1
|
Lv LL, Zhai JW, Wu JJ, Fan GQ, Zhang YX, Shen Y, Qu QX, Chen C. High CD38 expression defines a mitochondrial function-adapted CD8 + T cell subset with implications for lung cancer immunotherapy. Cancer Immunol Immunother 2025; 74:49. [PMID: 39751818 PMCID: PMC11699171 DOI: 10.1007/s00262-024-03881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/03/2024] [Indexed: 01/04/2025]
Abstract
Despite identifying specific CD8+ T cell subsets associated with immunotherapy resistance, the molecular pathways driving this process remain elusive. Given the potential role of CD38 in regulating CD8+ T cell function, we aimed to investigate the accumulation of CD38+CD8+ T cells in lung cancer and explore its role in immunotherapy resistance. Phenotypic analysis of tumoral CD8+ T cells from both lung cancer patients and immunotherapy-resistant preclinical models revealed that CD38-expressing CD8+ T cells consist of CD38hi and CD38int subsets. These cells exhibited higher expression of exhaustion markers and displayed dysregulated mitochondrial bioenergetics. Notably, increased levels of CD38hiCD8+ T cells in the peripheral, but not central, tumor microenvironment were associated with a favorable response to anti-PD-1 therapy in non-small-cell lung cancer and correlated with the depth of clinical regression. This was evidenced by the greater depletion of CD38hiCD8+ T cells in patients with higher regional CD38hiCD8+ T cell infiltration. In immune checkpoint blockade (ICB)-resistant murine lung cancer models, PD-L1 mAbs alone failed to effectively reduce CD38hiCD8+ T cell levels. Notably, combination therapy with PD-L1 mAbs and EGCG selectively restricted CD38hiCD8+ T cell infiltration and enhanced IFN-γ production, significantly improving survival in this carcinoma model. The restoration of immunotherapy sensitivity was linked to improved mitochondrial function in CD38hiCD8+ T cells, which was validated by the established relationship between IFN-γ production and mitochondrial metabolism. Collectively, our data highlight the role of CD38-coupled mitochondrial dysfunction in promoting CD8+ T cell exhaustion and intrinsic resistance to ICB therapy, thereby offering a rationale for targeting CD38 to enhance the therapeutic efficacy of PD-1 blockade in lung cancer.
Collapse
Affiliation(s)
- Lei-Lei Lv
- Department of Respiratory and Critical Medicine, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China
| | - Jia-Wei Zhai
- Department of Respiratory and Critical Medicine, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China
- Respiratory Department, Xuzhou Central Hospital, 199 Jiefangnan Road, Xuzhou, 221000, China
| | - Jia-Juan Wu
- Clinical Immunology Institute, the First Affiliated Hospital of Soochow University, 178 Ganjiang Road, Suzhou, 215006, China
| | - Gui-Qin Fan
- Respiratory Department, Taicang Traditional Chinese Medicine Hospital, 140 Renmin South Road, Taicang, 215400, China
| | - Yao-Xin Zhang
- Department of Respiratory and Critical Medicine, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China
| | - Yu Shen
- Clinical Immunology Institute, the First Affiliated Hospital of Soochow University, 178 Ganjiang Road, Suzhou, 215006, China
| | - Qiu-Xia Qu
- Clinical Immunology Institute, the First Affiliated Hospital of Soochow University, 178 Ganjiang Road, Suzhou, 215006, China.
| | - Cheng Chen
- Department of Respiratory and Critical Medicine, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China.
| |
Collapse
|
2
|
Kuznetsov M, Adhikarla V, Caserta E, Wang X, Shively JE, Pichiorri F, Rockne RC. Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:2955-2967. [PMID: 39466073 PMCID: PMC11562018 DOI: 10.1158/2767-9764.crc-24-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
SIGNIFICANCE Mathematical modeling yields general principles for optimization of TRT in mouse models of multiple myeloma that can be extrapolated to other cancer models and clinical settings.
