1
|
Su KK, Yu DC, Cao XF, Li P, Chang L, Yu XL, Li ZQ, Li M. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Alleviate Nuclear Pulposus Cells Degeneration Through the miR-145a-5p/USP31/HIF-1α Signaling Pathway. Stem Cell Rev Rep 2024; 20:2268-2282. [PMID: 39212824 DOI: 10.1007/s12015-024-10781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Bone marrow mesenchymal stem cell (BMSC)-derived exosomes possess therapeutic potential against degenerative diseases. This study aimed to investigate the effects of BMSC-derived exosomes on intervertebral disc degeneration (IVDD) and explore the underlying molecular mechanisms. Through transcriptome sequencing and histological analysis, we observed a significant increase in HIF-1α expression in degenerative nucleus pulposus (NP) tissues. The addition of HIF-1α resulted in elevated expression of inflammatory factors IL-1β and IL-6, higher levels of matrix-degrading enzyme MMP13, and lower expression of aggrecan in NP cells. Co-culturing with BMSCs diminished the expression of HIF-1α, MMP13, IL-1β, and IL-6 in degenerative NP cells induced by overload pressure. miRNA chip analysis and PCR validation revealed that miR-145a-5p was the primary miRNA carried by BMSC-derived exosomes. Overexpression of miR-145a-5p was effective in minimizing the expression of HIF-1α, MMP13, IL-1β, and IL-6 in degenerative NP cells. Luciferase reporter assays confirmed USP31 as the target gene of miR-145a-5p, and the regulation of NP cells by BMSC-derived exosomes via miR-145a-5p was dependent on USP31. In conclusion, BMSC-derived exosomes alleviated IVDD through the miR-145a-5p/USP31/HIF-1α signaling pathway, providing valuable insights into the treatment of IVDD.
Collapse
Affiliation(s)
- Kang-Kang Su
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - De-Chen Yu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - Xiong-Fei Cao
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - Pan Li
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - Le Chang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China
| | - Xiao-Lei Yu
- Department of Cardiology, Air Force Medical University Tangdu Hospital, Xi'an710000, China
| | - Zhi-Quan Li
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China.
| | - Mo Li
- Department of Orthopedics, The First Affiliated Hospital of Air Force Medical University, Xi'an710000, China.
| |
Collapse
|
2
|
Zhao Y, Xia Q, Zhu L, Xia J, Xiang S, Mao Q, Dong H, Weng Z, Liao W, Xin Z. Mapping knowledge structure and themes trends of non-surgical treatment in intervertebral disc degeneration. Heliyon 2024; 10:e36509. [PMID: 39286189 PMCID: PMC11402762 DOI: 10.1016/j.heliyon.2024.e36509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a chronic disabling disease caused by degeneration of nucleus pulposus cells, decreased activity and the number of nucleus pulposus cells, decreased extracellular matrix, and infiltration of inflammatory factors, resulting in low back and leg pain. Recent studies have shown that non-surgical treatment is of great significance in reversing the progression of degenerative disc disease, and there are more relevant literature reports. However, there is no bibliometric analysis in this area. This study aimed to describe the knowledge structure and thematic trends of non-surgical treatment methods for IDD through bibliometrics. Methods Articles and reviews on non-surgical treatment of disc degeneration from 1998 to 2022 were collected on the Web of Science. VOSviewer 1.6.18, CiteSpace 6.1.R3, R package "bibliometrix" and two online analysis platforms were used for bibliometric and visual literature analysis. Results 961 articles were screened for inclusion, including 821 articles and 140 reviews. The analysis of our study shows that publications in the non-surgical treatment of disc degeneration are increasing annually, with publications coming mainly from North America and Asia, with China and the United States dominating. Huazhong Univ Sci & Technol and Wang K are the most prolific institutions and authors, respectively, and Le Maitre CL is the most co-cited author. However, there is less collaboration between institutions in different countries. Spine is both the most published and the most cited journal. According to the co-citation and co-occurrence analysis results, "mesenchymal stem cells," "exosomes," "medication," and "tissue engineering" are the current research hotspots in this field. Conclusions This study employs bibliometric analysis to explore the knowledge structure and trends of non-surgical treatments for IDD from 2013 to 2022. Key research hotspots include mesenchymal stem cells, exosomes, medication, and tissue engineering. The number of publications, especially from China and the USA, has increased significantly, though international collaboration needs improvement. Influential contributors include Wang K and the journal Spine. These findings provide a comprehensive overview and highlight important future directions for the field.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shaojie Xiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
3
|
Mangiavacchi A, Morelli G, Reppe S, Saera-Vila A, Liu P, Eggerschwiler B, Zhang H, Bensaddek D, Casanova EA, Medina Gomez C, Prijatelj V, Della Valle F, Atinbayeva N, Izpisua Belmonte JC, Rivadeneira F, Cinelli P, Gautvik KM, Orlando V. LINE-1 RNA triggers matrix formation in bone cells via a PKR-mediated inflammatory response. EMBO J 2024; 43:3587-3603. [PMID: 38951609 PMCID: PMC11377738 DOI: 10.1038/s44318-024-00143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic modules of viral derivation that have been co-opted to become modulators of mammalian gene expression. TEs are a major source of endogenous dsRNAs, signaling molecules able to coordinate inflammatory responses in various physiological processes. Here, we provide evidence for a positive involvement of TEs in inflammation-driven bone repair and mineralization. In newly fractured mice bone, we observed an early transient upregulation of repeats occurring concurrently with the initiation of the inflammatory stage. In human bone biopsies, analysis revealed a significant correlation between repeats expression, mechanical stress and bone mineral density. We investigated a potential link between LINE-1 (L1) expression and bone mineralization by delivering a synthetic L1 RNA to osteoporotic patient-derived mesenchymal stem cells and observed a dsRNA-triggered protein kinase (PKR)-mediated stress response that led to strongly increased mineralization. This response was associated with a strong and transient inflammation, accompanied by a global translation attenuation induced by eIF2α phosphorylation. We demonstrated that L1 transfection reshaped the secretory profile of osteoblasts, triggering a paracrine activity that stimulated the mineralization of recipient cells.
Collapse
Affiliation(s)
- Arianna Mangiavacchi
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| | - Gabriele Morelli
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Sjur Reppe
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
- Oslo University Hospital, Department of Plastic and Reconstructive Surgery, Oslo, Norway
| | | | - Peng Liu
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Benjamin Eggerschwiler
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Huoming Zhang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Elisa A Casanova
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | | | - Vid Prijatelj
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
- Altos Labs, San Diego, CA, USA
| | - Nazerke Atinbayeva
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | | | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Paolo Cinelli
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
4
|
Zhang X, Liu T, Ran C, Wang W, Piao F, Yang J, Tian S, Li L, Zhao D. Immunoregulatory paracrine effect of mesenchymal stem cells and mechanism in the treatment of osteoarthritis. Front Cell Dev Biol 2024; 12:1411507. [PMID: 39129785 PMCID: PMC11310049 DOI: 10.3389/fcell.2024.1411507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease caused by chronic inflammation that damages articular cartilage. At present, the treatment of OA includes drug therapy to relieve symptoms and joint replacement therapy for advanced OA. However, these palliatives cannot truly block the progression of the disease from the immunological pathogenesis of OA. In recent years, bone marrow mesenchymal stem cell (BMSC) transplantation has shown great potential in tissue engineering repair. In addition, many studies have shown that BMSC paracrine signals play an important role in the treatment of OA through immune regulation and suppressing inflammation. At present, the mechanism of inflammation-induced OA and the use of BMSC transplantation in joint repair have been reviewed, but the mechanism and significance of BMSC paracrine signals in the treatment of OA have not been fully reviewed. Therefore, this article focused on the latest research progress on the paracrine effects of BMSCs in the treatment of OA and the related mechanisms by which BMSCs secrete cytokines to inhibit the inflammatory response, regulate immune balance, and promote cell proliferation and differentiation. In addition, the application potential of BMSC-Exos as a new type of cell-free therapy for OA is described. This review aimed to provide systematic theoretical support for the clinical application of BMSC transplantation in the treatment of OA.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Tianhao Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chunxiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Weidan Wang
