1
|
Wang K, Si T, Wei C, Hu Q, Zhou Y, Bao J. Down-regulation of A20 mRNA expression in peripheral blood mononuclear cells from MDS patients. Hematology 2024; 29:2330851. [PMID: 38511647 DOI: 10.1080/16078454.2024.2330851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
Myelodysplastic syndrome (MDS) is characterized by activated inflammatory signaling and affects prognosis. Targeting inflammatory signaling may provide a way to treat the disease. We were curious whether there were changes in A20 in peripheral blood mononuclear cells (PBMC) of MDS patients. Therefore, we conducted a study with 60 clinical samples, including 30 MDS patients and 30 healthy controls. All patients with MDS were diagnosed and classified according to the criteria of the 2016 World Health Organization. The study was performed in accordance with the guidelines of the Declaration of Helsinki. Using Quantitative Real-Time RT-PCR, we discovered that A20 mRNA expression in PBMC of the MDS group was significantly lower than that in the control group (P < 0.001). Additionally, using Luminex Liquid Suspension Chip, we observed elevated plasma levels of pro-inflammatory IL-8 and TNF-α in the MDS group compared to the healthy control group (P < 0.001). We did not find a significant correlation between A20 mRNA and clinical characteristics (age, sex, concentration of hemoglobin, neutrophils count, platelets count, percent of blasts, and WHO classification) of the patients, nor between A20 mRNA and plasma cytokines (data not shown). Our study found down-regulated of A20 and increased levels of pro-inflammatory cytokines in the peripheral blood of MDS patients, providing further evidence for the activation of inflammatory signals in MDS.
Collapse
Affiliation(s)
- Kai Wang
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tianyu Si
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Congmin Wei
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qi Hu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yongming Zhou
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jizhang Bao
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Di Vito L, Di Giusto F, Mazzotta S, Scalone G, Bruscoli F, Silenzi S, Selimi A, Angelini M, Galieni P, Grossi P. Management of vulnerable patient phenotypes and acute coronary syndrome mechanisms. Int J Cardiol 2024; 415:132365. [PMID: 39029561 DOI: 10.1016/j.ijcard.2024.132365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Atherosclerosis is a chronic vascular disease. Its prevalence increases with aging. However, atherosclerosis may also affect young subjects without significant exposure to the classical risk factors. Recent evidence indicates clonal hematopoiesis of indeterminate potential (CHIP) as a novel cardiovascular risk factor that should be suspected in young patients. CHIP represents a link between impaired bone marrow and atherosclerosis. Atherosclerosis may present with an acute symptomatic manifestation or subclinical events that favor plaque growth. The outcome of a plaque relies on a balance of innate and environmental factors. These factors can influence the processes that initiate and propagate acute plaque destabilization leading to intraluminal thrombus formation or subclinical vessel healing. Thirty years ago, the first autopsy study revealed that coronary plaques can undergo rupture even in subjects without a known cardiovascular history. Nowadays, cardiac magnetic resonance studies demonstrate that this phenomenon is not rare. Myocardial infarction is mainly due to plaque rupture and plaque erosion that have different pathophysiological mechanisms. Plaque erosion carries a better prognosis as compared to plaque rupture. Thus, a tailored conservative treatment has been proposed and some studies demonstrated it to be safe. On the contrary, plaque rupture is typically associated with inflammation and anti-inflammatory treatments have been proposed in response to persistently elevate biomarkers of systemic inflammation. In conclusion, atherosclerosis may present in different forms or phenotypes. Vulnerable patient phenotypes, identified by using intravascular imaging techniques, biomarkers, or even genetic analyses, are characterized by distinctive pathophysiological mechanisms. These different phenotypes merit tailored management.
Collapse
Affiliation(s)
- Luca Di Vito
- Cardiology Unit, C. and G, Mazzoni Hospital, AST Ascoli Piceno, Italy.
| | | | - Serena Mazzotta
- Department of Haematology and Stem Cell Transplantation Unit C. e G, Mazzoni Hospital, Ascoli Piceno, Italy
| | - Giancarla Scalone
- Cardiology Unit, C. and G, Mazzoni Hospital, AST Ascoli Piceno, Italy
| | - Filippo Bruscoli
- Cardiology Unit, C. and G, Mazzoni Hospital, AST Ascoli Piceno, Italy
| | - Simona Silenzi
- Cardiology Unit, C. and G, Mazzoni Hospital, AST Ascoli Piceno, Italy
| | - Adelina Selimi
- University Hospital "Umberto I-Lancisi-Salesi", Ancona, Italy
| | - Mario Angelini
- Department of Haematology and Stem Cell Transplantation Unit C. e G, Mazzoni Hospital, Ascoli Piceno, Italy
| | - Piero Galieni
- Department of Haematology and Stem Cell Transplantation Unit C. e G, Mazzoni Hospital, Ascoli Piceno, Italy
| | | |
Collapse
|
3
|
Sirpilla O, Sakemura RL, Hefazi M, Huynh TN, Can I, Girsch JH, Tapper EE, Cox MJ, Schick KJ, Manriquez-Roman C, Yun K, Stewart CM, Ogbodo EJ, Kimball BL, Mai LK, Gutierrez-Ruiz OL, Rodriguez ML, Gluscevic M, Larson DP, Abel AM, Wierson WA, Olivier G, Siegler EL, Kenderian SS. Mesenchymal stromal cells with chimaeric antigen receptors for enhanced immunosuppression. Nat Biomed Eng 2024; 8:443-460. [PMID: 38561490 DOI: 10.1038/s41551-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals' symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.
