIONS Our findings indicate that Txnip is an intracellular mediator of the anti-proliferative effects of extracellular high glucose levels on osteoblasts.
Collapse
Affiliation(s)
- Sarah McGarry
- Division of Endocrinology, Children’s Mercy Hospitals, Kansas City, MO,
USA
- Department of Pediatrics, University of Missouri-Kansas City-School of Medicine, Kansas City, MO,
USA
| | - Karen Kover
- Division of Endocrinology, Children’s Mercy Hospitals, Kansas City, MO,
USA
- Department of Pediatrics, University of Missouri-Kansas City-School of Medicine, Kansas City, MO,
USA
| | - Francesco De Luca
- Division of Endocrinology, Children’s Mercy Hospitals, Kansas City, MO,
USA
- Department of Pediatrics, University of Missouri-Kansas City-School of Medicine, Kansas City, MO,
USA
| |
Collapse
|
34
|
Kawakami S, Johmura Y, Nakanishi M. Intracellular acidification and glycolysis modulate inflammatory pathway in senescent cells. J Biochem 2024; 176:97-108. [PMID: 38564227 PMCID: PMC11289320 DOI: 10.1093/jb/mvae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Senescent cells accumulate in various organs with ageing, and its accumulation induces chronic inflammation and age-related physiological dysfunctions. Several remodelling of intracellular environments have been identified in senescent cells, including enlargement of cell/nuclear size and intracellular acidification. Although these alterations of intracellular environments were reported to be involved in the unique characteristics of senescent cells, the contribution of intracellular acidification to senescence-associated cellular phenotypes is poorly understood. Here, we identified that the upregulation of TXNIP and its paralog ARRDC4 as a hallmark of intracellular acidification in addition to KGA-type GLS1. These genes were also upregulated in response to senescence-associated intracellular acidification. Neutralization of the intracellular acidic environment ameliorated not only senescence-related upregulation of TXNIP, ARRDC4 and KGA but also inflammation-related genes, possibly through suppression of PDK-dependent anaerobic glycolysis. Furthermore, we found that expression of the intracellular acidification-induced genes, TXNIP and ARRDC4, correlated with inflammatory gene expression in heterogeneous senescent cell population in vitro and even in vivo, implying that the contribution of intracellular pH to senescence-associated cellular features, such as SASP.
Collapse
Affiliation(s)
- Satoshi Kawakami
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
35
|
Ouyang S, Xiang S, Wang X, Yang X, Liu X, Zhang M, Zhou Y, Xiao Y, Zhou L, Fan G, Yang J. The downregulation of SCGN induced by lipotoxicity promotes NLRP3-mediated β-cell pyroptosis. Cell Death Discov 2024; 10:340. [PMID: 39068218 PMCID: PMC11283536 DOI: 10.1038/s41420-024-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Lipotoxicity is a well-established phenomenon that could exacerbate damage to islet β-cells and play a significant role in the development of type 2 diabetes, the underlying mechanisms of which, however, remain unclear. In lipotoxic conditions, secretagogin (SCGN), an EF-hand calcium-binding protein abundantly expressed in islets, is found to undergo downregulation. In light of this, we aim to explore the role of SCGN in lipotoxicity-induced β-cell injury. Our findings show that exposure to ox-LDL in vitro or long-term high-fat diets (HFD) in vivo decreases SCGN expression and induces pyroptosis in β-cells. Moreover, restoring SCGN partially reverses the pyroptotic cell death under ox-LDL or HFD treatments. We have observed that the downregulation of SCGN facilitates the translocation of ChREBP from the cytosol to the nucleus, thereby promoting TXNIP transcription. The upregulation of TXNIP activates the NLRP3/Caspase-1 pathway, leading to pyroptotic cell death. In summary, our study demonstrates that lipotoxicity leads to the downregulation of SCGN expression in islet β-cells, resulting in ChREBP accumulation in the nucleus and subsequent activation of the NLRP3/Caspase-1 pyroptotic pathway. Thus, administering SCGN could be a potential therapeutic strategy to alleviate β-cell damage induced by lipotoxicity in type 2 diabetes.