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Fengyuan Piao
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Jiahui Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Simiao Tian
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Lu Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Tian Z, Gao H, Xia W, Lou Z. S1PR3 suppresses the inflammatory response and extracellular matrix degradation in human nucleus pulposus cells. Exp Ther Med 2024; 27:265. [PMID: 38756905 PMCID: PMC11097297 DOI: 10.3892/etm.2024.12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 05/18/2024] Open
Abstract
Sphingosine 1-phosphate receptor 3 (S1PR3) participates in the inflammatory response in multiple types of diseases. However, the biological role of S1PR3 in intervertebral disc degeneration and the underlying mechanism are unclear. The aim of the present study was to investigate the functional role and the mechanism of S1PR3 in lipopolysaccharide (LPS)-induced human nucleus pulposus cells. The expression of S1PR3 and Toll-like receptor (TLR) 2 in LPS-induced nucleus pulposus (NP) cells was investigated using western blotting. The Cell Counting Kit-8 assay was used to detect cell proliferation, and the levels of inflammatory factors were detected using ELISA. Flow cytometry and western blotting were used for the assessment of apoptosis. The deposition of extracellular matrix (ECM) proteins was investigated using reverse transcription-quantitative PCR and western blotting. In addition, western blotting was used to investigate the protein expression levels of phosphorylated (p)-STAT3, STAT3, p-JNK, JNK, p-ERK, ERK, p-p38 and p38associated with STAT3 and MAPK signaling. S1PR3 expression was reduced, while TLR2 expression was elevated in LPS-induced human nucleus pulposus cells (HNPC). S1PR3 overexpression increased HNPC viability, inhibited the inflammatory response and suppressed apoptosis. Meanwhile, S1PR3 overexpression regulated the expression of ECM-related proteins. Additionally, overexpression of S1PR3 inhibited the expression of the TLR2-regulated STAT3 and MAPK pathways in LPS-induced HNPCs. Furthermore, TLR2 overexpression partially offset the impacts of S1PR3 overexpression on HNPC viability, apoptosis level, inflammation and as ECM degradation. In conclusion, STAT3 overexpression suppressed viability injury, the inflammatory response and the level of apoptosis and alleviated ECM protein deposition in HNPCs through the TLR2/STAT3 and TLR2/MAPK pathways, which may offer a promising candidate for the amelioration of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Haoran Gao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenjun Xia
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaohui Lou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
6
|
Zhong H, Li M, Wu H, Ying H, Zhong M, Huang M. Silencing DDX3 Attenuates Interleukin-1β-Induced Intervertebral Disc Degeneration Through Inhibiting Pyroptosis. Inflammation 2024:10.1007/s10753-024-02042-1. [PMID: 38735906 DOI: 10.1007/s10753-024-02042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a common disorder associated with chronic inflammation and cell death. In this study, an IVDD rat model was created through Interleukin-1β (IL-1β) injection. The degeneration of intervertebral disc tissues was assessed using magnetic resonance imaging (MRI), followed by hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining. RNA sequencing was performed to identify differentially expressed genes (DEGs) between the IVDD model and control rats. The expression levels of DEGs (DEAD-box polypeptide 3 (DDX3), lysine-specific demethylase 5D (KDM5D), interferon-induced gene-1 (IFIT1), ribosomal protein S10 (RPS10), tenomodulin (TNMD), and pentraxin 3 (PTX3)) were measured by real-time quantitative polymerase chain reaction (RT-qPCR). The regulatory effect of DDX3 on pyroptosis in IL-1β-treated nucleus pulpous (NP) cells was assessed after transfection with siRNA of DDX3. A total of 601 DEGs were identified from the IVDD model rat, and were abundant in extracellular matrix (ECM) organization, ECM-receptor interaction, and inflammatory pathways, including the PI3K-Akt, TNF, and AMPK signaling pathways. DDX3, KDM5D, and IFIT1 levels were notably elevated, whereas RPS10, TNMD, and PTX3 levels were decreased in the IL-1β-induced IVDD rat model. Moreover, silencing DDX3 promoted cell proliferation and abolished IL-1β-induced cell apoptosis and pyroptosis. This study revealed the role of DDX3 in IVDD pyroptosis, providing potential target for IVDD management.
Collapse
Affiliation(s)
- Hongfa Zhong
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China.
| | - Mingheng Li
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| | - Haijian Wu
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| | - Hui Ying
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| | - Mingliang Zhong
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| | - Mouzhang Huang
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| |
Collapse
|
7
|
Chen X, Cai D, Li H, Wei Q, Li X, Han Z, Liang J, Xie J, Ruan J, Liu J, Xiang Z, Dong W, Guo W. Exosomal U2AF2 derived from human bone marrow mesenchymal stem cells attenuates the intervertebral disc degeneration through circ_0036763/miR-583/ACAN axis. Regen Ther 2024; 25:344-354. [PMID: 38362337 PMCID: PMC10867602 DOI: 10.1016/j.reth.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is one of the major leading causes of back pain affecting the patient's quality of life. However, the roles of circular RNA (circRNA) in IDD remains unclear. This study aimed to explore the function and underlying mechanism of circ_0036763 in IDD. In this study, expressions of circ_0036763, U2 small nuclear RNA auxiliary factor 2 (U2AF2), miR-583 and aggrecan (ACAN) in primary human nucleus pulposus cells (HNPCs) derived from IDD patients and healthy controls were detected by quantitative real-time reverse transcription-PCR (qRT-PCR) or Western blot (WB). The relationship between pre-circ_0036763 and U2AF2, circ_0036763 and miR-583, miR-583 and ACAN mRNA was determined by bioinformatic analysis, miRNA pull down or RNA immunoprecipitation (RIP) assay. The expressions of Collagen I and Collagen II were evaluated by WB. Co-culture of bone marrow mesenchymal stem cells (bMSCs) or bMSCs-derived exosomes and HNPCs were performed to identify the effect of U2AF2 on the mature of circ_0036763 and ACAN. Results indicated that circ_0036763, U2AF2 and ACAN were downregulated while miR-583 was upregulated in HNPCs derived from IDD patients compared with that in normal HNPCs. Besides, overexpression of circ_0036763 elevated the expressions of ACAN and Collagen II whereas reduced Collagen I expression in HNPCs. Moreover, U2AF2 promoted the mature of circ_0036763, and circ_0036763 positively regulated ACAN by directly sponging miR-583. Furthermore, exosomal U2AF2 derived from bMSCs could increase U2AF2 levels in HNPCs and subsequently regulate the expression of ACAN by circ_0036763/miR-583 axis. In summary, circ_0036763 modified by exosomal U2AF2 derived from bMSCs alleviated IDD through regulating miR-583/ACAN axis in HNPCs. Thus, this study might provide novel therapeutic targets for IDD.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Dongling Cai
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Hao Li
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Qipeng Wei
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Xi Li
- Department of Dermatology, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Zhuangxun Han
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Jinjun Liang
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Junxian Xie
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| | - Jiajian Ruan
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Jincheng Liu
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Zhen Xiang
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Wenxuan Dong
- Guangzhou University of Chinese Medicine, No.12 Jichang Road, Baiyun Disitrct, Guangzhou 510405, China
| | - Weijun Guo
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, No.93 and 65 Qiaodong Road, Panyu District, Guangzhou 511400, China
| |
Collapse
|
8
|
Du X, Liang K, Ding S, Shi H. Signaling Mechanisms of Stem Cell Therapy for Intervertebral Disc Degeneration. Biomedicines 2023; 11:2467. [PMID: 37760908 PMCID: PMC10525468 DOI: 10.3390/biomedicines11092467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Low back pain is the leading cause of disability worldwide. Intervertebral disc degeneration (IDD) is the primary clinical risk factor for low back pain and the pathological cause of disc herniation, spinal stenosis, and spinal deformity. A possible approach to improve the clinical practice of IDD-related diseases is to incorporate biomarkers in diagnosis, therapeutic intervention, and prognosis prediction. IDD pathology is still unclear. Regarding molecular mechanisms, cellular signaling pathways constitute a complex network of signaling pathways that coordinate cell survival, proliferation, differentiation, and metabolism. Recently, stem cells have shown great potential in clinical applications for IDD. In this review, the roles of multiple signaling pathways and related stem cell treatment in IDD are summarized and described. This review seeks to investigate the mechanisms and potential therapeutic effects of stem cells in IDD and identify new therapeutic treatments for IDD-related disorders.