Collapse
Affiliation(s)
- Olivia Sirpilla
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - R Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Mehrdad Hefazi
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Truc N Huynh
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - James H Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Erin E Tapper
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Michelle J Cox
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Kendall J Schick
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Claudia Manriquez-Roman
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Carli M Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Ekene J Ogbodo
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Kimball
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Long K Mai
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Omar L Gutierrez-Ruiz
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Makena L Rodriguez
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Martina Gluscevic
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Daniel P Larson
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Alex M Abel
- LifEngine Animal Health Laboratories Incorporated, Rochester, MN, USA
| | - Wesley A Wierson
- LifEngine Animal Health Laboratories Incorporated, Rochester, MN, USA
| | - Gloria Olivier
- Department of Business Development, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
de Jong MME, Chen L, Raaijmakers MHGP, Cupedo T. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 2024:10.1038/s41577-024-01003-x. [PMID: 38491073 DOI: 10.1038/s41577-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Khalilian P, Eskandari N, Sharifi MJ, Soltani M, Nematollahi P. Toll-Like Receptor 4, 2, and Interleukin 1 Receptor Associated Kinase4: Possible Diagnostic Biomarkers in Myelodysplastic Syndrome Patients. Adv Biomed Res 2024; 13:17. [PMID: 38525404 PMCID: PMC10958736 DOI: 10.4103/abr.abr_67_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 03/26/2024] Open
Abstract
Background Myelodysplastic syndrome (MDS) is a clonal hematologic disorder that requires the integration of morphologic, cytogenetic, hematologic, and clinical findings for a successful diagnosis. Trying to find ancillary tests such as biomarkers improve the diagnosis process. Several studies showed that a disordered immune system is associated with MDS. The chronic activated innate immune system, particularly the Toll-like receptors (TLRs) pathway could be involved in the induction of the inflammation. Materials and Methods In the present study, we investigated the expression of TLR2, TLR4, and IRAK4 in bone marrow (BM) of MDS patients, the leukemia group, and the healthy group. For this purpose, we assessed the expression of TLR2, TLR4, and IRAK4 by real time-PCR. Results In line with new findings, we demonstrated that the expression of TLR2, TLR4, and IRAK4 significantly increased in MDS BM compared with the healthy group. Moreover, IRAK4 expression raised significantly in MDS patients compared with other studied hematologic neoplasms. Also, the expression levels of TLR2 and TLR4 significantly increased in MDS in comparison to some studied non-MDS malignancies (P ˂ 0.05). Receiver operating characteristics (ROC) analysis and area under the curve (AUC) suggested that the expression of TLR2, TLR4, and IRAK4 (AUC = 0.702, AUC = 0.75, and AUC = 0.682, respectively) had acceptable diagnostic values to identify MDS from the other understudied leukemias. Conclusion Overall, the expression of TLR2, TLR4, and IRAK4 could be potential biomarkers for discriminating MDS from some hematologic disorders.
Collapse
Affiliation(s)
- Parvin Khalilian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Jafar Sharifi
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pardis Nematollahi
- Department of Pathology, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Giallongo C, Dulcamare I, Giallongo S, Duminuco A, Pieragostino D, Cufaro MC, Amorini AM, Lazzarino G, Romano A, Parrinello N, Di Rosa M, Broggi G, Caltabiano R, Caraglia M, Scrima M, Pasquale LS, Tathode MS, Li Volti G, Motterlini R, Di Raimondo F, Tibullo D, Palumbo GA. MacroH2A1.1 as a crossroad between epigenetics, inflammation and metabolism of mesenchymal stromal cells in myelodysplastic syndromes. Cell Death Dis 2023; 14:686. [PMID: 37852977 PMCID: PMC10584900 DOI: 10.1038/s41419-023-06197-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
Ineffective hematopoiesis is a hallmark of myelodysplastic syndromes (MDS). Hematopoietic alterations in MDS patients strictly correlate with microenvironment dysfunctions, eventually affecting also the mesenchymal stromal cell (MSC) compartment. Stromal cells are indeed epigenetically reprogrammed to cooperate with leukemic cells and propagate the disease as "tumor unit"; therefore, changes in MSC epigenetic profile might contribute to the hematopoietic perturbations typical of MDS. Here, we unveil that the histone variant macroH2A1 (mH2A1) regulates the crosstalk between epigenetics and inflammation in MDS-MSCs, potentially affecting their hematopoietic support ability. We show that the mH2A1 splicing isoform mH2A1.1 accumulates in MDS-MSCs, correlating with the expression of the Toll-like receptor 4 (TLR4), an important pro-tumor activator of MSC phenotype associated to a pro-inflammatory behavior. MH2A1.1-TLR4 axis was further investigated in HS-5 stromal cells after ectopic mH2A1.1 overexpression (mH2A1.1-OE). Proteomic data confirmed the activation of a pro-inflammatory signature associated to TLR4 and nuclear factor kappa B (NFkB) activation. Moreover, mH2A1.1-OE proteomic profile identified several upregulated proteins associated to DNA and histones hypermethylation, including S-adenosylhomocysteine hydrolase, a strong inhibitor of DNA methyltransferase and of the methyl donor S-adenosyl-methionine (SAM). HPLC analysis confirmed higher SAM/SAH ratio along with a metabolic reprogramming. Interestingly, an increased LDHA nuclear localization was detected both in mH2A1.1-OE cells and MDS-MSCs, probably depending on MSC inflammatory phenotype. Finally, coculturing healthy mH2A1.1-OE MSCs with CD34+ cells, we found a significant reduction in the number of CD34+ cells, which was reflected in a decreased number of colony forming units (CFU-Cs). These results suggest a key role of mH2A1.1 in driving the crosstalk between epigenetic signaling, inflammation, and cell metabolism networks in MDS-MSCs.
Collapse
Affiliation(s)
- C Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - I Dulcamare
- Division of Hematology, AOU Policlinico, Catania, Italy
| | - S Giallongo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy.
| | - A Duminuco
- Division of Hematology, AOU Policlinico, Catania, Italy
| | - D Pieragostino
- Department of Innovative Technologies and Medicine & Odontoiatry, University G. D'Annunzio, Chieti-Pescara, Italy
- Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - M C Cufaro
- Department of Innovative Technologies and Medicine & Odontoiatry, University G. D'Annunzio, Chieti-Pescara, Italy
- Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - A M Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - G Lazzarino
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - A Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - N Parrinello
- Division of Hematology, AOU Policlinico, Catania, Italy
| | - M Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - G Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - R Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - M Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - M Scrima
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - L S Pasquale
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - M S Tathode
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - G Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - R Motterlini
- Faculty of Health, University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - F Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - D Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - G A Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
7
|
Liesveld J, Galipeau J. In Vitro Insights Into the Influence of Marrow Mesodermal/Mesenchymal Progenitor Cells on Acute Myelogenous Leukemia and Myelodysplastic Syndromes. Stem Cells 2023; 41:823-836. [PMID: 37348128 DOI: 10.1093/stmcls/sxad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The study of marrow-resident mesodermal progenitors can provide important insight into their role in influencing normal and aberrant hematopoiesis as occurs in acute myelogenous leukemia (AML) and myelodysplastic syndromes (MDS). In addition, the chemokine competency of these cells provides links to the inflammatory milieu of the marrow microenvironment with additional implications for normal and malignant hematopoiesis. While in vivo studies have elucidated the structure and function of the marrow niche in murine genetic models, corollary human studies have not been feasible, and thus the use of culture-adapted mesodermal cells has provided insights into the role these rare endogenous niche cells play in physiologic, malignant, and inflammatory states. This review focuses on culture-adapted human mesenchymal stem/stromal cells (MSCs) as they have been utilized in understanding their influence in AML and MDS as well as on their chemokine-mediated responses to myeloid malignancies, injury, and inflammation. Such studies have intrinsic limitations but have provided mechanistic insights and clues regarding novel druggable targets.