Collapse
Affiliation(s)
- Shuhui Ouyang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Sunmin Xiang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Hospital Infection Control, Xingsha District of Hunan Provincial People's Hospital (Changsha County People's Hospital), Changsha, 410100, Hunan, China
| | - Xin Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xin Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xuan Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Meilin Zhang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yiting Zhou
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yang Xiao
- The School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Lingzhi Zhou
- Department of pediatrics, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan people's hospital), Shenzhen, 518052, Guangdong, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan people's hospital), Shenzhen, 518052, Guangdong, China.
| | - Jing Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Department of Metabolism and Endocrinology, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan people's hospital), Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
36
|
Komatsu W, Kishi H, Uchiyama K, Ohhira S, Kobashi G. Urolithin A suppresses NLRP3 inflammasome activation by inhibiting the generation of reactive oxygen species and prevents monosodium urate crystal-induced peritonitis. Biosci Biotechnol Biochem 2024; 88:966-978. [PMID: 38772744 DOI: 10.1093/bbb/zbae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the maturation of interleukin-1β (IL-1β) and is implicated in the pathogenesis of various inflammatory diseases. Urolithin A, a gut microbial metabolite of ellagic acid, reportedly exerts antiinflammatory effects in vitro and in vivo. However, whether urolithin A suppresses NLRP3 inflammasome activation is unclear. In this study, urolithin A inhibited the cleavage of NLRP3 inflammasome agonist-induced caspase-1, maturation of IL-1β, and activation of pyroptosis in lipopolysaccharide-primed mouse bone marrow-derived macrophages. Urolithin A reduced generation of intracellular and mitochondrial reactive oxygen species (ROS) and restricted the interaction between thioredoxin-interacting protein and NLRP3, which attenuated NLRP3 inflammasome activation. Urolithin A administration prevented monosodium urate-induced peritonitis in mice. Collectively, these findings indicate that urolithin A suppresses NLRP3 inflammasome activation, at least partially, by repressing the generation of intracellular and mitochondrial ROS.
Collapse
Affiliation(s)
- Wataru Komatsu
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Hisashi Kishi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Koji Uchiyama
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Shuji Ohhira
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
37
|
Xu Z, Hu H, Wang K, Zhou Z, He X, Huang X, Hu Y, Huang J, Luo Z. Sinensetin, a polymethoxyflavone from citrus fruits, ameliorates LPS-induced acute lung injury by suppressing Txnip/NLRP3/Caspase-1/GSDMD signaling-mediated inflammatory responses and pyroptosis. Food Funct 2024; 15:7592-7604. [PMID: 38938065 DOI: 10.1039/d4fo01704h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Sinensetin (SIN), a polymethoxylated flavonoid, exists widely in citrus fruits with abundant biological activities, such as antioxidant and anti-inflammatory properties, delaying the progression of lung fibers and ameliorating inflammatory lung injury. Herein, an in vivo model of LPS-induced acute lung injury (ALI) in mice and an in vitro model of LPS + IFN-γ-induced M1 polarization in RAW264.7 cells were established to assess the effects and molecular mechanisms of SIN in ameliorating ALI. In the present study, the results showed that SIN significantly reduced BALF IL1β, IL6, and TNF-α levels and neutrophil infiltration, inhibited lung tissue COX2 and iNOS expression, reduced serum and lung tissue inflammatory factor levels, and attenuated lung tissue inflammatory infiltration and ROS levels in animal experiments. RNA sequencing analysis showed that SIN markedly inhibited the expression of inflammation-related pathway genes such as NOD-like receptor signaling. Further mechanistic studies confirmed that SIN significantly inhibited the dissociation of Txnip and Trx-1 and decreased the expression of NLRP3, ASC, pro-Caspase-1, cleavage Caspase-1 p10, NEK7, Caspase-8, IL1β, IL18, and GSDMD. Meanwhile, SIN docked to NLRP3 with strong affinity and bound stably in the hydrophobic docking pocket. Similarly, the same results were observed in in vitro macrophage M1 polarization experiments. In conclusion, the results revealed that SIN ameliorated the onset and progression of ALI by inhibiting Txnip/NLRP3/Caspase-1/GSDMD signaling-mediated inflammatory responses and pyroptosis. These findings emphasize the significant role of SIN in ameliorating ALI and provide insights into the strategy for exploring the functional effects of foods.