Collapse
Affiliation(s)
| | | | | | - Haifei Shi
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.D.); (K.L.); (S.D.)
| |
Collapse
|
9
|
Ma L, Hua L, Yu W, Ke L, Li LY. TSG-6 inhibits hypertrophic scar fibroblast proliferation by regulating IRE1α/TRAF2/NF-κB signalling. Int Wound J 2023; 20:1008-1019. [PMID: 36056472 PMCID: PMC10031217 DOI: 10.1111/iwj.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
TNF-stimulated gene (TSG-6) was reported to suppress hypertrophic scar (HS) formation in a rabbit ear model, and the overexpression of TSG-6 in human HS fibroblasts (HSFs) was found to induce their apoptotic death. The molecular basis for these findings, however, remains to be clarified. HSFs were subjected to TSG-6 treatment. Treatment with TSG-6 significantly suppressed HSF proliferation and induced them to undergo apoptosis. Moreover, TSG-6 exposure led to reductions in collagen I, collagen III, and α-SMA mRNA and protein levels, with a corresponding drop in proliferating cell nuclear antigen (PCNA) expression indicative of impaired proliferative activity. Endoplasmic reticulum (ER) stress was also suppressed in these HSFs as demonstrated by decreases in Bip and p-IRE1α expression, downstream inositol requiring enzyme 1 alpha (IRE1α) -Tumor necrosis factor receptor associated factor 2 (TRAF2) pathway signalling was inhibited and treated cells failed to induce NF-κB, TNF-α, IL-1β, and IL-6 expression. Overall, ER stress was found to trigger inflammatory activity in HSFs via the IRE1α-TRAF2 axis, as confirmed with the specific inhibitor of IRE1α STF083010. Additionally, the effects of TSG-6 on apoptosis, collagen I, collagen III, α-SMA, and PCNA of HSFs were reversed by the IRE1α activator thapsigargin (TG). These data suggest that TSG-6 administration can effectively suppress the proliferation of HSFs in part via the inhibition of IRE1α-mediated ER stress-induced inflammation (IRE1α/TRAF2/NF-κB signalling).
Collapse
Affiliation(s)
- Li Ma
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lei Hua
- Department of Neurology, the Affiliated Nanjing city Hospital of Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenyuan Yu
- Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital of Soochow University, SuZhou City, PR China
| | - Li Ke
- Department of Thoracic Surgery, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, China
| | - Liang-Yong Li
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Cao J, Xu R, Geng Y, Xu S, Guo M. Exposure to polystyrene microplastics triggers lung injury via targeting toll-like receptor 2 and activation of the NF-κB signal in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121068. [PMID: 36641069 DOI: 10.1016/j.envpol.2023.121068] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Microplastics are ubiquitous pollutants with a wide range of plastic applications. More recently, microplastics are in the air and can be inhaled into the lungs, causing respiratory diseases. Knowledge of the underlying mechanisms by which microplastics may induce respiratory disease is still limited. This study used intranasal instillation to develop a model of lung injury. The histopathology result showed that the mouse lung had severe inflammatory responses, apoptosis and collagen deposition with chronic exposure to different sizes (Small: 1-5 μm and Large: 10-20 μm) of polystyrene microplastics (PS-MPS), and the damage of smaller sizes was obvious. The expression levels of the Toll-like receptors (TLRs) family, evolutionarily conserved pattern recognition receptors, were detected, and the levels of TLR2 mRNA was significantly increased. In transfection experiments, PS-MPS increased the inflammatory response in HEK293 cells with TLR2 expression. Furthermore, exposure to small polystyrene microplastics promoted oxidative stress and apoptosis, and accelerated the process of fibrosis. Interestingly, inhibition of the NF-κB signal relieves inflammation and oxidative stress, reduces apoptosis, and thus controls the fibrosis process. These results suggested that PS-MPS targeted binding to TLR2 and further exacerbated fibrosis by facilitating inflammation, oxidative stress, and apoptosis with the activation of NF-κB signal.
Collapse
Affiliation(s)
- Jingwen Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ran Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yuan Geng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shiwen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Joshi JM, Muttigi MS, Upadhya R, Seetharam RN. An overview of the current advances in the treatment of inflammatory diseases using mesenchymal stromal cell secretome. Immunopharmacol Immunotoxicol 2023:1-11. [PMID: 36786742 DOI: 10.1080/08923973.2023.2180388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The growing interest in mesenchymal stromal cell (MSC) therapy has been leading to the utilization of its therapeutic properties in a variety of inflammatory diseases. The clinical translation of the related research from bench to bedside is cumbersome due to some obvious limitations of cell therapy. It is evident from the literature that the MSC secretome components mediate their wide range of functions. Cell-free therapy using MSC secretome is being considered as an emerging and promising area of biotherapeutics. The secretome mainly consists of bioactive factors, free nucleic acids, and extracellular vesicles. Constituents of the secretome are greatly influenced by the cell's microenvironment. The broad array of immunomodulatory properties of MSCs are now being employed to target inflammatory diseases. This review focuses on the emerging MSC secretome therapies for various inflammatory diseases. The mechanism of action of the various anti-inflammatory factors is discussed. The potential of MSC secretome as a viable anti-inflammatory therapy is deliberated.
Collapse
Affiliation(s)
- Jahnavy Madhukar Joshi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manjunatha S Muttigi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghavendra Upadhya
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Yu JI, Cho YH, Seo TB, Kim YP. Effect of combined intervention of exercise and autologous bone marrow stromal cell transplantation on neurotrophic factors and pain-related cascades over time after sciatic nerve injury. J Exerc Rehabil 2023; 19:19-26. [PMID: 36910683 PMCID: PMC9993005 DOI: 10.12965/jer.2244006.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
The purpose of this study was to determine whether combined inter-vention of treadmill exercise and bone marrow stromal cell (BMSC) transplantation would affect the expression of neurotrophic factors in the sciatic nerve injury (SNI) and neuropathic pain-related cascades in ipsilateral lumbar 4-5 dorsal root ganglion (DRG) during the early or late stage of sciatic nerve regeneration. The rats were randomly divided into the normal control group (CONT, n=6), sedentary group (SS, n=24), exercise group (SE, n=24), BMSC transplantation group (SB, n=24), BMSC transplantation+exercise group (SBE, n=24) 1, 2, 3, and 5 weeks after SNI. Single dose of 5×106 harvested BMSC was injected into the injury area sing by a 30 gauge needle. Treadmill exercise was performed at a speed of 8 m/min for 30 min once a day. Tropomyosin-receptor kinase B, brain-derived neurotrophic factor and ciliary neurotrophic fac-tor were significantly upregulated in the SE and SBE groups at 1- and 2-week postinjury than those in the CONT and SS groups, and SB and SBE groups continuously kept up proinflammatory cytokines until the late stage of regeneration. Nuclear factor kappa-light-chain-enhancer of activated B cells, interleukin and tumor necrosis factor alpha in ipsi-lateral DRG were progressively decreased by exercise alone application and/or BMSC transplantation at early and late stage of regeneration. Present results provide reliable information that combined intervention of treadmill exercise and BMSC transplantation might be one of the effective treatment strategies for recovering sciatic nerve injury-induced neuropathic pain over time.
Collapse
Affiliation(s)
- Joo-In Yu
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Young-Pyo Kim
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
13
|
Zhuang Z, Zhang Y, Yang X, Yu T, Zhang Y, Sun K, Zhang Y, Cheng F, Zhang L, Wang H. Matrix stiffness regulates the immunomodulatory effects of mesenchymal stem cells on macrophages via AP1/TSG-6 signaling pathways. Acta Biomater 2022; 149:69-81. [PMID: 35820593 DOI: 10.1016/j.actbio.2022.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
It is well-recognized that the matrix stiffness as an important stem cell niche can mediate stem cell behavior such as attachment, proliferation and differentiation, but how matrix stiffness affects the immunomodulatory efficacy of stem cells has been little explored, which, however, is of significant importance in determining the outcomes of stem cell-based therapies and engineered tissue mimics. We herein studied the immunomodulatory efficacy of mesenchymal stem cells (MSCs) in response to matrix stiffness by the evaluation of macrophage polarization in vitro and inflammatory response in vivo by subcutaneous implantation of MSC-laden hydrogels. Remarkably, we found that soft matrix enabled MSCs to produce significantly higher levels of immunomodulatory factors compared to stiff matrix, and induced the presence of more anti-inflammatory macrophages in vitro and attenuated macrophages-mediated inflammatory response in vivo. More importantly, we revealed stiffness-mediated immunoregulatory effect of MSCs was mainly attributed to tumor necrosis factor-α-stimulated protein 6 (TSG-6), which was mechanosensitively regulated by the MAPK and Hippo signaling pathway and downstream AP1 complex, and which in turn exerted an effect on macrophages through CD44 receptor to inhibit NF-κB pathway. To conclude, our results for the first time identify TSG-6 as the key factor in regulating immunomodulatory efficacy of MSCs in mechanical response, and can be potentially utilized to empower stem cell-based therapy and tissue engineering strategy in regenerative medicine. STATEMENT OF SIGNIFICANCE: Matrix stiffness as an important stem cell niche can mediate stem cell behavior such as attachment and differentiation, but how matrix stiffness affects the immunomodulatory efficacy of stem cells has been little explored, which, however, is of significant importance in determining the outcomes of stem cell-based therapies and engineered tissue mimics. Our results for the first time identify TSG-6 as the key factor in regulating the immunomodulatory efficacy of MSCs in mechanical response, which was regulated by the MAPK and Hippo signaling pathways and downstream AP1 complex, and which in turn exerted an effect on macrophages through CD44 receptor to inhibit NF-κB pathway, and can be potentially utilized to empower stem cell-based therapy and tissue engineering strategy in regenerative medicine.