Collapse
Affiliation(s)
- Jane Liesveld
- Department of Medicine, James P. Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
| | - Jaques Galipeau
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin in Madison, Madison, WI, USA
| |
Collapse
|
8
|
Vegivinti CTR, Keesari PR, Veeraballi S, Martins Maia CMP, Mehta AK, Lavu RR, Thakur RK, Tella SH, Patel R, Kakumani VK, Pulakurthi YS, Aluri S, Aggarwal RK, Ramachandra N, Zhao R, Sahu S, Shastri A, Verma A. Role of innate immunological/inflammatory pathways in myelodysplastic syndromes and AML: a narrative review. Exp Hematol Oncol 2023; 12:60. [PMID: 37422676 DOI: 10.1186/s40164-023-00422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Dysregulation of the innate immune system and inflammatory-related pathways has been implicated in hematopoietic defects in the bone marrow microenvironment and associated with aging, clonal hematopoiesis, myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). As the innate immune system and its pathway regulators have been implicated in the pathogenesis of MDS/AML, novel approaches targeting these pathways have shown promising results. Variability in expression of Toll like receptors (TLRs), abnormal levels of MyD88 and subsequent activation of NF-κβ, dysregulated IL1-receptor associated kinases (IRAK), alterations in TGF-β and SMAD signaling, high levels of S100A8/A9 have all been implicated in pathogenesis of MDS/AML. In this review we not only discuss the interplay of various innate immune pathways in MDS pathogenesis but also focus on potential therapeutic targets from recent clinical trials including the use of monoclonal antibodies and small molecule inhibitors against these pathways.
Collapse
Affiliation(s)
- Charan Thej Reddy Vegivinti
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | | | | | | | - Ansh Krishnachandra Mehta
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Hematology and Oncology, Jacobi Medical Center/ Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Rohit Reddy Lavu
- Department of Oncology, Yashoda hospitals, Hyderabad, 500036, India
| | - Rahul Kumar Thakur
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Sri Harsha Tella
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, US
| | - Riya Patel
- Department of Hematology and Oncology, University of Buffalo - Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, US
| | | | | | - Srinivas Aluri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | | | - Nandini Ramachandra
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Rongbao Zhao
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Srabani Sahu
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Aditi Shastri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Blood Cancer Institute, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US.
- Department of Oncology, Blood Cancer Institute, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US.
| |
Collapse
|
9
|
Ernst MPT, Pronk E, van Dijk C, van Strien PMH, van Tienhoven TVD, Wevers MJW, Sanders MA, Bindels EMJ, Speck NA, Raaijmakers MHGP. Hematopoietic Cell Autonomous Disruption of Hematopoiesis in a Germline Loss-of-function Mouse Model of RUNX1-FPD. Hemasphere 2023; 7:e824. [PMID: 36741355 PMCID: PMC9891454 DOI: 10.1097/hs9.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
RUNX1 familial platelet disorder (RUNX1-FPD) is a hematopoietic disorder caused by germline loss-of-function mutations in the RUNX1 gene and characterized by thrombocytopathy, thrombocytopenia, and an increased risk of developing hematologic malignancies, mostly of myeloid origin. Disease pathophysiology has remained incompletely understood, in part because of a shortage of in vivo models recapitulating the germline RUNX1 loss of function found in humans, precluding the study of potential contributions of non-hematopoietic cells to disease pathogenesis. Here, we studied mice harboring a germline hypomorphic mutation of one Runx1 allele with a loss-of-function mutation in the other Runx1 allele (Runx1 L148A/- mice), which display many hematologic characteristics found in human RUNX1-FPD patients. Runx1 L148A/- mice displayed robust and pronounced thrombocytopenia and myeloid-biased hematopoiesis, associated with an HSC intrinsic reconstitution defect in lymphopoiesis and expansion of myeloid progenitor cell pools. We demonstrate that specific deletion of Runx1 from bone marrow stromal cells in Prrx1-cre;Runx1 fl/fl mice did not recapitulate these abnormalities, indicating that the hematopoietic abnormalities are intrinsic to the hematopoietic lineage, and arguing against a driving role of the bone marrow microenvironment. In conclusion, we report a RUNX1-FPD mouse model faithfully recapitulating key characteristics of human disease. Findings do not support a driving role of ancillary, non-hematopoietic cells in the disruption of hematopoiesis under homeostatic conditions.
Collapse
Affiliation(s)
- Martijn P. T. Ernst
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eline Pronk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Claire van Dijk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Michiel J. W. Wevers
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A. Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eric M. J. Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Nancy A. Speck
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
10
|
Pontikoglou CG, Matheakakis A, Papadaki HA. The mesenchymal compartment in myelodysplastic syndrome: Its role in the pathogenesis of the disorder and its therapeutic targeting. Front Oncol 2023; 13:1102495. [PMID: 36761941 PMCID: PMC9907728 DOI: 10.3389/fonc.2023.1102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Myelodysplastic syndromes include a broad spectrum of malignant myeloid disorders that are characterized by dysplastic ineffective hematopoiesis, reduced peripheral blood cells counts and a high risk of progression to acute myeloid leukemia. The disease arises primarily because of accumulating chromosomal, genetic and epigenetic changes as well as immune-mediated alterations of the hematopoietic stem cells (HSCs). However, mounting evidence suggests that aberrations within the bone marrow microenvironment critically contribute to myelodysplastic syndrome (MDS) initiation and evolution by providing permissive cues that enable the abnormal HSCs to grow and eventually establish and propagate the disease. Mesenchymal stromal cells (MSCs) are crucial elements of the bone marrow microenvironment that play a key role in the regulation of HSCs by providing appropriate signals via soluble factors and cell contact interactions. Given their hematopoiesis supporting capacity, it has been reasonable to investigate MSCs' potential involvement in MDS. This review discusses this issue by summarizing existing findings obtained by in vitro studies and murine disease models of MDS. Furthermore, the theoretical background of targeting the BM-MSCs in MDS is outlined and available therapeutic modalities are described.