Collapse
Affiliation(s)
- Zaibin Xu
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China.
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Huiyu Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Kongyan Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Ziyi Zhou
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510422, China
| | - Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510422, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510422, China
| | - Yingjie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zhuohui Luo
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China.
- Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
38
|
Xu Z, Li J, Zhou K, Wang K, Hu H, Hu Y, Gao Y, Luo Z, Huang J. Exocarpium Citri Grandis ameliorates LPS-induced acute lung injury by suppressing inflammation, NLRP3 inflammasome, and ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118162. [PMID: 38588989 DOI: 10.1016/j.jep.2024.118162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Exocarpium Citri Grandis (ECG), the epicarp of C. grandis 'Tomentosa' which is also known as Hua-Ju-Hong in China, has been widely used for thousands of years to treat inflammatory lung disorders such as asthma, and cough as well as dispelling phlegm. However, its underlying pharmacological mechanisms in acute lung injury (ALI) remain unclear. AIM OF THE STUDY To explore the therapeutic effect of ECG on ALI and reveal the potential mechanisms based on experimental techniques in vivo and in vitro. MATERIALS AND METHODS Lipopolysaccharides (LPS) induced ALI in mice and induced RAW 264.7 cell inflammatory model were established to investigate the pharmacodynamics of ECG. ELISA kits, commercial kits, Western Blot, qPCR, Hematoxylin and Eosin (H&E) staining, immunohistochemistry, and immunofluorescence technologies were used to evaluate the pharmacological mechanisms of ECG in ameliorating ALI. RESULTS ECG significantly attenuated pulmonary edema in LPS-stimulated mice and decreased the levels of IL1β, IL6, and TNF-α in serum and BALF, reduced MDA and iron concentration as well as increased SOD and GSH levels in lung tissues, and also decreased the ROS level in BALF and Lung tissue. Further pharmacological mechanism studies showed that ECG significantly inhibited mRNA expression of inflammatory signaling factors and chemokines, and down-regulated the expression of TLR4, MyD88, NF-κB p65, NF-κB p-p65 (S536), COX2, iNOS, Txnip, NLRP3, ASC, Caspase-1, JAK1, p-JAK1 (Y1022), JAK2, STAT1, p-STAT1 (S727), STAT3, p-STAT3 (Y705), STAT4, p-STAT4 (Y693), and Keap1, and also up-regulated the expression of Trx-1, Nrf2, HO-1, NQO1, GPX4, PCBP1, and SLC40A1. In the LPS-induced RAW264.7 cell inflammatory model, ECG showed similar results to animal experiments. CONCLUSIONS Our results showed that ECG alleviated ALI by inhibiting TLR4/MyD88/NF-κB p65 and JAK/STAT signaling pathway-mediated inflammatory response, Txnip/NLRP3 signaling pathway-mediated inflammasome activation, and regulating Nrf2/GPX4 axis-mediated ferroptosis. Our findings provide an experimental basis for the application of ECG.
Collapse
Affiliation(s)
- Zaibin Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiayu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Kaili Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Kongyan Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Huiyu Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yingjie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zhuohui Luo
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou, 571199, China; Hainan Pharmaceutical Research and Development Science Park, Haikou, 571199, China.
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
39
|
Jeong JS, Kim JW, Kim JH, Kim CY, Chung EH, Cho YE, Hong EJ, Kwon HJ, Ko JW, Kim TW. The absence of thioredoxin-interacting protein in alveolar cells exacerbates asthma during obesity. Redox Biol 2024; 73:103193. [PMID: 38781728 PMCID: PMC11145548 DOI: 10.1016/j.redox.2024.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Obesity is associated with an increased incidence of asthma. However, the mechanisms underlying this association are not fully understood. In this study, we investigated the role of thioredoxin-interacting protein (TXNIP) in obesity-induced asthma. Asthma was induced by intranasal injection of a protease from Aspergillus oryzae in normal diet (ND)- or high fat diet (HFD)-fed mice to investigate the symptoms. We measured TXNIP expression in the lungs of patients with asthma and in ND or HFD asthmatic mice. To explore the role of TXNIP in asthma pathogenesis, we induced asthma in the same manner in alveolar type 2 cell-specific TXNIP deficient (TXNIPCre) mice. In addition, the expression levels of pro-inflammatory cytokines were compared based on TXNIP gene expression in A549 cells stimulated with recombinant human tumor necrosis factor alpha. Compared to ND-fed mice, HFD-fed mice had elevated levels of free fatty acids and adipokines, resulting in high reactive oxygen species levels and more severe asthma symptoms. TXNIP expression was increased in both, asthmatic patients and HFD asthmatic mice. However, in experiments using TXNIPCre mice, despite being TXNIP deficient, TXNIPCre mice exhibited exacerbated asthma symptoms. Consistent with this, in vitro studies showed highest expression levels of pro-inflammatory cytokines in TXNIP-silenced cells. Overall, our findings suggest that increased TXNIP levels in obesity-induced asthma is compensatory to protect against inflammatory responses.