Collapse
Affiliation(s)
- Zhumei Zhuang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, China
| | - Yang Zhang
- School of Stomatology, Health Science Center, Shenzhen University, Shenzhen, 518037, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xueying Yang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, China
| | - Taozhao Yu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yue Zhang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, China
| | - Kai Sun
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, China
| | - Yonggang Zhang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, China
| | - Fang Cheng
- Key State Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, China
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, No.40 Qianshan Road, Ganjingzi District, Dalian, 116024, China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, China.
| |
Collapse
|
14
|
Xin J, Wang Y, Zheng Z, Wang S, Na S, Zhang S. Treatment of Intervertebral Disc Degeneration. Orthop Surg 2022; 14:1271-1280. [PMID: 35486489 PMCID: PMC9251272 DOI: 10.1111/os.13254] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IDD) causes a variety of signs and symptoms, such as low back pain (LBP), intervertebral disc herniation, and spinal stenosis, which contribute to high social and economic costs. IDD results from many factors, including genetic factors, aging, mechanical injury, malnutrition, and so on. The pathological changes of IDD are mainly composed of the senescence and apoptosis of nucleus pulposus cells (NPCs), the progressive degeneration of extracellular matrix (ECM), the fibrosis of annulus fibrosus (AF), and the inflammatory response. At present, IDD can be treated by conservative treatment and surgical treatment based on patients' symptoms. However, all of these can only release the pain but cannot reverse IDD and reconstruct the mechanical function of the spine. The latest research is moving towards the field of biotherapy. Mesenchymal stem cells (MSCs) are regard as the potential therapy of IDD because of their ability to self-renew and differentiate into a variety of tissues. Moreover, the non-coding RNAs (ncRNAs) are found to regulate many vital processes in IDD. There have been many successes in the in vitro and animal studies of using biotherapy to treat IDD, but how to transform the experimental data to real therapy which can apply to humans is still a challenge. This article mainly reviews the treatment strategies and research progress of IDD and indicates that there are many problems that need to be solved if the new biotherapy is to be applied to clinical treatment of IDD. This will provide reference and guidance for clinical treatment and research direction of IDD.
Collapse
Affiliation(s)
- Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Shuo Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Shibo Na
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| |
Collapse
|
15
|
Widjaja G, Jalil AT, Budi HS, Abdelbasset WK, Efendi S, Suksatan W, Rita RS, Satria AP, Aravindhan S, Saleh MM, Shalaby MN, Yumashev AV. Mesenchymal stromal/stem cells and their exosomes application in the treatment of intervertebral disc disease: A promising frontier. Int Immunopharmacol 2022. [DOI: https://doi.org/10.1016/j.intimp.2022.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Widjaja G, Jalil AT, Budi HS, Abdelbasset WK, Efendi S, Suksatan W, Rita RS, Satria AP, Aravindhan S, Saleh MM, Shalaby MN, Yumashev AV. Mesenchymal stromal/stem cells and their exosomes application in the treatment of intervertebral disc disease: A promising frontier. Int Immunopharmacol 2022; 105:108537. [PMID: 35101851 DOI: 10.1016/j.intimp.2022.108537] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Today, the application of mesenchymal stromal/stem cells (MSCs) and their exosomes to treat degenerative diseases has received attention. Due to the characteristics of these cells, such as self-renewability, differentiative and immunomodulatory effects, their use in laboratory and clinical studies shows promising results. However, the allogeneic transplantation problems of MSCs limit the use of these cells in the clinic. Scientists propose the application of exosomes to use from the therapeutic effect of MSCs and overcome their defects. These vesicles change the target cell behaviour and transcription profile by transferring various cargo such as proteins, mi-RNAs, and lipids. One of the degenerative tissue diseases in which MSCs and their exosomes are used in their treatment is intervertebral disc disease (IDD). Different factors such as genetics, nutrition, ageing, and environmental factors play a significant role in the onset and progression of this disease. These factors affect the cellular and molecular properties of the disc, leading to tissue destruction. Nucleus pulposus cells (NPCs) are among the most important cells involved in the pathogenesis of disc degeneration. MSCs exert their therapeutic effects by differentiating, reducing apoptosis, increasing proliferation, and decreasing senescence in NPCs. In addition, the use of MSCs and their exosomes also affects the annulus fibrosus and cartilaginous endplate cells in disc tissue and prevents disc degeneration progression.
Collapse
Affiliation(s)
- Gunawan Widjaja
- Postgraduate Study, Universitas Krisnadwipayana, Bekasi, Indonesia; Faculty of Public Health, Universitas Indonesia, Depok, Indonesia
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, 230023 Grodno, Belarus; College of Technical Engineering, The Islamic University, Najaf, Iraq; Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq
| | - Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Syahril Efendi
- Fasilkom-TI, Universitas Sumatera Utara, Medan, Indonesia.
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Rauza Sukma Rita
- Department of Biochemistry, Faculty of Medicine, Universitas Andalas, Indonesia
| | - Andri Praja Satria
- Faculty of Nursing, Universitas Muhammadiyah Kalimantan Timur, Samarinda 75124, Indonesia
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Iraq
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt
| | | |
Collapse
|
17
|
Herger N, Bermudez-Lekerika P, Farshad M, Albers CE, Distler O, Gantenbein B, Dudli S. Should Degenerated Intervertebral Discs of Patients with Modic Type 1 Changes Be Treated with Mesenchymal Stem Cells? Int J Mol Sci 2022; 23:ijms23052721. [PMID: 35269863 PMCID: PMC8910866 DOI: 10.3390/ijms23052721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Low back pain (LBP) has been among the leading causes of disability for the past 30 years. This highlights the need for improvement in LBP management. Many clinical trials focus on developing treatments against degenerative disc disease (DDD). The multifactorial etiology of DDD and associated risk factors lead to a heterogeneous patient population. It comes as no surprise that the outcomes of clinical trials on intradiscal mesenchymal stem cell (MSC) injections for patients with DDD are inconsistent. Intradiscal MSC injections have demonstrated substantial pain relief and significant disability-related improvements, yet they have failed to regenerate the intervertebral disc (IVD). Increasing evidence suggests that the positive outcomes in clinical trials might be attributed to the immunomodulatory potential of MSCs rather than to their regenerative properties. Therefore, patient stratification for inflammatory DDD phenotypes may (i) better serve the mechanisms of action of MSCs and (ii) increase the treatment effect. Modic type 1 changes—pathologic inflammatory, fibrotic changes in the vertebral bone marrow—are frequently observed adjacent to degenerated IVDs in chronic LBP patients and represent a clinically distinct subpopulation of patients with DDD. This review discusses whether degenerated IVDs of patients with Modic type 1 changes should be treated with an intradiscal MSC injection.
Collapse
Affiliation(s)
- Nick Herger
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, CH-8008 Zurich, Switzerland; (N.H.); (O.D.)
| | - Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (P.B.-L.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, CH-3010 Bern, Switzerland;
| | - Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, CH-8008 Zurich, Switzerland;
| | - Christoph E. Albers
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, CH-3010 Bern, Switzerland;
| | - Oliver Distler
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, CH-8008 Zurich, Switzerland; (N.H.); (O.D.)
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (P.B.-L.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, CH-3010 Bern, Switzerland;
| | - Stefan Dudli
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, CH-8008 Zurich, Switzerland; (N.H.); (O.D.)
- Correspondence: ; Tel.: +41-4451-07511
| |
Collapse
|
18
|
Application of stem cells in the repair of intervertebral disc degeneration. Stem Cell Res Ther 2022; 13:70. [PMID: 35148808 PMCID: PMC8832693 DOI: 10.1186/s13287-022-02745-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a common disease that increases with age, and its occurrence is stressful both psychologically and financially. Stem cell therapy for IDD is emerging. For this therapy, stem cells from different sources have been proven in vitro, in vivo, and in clinical trials to relieve pain and symptoms, reverse the degeneration cascade, delay the aging process, maintain the spine shape, and retain mechanical function. However, further research is needed to explain how stem cells play these roles and what effects they produce in IDD treatment. This review aims to summarize and objectively analyse the current evidence on stem cell therapy for IDD.