Collapse
Affiliation(s)
- Charalampos G. Pontikoglou
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece,Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece,*Correspondence: Charalampos G. Pontikoglou,
| | - Angelos Matheakakis
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece,Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece
| | - Helen A. Papadaki
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece,Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
11
|
Feyen J, Ping Z, Chen L, van Dijk C, van Tienhoven TVD, van Strien PMH, Hoogenboezem RM, Wevers MJW, Sanders MA, Touw IP, Raaijmakers MHGP. Myeloid cells promote interferon signaling-associated deterioration of the hematopoietic system. Nat Commun 2022; 13:7657. [PMID: 36496394 PMCID: PMC9741615 DOI: 10.1038/s41467-022-35318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Innate and adaptive immune cells participate in the homeostatic regulation of hematopoietic stem cells (HSCs). Here, we interrogate the contribution of myeloid cells, the most abundant cell type in the mammalian bone marrow, in a clinically relevant mouse model of neutropenia. Long-term genetic depletion of neutrophils and eosinophils results in activation of multipotent progenitors but preservation of HSCs. Depletion of myeloid cells abrogates HSC expansion, loss of serial repopulation and lymphoid reconstitution capacity and remodeling of HSC niches, features previously associated with hematopoietic aging. This is associated with mitigation of interferon signaling in both HSCs and their niches via reduction of NK cell number and activation. These data implicate myeloid cells in the functional decline of hematopoiesis, associated with activation of interferon signaling via a putative neutrophil-NK cell axis. Innate immunity may thus come at the cost of system deterioration through enhanced chronic inflammatory signaling to stem cells and their niches.
Collapse
Affiliation(s)
- Jacqueline Feyen
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Zhen Ping
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Lanpeng Chen
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Claire van Dijk
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Tim V. D. van Tienhoven
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Paulina M. H. van Strien
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Remco M. Hoogenboezem
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Michiel J. W. Wevers
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Mathijs A. Sanders
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Ivo P. Touw
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| | - Marc H. G. P. Raaijmakers
- grid.508717.c0000 0004 0637 3764Department of Hematology, Erasmus MC Cancer Institute, 3015CN Rotterdam, the Netherlands
| |
Collapse
|
12
|
Zheng L, Zhang L, Guo Y, Xu X, Liu Z, Yan Z, Fu R. The immunological role of mesenchymal stromal cells in patients with myelodysplastic syndrome. Front Immunol 2022; 13:1078421. [PMID: 36569863 PMCID: PMC9767949 DOI: 10.3389/fimmu.2022.1078421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a common hematological malignant disease, characterized by malignant hematopoietic stem cell proliferation in the bone marrow (BM); clinically, it mainly manifests clinically mainly by as pathological hematopoiesis, hemocytopenia, and high-risk transformation to acute leukemia. Several studies have shown that the BM microenvironment plays a critical role in the progression of MDS. In this study, we specifically evaluated mesenchymal stromal cells (MSCs) that exert immunomodulatory effects in the BM microenvironment. This immunomodulatory effect occurs through direct cell-cell contact and the secretion of soluble cytokines or micro vesicles. Several researchers have compared MSCs derived from healthy donors to low-risk MDS-associated bone mesenchymal stem cells (BM-MSCs) and have found no significant abnormalities in the MDS-MSC phenotype; however, these cells have been observed to exhibit altered function, including a decline in osteoblastic function. This altered function may promote MDS progression. In patients with MDS, especially high-risk patients, MSCs in the BM microenvironment regulate immune cell function, such as that of T cells, B cells, natural killer cells, dendritic cells, neutrophils, myeloid-derived suppressor cells (MDSCs), macrophages, and Treg cells, thereby enabling MDS-associated malignant cells to evade immune cell surveillance. Alterations in MDS-MSC function include genomic instability, microRNA production, histone modification, DNA methylation, and abnormal signal transduction and cytokine secretion.
Collapse
Affiliation(s)
- Likun Zheng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China,Department of Hematology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Lei Zhang
- Department of Orthopedics, Kailuan General Hospital, Tangshan, Hebei, China
| | - Yixuan Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Xu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yan
- Department of Hematology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Rong Fu,
| |
Collapse
|
13
|
Kouroukli O, Symeonidis A, Foukas P, Maragkou MK, Kourea EP. Bone Marrow Immune Microenvironment in Myelodysplastic Syndromes. Cancers (Basel) 2022; 14:cancers14225656. [PMID: 36428749 PMCID: PMC9688609 DOI: 10.3390/cancers14225656] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The BM, the major hematopoietic organ in humans, consists of a pleiomorphic environment of cellular, extracellular, and bioactive compounds with continuous and complex interactions between them, leading to the formation of mature blood cells found in the peripheral circulation. Systemic and local inflammation in the BM elicit stress hematopoiesis and drive hematopoietic stem cells (HSCs) out of their quiescent state, as part of a protective pathophysiologic process. However, sustained chronic inflammation impairs HSC function, favors mutagenesis, and predisposes the development of hematologic malignancies, such as myelodysplastic syndromes (MDS). Apart from intrinsic cellular mechanisms, various extrinsic factors of the BM immune microenvironment (IME) emerge as potential determinants of disease initiation and evolution. In MDS, the IME is reprogrammed, initially to prevent the development, but ultimately to support and provide a survival advantage to the dysplastic clone. Specific cellular elements, such as myeloid-derived suppressor cells (MDSCs) are recruited to support and enhance clonal expansion. The immune-mediated inhibition of normal hematopoiesis contributes to peripheral cytopenias of MDS patients, while immunosuppression in late-stage MDS enables immune evasion and disease progression towards acute myeloid leukemia (AML). In this review, we aim to elucidate the role of the mediators of immune response in the initial pathogenesis of MDS and the evolution of the disease.
Collapse
Affiliation(s)
- Olga Kouroukli
- Department of Pathology, University Hospital of Patras, 26504 Patras, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, School of Medicine, University of Patras, 26332 Patras, Greece
| | - Periklis Foukas
- 2nd Department of Pathology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Myrto-Kalliopi Maragkou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 54124 Thessaloniki, Greece
| | - Eleni P. Kourea
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-969191
| |
Collapse
|
14
|
Rigamonti A, Castagna A, Viatore M, Colombo FS, Terzoli S, Peano C, Marchesi F, Locati M. Distinct responses of newly identified monocyte subsets to advanced gastrointestinal cancer and COVID-19. Front Immunol 2022; 13:967737. [PMID: 36263038 PMCID: PMC9576306 DOI: 10.3389/fimmu.2022.967737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Monocytes are critical cells of the immune system but their role as effectors is relatively poorly understood, as they have long been considered only as precursors of tissue macrophages or dendritic cells. Moreover, it is known that this cell type is heterogeneous, but our understanding of this aspect is limited to the broad classification in classical/intermediate/non-classical monocytes, commonly based on their expression of only two markers, i.e. CD14 and CD16. We deeply dissected the heterogeneity of human circulating monocytes in healthy donors by transcriptomic analysis at single-cell level and identified 9 distinct monocyte populations characterized each by a profile suggestive of specialized functions. The classical monocyte subset in fact included five distinct populations, each enriched for transcriptomic gene sets related to either inflammatory, neutrophil-like, interferon-related, and platelet-related pathways. Non-classical monocytes included two distinct populations, one of which marked specifically by elevated expression levels of complement components. Intermediate monocytes were not further divided in our analysis and were characterized by high levels of human leukocyte antigen (HLA) genes. Finally, we identified one cluster included in both classical and non-classical monocytes, characterized by a strong cytotoxic signature. These findings provided the rationale to exploit the relevance of newly identified monocyte populations in disease evolution. A machine learning approach was developed and applied to two single-cell transcriptome public datasets, from gastrointestinal cancer and Coronavirus disease 2019 (COVID-19) patients. The dissection of these datasets through our classification revealed that patients with advanced cancers showed a selective increase in monocytes enriched in platelet-related pathways. Of note, the signature associated with this population correlated with worse prognosis in gastric cancer patients. Conversely, after immunotherapy, the most activated population was composed of interferon-related monocytes, consistent with an upregulation in interferon-related genes in responder patients compared to non-responders. In COVID-19 patients we confirmed a global activated phenotype of the entire monocyte compartment, but our classification revealed that only cytotoxic monocytes are expanded during the disease progression. Collectively, this study unravels an unexpected complexity among human circulating monocytes and highlights the existence of specialized populations differently engaged depending on the pathological context.