Collapse
Affiliation(s)
- Ji-Soo Jeong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Jeong-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Jin-Hwa Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Chang-Yeop Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea; Inhalation Toxicology, Jeongeup Campus, KIT, Jeongeupsi, Jelabukdo, 580-185, Republic of Korea
| | - Eun-Hye Chung
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Young-Eun Cho
- Andong National University, Andong, 36729, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Hyo-Jung Kwon
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea.
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea.
| |
Collapse
|
40
|
Abdullah NA, Md Hashim NF, Muhamad Zakuan N, Chua JX. Thioredoxin system in colorectal cancer: Its role in carcinogenesis, disease progression, and response to treatment. Life Sci 2024; 348:122711. [PMID: 38734065 DOI: 10.1016/j.lfs.2024.122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The thioredoxin system is essential for many physiological processes, including the maintenance of redox signalling pathways. Alterations in the activity, expression and interactions with other signalling pathways can lead to protective or pathophysiological responses. Thioredoxin and thioredoxin reductase, the two main components of this system, are often overexpressed in cancer, including colorectal cancer. This overexpression is often linked with tumour progression and poor outcomes. This review discusses the role of the Trx system in driving colorectal carcinogenesis and disease progression, as well as the challenges of targeting this system. Additionally, the recent advancements in the development of novel and effective thioredoxin inhibitors for colorectal cancer are also explored.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Noraina Muhamad Zakuan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Jia Xin Chua
- Department of Pre-clinical Sciences, University Tunku Abdul Rahman, 43000, Selangor, Malaysia.
| |
Collapse
|
41
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Pyroptosis in Diabetic Peripheral Neuropathy and its Therapeutic Regulation. J Inflamm Res 2024; 17:3839-3864. [PMID: 38895141 PMCID: PMC11185259 DOI: 10.2147/jir.s465203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Pyroptosis is a pro-inflammatory form of cell death resulting from the activation of gasdermins (GSDMs) pore-forming proteins and the release of several pro-inflammatory factors. However, inflammasomes are the intracellular protein complexes that cleave gasdermin D (GSDMD), leading to the formation of robust cell membrane pores and the initiation of pyroptosis. Inflammasome activation and gasdermin-mediated membrane pore formation are the important intrinsic processes in the classical pyroptotic signaling pathway. Overactivation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome triggers pyroptosis and amplifies inflammation. Current evidence suggests that the overactivation of inflammasomes and pyroptosis may further induce the progression of cancers, nerve injury, inflammatory disorders and metabolic dysfunctions. Current evidence also indicates that pyroptosis-dependent cell death accelerates the progression of diabetes and its frequent consequences including diabetic peripheral neuropathy (DPN). Pyroptosis-mediated inflammatory reaction further exacerbates DPN-mediated CNS injury. Accumulating evidence shows that several molecular signaling mechanisms trigger pyroptosis in insulin-producing cells, further leading to the development of DPN. Numerous studies have suggested that certain natural compounds or drugs may possess promising pharmacological properties by modulating inflammasomes and pyroptosis, thereby offering potential preventive and practical therapeutic approaches for the treatment and management of DPN. This review elaborates on the underlying molecular mechanisms of pyroptosis and explores possible therapeutic strategies for regulating pyroptosis-regulated cell death in the pharmacological treatment of DPN.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| |