Collapse
|
19
|
Mesenchymal stem cell therapy attenuates complement C3 deposition and improves the delicate equilibrium between angiogenic and anti-angiogenic factors in abortion-prone mice. Mol Immunol 2021; 141:246-256. [PMID: 34875452 DOI: 10.1016/j.molimm.2021.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/15/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
Abstract
Immunological disorders are one of the main causes of recurrent spontaneous abortions (RSA). A rapidly expanding body of evidence indicates that excessive activation of the complement system is critically involved in the development of miscarriages. In the CBA/J × DBA/2 murine model of recurrent miscarriage, exaggerated and unrestrained complement activation is reported to be the underlying cause of angiogenic factor imbalance and persistent inflammation. We have previously shown that mesenchymal stem cell (MSC) therapy can significantly reduce the abortion rate in abortion-prone mice through regulating the feto-maternal immune response. In the present study, we hypothesized that MSCs might improve the balance of angiogenic factors at the feto-maternal unit of CBA/J × DBA/2 mice by restraining complement activation and deposition. To explore this hypothesis, autologous adipose tissue-derived mesenchymal stem cells (AD-MSCs) were administered intra-peritoneally to abortion-prone mice on the 4.5th day of gestation. Control mice received PBS as vehicle. On day 13.5 of pregnancy, deposition of the complement component C3 and expression levels of Crry, CFD (adipsin), VEGF, PlGF and FLT-1 were measured at the feto-maternal interface by immunohistochemistry and real-time PCR, respectively. Decidual cells were also cultured in RPMI 1640 medium for 48 h and VEGF and sFLT-1 protein levels were quantified in supernatants using enzyme-linked immunosorbent assay (ELISA). Our results indicated that MSC therapy significantly reduced C3 deposition and adipsin transcription in the fetal-maternal interface of abortion-prone mice. Furthermore, administration of MSCs robustly upregulated the mRNA expression levels of Crry, VEGF, PlGF and FLT-1 in the placenta and decidua of CBA/J × DBA/2 mice. Consistently, the in vitro results demonstrated that decidual cells obtained from MSC-treated dams produced increased concentrations of VEGF in culture supernatants, with concomitant decreased levels of sFLT-1 protein. Here, we show for the first time that adoptive transfer of MSCs rectifies the disturbed balance of angiogenic factors observed at the feto-maternal unit of CBA/J × DBA/2 mice, in part at least, through inhibiting excessive complement activation and promoting the production of angiogenic factors. Collectively, these alterations seem to play a pivotal role in reducing the abortion rate and improving the intrauterine condition for the benefit of the fetus.
Collapse
|
20
|
Zhang XB, Chen XY, Qi J, Zhou HY, Zhao XB, Hu YC, Zhang RH, Yu DC, Gao XD, Wang KP, Ma L. New hope for intervertebral disc degeneration: bone marrow mesenchymal stem cells and exosomes derived from bone marrow mesenchymal stem cell transplantation. Curr Gene Ther 2021; 22:291-302. [PMID: 34636308 DOI: 10.2174/1566523221666211012092855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs), multidirectional cells with self-renewal capacity, can differentiate into many cell types and play essential roles in tissue healing and regenerative medicine. Cell experiments and in vivo research in animal models have shown that BMSCs can repair degenerative discs by promoting cell proliferation and expressing extracellular matrix (ECM) components, such as type II collagen and protein-polysaccharides. Delaying or reversing the intervertebral disc (IVD) degeneration (IDD) process at an etiological level may be an effective strategy. However, despite increasingly in-depth research, some deficiencies in cell transplantation timing and strategy remain, preventing the clinical application of cell transplantation. Exosomes exhibit the characteristics of the mother cells from which they were secreted and can inhibit nucleus pulposus (NP) cell (NPC) apoptosis and delay IDD through intercellular communication. Furthermore, the use of exosomes effectively avoids problems associated with cell transplantation, such as immune rejection. This manuscript introduces almost all of the BMSCs and exosomes derived from BMSCs (BMSCs-Exos) described in the IDD literature. Many challenges regarding the use of cell transplantation and therapeutic exosome intervention for IDD remain to be overcome.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Shanxi 710000. China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Jin Qi
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Xiao-Bing Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Lin Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| |
Collapse
|
21
|
Gu M, Zhou W, Chen J, Zhao Y, Xie C, Zhou Z. RETRACTED: TRAF2 gene silencing induces proliferation and represses apoptosis of nucleus pulposus cells in rats with intervertebral disc degeneration. Life Sci 2021; 279:119670. [PMID: 34089727 DOI: 10.1016/j.lfs.2021.119670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 1E, 2G and 6C, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). Concerns were also raised over the provenance of the flow cytometry plots in Fig. 8A. The journal requested the corresponding author comment on these concerns and provide the raw data. However the authors were not able to satisfactorily fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Mingyong Gu
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistics Support Force (Previous name: General Hospital of Jinan Military Command), Jinan 250031, China
| | - Weijie Zhou
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Jianxin Chen
- Department of Neurology, First People's Hospital of Jinan, Jinan 250031, Shandong, China
| | - Yihui Zhao
- Department of Clinical Laboratory, Minzu Hospital of Jinan, Jinan 250031, Shandong, China
| | - Chen Xie
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistics Support Force (Previous name: General Hospital of Jinan Military Command), Jinan 250031, China.
| | - Zhenyu Zhou
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistics Support Force (Previous name: General Hospital of Jinan Military Command), Jinan 250031, China
| |
Collapse
|
22
|
Liu ZM, Lu CC, Shen PC, Chou SH, Shih CL, Chen JC, Tien YC. Suramin attenuates intervertebral disc degeneration by inhibiting NF-κB signalling pathway. Bone Joint Res 2021; 10:498-513. [PMID: 34372688 PMCID: PMC8414441 DOI: 10.1302/2046-3758.108.bjr-2020-0041.r3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aims Interleukin (IL)-1β is one of the major pathogenic regulators during the pathological development of intervertebral disc degeneration (IDD). However, effective treatment options for IDD are limited. Suramin is used to treat African sleeping sickness. This study aimed to investigate the pharmacological effects of suramin on mitigating IDD and to characterize the underlying mechanism. Methods Porcine nucleus pulposus (NP) cells were treated with vehicle, 10 ng/ml IL-1β, 10 μM suramin, or 10 μM suramin plus IL-1β. The expression levels of catabolic and anabolic proteins, proinflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB-related signalling molecules were assessed by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis. Flow cytometry was applied to detect apoptotic cells. The ex vivo effects of suramin were examined using IDD organ culture and differentiation was analyzed by Safranin O-Fast green and Alcian blue staining. Results Suramin inhibited IL-1β-induced apoptosis, downregulated matrix metalloproteinase (MMP)-3, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and ADAMTS-5, and upregulated collagen 2A (Col2a1) and aggrecan in IL-1β-treated NP cells. IL-1β-induced inflammation, assessed by IL-1β, IL-8, and tumour necrosis factor α (TNF-α) upregulation, was alleviated by suramin treatment. Suramin suppressed IL-1β-mediated proteoglycan depletion and the induction of MMP-3, ADAMTS-4, and pro-inflammatory gene expression in ex vivo experiments. Conclusion Suramin administration represents a novel and effectively therapeutic approach, which could potentially alleviate IDD by reducing extracellular matrix (ECM) deposition and inhibiting apoptosis and inflammatory responses in the NP cells. Cite this article: Bone Joint Res 2021;10(8):498–513.
Collapse
Affiliation(s)
- Zi-Miao Liu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Chang Lu
- Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chih Shen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsiang Chou
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Lung Shih
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jian-Chih Chen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin Chun Tien
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Zhang G, Liu M, Chen H, Wu Z, Gao Y, Ma Z, He X, Kang X. NF-κB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif 2021; 54:e13057. [PMID: 34028920 PMCID: PMC8249791 DOI: 10.1111/cpr.13057] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/25/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a common clinical degenerative disease of the spine. A series of factors, such as inflammation, oxidative stress and mechanical stress, promote degradation of the extracellular matrix (ECM) of the intervertebral discs (IVD), leading to dysfunction and structural destruction of the IVD. Nuclear factor-κB (NF-κB) transcription factor has long been regarded as a pathogenic factor of IDD. Therefore, NF-κB may be an ideal therapeutic target for IDD. As NF-κB is a multifunctional functional transcription factor with roles in a variety of biological processes, a comprehensive understanding of the function and regulatory mechanism of NF-κB in IDD pathology will be useful for the development of targeted therapeutic strategies for IDD, which can prevent the progression of IDD and reduce potential risks. This review discusses the role of the NF-κB signalling pathway in the nucleus pulposus (NP) in the process of IDD to understand pathological NP degeneration further and provide potential therapeutic targets that may interfere with NF-κB signalling for IDD therapy.