Collapse
Affiliation(s)
- Maxim Kuznetsov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
| | - John E. Shively
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Russell C. Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
3
|
Blanquart E, Ekren R, Rigaud B, Joubert MV, Baylot V, Daunes H, Cuisinier M, Villard M, Carrié N, Mazzotti C, Lucca LE, Perrot A, Corre J, Walzer T, Avet-Loiseau H, Axisa PP, Martinet L. NK cells with adhesion defects and reduced cytotoxic functions are associated with a poor prognosis in multiple myeloma. Blood 2024; 144:1271-1283. [PMID: 38875515 DOI: 10.1182/blood.2023023529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
ABSTRACT The promising results obtained with immunotherapeutic approaches for multiple myeloma (MM) call for a better stratification of patients based on immune components. The most pressing being cytotoxic lymphocytes such as natural killer (NK) cells that are mandatory for MM surveillance and therapy. Here, we performed a single-cell RNA sequencing analysis of NK cells from 10 patients with MM and 10 age/sex-matched healthy donors that revealed important transcriptomic changes in the NK cell landscape affecting both the bone marrow (BM) and peripheral blood compartment. The frequency of mature cytotoxic CD56dim NK cell subsets was reduced in patients with MM at the advantage of late-stage NK cell subsets expressing NF-κB and interferon-I inflammatory signatures. These NK cell subsets accumulating in patients with MM were characterized by low CD16 and CD226 expression and poor cytotoxic functions. MM CD16/CD226Lo NK cells also had adhesion defects with reduced lymphocyte function-associated antigen 1 (LFA-1) integrin activation and actin polymerization that may account for their limited effector functions in vitro. Finally, analysis of BM-infiltrating NK cells in a retrospective cohort of 177 patients with MM from the Intergroupe Francophone du Myélome (IFM) 2009 trial demonstrated that a high frequency of NK cells and their low CD16 and CD226 expression were associated with a shorter overall survival. Thus, CD16/CD226Lo NK cells with reduced effector functions accumulate along MM development and negatively affect patients' clinical outcomes. Given the growing interest in harnessing NK cells to treat myeloma, this improved knowledge around MM-associated NK cell dysfunction will stimulate the development of more efficient immunotherapeutic drugs against MM.
Collapse
Affiliation(s)
- Eve Blanquart
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Rüçhan Ekren
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Bineta Rigaud
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Virginie Baylot
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Hélène Daunes
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Marine Cuisinier
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Marine Villard
- Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1 INSERM U1111, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Nadège Carrié
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Céline Mazzotti
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Liliana E Lucca
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Aurore Perrot
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Jill Corre
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1 INSERM U1111, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Pierre-Paul Axisa
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Ludovic Martinet
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
- Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1 INSERM U1111, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| |
Collapse
|
4
|
Ziccheddu B, Giannotta C, D'Agostino M, Bertuglia G, Saraci E, Oliva S, Genuardi E, Papadimitriou M, Diamond B, Corradini P, Coffey D, Landgren O, Bolli N, Bruno B, Boccadoro M, Massaia M, Maura F, Larocca A. Genomic and immune determinants of resistance to daratumumab-based therapy in relapsed refractory multiple myeloma. Blood Cancer J 2024; 14:117. [PMID: 39030183 PMCID: PMC11271515 DOI: 10.1038/s41408-024-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Targeted immunotherapy combinations, including the anti-CD38 monoclonal antibody (MoAb) daratumumab, have shown promising results in patients with relapsed/refractory multiple myeloma (RRMM), leading to a considerable increase in progression-free survival. However, a large fraction of patients inevitably relapse. To understand this, we investigated 32 relapsed MM patients treated with daratumumab, lenalidomide, and dexamethasone (Dara-Rd; NCT03848676). We conducted an integrated analysis using whole-genome sequencing (WGS) and flow cytometry in patients with RRMM. WGS before and after treatment pinpointed genomic drivers associated with early progression, including RPL5 loss, APOBEC mutagenesis, and gain of function structural variants involving MYC and chromothripsis. Flow cytometry on 202 blood samples, collected every 3 months until progression for 31 patients, revealed distinct immune changes significantly impacting clinical outcomes. Progressing patients exhibited significant depletion of CD38-positive NK cells, persistence of T-cell exhaustion, and reduced depletion of regulatory T cells over time. These findings underscore the influence of immune composition and daratumumab-induced immune changes in promoting MM resistance. Integrating genomics and flow cytometry unveiled associations between adverse genomic features and immune patterns. Overall, this study sheds light on the intricate interplay between genomic complexity and the immune microenvironment driving resistance to Dara-Rd in patients with RRMM.