Collapse
Affiliation(s)
- Alessandra Rigamonti
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandra Castagna
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marika Viatore
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clelia Peano
- Genomic Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Institute of Genetic and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
| | - Federica Marchesi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Massimo Locati
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- *Correspondence: Massimo Locati,
| |
Collapse
|
15
|
Friedrich C, Kosmider O. The Mesenchymal Niche in Myelodysplastic Syndromes. Diagnostics (Basel) 2022; 12:1639. [PMID: 35885544 PMCID: PMC9320414 DOI: 10.3390/diagnostics12071639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Myelodysplastic syndromes (MDSs) are clonal disorders characterized by ineffective hematopoiesis, resulting in cytopenias and a risk of developing acute myeloid leukemia. In addition to mutations affecting hematopoietic stem cells (HSCs), numerous studies have highlighted the role of the bone marrow microenvironment (BMME) in the development of MDSs. The mesenchymal niche represents a key component of the BMME. In this review, we discuss the role of the mesenchymal niche in the pathophysiology of MDS and provide an overview of currently available in vitro and in vivo models that can be used to study the effects of the mesenchymal niche on HSCs.
Collapse
Affiliation(s)
- Chloé Friedrich
- INSERM U1016, Institut Cochin, Université de Paris Cité, F-75014 Paris, France;
| | | |
Collapse
|
16
|
Tan Z, Kan C, Wong M, Sun M, Liu Y, Yang F, Wang S, Zheng H. Regulation of Malignant Myeloid Leukemia by Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:857045. [PMID: 35756991 PMCID: PMC9213747 DOI: 10.3389/fcell.2022.857045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bone marrow microenvironment (BMM) has been proven to have benefits for both normal hematopoietic stem cell niche and pathological leukemic stem cell niche. In fact, the pathological leukemia microenvironment reprograms bone marrow niche cells, especially mesenchymal stem cells for leukemia progression, chemoresistance and relapse. The growth and differentiation of MSCs are modulated by leukemia stem cells. Moreover, chromatin abnormality of mesenchymal stem cells is sufficient for leukemia initiation. Here, we summarize the detailed relationship between MSC and leukemia. MSCs can actively and passively regulate the progression of myelogenous leukemia through cell-to-cell contact, cytokine-receptor interaction, and exosome communication. These behaviors benefit LSCs proliferation and survival and inhibit physiological hematopoiesis. Finally, we describe the recent advances in therapy targeting MSC hoping to provide new perspectives and therapeutic strategies for leukemia.
Collapse
Affiliation(s)
- Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Chen Kan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Mandy Wong
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Minqiong Sun
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Yakun Liu
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Fan Yang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Siying Wang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Hong Zheng
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Pendse S, Kale V, Vaidya A. The Intercellular Communication Between Mesenchymal Stromal Cells and Hematopoietic Stem Cells Critically Depends on NF-κB Signalling in the Mesenchymal Stromal Cells. Stem Cell Rev Rep 2022; 18:2458-2473. [PMID: 35347654 DOI: 10.1007/s12015-022-10364-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/31/2022]
Abstract
Mesenchymal stromal cells (MSCs) regulate the fate of the hematopoietic stem cells (HSCs) through both cell-cell interactions and paracrine mechanisms involving multiple signalling pathways. We have previously shown that co-culturing of HSCs with CoCl2-treated MSCs expands functional HSCs. While performing these experiments, we had observed that the growth of CoCl2-treated MSCs was significantly stunted. Here, we show that CoCl2-treated MSCs possess activated NF-κB signalling pathway, and its pharmacological inhibition significantly relieves their growth arrest. Most interestingly, we found that pharmacological inhibition of NF-κB pathway in both control and CoCl2-treated MSCs completely blocks their intercellular communication with the co-cultured hematopoietic stem and progenitor cells (HSPCs), resulting in an extremely poor output of hematopoietic cells. Mechanistically, we show that this is due to the down-regulation of adhesion molecules and various HSC-supportive factors in the MSCs. This loss of physical interaction with HSPCs could be partially restored by treating the MSCs with calcium ionophore or calmodulin, suggesting that NF-κB regulates intracellular calcium flux in the MSCs. Importantly, the HSPCs co-cultured with NF-κB-inhibited-MSCs were in a quiescent state, which could be rescued by re-culturing them with untreated MSCs. Our data underscore a critical requirement of NF-κB signalling in the MSCs in intercellular communication between HSCs and MSCs for effective hematopoiesis to occur ex vivo. Our data raises a cautionary note against excessive use of anti-inflammatory drugs targeting NF-κB.
Collapse
Affiliation(s)
- Shalmali Pendse
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India.
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India.
| |
Collapse
|
18
|
Lynch OF, Calvi LM. Immune Dysfunction, Cytokine Disruption, and Stromal Changes in Myelodysplastic Syndrome: A Review. Cells 2022; 11:580. [PMID: 35159389 PMCID: PMC8834462 DOI: 10.3390/cells11030580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are myeloid neoplasms characterized by bone marrow dysfunction and increased risk of transformation to leukemia. MDS represent complex and diverse diseases that evolve from malignant hematopoietic stem cells and involve not only the proliferation of malignant cells but also the dysfunction of normal bone marrow. Specifically, the marrow microenvironment-both hematopoietic and stromal components-is disrupted in MDS. While microenvironmental disruption has been described in human MDS and murine models of the disease, only a few current treatments target the microenvironment, including the immune system. In this review, we will examine current evidence supporting three key interdependent pillars of microenvironmental alteration in MDS-immune dysfunction, cytokine skewing, and stromal changes. Understanding the molecular changes seen in these diseases has been, and will continue to be, foundational to developing effective novel treatments that prevent disease progression and transformation to leukemia.