Collapse
Affiliation(s)
- Guang‐Zhi Zhang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Ming‐Qiang Liu
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Hai‐Wei Chen
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Zuo‐Long Wu
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Yi‐Cheng Gao
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Zhan‐Jun Ma
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Xue‐Gang He
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
| | - Xue‐Wen Kang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhou University Second HospitalLanzhouChina
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal DisordersLanzhouChina
| |
Collapse
|
24
|
Bicer M, Cottrell GS, Widera D. Impact of 3D cell culture on bone regeneration potential of mesenchymal stromal cells. Stem Cell Res Ther 2021; 12:31. [PMID: 33413646 PMCID: PMC7791873 DOI: 10.1186/s13287-020-02094-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
As populations age across the world, osteoporosis and osteoporosis-related fractures are becoming the most prevalent degenerative bone diseases. More than 75 million patients suffer from osteoporosis in the USA, the EU and Japan. Furthermore, it is anticipated that the number of patients affected by osteoporosis will increase by a third by 2050. Although conventional therapies including bisphosphonates, calcitonin and oestrogen-like drugs can be used to treat degenerative diseases of the bone, they are often associated with serious side effects including the development of oesophageal cancer, ocular inflammation, severe musculoskeletal pain and osteonecrosis of the jaw.The use of autologous mesenchymal stromal cells/mesenchymal stem cells (MSCs) is a possible alternative therapeutic approach to tackle osteoporosis while overcoming the limitations of traditional treatment options. However, osteoporosis can cause a decrease in the numbers of MSCs, induce their senescence and lower their osteogenic differentiation potential.Three-dimensional (3D) cell culture is an emerging technology that allows a more physiological expansion and differentiation of stem cells compared to cultivation on conventional flat systems.This review will discuss current understanding of the effects of different 3D cell culture systems on proliferation, viability and osteogenic differentiation, as well as on the immunomodulatory and anti-inflammatory potential of MSCs.
Collapse
Affiliation(s)
- Mesude Bicer
- Stem Cell Biology and Regenerative Medicine Group, Reading School of Pharmacy, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP, UK
| | - Graeme S Cottrell
- Cellular and Molecular Neuroscience, School of Pharmacy, University of Reading, Reading, UK
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, Reading School of Pharmacy, University of Reading, PO Box 226, Whiteknights, Reading, RG6 6AP, UK.
| |
Collapse
|
25
|
Jones CI, Rose SL, Shutt A, Cairo C, Bourgeois NM, Charurat M, Sodora DL, Wood MP. Maternal HIV status skews transcriptomic response in infant cord blood monocytes exposed to Bacillus Calmette--Guerín. AIDS 2021; 35:23-32. [PMID: 33048873 PMCID: PMC7718394 DOI: 10.1097/qad.0000000000002706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES HIV-exposed uninfected (HEU) infants exhibit altered vaccine responses and an increased mortality compared with HIV-unexposed infants. Here, vaccine responses in HEU and HIV-unexposed cord blood monocytes (CBMs) were assessed following Bacillus Calmette--Guerín (BCG) treatment. DESIGN Innate responses to in-vitro BCG treatment were assessed through transcriptional profiling using CBMs obtained from a Nigerian cohort of HIV-infected and uninfected women. METHODS HIV-unexposed (n = 9) and HEU (n = 10) infant CBMs were treated with BCG and transcriptionally profiled with the Nanostring nCounter platform. Differential expression and pathway enrichment analyses were performed, and transcripts were identified with enhanced or dampened BCG responses. RESULTS Following BCG stimulation, several pathways associated with inflammatory gene expression were upregulated irrespective of HIV exposure status. Both HIV-unexposed and HEU monocytes increased expression of several cytokines characteristic of innate BCG responses, including IL1β, TNFα, and IL-6. Using differential expression analysis, we identified genes significantly upregulated in HEU compared with HIV-unexposed monocytes including monocyte chemokine CCL7 and anti-inflammatory cytokine TNFAIP6. In contrast, genes significantly upregulated in HIV-unexposed compared with HEU monocytes include chemokine CCL3 and cytokine IL23A, both of which influence anti-mycobacterial T-cell responses. Finally, two genes, which regulate prostaglandin production, CSF2 and PTGS2, were also more significantly upregulated in the HIV-unexposed cord blood indicating that inflammatory mediators are suppressed in the HEU infants. CONCLUSION HEU monocytes exhibit altered induction of several key innate immune responses, providing mechanistic insights into dysregulated innate response pathways that can be therapeutically targeted to improve vaccine responses in HEU infants.
Collapse
Affiliation(s)
- Chloe I Jones
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Suzanne L Rose
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Ashley Shutt
- Institute for Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Cristiana Cairo
- Institute for Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Natasha M Bourgeois
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Manhattan Charurat
- Institute for Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Donald L Sodora
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Matthew P Wood
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
26
|
Human Mesenchymal Stem Cells: The Present Alternative for High-Incidence Diseases, Even SARS-Cov-2. Stem Cells Int 2020; 2020:8892189. [PMID: 33414832 PMCID: PMC7769649 DOI: 10.1155/2020/8892189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs), defined as plastic adherent cells with multipotent differentiation capacity in vitro, are an emerging and valuable tool to treat a plethora of diseases due to their therapeutic mechanisms such as their paracrine activity, mitochondrial and organelle transfer, and transfer of therapeutic molecules via exosomes. Nowadays, there are more than a thousand registered clinical trials related to MSC application around the world, highlighting MSC role on difficult-to-treat high-incidence diseases such as the current COVID-19, HIV infections, and autoimmune and metabolic diseases. Here, we summarize a general overview of MSCs and their therapeutic mechanisms; also, we discuss some of the novel clinical trial protocols and their results as well as a comparison between the number of registries, countries, and search portals.
Collapse
|
27
|
Huang JF, Zheng XQ, Lin JL, Zhang K, Tian HJ, Zhou WX, Wang H, Gao Z, Jin HM, Wu AM. Sinapic Acid Inhibits IL-1β-Induced Apoptosis and Catabolism in Nucleus Pulposus Cells and Ameliorates Intervertebral Disk Degeneration. J Inflamm Res 2020; 13:883-895. [PMID: 33209047 PMCID: PMC7667918 DOI: 10.2147/jir.s278556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background Low back pain (LBP) is a very common condition and leads to serious pain, disability, and price tag all over the world. Intervertebral disk degeneration (IDD) is one of the major reasons that contributed to LBP. The levels of interleukin 1 beta (IL-1β) increase significantly in degenerative disks. IL-1β also accelerates IDD. Sinapic acid (SA) has the effect of anti‐inflammatory, antioxidant and antimicrobial. However, the effect of SA on IDD has never been studied. Therefore, the aim of this study was to figure out whether SA has protective effect on nucleus pulposus (NP) cells and further explore the possible underlying mechanism. Methods The nucleus pulposus (NP) tissues of rats were collected and cultured into NP cells. The NP cells were stimulated by IL-1β and treated with SA. In vitro treatment effects were evaluated by ELISA, Western blot assay, immunofluorescence, TUNEL method and real-time PCR. We conducted percutaneous needle puncture in the rat tail to build intervertebral disk degeneration model and treated rats with SA. In vivo treatment effects were evaluated by hematoxylin and eosin (HE) and safranin O (SO) staining and magnetic resonance imaging (MRI) method. Results Our results showed that SA not only inhibited apoptosis but also suppressed inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS) interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in IL-1β-stimulated NP cells. As to extracellular matrix (ECM), SA could increase collagen II and aggrecan levels and reduce the expression of MMP13 and ADAMTS5 during the stimulation of IL-1β. Furthermore, SA could activate nuclear factor‐erythroid 2‐related factor‐2 (Nrf2) to inhibit nuclear factor κB (NF‐κB) induced by IL‐1β. Nrf2 knockdown partly reduced the protective effect of SA on NP cells. Correspondingly, SA ameliorated IDD by promoting Nrf2 expression. In vivo results also showed that SA could delay the progression of IDD. Conclusion In conclusion, we demonstrated that SA could protect the degeneration of NP cells and revealed the underlying mechanism of SA on Nrf2 activation in NP cells.
Collapse
Affiliation(s)
- Jin-Feng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xuan-Qi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Kai Zhang
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, People's Republic of China
| | - Hai-Jun Tian
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, People's Republic of China
| | - Wen-Xian Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ze Gao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Hai-Ming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ai-Min Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
28
|
Wang Y, Che M, Xin J, Zheng Z, Li J, Zhang S. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother 2020; 131:110660. [PMID: 32853910 DOI: 10.1016/j.biopha.2020.110660] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain (LBP), a prevalent and costly disease around the world, is predominantly caused by intervertebral disc (IVD) degeneration (IDD). LBP also presents a substantial burden to public health and the economy. IDD is mainly caused by aging, trauma, genetic susceptibility, and other factors. It is closely associated with changes in tissue structure and function, including progressive destruction of the extracellular matrix (ECM), enhanced senescence, disc cell death, and impairment of tissue biomechanical function. The inflammatory process, exacerbated by cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), are considered to be the key mediators of IDD and LBP. IL-1β and TNF-α are the most important proinflammatory cytokines, as they have powerful proinflammatory activities and can promote the secretion of a variety of proinflammatory mediators. They are also upregulated in the degenerative IVDs, and they are closely related to various pathological IDD processes, including inflammatory response, matrix destruction, cellular senescence, autophagy, apoptosis, pyroptosis, and proliferation. Therefore, anti-IL-1β and anti-TNF-α therapies may have the potential to alleviate disc degeneration and LBP. In this paper, we reviewed the expression pattern and signal transduction pathways of IL-1β and TNF-α, and we primarily focused on their similar and different roles in IDD. Because IL-1β and TNF-α inhibition have the potential to alleviate IDD, an in-depth understanding of the role of IL-1β and TNF-α in IDD will benefit the development of new treatment methods for disc degeneration with IL-1β and TNF-α at the core.