Collapse
Affiliation(s)
- Bachisio Ziccheddu
- Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Claudia Giannotta
- Laboratory of Blood Tumor Immunology, Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, Università di Torino, Torino, Italy
| | - Mattia D'Agostino
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Giuseppe Bertuglia
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Elona Saraci
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Stefania Oliva
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Elisa Genuardi
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Marios Papadimitriou
- Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Benjamin Diamond
- Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Paolo Corradini
- Division of Hematology and Bone Marrow Transplant, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Coffey
- Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Ola Landgren
- Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Niccolò Bolli
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
| | - Benedetto Bruno
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | | | - Massimo Massaia
- Laboratory of Blood Tumor Immunology, Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, Università di Torino, Torino, Italy
- SC Ematologia, AO S. Croce e Carle, Cuneo, Italy
| | - Francesco Maura
- Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Alessandra Larocca
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| |
Collapse
|
5
|
Mohidin B, Needleman A, Fernando R, Lowe DM, Wechalekar A, Sheaff M, Salama A, Jones G. Renal Transplant Outcomes in Plasma Cell Dyscrasias and AL Amyloidosis after Treatment with Daratumumab. J Clin Med 2024; 13:4109. [PMID: 39064149 PMCID: PMC11278235 DOI: 10.3390/jcm13144109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Background: The morbidity and mortality from AL amyloidosis has significantly improved with the development of novel treatments. Daratumumab is a highly effective treatment for AL amyloidosis, but end-stage kidney disease is a common complication of this condition. Kidney transplantation is the ideal form of renal replacement therapy but has historically been contraindicated in this group of patients. Methods: Given the improved survival and better treatments of both conditions, we argue that it is time to reconsider transplanting these patients. Results: We report our experience of transplanting four patients with AL amyloidosis who had achieved stable remission through treatment with daratumumab. Conclusions: We highlight the key challenges involved and discuss important clinical issues for patients receiving daratumumab, particularly the difficulties with interpreting the crossmatch in light of daratumumab and immunoglobulin therapy interference. We also discuss the complexities involved in balancing the risks of infection, relapse, rejection, and immunosuppression in such patients.
Collapse
Affiliation(s)
- Barian Mohidin
- UCL Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Amy Needleman
- UCL Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | | | - David M. Lowe
- UCL Institute of Immunity & Transplantation, Royal Free Hospital, London NW3 2QG, UK
| | | | - Michael Sheaff
- Department of Cellular Pathology, Royal London Hospital, London NW3 2QG, UK
| | - Alan Salama
- UCL Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Gareth Jones
- UCL Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
6
|
Ferla V, Farina F, Perini T, Marcatti M, Ciceri F. Monoclonal Antibodies in Smoldering Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance: Current Status and Future Directions. Pharmaceuticals (Basel) 2024; 17:901. [PMID: 39065751 PMCID: PMC11279454 DOI: 10.3390/ph17070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Monoclonal antibodies (MoAbs) targeting several cellular receptors have significantly improved the prognosis of multiple myeloma (MM). Their high effectiveness and safety raise the question of whether earlier therapeutic intervention in monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) influences the natural course of the disease. MM is preceded by clinically recognized conditions such as MGUS and SMM. Numerous studies are investigating the disease biology and immune profile of SMM and MGUS to unravel the intricate relationship between immunosurveillance and disease progression. The standard approach to MGUS and SMM remains close observation. Early studies indicate benefits in terms of progression or even survival for promptly treating high-risk SMM patients. Ongoing debates are focused on which patients with SMM and MGUS to treat, as well as on determining the optimal therapeutic approach. The first approach aims to cure by attempting to eliminate the pathological clone, while the second approach is preventive, aiming to manage disease progression to active MM and restore the immune system. In this review, we focus on the available and emerging data on early treatment, particularly with MoAbs alone or in combination with other therapies, in SMM and MGUS patients.
Collapse
Affiliation(s)
- Valeria Ferla
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (T.P.); (M.M.); (F.C.)
| | - Francesca Farina
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (T.P.); (M.M.); (F.C.)
| | - Tommaso Perini
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (T.P.); (M.M.); (F.C.)
- Age Related Diseases Laboratory, Division of Genetics and Cell Biology, IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Magda Marcatti
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (T.P.); (M.M.); (F.C.)
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.F.); (T.P.); (M.M.); (F.C.)