Collapse
Affiliation(s)
- Olivia F. Lynch
- School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA;
| | - Laura M. Calvi
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
19
|
Cinat D, Coppes RP, Barazzuol L. DNA Damage-Induced Inflammatory Microenvironment and Adult Stem Cell Response. Front Cell Dev Biol 2021; 9:729136. [PMID: 34692684 PMCID: PMC8531638 DOI: 10.3389/fcell.2021.729136] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells ensure tissue homeostasis and regeneration after injury. Due to their longevity and functional requirements, throughout their life stem cells are subject to a significant amount of DNA damage. Genotoxic stress has recently been shown to trigger a cascade of cell- and non-cell autonomous inflammatory signaling pathways, leading to the release of pro-inflammatory factors and an increase in the amount of infiltrating immune cells. In this review, we discuss recent evidence of how DNA damage by affecting the microenvironment of stem cells present in adult tissues and neoplasms can affect their maintenance and long-term function. We first focus on the importance of self-DNA sensing in immunity activation, inflammation and secretion of pro-inflammatory factors mediated by activation of the cGAS-STING pathway, the ZBP1 pathogen sensor, the AIM2 and NLRP3 inflammasomes. Alongside cytosolic DNA, the emerging roles of cytosolic double-stranded RNA and mitochondrial DNA are discussed. The DNA damage response can also initiate mechanisms to limit division of damaged stem/progenitor cells by inducing a permanent state of cell cycle arrest, known as senescence. Persistent DNA damage triggers senescent cells to secrete senescence-associated secretory phenotype (SASP) factors, which can act as strong immune modulators. Altogether these DNA damage-mediated immunomodulatory responses have been shown to affect the homeostasis of tissue-specific stem cells leading to degenerative conditions. Conversely, the release of specific cytokines can also positively impact tissue-specific stem cell plasticity and regeneration in addition to enhancing the activity of cancer stem cells thereby driving tumor progression. Further mechanistic understanding of the DNA damage-induced immunomodulatory response on the stem cell microenvironment might shed light on age-related diseases and cancer, and potentially inform novel treatment strategies.
Collapse
Affiliation(s)
- Davide Cinat
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
20
|
Schwab JD, Ikonomi N, Werle SD, Weidner FM, Geiger H, Kestler HA. Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells. Comput Struct Biotechnol J 2021; 19:5321-5332. [PMID: 34630946 PMCID: PMC8487005 DOI: 10.1016/j.csbj.2021.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 09/12/2021] [Indexed: 01/08/2023] Open
Abstract
Regulatory dependencies in molecular networks are the basis of dynamic behaviors affecting the phenotypical landscape. With the advance of high throughput technologies, the detail of omics data has arrived at the single-cell level. Nevertheless, new strategies are required to reconstruct regulatory networks based on populations of single-cell data. Here, we present a new approach to generate populations of gene regulatory networks from single-cell RNA-sequencing (scRNA-seq) data. Our approach exploits the heterogeneity of single-cell populations to generate pseudo-timepoints. This allows for the first time to uncouple network reconstruction from a direct dependency on time series measurements. The generated time series are then fed to a combined reconstruction algorithm. The latter allows a fast and efficient reconstruction of ensembles of gene regulatory networks. Since this approach does not require knowledge on time-related trajectories, it allows us to model heterogeneous processes such as aging. Applying the approach to the aging-associated NF-κB signaling pathway-based scRNA-seq data of human hematopoietic stem cells (HSCs), we were able to reconstruct eight ensembles, and evaluate their dynamic behavior. Moreover, we propose a strategy to evaluate the resulting attractor patterns. Interaction graph-based features and dynamic investigations of our model ensembles provide a new perspective on the heterogeneity and mechanisms related to human HSCs aging.
Collapse
Affiliation(s)
- Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Silke D Werle
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Felix M Weidner
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
21
|
The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape. Nat Immunol 2021; 22:769-780. [PMID: 34017122 DOI: 10.1038/s41590-021-00931-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/09/2021] [Indexed: 01/20/2023]
Abstract
Progression and persistence of malignancies are influenced by the local tumor microenvironment, and future eradication of currently incurable tumors will, in part, hinge on our understanding of malignant cell biology in the context of their nourishing surroundings. Here, we generated paired single-cell transcriptomic datasets of tumor cells and the bone marrow immune and stromal microenvironment in multiple myeloma. These analyses identified myeloma-specific inflammatory mesenchymal stromal cells, which spatially colocalized with tumor cells and immune cells and transcribed genes involved in tumor survival and immune modulation. Inflammatory stromal cell signatures were driven by stimulation with proinflammatory cytokines, and analyses of immune cell subsets suggested interferon-responsive effector T cell and CD8+ stem cell memory T cell populations as potential sources of stromal cell-activating cytokines. Tracking stromal inflammation in individuals over time revealed that successful antitumor induction therapy is unable to revert bone marrow inflammation, predicting a role for mesenchymal stromal cells in disease persistence.