Collapse
Affiliation(s)
- Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingxue Che
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiangbi Li
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
29
|
Wang Y, Yuan S, Sun J, Gong Y, Liu S, Guo R, He W, Kang P, Li R. Inhibitory effect of the TSG-6 on the BMP-4/Smad signaling pathway and odonto/osteogenic differentiation of dental pulp stem cells. Biomed Pharmacother 2020; 128:110266. [DOI: 10.1016/j.biopha.2020.110266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 12/27/2022] Open
|
30
|
Zhu L, Shi Y, Liu L, Wang H, Shen P, Yang H. Mesenchymal stem cells-derived exosomes ameliorate nucleus pulposus cells apoptosis via delivering miR-142-3p: therapeutic potential for intervertebral disc degenerative diseases. Cell Cycle 2020; 19:1727-1739. [PMID: 32635856 DOI: 10.1080/15384101.2020.1769301] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the main cause of lower back pain (LBP), and puzzles massive individuals worldwide. Mesenchymal stem cells (MSCs) transplantation has been demonstrated to potentially ameliorate IDD progression, while the underlying mechanism has not been fully explained. Interleukin-1β (IL-1β) was used to induce nucleus pulposus cells (NPCs) injury. Bone marrow MSCs-derived exosomes were isolated using the super centrifugation method, and characterized using Transmission electron microscopy (TEM) and western blot. Cell viability was determined by MTT, while apoptosis was measured by Annexin-V staining using flow cytometry. miR-142-3fp and gene expressions were measured by real-time PCR. The protein expressions were determined by western blot. Herein, we found exosomes from bone marrow MSCs are circular vesicles, about 80 nm in diameter, and with robust expression of TSG101 and CD63, but without of Calnexin. MSCs exosomes alleviated NPCs apoptosis by reducing IL-1β-induced inflammatory cytokines secretion and MAPK signaling activation. Additionally, MSCs exosomes inhibited NPCs apoptosis and MAPK signaling by delivering miR-142-3p that targets mixed lineage kinase 3 (MLK3). Overexpression of MLK3 abolished the effects of MSCs exosomes on the inflammatory condition, cell apoptosis, and MAPK signaling activation in NPCs. The results confirmed that bone marrow MSCs-derived exosomes-packaged miR-142-3p alleviates NPCs injury through suppressing MAPK signaling by targeting MLK3. The work highlights the therapeutic effect of MSCs on IDD progression, and bone marrow MSCs exosomes might be apromising therapeutic strategy for IDD.
Collapse
Affiliation(s)
- Lifan Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province, China
| | - Yuhui Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province, China.,Department of Orthopedics, The Ninth People's Hospital of Suzhou , Suzhou, Jiangsu Province, China
| | - Ling Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province, China
| | - Huan Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province, China
| | - Pengcheng Shen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province, China.,Department of Orthopedics, The Ninth People's Hospital of Suzhou , Suzhou, Jiangsu Province, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu Province, China
| |
Collapse
|
31
|
Yang H, Wu L, Deng H, Chen Y, Zhou H, Liu M, Wang S, Zheng L, Zhu L, Lv X. Anti-inflammatory protein TSG-6 secreted by bone marrow mesenchymal stem cells attenuates neuropathic pain by inhibiting the TLR2/MyD88/NF-κB signaling pathway in spinal microglia. J Neuroinflammation 2020; 17:154. [PMID: 32393298 PMCID: PMC7216552 DOI: 10.1186/s12974-020-1731-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neuroinflammation plays a vital role in the development and maintenance of neuropathic pain. Recent evidence has proved that bone marrow mesenchymal stem cells (BMSCs) can inhibit neuropathic pain and possess potent immunomodulatory and immunosuppressive properties via secreting a variety of bioactive molecules, such as TNF-α-stimulated gene 6 protein (TSG-6). However, it is unknown whether BMSCs exert their analgesic effect against neuropathic pain by secreting TSG-6. Therefore, the present study aimed to evaluate the analgesic effects of TSG-6 released from BMSCs on neuropathic pain induced by chronic constriction injury (CCI) in rats and explored the possible underlying mechanisms in vitro and in vivo. Methods BMSCs were isolated from rat bone marrow and characterized by flow cytometry and functional differentiation. One day after CCI surgery, about 5 × 106 BMSCs were intrathecally injected into spinal cerebrospinal fluid. Behavioral tests, including mechanical allodynia, thermal hyperalgesia, and motor function, were carried out at 1, 3, 5, 7, 14 days after CCI surgery. Spinal cords were processed for immunohistochemical analysis of the microglial marker Iba-1. The mRNA and protein levels of pro-inflammatory cytokines (IL-1β, TNFα, IL-6) were detected by real-time RT-PCR and ELISA. The activation of the TLR2/MyD88/NF-κB signaling pathway was evaluated by Western blot and immunofluorescence staining. The analgesic effect of exogenous recombinant TSG-6 on CCI-induced mechanical allodynia and heat hyperalgesia was observed by behavioral tests. In the in vitro experiments, primary cultured microglia were stimulated with the TLR2 agonist Pam3CSK4, and then co-cultured with BMSCs or recombinant TSG-6. The protein expression of TLR2, MyD88, p-p65 was evaluated by Western blot. The mRNA and protein levels of IL-1β, TNFα, IL-6 were detected by real-time RT-PCR and ELISA. BMSCs were transfected with the TSG-6-specific shRNA and then intrathecally injected into spinal cerebrospinal fluid in vivo or co-cultured with Pam3CSK4-treated primary microglia in vitro to investigate whether TSG-6 participated in the therapeutic effect of BMSCs on CCI-induced neuropathic pain and neuroinflammation. Results We found that CCI-induced mechanical allodynia and heat hyperalgesia were ameliorated by intrathecal injection of BMSCs. Moreover, intrathecal administration of BMSCs inhibited CCI-induced neuroinflammation in spinal cord tissues. The analgesic effect and anti-inflammatory property of BMSCs were attenuated when TSG-6 expression was silenced. We also found that BMSCs inhibited the activation of the TLR2/MyD88/NF-κB pathway in the ipsilateral spinal cord dorsal horn by secreting TSG-6. Meanwhile, we proved that intrathecal injection of exogenous recombinant TSG-6 effectively attenuated CCI-induced neuropathic pain. Furthermore, in vitro experiments showed that BMSCs and TSG-6 downregulated the TLR2/MyD88/NF-κB signaling and reduced the production of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in primary microglia treated with the specific TLR2 agonist Pam3CSK4. Conclusions The present study demonstrated a paracrine mechanism by which intrathecal injection of BMSCs targets the TLR2/MyD88/NF-κB pathway in spinal cord dorsal horn microglia to elicit neuroprotection and sustained neuropathic pain relief via TSG-6 secretion.
Collapse
Affiliation(s)
- Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Lingmin Wu
- Department of Anesthesiology, The first Hospital of Anhui Medical University, 218 Jixi Rd, Hefei, 230022, China
| | - Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Meiyun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Shaochen Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Li Zheng
- Department of Anesthesiology, Fuyang Hospital of Anhui Medical University, 99 Huangshan Rd, Fuyang, 236000, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China.