- Faculty of Medicine and Surgery, Vita-Salute IRCCS San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
7
|
Engelskircher SA, Chen PC, Strunz B, Oltmanns C, Ristic T, Owusu Sekyere S, Kraft AR, Cornberg M, Wirth T, Heinrich B, Björkström NK, Wedemeyer H, Woller N. Impending HCC diagnosis in patients with cirrhosis after HCV cure features a natural killer cell signature. Hepatology 2024; 80:202-222. [PMID: 38381525 PMCID: PMC11191062 DOI: 10.1097/hep.0000000000000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/25/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND AIMS The risk of developing HCC in chronically infected patients with AQ2 HCV with liver cirrhosis is significantly elevated. This risk remains high even after a sustained virological response with direct-acting antivirals. To date, disease-associated signatures of NK cells indicating HCC development are unclear. APPROACH AND RESULTS This study investigated NK cell signatures and functions in 8 cohorts covering the time span of HCC development, diagnosis, and onset. In-depth analysis of NK cell profiles from patients with cirrhosis who developed HCC (HCV-HCC) after sustained virological response compared with those who remained tumor-free (HCV-noHCC) revealed increasingly dissimilar NK cell signatures over time. We identified expression patterns with persistently high frequencies of TIM-3 and CD38 on NK cells that were largely absent in healthy controls and were associated with a high probability of HCC development. Functional assays revealed that the NK cells had potent cytotoxic features. In contrast to HCV-HCC, the signature of HCV-noHCC converged with the signature found in healthy controls over time. Regarding tissue distribution, single-cell sequencing showed high frequencies of these cells in liver tissue and the invasive margin but markedly lower frequencies in tumors. CONCLUSIONS We show that HCV-related HCC development has profound effects on the imprint of NK cells. Persistent co-expression of TIM-3hi and CD38 + on NK cells is an early indicator for HCV-related HCC development. We propose that the profiling of NK cells may be a rapid and valuable tool to assess the risk of HCC development in a timely manner in patients with cirrhosis after HCV cure.
Collapse
Affiliation(s)
- Sophie Anna Engelskircher
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Po-Chun Chen
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- ZIB program, Hannover Medical School, Carl-Neuberg Str., Hannover, Germany
| | - Benedikt Strunz
- Department of Medicine Huddinge, Center of Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carlos Oltmanns
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tijana Ristic
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Solomon Owusu Sekyere
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Anke R.M. Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Carl-Neuberg, Hannover, Germany
- Centre for Individualized Infection Medicine (CIIM), Hannover, Germany
| | - Thomas Wirth
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bernd Heinrich
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center of Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Carl-Neuberg, Hannover, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| |
Collapse
|
8
|
Kuznetsov M, Adhikarla V, Caserta E, Wang X, Shively JE, Pichiorri F, Rockne RC. Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595377. [PMID: 38826403 PMCID: PMC11142146 DOI: 10.1101/2024.05.22.595377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Targeted radionuclide therapy is based on injections of cancer-specific molecules conjugated with radioactive nuclides. Despite the specificity of this treatment, it is not devoid of side-effects limiting its use and is especially harmful for rapidly proliferating organs well perfused by blood, like bone marrow. Optimization of radioconjugates administration accounting for toxicity constraints can increase treatment efficacy. Based on our experiments on disseminated multiple myeloma mouse model treated by 225Ac-DOTA-daratumumab, we developed a mathematical model which investigation highlighted the following principles for optimization of targeted radionuclide therapy. 1) Nuclide to antibody ratio importance. The density of radioconjugates on cancer cells determines the density of radiation energy deposited in them. Low labeling ratio as well as accumulation of unlabeled antibodies and antibodies attached to decay products in the bloodstream can mitigate cancer radiation damage due to excessive occupation of specific receptors by antibodies devoid of radioactive nuclides. 2) Cancer binding capacity-based dosing. The rate of binding of drug to cancer cells depends on the total number of their specific receptors, which therefore can be estimated from the pharmacokinetic curve of diagnostic radioconjugates. Injection of doses significantly exceeding cancer binding capacity should be avoided since radioconjugates remaining in the bloodstream have negligible efficacy to toxicity ratio. 3) Particle range-guided multi-dosing. The use of short-range particle emitters and high-affinity antibodies allows for robust treatment optimization via initial saturation of cancer binding capacity, enabling redistribution of further injected radioconjugates and deposited dose towards still viable cells that continue expressing specific receptors.