Collapse
|
42
|
Tan X, Long Y, Zhang R, Zhang Y, You Z, Yang L. Punicalagin Ameliorates Diabetic Liver Injury by Inhibiting Pyroptosis and Promoting Autophagy via Modulation of the FoxO1/TXNIP Signaling Pathway. Mol Nutr Food Res 2024; 68:e2300912. [PMID: 38847553 DOI: 10.1002/mnfr.202300912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/29/2024] [Indexed: 07/04/2024]
Abstract
Diabetic liver injury (DLI) is one of the complications of diabetes mellitus, which seriously jeopardizes human health. Punicalagin (PU), a polyphenolic compound mainly found in pomegranate peel, has been shown to ameliorate metabolic diseases such as DLI, and the mechanism needs to be further explored. In this study, a HFD/STZ-induced diabetic mouse model is established to investigate the effect and mechanism of PU on DLI. The results show that PU intervention significantly improves liver histology and serum biochemical abnormalities in diabetic mice, significantly inhibits the expression of pyroptosis-related proteins such as NLRP3, Caspase1, IL-1β, and GSDMD in the liver of diabetic mice, and up-regulated the expression of autophagy-related proteins. Meanwhile, PU treatment significantly increases FoxO1 protein expression and inhibits TXNIP protein expression in the liver of diabetic mice. The above results are further verified in the HepG2 cell injury model induced by high glucose. AS1842856 is a FoxO1 specific inhibitor. The intervention of AS1842856 combined with PU reverses the regulatory effects of PU on pyroptosis and autophagy in HepG2 cells. In conclusion, this study demonstrates that PU may inhibit pyroptosis and upregulate autophagy by regulating FoxO1/TXNIP signaling, thereby alleviating DLI.
Collapse
Affiliation(s)
- Xiuying Tan
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Yi Long
- Children's Medical Center, People's Hospital, Hunan Province, Changsha, 410005, China
| | - Rou Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Yuhan Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Ziyi You
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Lina Yang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| |
Collapse
|
43
|
Yang T, Qi F, Guo F, Shao M, Song Y, Ren G, Linlin Z, Qin G, Zhao Y. An update on chronic complications of diabetes mellitus: from molecular mechanisms to therapeutic strategies with a focus on metabolic memory. Mol Med 2024; 30:71. [PMID: 38797859 PMCID: PMC11128119 DOI: 10.1186/s10020-024-00824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetes mellitus, a chronic metabolic disease, often leads to numerous chronic complications, significantly contributing to global morbidity and mortality rates. High glucose levels trigger epigenetic modifications linked to pathophysiological processes like inflammation, immunity, oxidative stress, mitochondrial dysfunction, senescence and various kinds of cell death. Despite glycemic control, transient hyperglycemia can persistently harm organs, tissues, and cells, a latent effect termed "metabolic memory" that contributes to chronic diabetic complications. Understanding metabolic memory's mechanisms could offer a new approach to mitigating these complications. However, key molecules and networks underlying metabolic memory remain incompletely understood. This review traces the history of metabolic memory research, highlights its key features, discusses recent molecules involved in its mechanisms, and summarizes confirmed and potential therapeutic compounds. Additionally, we outline in vitro and in vivo models of metabolic memory. We hope this work will inform future research on metabolic memory's regulatory mechanisms and facilitate the development of effective therapeutic compounds to prevent diabetic complications.