Collapse
|
22
|
Gleitz HFE, Snoeren IAM, Fuchs SNR, Leimkühler NB, Schneider RK. Isolation of human bone marrow stromal cells from bone marrow biopsies for single-cell RNA sequencing. STAR Protoc 2021; 2:100538. [PMID: 34027494 PMCID: PMC8134068 DOI: 10.1016/j.xpro.2021.100538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bone marrow (BM) mesenchymal stromal cells play an important role in regulating stem cell quiescence and homeostasis; they are also key contributors to various hematological malignancies. However, human bone marrow stromal cells are difficult to isolate and prone to damage during isolation. This protocol describes a combination of mechanical and enzymatic isolation of BM stromal cells from human BM biopsies, followed by FACS sorting to separate stromal sub-populations including mesenchymal stromal cells, fibroblasts, and Schwann cells for single-cell RNA sequencing. For complete details on the use and execution of this protocol, please refer to Leimkühler et al. (2020). Combination of enzymatic and physical homogenization methods for tissue dissociation Isolation of viable bone marrow stromal cells from human trephine bone marrow biopsies Preparation of FACS-sorted human stromal cells for single-cell RNA sequencing experiments
Collapse
Affiliation(s)
- Hélène F E Gleitz
- Department of Hematology, Erasmus MC, Rotterdam, 3015GD, the Netherlands.,Current address: Department of Developmental Biology, Erasmus MC, Rotterdam, 3015GD, the Netherlands.,Oncode Institute, Erasmus MC, Rotterdam, 3015GD, the Netherlands
| | - Inge A M Snoeren
- Department of Hematology, Erasmus MC, Rotterdam, 3015GD, the Netherlands.,Current address: Department of Developmental Biology, Erasmus MC, Rotterdam, 3015GD, the Netherlands.,Oncode Institute, Erasmus MC, Rotterdam, 3015GD, the Netherlands
| | - Stijn N R Fuchs
- Department of Hematology, Erasmus MC, Rotterdam, 3015GD, the Netherlands.,Current address: Department of Developmental Biology, Erasmus MC, Rotterdam, 3015GD, the Netherlands.,Oncode Institute, Erasmus MC, Rotterdam, 3015GD, the Netherlands
| | - Nils B Leimkühler
- Department of Hematology, Erasmus MC, Rotterdam, 3015GD, the Netherlands.,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Rebekka K Schneider
- Department of Hematology, Erasmus MC, Rotterdam, 3015GD, the Netherlands.,Current address: Department of Developmental Biology, Erasmus MC, Rotterdam, 3015GD, the Netherlands.,Oncode Institute, Erasmus MC, Rotterdam, 3015GD, the Netherlands.,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen 52074, Germany.,Institute for Biomedical Engineering, Department of Cell Biology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
23
|
Karwaciak I, Sałkowska A, Karaś K, Dastych J, Ratajewski M. Nucleocapsid and Spike Proteins of the Coronavirus SARS-CoV-2 Induce IL6 in Monocytes and Macrophages-Potential Implications for Cytokine Storm Syndrome. Vaccines (Basel) 2021; 9:54. [PMID: 33467724 PMCID: PMC7830532 DOI: 10.3390/vaccines9010054] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
The pandemic of the new coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has led to the deaths of more than 1.5 million people worldwide. SARS-CoV-2 causes COVID-19, which exhibits wide variation in the course of disease in different people, ranging from asymptomatic and mild courses to very severe courses that can result in respiratory failure and death. Despite the rapid progression of knowledge, we still do not know how individual cells of the immune system interact with the virus or its components, or how immune homeostasis becomes disrupted, leading to the rapid deterioration of a patient's condition. In the present work, we show that SARS-CoV-2 proteins induce the expression and secretion of IL-6 by human monocytes and macrophages, the first line cells of antiviral immune responses. IL-6 may play a negative role in the course of COVID-19 by inhibiting Th1-dependent immunity and stimulating Th17 lymphocytes, thus leading to an increased probability of a cytokine storm.
Collapse
Affiliation(s)
- Iwona Karwaciak
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
| |
Collapse
|
24
|
Dodson M, Anandhan A, Zhang DD, Madhavan L. An NRF2 Perspective on Stem Cells and Ageing. FRONTIERS IN AGING 2021; 2:690686. [PMID: 36213179 PMCID: PMC9536878 DOI: 10.3389/fragi.2021.690686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/03/2021] [Indexed: 04/24/2023]
Abstract
Redox and metabolic mechanisms lie at the heart of stem cell survival and regenerative activity. NRF2 is a major transcriptional controller of cellular redox and metabolic homeostasis, which has also been implicated in ageing and lifespan regulation. However, NRF2's role in stem cells and their functioning with age is only just emerging. Here, focusing mainly on neural stem cells, which are core to adult brain plasticity and function, we review recent findings that identify NRF2 as a fundamental player in stem cell biology and ageing. We also discuss NRF2-based molecular programs that may govern stem cell state and function with age, and implications of this for age-related pathologies.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Department of Neurology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute and Bio5 Institute, University of Arizona, Tucson, AZ, United States
- *Correspondence: Lalitha Madhavan,
| |
Collapse
|
25
|
Ambrosi TH, Chan CKF. Skeletal Stem Cells as the Developmental Origin of Cellular Niches for Hematopoietic Stem and Progenitor Cells. Curr Top Microbiol Immunol 2021; 434:1-31. [PMID: 34850280 PMCID: PMC8864730 DOI: 10.1007/978-3-030-86016-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The skeletal system is a highly complex network of mesenchymal, hematopoietic, and vasculogenic stem cell lineages that coordinate the development and maintenance of defined microenvironments, so-called niches. Technological advancements in recent years have allowed for the dissection of crucial cell types as well as their autocrine and paracrine signals that regulate these niches during development, homeostasis, regeneration, and disease. Ingress of blood vessels and bone marrow hematopoiesis are initiated by skeletal stem cells (SSCs) and their more committed downstream lineage cell types that direct shape and form of skeletal elements. In this chapter, we focus on the role of SSCs as the developmental origin of niches for hematopoietic stem and progenitor cells. We discuss latest updates in the definition of SSCs, cellular processes establishing and maintaining niches, as well as alterations of stem cell microenvironments promoting malignancies. We conclude with an outlook on future studies that could take advantage of SSC-niche engineering as a basis for the development of new therapeutic tools to not only treat bone-related diseases but also maladies stemming from derailed niche dynamics altering hematopoietic output.
Collapse
Affiliation(s)
- Thomas H Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
26
|
Aging of Bone Marrow Mesenchymal Stromal Cells: Hematopoiesis Disturbances and Potential Role in the Development of Hematologic Cancers. Cancers (Basel) 2020; 13:cancers13010068. [PMID: 33383723 PMCID: PMC7794884 DOI: 10.3390/cancers13010068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As for many other cancers, the risk of developing hematologic malignancies increases considerably as people age. In recent years, a growing number of studies have highlighted the influence of the aging microenvironment on hematopoiesis and tumor progression. Mesenchymal stromal cells are a major player in intercellular communication inside the bone marrow microenvironment involved in hematopoiesis support. With aging, their functions may be altered, leading to hematopoiesis disturbances which can lead to hematologic cancers. A good understanding of the mechanisms involved in mesenchymal stem cell aging and the consequences on hematopoiesis and tumor progression is therefore necessary for a better comprehension of hematologic malignancies and for the development of therapeutic approaches. Abstract Aging of bone marrow is a complex process that is involved in the development of many diseases, including hematologic cancers. The results obtained in this field of research, year after year, underline the important role of cross-talk between hematopoietic stem cells and their close environment. In bone marrow, mesenchymal stromal cells (MSCs) are a major player in cell-to-cell communication, presenting a wide range of functionalities, sometimes opposite, depending on the environmental conditions. Although these cells are actively studied for their therapeutic properties, their role in tumor progression remains unclear. One of the reasons for this is that the aging of MSCs has a direct impact on their behavior and on hematopoiesis. In addition, tumor progression is accompanied by dynamic remodeling of the bone marrow niche that may interfere with MSC functions. The present review presents the main features of MSC senescence in bone marrow and their implications in hematologic cancer progression.