Collapse
Affiliation(s)
- Maxim Kuznetsov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, United States
| | - John E Shively
- Department of Molecular Imaging & Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
9
|
Grab AL, Kim PS, John L, Bisht K, Wang H, Baumann A, Van de Velde H, Sarkar I, Shome D, Reichert P, Manta C, Gryzik S, Reijmers RM, Weinhold N, Raab MS. Pre-Clinical Assessment of SAR442257, a CD38/CD3xCD28 Trispecific T Cell Engager in Treatment of Relapsed/Refractory Multiple Myeloma. Cells 2024; 13:879. [PMID: 38786100 PMCID: PMC11120574 DOI: 10.3390/cells13100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Current treatment strategies for multiple myeloma (MM) are highly effective, but most patients develop relapsed/refractory disease (RRMM). The anti-CD38/CD3xCD28 trispecific antibody SAR442257 targets CD38 and CD28 on MM cells and co-stimulates CD3 and CD28 on T cells (TCs). We evaluated different key aspects such as MM cells and T cells avidity interaction, tumor killing, and biomarkers for drug potency in three distinct cohorts of RRMM patients. We found that a significantly higher proportion of RRMM patients (86%) exhibited aberrant co-expression of CD28 compared to newly diagnosed MM (NDMM) patients (19%). Furthermore, SAR442257 mediated significantly higher TC activation, resulting in enhanced MM killing compared to bispecific functional knockout controls for all relapse cohorts (Pearson's r = 0.7). Finally, patients refractory to anti-CD38 therapy had higher levels of TGF-β (up to 20-fold) compared to other cohorts. This can limit the activity of SAR442257. Vactoserib, a TGF-β inhibitor, was able to mitigate this effect and restore sensitivity to SAR442257 in these experiments. In conclusion, SAR442257 has high potential for enhancing TC cytotoxicity by co-targeting CD38 and CD28 on MM and CD3/CD28 on T cells.
Collapse
Affiliation(s)
- Anna Luise Grab
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter S. Kim
- Sanofi Research and Development, Sanofi North America, Cambridge, MA 02141, USA (K.B.); (H.W.); (H.V.d.V.)
| | - Lukas John
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kamlesh Bisht
- Sanofi Research and Development, Sanofi North America, Cambridge, MA 02141, USA (K.B.); (H.W.); (H.V.d.V.)
| | - Hongfang Wang
- Sanofi Research and Development, Sanofi North America, Cambridge, MA 02141, USA (K.B.); (H.W.); (H.V.d.V.)
| | - Anja Baumann
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Helgi Van de Velde
- Sanofi Research and Development, Sanofi North America, Cambridge, MA 02141, USA (K.B.); (H.W.); (H.V.d.V.)
| | - Irene Sarkar
- LUMICKS, 1059 CM Amsterdam, The Netherlands; (I.S.); (D.S.); (R.M.R.)
| | - Debarati Shome
- LUMICKS, 1059 CM Amsterdam, The Netherlands; (I.S.); (D.S.); (R.M.R.)
| | - Philipp Reichert
- GMMG Central Study Lab, Biobank, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Calin Manta
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
| | - Stefanie Gryzik
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
| | | | - Niels Weinhold
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marc S. Raab
- Heidelberg Myeloma Center, Department of Medicine V, Medical Faculty Heidelberg and University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (A.L.G.); (C.M.); (S.G.); (N.W.)
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Picard LK, Niemann JA, Littwitz-Salomon E, Waldmann H, Watzl C. Restriction of Glycolysis Increases Serial Killing Capacity of Natural Killer Cells. Int J Mol Sci 2024; 25:2917. [PMID: 38474166 DOI: 10.3390/ijms25052917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Tumor cells rely heavily on glycolysis to meet their high metabolic demands. While this results in nutrient deprivation within the tumor microenvironment and has negative effects on infiltrating immune cells such as natural killer (NK) cells, it also creates a potential target for cancer therapies. Here we use Glupin, an inhibitor of glucose transporters, to study the effect of limited glucose uptake on NK cells and their anti-tumor functions. Glupin treatment effectively inhibited glucose uptake and restricted glycolysis in NK cells. However, acute treatment had no negative effect on NK cell cytotoxicity or cytokine production. Long-term restriction of glucose uptake via Glupin treatment only delayed NK cell proliferation, as they could switch to glutaminolysis as an alternative energy source. While IFN-γ production was partially impaired, long-term Glupin treatment had no negative effect on degranulation. Interestingly, the serial killing activity of NK cells was even slightly enhanced, possibly due to changes in NAD metabolism. This demonstrates that NK cell cytotoxicity is remarkably robust and insensitive to metabolic disturbances, which makes cellular metabolism an attractive target for immune-mediated tumor therapies.