Collapse
Affiliation(s)
- Tongyue Yang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Feng Qi
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Gaofei Ren
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhao Linlin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
44
|
Wu W, Li J, Yin Y, Zhou Y, Huang X, Cao Y, Chen X, Zhou Y, Du J, Xu Z, Yang B, He Q, Yang X, Hu Y, Yan H, Luo P. Rutin attenuates ensartinib-induced hepatotoxicity by non-transcriptional regulation of TXNIP. Cell Biol Toxicol 2024; 40:38. [PMID: 38789868 PMCID: PMC11126486 DOI: 10.1007/s10565-024-09883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Ensartinib, an approved ALK inhibitor, is used as a first-line therapy for advanced ALK-positive non-small cell lung cancer in China. However, the hepatotoxicity of ensartinib seriously limits its clinical application and the regulatory mechanism is still elusive. Here, through transcriptome analysis we found that transcriptional activation of TXNIP was the main cause of ensartinib-induced liver dysfunction. A high TXNIP level and abnormal TXNIP translocation severely impaired hepatic function via mitochondrial dysfunction and hepatocyte apoptosis, and TXNIP deficiency attenuated hepatocyte apoptosis under ensartinib treatment. The increase in TXNIP induced by ensartinib is related to AKT inhibition and is mediated by MondoA. Through screening potential TXNIP inhibitors, we found that the natural polyphenolic flavonoid rutin, unlike most reported TXNIP inhibitors can inhibit TXNIP by binding to TXNIP and partially promoting its proteasomal degradation. Further studies showed rutin can attenuate the hepatotoxicity of ensartinib without antagonizing its antitumor effects. Accordingly, we suggest that TXNIP is the key cause of ensartinib-induced hepatotoxicity and rutin is a potential clinically safe and feasible therapeutic strategy for TXNIP intervention.
Collapse
Affiliation(s)
- Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Jinjin Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Yiming Yin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Yourong Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Yashi Cao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Xueqin Chen
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310002, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yunfang Zhou
- The Laboratory of Clinical Pharmacy, the Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323020, China
| | - Jiangxia Du
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310017, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Yuhuai Hu
- Innovation Institute of Hangzhou Yuhong Pharmatech Co.,LTD, Hangzhou, 310018, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China.
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Zhejiang, 310058, Hangzhou, China.
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310018, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
| |
Collapse
|
45
|
Ye H, Wang K, Ma J, Cui S, Guo J, Yang K, Lyu L. SALVIANOLIC ACID A ATTENUATES ANGIOTENSIN II-INDUCED CARDIAC FIBROSIS THROUGH REGULATING THE TXNIP SIGNALING PATHWAY. Shock 2024; 61:748-757. [PMID: 38662612 DOI: 10.1097/shk.0000000000002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
ABSTRACT Cardiac fibrosis, characterized by excessive collagen accumulation in heart tissues, poses a significant clinical challenge in various heart diseases and complications. Although salvianolic acid A (Sal A) from Danshen ( Salvia miltiorrhiza ) has shown promise in the treatment of ischemic heart disease, myocardial infarction, and atherosclerosis, its effects on cardiac fibrosis remain unexplored. Our study investigated the efficacy of Sal A in reducing cardiac fibrosis and elucidated its underlying molecular mechanisms. We observed that Sal A demonstrated significant cardioprotective effects against Angiotensin II (Ang II)-induced cardiac remodeling and fibrosis, showing a dose-dependent reduction in fibrosis in mice and suppression of cardiac fibroblast proliferation and fibrotic protein expression in vitro . RNA sequencing revealed that Sal A counteracted Ang II-induced upregulation of Txnip, and subsequent experiments indicated that it acts through the inflammasome and ROS pathways. These findings establish the antifibrotic effects of Sal A, notably attenuated by Txnip overexpression, and highlight its significant role in modulating inflammation and oxidative stress pathways. This underscores the importance of further research on Sal A and similar compounds, especially regarding their effects on inflammation and oxidative stress, which are key factors in various cardiovascular diseases.
Collapse
|
46
|
Dagah OMA, Silaa BB, Zhu M, Pan Q, Qi L, Liu X, Liu Y, Peng W, Ullah Z, Yudas AF, Muhammad A, Zhang X, Lu J. Exploring Immune Redox Modulation in Bacterial Infections: Insights into Thioredoxin-Mediated Interactions and Implications for Understanding Host-Pathogen Dynamics. Antioxidants (Basel) 2024; 13:545. [PMID: 38790650 PMCID: PMC11117976 DOI: 10.3390/antiox13050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial infections trigger a multifaceted interplay between inflammatory mediators and redox regulation. Recently, accumulating evidence has shown that redox signaling plays a significant role in immune initiation and subsequent immune cell functions. This review addresses the crucial role of the thioredoxin (Trx) system in the initiation of immune reactions and regulation of inflammatory responses during bacterial infections. Downstream signaling pathways in various immune cells involve thiol-dependent redox regulation, highlighting the pivotal roles of thiol redox systems in defense mechanisms. Conversely, the survival and virulence of pathogenic bacteria are enhanced by their ability to counteract oxidative stress and immune attacks. This is achieved through the reduction of oxidized proteins and the modulation of redox-sensitive signaling pathways, which are functions of the Trx system, thereby fortifying bacterial resistance. Moreover, some selenium/sulfur-containing compounds could potentially be developed into targeted therapeutic interventions for pathogenic bacteria. Taken together, the Trx system is a key player in redox regulation during bacterial infection, and contributes to host-pathogen interactions, offering valuable insights for future research and therapeutic development.