Collapse
|
27
|
Mesenchymal Stem Cells in Aplastic Anemia and Myelodysplastic Syndromes: The "Seed and Soil" Crosstalk. Int J Mol Sci 2020; 21:ijms21155438. [PMID: 32751628 PMCID: PMC7432231 DOI: 10.3390/ijms21155438] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
There is growing interest in the contribution of the marrow niche to the pathogenesis of bone marrow failure syndromes, i.e., aplastic anemia (AA) and myelodysplastic syndromes (MDSs). In particular, mesenchymal stem cells (MSCs) are multipotent cells that contribute to the organization and function of the hematopoietic niche through their repopulating and supporting abilities, as well as immunomodulatory properties. The latter are of great interest in MDSs and, particularly, AA, where an immune attack against hematopoietic stem cells is the key pathogenic player. We, therefore, conducted Medline research, including all available evidence from the last 10 years concerning the role of MSCs in these two diseases. The data presented show that MSCs display morphologic, functional, and genetic alterations in AA and MDSs and contribute to immune imbalance, ineffective hematopoiesis, and leukemic evolution. Importantly, adoptive MSC infusion from healthy donors can be exploited to heal the "sick" niche, with even better outcomes if cotransplanted with allogeneic hematopoietic stem cells. Finally, future studies on MSCs and the whole microenvironment will further elucidate AA and MDS pathogenesis and possibly improve treatment.
Collapse
|
28
|
Seyfried AN, Maloney JM, MacNamara KC. Macrophages Orchestrate Hematopoietic Programs and Regulate HSC Function During Inflammatory Stress. Front Immunol 2020; 11:1499. [PMID: 32849512 PMCID: PMC7396643 DOI: 10.3389/fimmu.2020.01499] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The bone marrow contains distinct cell types that work in coordination to generate blood and immune cells, and it is the primary residence of hematopoietic stem cells (HSCs) and more committed multipotent progenitors (MPPs). Even at homeostasis the bone marrow is a dynamic environment where billions of cells are generated daily to replenish short-lived immune cells and produce the blood factors and cells essential for hemostasis and oxygenation. In response to injury or infection, the marrow rapidly adapts to produce specific cell types that are in high demand revealing key insight to the inflammatory nature of "demand-adapted" hematopoiesis. Here we focus on the role that resident and monocyte-derived macrophages play in driving these hematopoietic programs and how macrophages impact HSCs and downstream MPPs. Macrophages are exquisite sensors of inflammation and possess the capacity to adapt to the environment, both promoting and restraining inflammation. Thus, macrophages hold great potential for manipulating hematopoietic output and as potential therapeutic targets in a variety of disease states where macrophage dysfunction contributes to or is necessary for disease. We highlight essential features of bone marrow macrophages and discuss open questions regarding macrophage function, their role in orchestrating demand-adapted hematopoiesis, and mechanisms whereby they regulate HSC function.
Collapse
Affiliation(s)
- Allison N Seyfried
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jackson M Maloney
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
29
|
Mitroulis I, Kalafati L, Bornhäuser M, Hajishengallis G, Chavakis T. Regulation of the Bone Marrow Niche by Inflammation. Front Immunol 2020; 11:1540. [PMID: 32849521 PMCID: PMC7396603 DOI: 10.3389/fimmu.2020.01540] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSC) reside in the bone marrow (BM) within a specialized micro-environment, the HSC niche, which comprises several cellular constituents. These include cells of mesenchymal origin, endothelial cells and HSC progeny, such as megakaryocytes and macrophages. The BM niche and its cell populations ensure the functional preservation of HSCs. During infection or systemic inflammation, HSCs adapt to and respond directly to inflammatory stimuli, such as pathogen-derived signals and elicited cytokines, in a process termed emergency myelopoiesis, which includes HSC activation, expansion, and enhanced myeloid differentiation. The cell populations of the niche participate in the regulation of emergency myelopoiesis, in part through secretion of paracrine factors in response to pro-inflammatory stimuli, thereby indirectly affecting HSC function. Here, we review the crosstalk between HSCs and cell populations in the BM niche, specifically focusing on the adaptation of the HSC niche to inflammation and how this inflammatory adaptation may, in turn, regulate emergency myelopoiesis.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- First Department of Internal Medicine, Department of Haematology and Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lydia Kalafati
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| |
Collapse
|
30
|
Sun T, Ju M, Dai X, Dong H, Gu W, Gao Y, Fu R, Liu X, Huang Y, Liu W, Ch Y, Wang W, Li H, Zhou Y, Shi L, Yang R, Zhang L. Multilevel defects in the hematopoietic niche in essential thrombocythemia. Haematologica 2019; 105:661-673. [PMID: 31289202 PMCID: PMC7049349 DOI: 10.3324/haematol.2018.213686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
The role of the bone marrow niche in essential thrombocythemia (ET) remains unclear. Here, we observed multilevel defects in the hematopoietic niche of patients with JAK2V617F-positive ET, including functional deficiency in mesenchymal stromal cells (MSC), immune imbalance, and sympathetic-nerve damage. Mesenchymal stromal cells from patients with JAK2V617F-positive essential thrombocythemia had a transformed transcriptome. In parallel, they showed enhanced proliferation, decreased apoptosis and senescence, attenuated ability to differentiate into adipocytes and osteocytes, and insufficient support for normal hematopoiesis. Additionally, they were inefficient in suppressing immune responses. For instance, they poorly inhibited proliferation and activation of CD4-positive T cells and the secretion of the inflammatory factor soluble CD40-ligand. They also poorly induced formation of mostly immunosuppressive T-helper 2 cells (Th2) and the secretion of the anti-inflammatory factor interleukin-4 (IL-4). Furthermore, we identified WDR4 as a potent protein with low expression and which was correlated with increased proliferation, reduced senescence and differentiation, and insufficient support for normal hematopoiesis in MSC from patients with JAK2V617F-positive ET. We also observed that loss of WDR4 in MSC cells downregulated the interleukin-6 (IL-6) level through the ERK–GSK3β–CREB signaling based on our in vitro studies. Altogether, our results show that multilevel changes occur in the bone marrow niche of patients with JAK2V617F-positive ET, and low expression of WDR4 in MSC may be critical for inducing hematopoietic related changes.
Collapse
Affiliation(s)
- Ting Sun
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology
| | - Huan Dong
- State Key Laboratory of Experimental Hematology
| | - Wenjing Gu
- State Key Laboratory of Experimental Hematology
| | - Yuchen Gao
- State Key Laboratory of Experimental Hematology
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Yueting Huang
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Wei Liu
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Ying Ch
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology.,Tianjin Laboratory of Blood Disease Gene Therapy.,PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology .,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Center for Stem Cell Medicine.,PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology .,National Clinical Research Center for Blood Diseases.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases.,CAMS Center for Stem Cell Medicine
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology .,National Clinical Research Center for Blood Diseases.,Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin.,Tianjin Laboratory of Blood Disease Gene Therapy.,CAMS Key Laboratory of Gene Therapy for Blood Diseases.,CAMS Center for Stem Cell Medicine.,PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, China
| |
Collapse
|