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China. .,Department of Anesthesiology, The first Hospital of Anhui Medical University, 218 Jixi Rd, Hefei, 230022, China.
| |
Collapse
|
32
|
Xie W, Li F, Han Y, Qin Y, Wang Y, Chi X, Xiao J, Li Z. Neuropeptide Y1 receptor antagonist promotes osteoporosis and microdamage repair and enhances osteogenic differentiation of bone marrow stem cells via cAMP/PKA/CREB pathway. Aging (Albany NY) 2020; 12:8120-8136. [PMID: 32381754 PMCID: PMC7244071 DOI: 10.18632/aging.103129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022]
Abstract
Osteoporosis is a common metabolic bone disorder in the elderly population. The accumulation of bone microdamage is a critical factor of osteoporotic fracture. Neuropeptide Y (NPY) has been reported to regulated bone metabolism through Y1 receptor (Y1R). In this study the effects and mechanisms of Y1R antagonist on prevention for osteoporosis were characterized. In the clinical experiment, compared with osteoarthritis (OA), osteoporosis (OP) showed significant osteoporotic bone microstructure and accumulation of bone microdamage. NPY and Y1R immunoreactivity in bone were stronger in OP group, and were both correlated with bone volume fraction (BV/TV). In vivo experiment, Y1R antagonist significantly improved osteoporotic microstructure in the ovariectomized (OVX) rats. And Y1R antagonist promoted RUNX2, OPG and inhibit RANKL, MMP9 in bone marrow. In vitro cell culture experiment, NPY inhibited osteogenesis, elevated RANKL/OPG ratio and downregulated the expression of cAMP, p-PKAs and p-CREB in BMSCs, treated with Y1R antagonist or 8-Bromo-cAMP could inhibit the effects of NPY. Together, Y1R antagonist improved the bone microstructure and reduced bone microdamage in OVX rats. NPY-Y1R could inhibit osteoblast differentiation of BMSCs via cAMP/PKA/CREB pathway. Our findings highlight the regulation of NPY-Y1R in bone metabolism as a potential therapy strategy for the prevention of osteoporosis and osteoporotic fracture.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.,Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Fan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.,Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yi Han
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yi Qin
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yuan Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xiaoying Chi
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhanchun Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
33
|
Buchheit T, Huh Y, Maixner W, Cheng J, Ji RR. Neuroimmune modulation of pain and regenerative pain medicine. J Clin Invest 2020; 130:2164-2176. [PMID: 32250346 PMCID: PMC7190995 DOI: 10.1172/jci134439] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Regenerative pain medicine, which seeks to harness the body's own reparative capacity, is rapidly emerging as a field within pain medicine and orthopedics. It is increasingly appreciated that common analgesic mechanisms for these treatments depend on neuroimmune modulation. In this Review, we discuss recent progress in mechanistic understanding of nociceptive sensitization in chronic pain with a focus on neuroimmune modulation. We also examine the spectrum of regenerative outcomes, including preclinical and clinical outcomes. We further distinguish the analgesic mechanisms of regenerative therapies from those of cellular replacement, creating a conceptual and mechanistic framework to evaluate future research on regenerative medicine.
Collapse
Affiliation(s)
- Thomas Buchheit
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
- Anesthesiology Service, Durham Veterans Affairs Health Care System, Durham, North Carolina, USA
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jianguo Cheng
- Departments of Pain Management and Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
34
|
Wei K, Dai J, Wang Z, Pei Y, Chen Y, Ding Y, Ding Q, Ahati P, Zhou X, Wang H, Fang H. Oxymatrine suppresses IL-1β-induced degradation of the nucleus pulposus cell and extracellular matrix through the TLR4/NF-κB signaling pathway. Exp Biol Med (Maywood) 2020; 245:532-541. [PMID: 31979980 DOI: 10.1177/1535370219900773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Intervertebral disc degeneration is the main cause of low back pain. However, its pathomechanism has not been fully clarified yet. Previous studies have indicated that inflammation may lead to apoptosis of nucleus pulposus cells and break the balance between anabolism and catabolism of the nucleus pulposus extracellular matrix. The purpose of this study is to explore the mitigative effect of oxymatrine on extracellular matrix degradation and apoptosis of nucleus pulposus cells after interleukin-1 beta-induced inflammation, and its possible signaling pathway. We examined the gene and protein levels of collagen II, aggrecan, and MMPs (MMP2/3/9/13) and interleukin 6 in nucleus pulposus cells. The results demonstrated that oxymatrine could reduce extracellular matrix degradation and apoptosis of nucleus pulposus cells; interleukin-1 beta prompted the expression of MMPs and interleukin 6 through TLR4/NF-κB axis, while oxymatrine reduced the expression of MMPs and TNF-α induced by interleukin-1 beta. Moreover, TAK 242, as a small molecule inhibitor of TLR4 signaling, was used to detect the effect of oxymatrine on the TLR4/NF-κB signaling. The final experimental results show that oxymatrine could reduce the inflammatory response of nucleus pulposus cells and degradation of nucleus pulposus tissue. Oxymatrine may be a potential medicine to reduce disc inflammation and relieve intervertebral disc degeneration by inhibiting the TLR4/NF-κB signal pathway. Impact statement Currently, drug therapy is a potential treatment for patients with intervertebral disc degeneration. In the present research, oxymatrine intervenes in intervertebral disc degeneration effectively via regulating inflammation in intervertebral disc degeneration rats. Our research highlights the therapeutic potential of oxymatrine in the treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Kang Wei
- Department of Orthopaedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, China
| | - Jun Dai
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhenggang Wang
- Department of Orthopaedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, China
| | - Yaping Pei
- Department of Orthopaedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, China
| | - Yan Chen
- Department of Orthopaedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, China
| | - Yifan Ding
- Department of Orthopaedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, China
| | - Qing Ding
- Department of Orthopaedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, China
| | - Paerxiati Ahati
- Department of Orthopaedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, China
| | - Xiaozhong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Huan Wang
- Department of Orthopaedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, China
| | - Huang Fang
- Department of Orthopaedics, Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
35
|
Oliva J. Therapeutic Properties of Mesenchymal Stem Cell on Organ Ischemia-Reperfusion Injury. Int J Mol Sci 2019; 20:ijms20215511. [PMID: 31694240 PMCID: PMC6862572 DOI: 10.3390/ijms20215511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022] Open
Abstract
The shortage of donor organs is a major global concern. Organ failure requires the transplantation of functional organs. Donor’s organs are preserved for variable periods of warm and cold ischemia time, which requires placing them into a preservation device. Ischemia and reperfusion damage the organs, due to the lack of oxygen during the ischemia step, as well as the oxidative stress during the reperfusion step. Different methodologies are developed to prevent or to diminish the level of injuries. Preservation solutions were first developed to maximize cold static preservation, which includes the addition of several chemical compounds. The next chapter of organ preservation comes with the perfusion machine, where mechanical devices provide continuous flow and oxygenation ex vivo to the organs being preserved. In the addition of inhibitors of mitogen-activated protein kinase and inhibitors of the proteasome, mesenchymal stem cells began being used 13 years ago to prevent or diminish the organ’s injuries. Mesenchymal stem cells (e.g., bone marrow stem cells, adipose derived stem cells and umbilical cord stem cells) have proven to be powerful tools in repairing damaged organs. This review will focus upon the use of some bone marrow stem cells, adipose-derived stem cells and umbilical cord stem cells on preventing or decreasing the injuries due to ischemia-reperfusion.
Collapse
Affiliation(s)
- Joan Oliva
- Emmaus Medical, Inc., 21250 Hawthorne Blvd, Suite 800, Torrance, CA 90503, USA
| |
Collapse
|
36
|
Lin J, Chen J, Zhang Z, Xu T, Shao Z, Wang X, Ding Y, Tian N, Jin H, Sheng S, Gao W, Lin Y, Zhang X, Wang X. Luteoloside Inhibits IL-1β-Induced Apoptosis and Catabolism in Nucleus Pulposus Cells and Ameliorates Intervertebral Disk Degeneration. Front Pharmacol 2019; 10:868. [PMID: 31427974 PMCID: PMC6690034 DOI: 10.3389/fphar.2019.00868] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disk degeneration (IDD) is the major cause of low back pain (LBP), which affects 80% of the world’s population. Interleukin 1 beta (IL-1β) is a major inflammatory factor that accelerates disk degeneration, and IL-1β levels increase in degenerative disks. It has recently been reported that luteoloside—a type of flavonoid glycoside—has anti-inflammatory properties. In the present study, we investigated the protective potential of luteoloside in IDD. We found that luteoloside maintains cell morphology and inhibits apoptosis (indicated by the reduced expression of cleaved caspase 3) in IL-1β-treated nucleus pulposus (NP) cells. It also suppresses inflammatory mediators—nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS)—in IL-1β-treated NP cells. Furthermore, we found increased collagen II and aggrecan expression and reduced MMP13 and ADAMTS5 expression in luteoloside-treated NP cells in the presence of IL-1β. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is involved in apoptosis, inflammation, and extracellular matrix (ECM) homeostasis. Mechanistic studies revealed that the NF-κB signaling pathway is inhibited by luteoloside, and Nrf2 is involved in the regulation of luteoloside in NF-κB signaling because Nrf2 knockdown reduced the suppressive effect of luteoloside on NF-κB signaling. We also established a puncture-induced rat IDD model and demonstrated that the persistent intraperitoneal injection of luteoloside ameliorates the progression of IDD. In conclusion, we demonstrated that luteoloside activates the Nrf2/HO-1 signaling axis and is a potential therapeutic medicine for IDD.
Collapse
Affiliation(s)
- Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zengjie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tianzhen Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, The Third Affiliated Hospital and Ruian People's Hospital of Wenzhou Medical University, Ruian, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaobin Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuanzhe Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Sunren Sheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| |
Collapse
|