Collapse
Affiliation(s)
- Omer M. A. Dagah
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Billton Bryson Silaa
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Minghui Zhu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Qiu Pan
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Linlin Qi
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Xinyu Liu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Yuqi Liu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Wenjing Peng
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Zakir Ullah
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Appolonia F. Yudas
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | - Amir Muhammad
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (O.M.A.D.); (B.B.S.); (M.Z.); (Q.P.); (L.Q.); (X.L.); (Y.L.); (W.P.); (Z.U.); (A.F.Y.); (A.M.)
| |
Collapse
|
47
|
Dai C, Zhang H, Zheng Z, Li CG, Ma M, Gao H, Zhang Q, Jiang F, Cui X. Identification of a distinct cluster of GDF15 high macrophages induced by in vitro differentiation exhibiting anti-inflammatory activities. Front Immunol 2024; 15:1309739. [PMID: 38655264 PMCID: PMC11036887 DOI: 10.3389/fimmu.2024.1309739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Macrophage-mediated inflammatory response may have crucial roles in the pathogenesis of a variety of human diseases. Growth differentiation factor 15 (GDF15) is a cytokine of the transforming growth factor-β superfamily, with potential anti-inflammatory activities. Previous studies observed in human lungs some macrophages which expressed a high level of GDF15. Methods In the present study, we employed multiple techniques, including immunofluorescence, flow cytometry, and single-cell RNA sequencing, in order to further clarify the identity of such GDF15high macrophages. Results We demonstrated that macrophages derived from human peripheral blood mononuclear cells and rat bone marrow mononuclear cells by in vitro differentiation with granulocyte-macrophage colony stimulating factor contained a minor population (~1%) of GDF15high cells. GDF15high macrophages did not exhibit a typical M1 or M2 phenotype, but had a unique molecular signature as revealed by single-cell RNA sequencing. Functionally, the in vitro derived GDF15high macrophages were associated with reduced responsiveness to pro-inflammatory activation; furthermore, these GDF15high macrophages could inhibit the pro-inflammatory functions of other macrophages via a paracrine mechanism. We further confirmed that GDF15 per se was a key mediator of the anti-inflammatory effects of GDF15high macrophage. Also, we provided evidence showing that GDF15high macrophages were present in other macrophage-residing human tissues in addition to the lungs. Further scRNA-seq analysis in rat lung macrophages confirmed the presence of a GDF15high sub-population. However, these data indicated that GDF15high macrophages in the body were not a uniform population based on their molecular signatures. More importantly, as compared to the in vitro derived GDF15high macrophage, whether the tissue resident GDF15high counterpart is also associated with anti-inflammatory functions remains to be determined. We cannot exclude the possibility that the in vitro priming/induction protocol used in our study has a determinant role in inducing the anti-inflammatory phenotype in the resulting GDF15high macrophage cells. Conclusion In summary, our results suggest that the GDF15high macrophage cells obtained by in vitro induction may represent a distinct cluster with intrinsic anti-inflammatory functions. The (patho)physiological importance of these cells in vivo warrants further investigation.
Collapse
Affiliation(s)
- Chaochao Dai
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongyu Zhang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhijian Zheng
- Key Laboratory of Cardiovascular Remodeling and Function Research (Chinese Ministry of Education and Chinese National Health Commission), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Mingyuan Ma
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haiqing Gao
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research (Chinese Ministry of Education and Chinese National Health Commission), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fan Jiang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaopei Cui
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
48
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
49
|
Jiang Y, Dong B, Jiao X, Shan J, Fang C, Zhang K, Li D, Xu C, Zhang Z. Nano‑selenium alleviates the pyroptosis of cardiovascular endothelial cells in chicken induced by decabromodiphenyl ether through ERS-TXNIP-NLRP3 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170129. [PMID: 38242456 DOI: 10.1016/j.scitotenv.2024.170129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Decabromodiphenyl ether (BDE-209) is one of the most widely used flame retardants that can infect domestic and wildlife through contaminated feed. Nano‑selenium (Nano-Se) has the advantage of enhancing the anti-oxidation of cells. Nonetheless, it remains uncertain whether Nano-Se can alleviate vascular Endothelial cells damage caused by BDE-209 exposure in chickens. Therefore, we established a model with 60 1-day-old chickens, and administered BDE-209 intragastric at a ratio of 400 mg/kg bw/d, and mixed Nano-Se intervention at a ratio of 1 mg/kg in the feed. The results showed that BDE-209 could induce histopathological and ultrastructural changes. Additionally, exposure to BDE-209 led to cardiovascular endoplasmic reticulum stress (ERS), oxidative stress and thioredoxin-interacting protein (TXNIP)-pyrin domain-containing protein 3 (NLRP3) pathway activation, ultimately resulting in pyroptosis. Using the ERS inhibitor 4-PBA in Chicken arterial endothelial cells (PAECs) can significantly reverse these changes. The addition of Nano-Se can enhance the body's antioxidant capacity, inhibit the activation of NLRP3 inflammasome, and reduce cellular pyroptosis. These results suggest that Nano-Se can alleviate the pyroptosis of cardiovascular endothelial cells induced by BDE-209 through ERS-TXNIP-NLRP3 pathway. This study provides new insights into the toxicity of BDE-209 in the cardiovascular system and the therapeutic effects of Nano-Se.
Collapse
Affiliation(s)
- Yangyang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Bowen Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xing Jiao
- China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China
| | - Jianhua Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaixuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Di Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chenchen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
50
|
Gong F, Wei Y. LncRNA PVT1 promotes neuroinflammation after intracerebral hemorrhage by regulating the miR-128-3p/TXNIP axis. Int J Neurosci 2024:1-15. [PMID: 38294729 DOI: 10.1080/00207454.2024.2312998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) has significant morbidity and mortality. TXNIP and the competing endogenous RNA (ceRNA) regulatory mechanism involved in long non-coding RNA (lncRNA) play roles in ICH. We probed the upstream microRNAs (miRNAs)/lncRNAs that regulated TXNIP expression in the ceRNA mechanism. METHODS ICH mouse model was established, and ICH secondary injury was simulated in BV2 microglia by hemin treatment. TXNIP was silenced 48 h before ICH modeling. The ICH mouse brain water content (BWC) and brain lesion volume after ICH were recorded. Neuronal apoptosis and neurological deficits were evaluated by double staining of NeuN and TUNEL/modified Garcia/corner turn/forelimb placement tests. Iba1 + microglia number and tumor necrosis factor-α (TNF-α)/interleukin-1β (IL-1β)/IL-10/TXNIP/PVT1/miR-128-3p levels were assessed by immunohistochemistry, Western blot, ELISA, and RT-qPCR. Cell viability/death of BV2 cells conditioned medium-treated neuron HT22 cells were assessed by CCK-8/LDH assays. miRNA that had a targeted binding relationship with TXNIP was screened. The targeted bindings of miR-128-3p to TXNIP/PVT1 to miR-128-3p were verified by dual-luciferase reporter gene assay. RESULTS TXNIP knockdown reduced post-ICH microglial activation/release of pro-inflammatory factors/brain edema/brain lesion volume/neurological deficits in mice and increased releases of anti-inflammatory factors. TXNIP/PVT1 knockdown inhibited hemin-induced inflammatory responses in BV2 cells and protected in vitro co-cultured HT22 cells. PVT1 was a sponge of miR-128-3p to repress TXNIP expression. miR-128-3p knockdown diminished PVT1 knockdown-inhibited hemin-induced BV2 cell inflammatory responses/neurotoxicity. CONCLUSIONS PVT1 silencing reduced hemin-induced neuroinflammation and had a protective effect on neurons by increasing the targeted inhibition of TXNIP by miR-128-3p.
Collapse
Affiliation(s)
- Fanyong Gong
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yiting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|