Collapse
Affiliation(s)
- Lea Katharina Picard
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany
| | - Jens Alexander Niemann
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany
| | - Elisabeth Littwitz-Salomon
- Institute for Virology, Institute for Translational HIV Research, University Hospital Essen, D-45147 Essen, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
- Faculty of Chemistry, Chemical Biology, Technical University Dortmund, D-44227 Dortmund, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany
| |
Collapse
|
11
|
Tsukanov VV, Savchenko AA, Cherepnin MA, Kasparov EV, Tikhonova EP, Vasyutin AV, Tonkikh JL, Anisimova AA, Belenyuk VD, Borisov AG. Association of Blood NK Cell Phenotype with the Severity of Liver Fibrosis in Patients with Chronic Viral Hepatitis C with Genotype 1 or 3. Diagnostics (Basel) 2024; 14:472. [PMID: 38472945 DOI: 10.3390/diagnostics14050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND NK cells phenotype and functional state in different genotypes of chronic viral hepatitis C (CVHC), depending on liver fibrosis severity, have not been sufficiently studied, which limits the possibilities for the development of pathology therapy. METHODS The CVHC diagnosis was based on the EASL recommendations (2018). Clinical examination with liver elastometry was performed in 297 patients with genotype 1 and in 231 patients with genotype 3 CVHC. The blood NK cells phenotype was determined by flow cytometry in 74 individuals with genotype 1 and in 69 individuals with genotype 3 CVHC. RESULTS The frequency of METAVIR liver fibrosis stages F3-F4 was 32.5% in individuals with genotype 3, and 20.5% in individuals with genotype 1 CVHC (p = 0.003). In patients with both genotype 1 and genotype 3 CVHC, a decrease in the total number of blood NK cells, CD56brightCD16+ NK cells and an increase in the proportion of CD56dimCD16+ NK cells, CD94+ and CD38 + CD73+ NK cells were registered in patients with fibrosis stage F3-F4 by METAVIR in comparison with persons with METAVIR fibrosis stage F0-F1. CONCLUSIONS In patients with both genotype 1 and genotype 3 CVHC, an imbalance in the ratio between cytokine-producing and cytotoxic NK cells and an increase in the content of NK cells that express inhibitory molecules were determined in patients with severe liver fibrosis.
Collapse
Affiliation(s)
- Vladislav Vladimirovich Tsukanov
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Andrei Anatolyevich Savchenko
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Mikhail Aleksandrovich Cherepnin
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Eduard Vilyamovich Kasparov
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Elena Petrovna Tikhonova
- Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky of the Ministry of Healthcare of Russian Federation, 660022 Krasnoyarsk, Russia
| | - Alexander Viktorovich Vasyutin
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Julia Leongardovna Tonkikh
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Anna Alexandrovna Anisimova
- Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky of the Ministry of Healthcare of Russian Federation, 660022 Krasnoyarsk, Russia
| | - Vasily Dmitrievich Belenyuk
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Alexandr Gennadyevich Borisov
- Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| |
Collapse
|
12
|
Zhang L, Peng X, Ma T, Liu J, Yi Z, Bai J, Li Y, Li L, Zhang L. Natural killer cells affect the natural course, drug resistance, and prognosis of multiple myeloma. Front Cell Dev Biol 2024; 12:1359084. [PMID: 38410372 PMCID: PMC10895066 DOI: 10.3389/fcell.2024.1359084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Multiple myeloma (MM), a stage-developed plasma cell malignancy, evolves from monoclonal gammopathy of undetermined significance (MGUS) or smoldering MM (SMM). Emerging therapies including immunomodulatory drugs, proteasome inhibitors, monoclonal antibodies, chimeric antigen-T/natural killer (NK) cells, bispecific T-cell engagers, selective inhibitors of nuclear export, and small-molecule targeted therapy have considerably improved patient survival. However, MM remains incurable owing to inevitable drug resistance and post-relapse rapid progression. NK cells with germline-encoded receptors are involved in the natural evolution of MGUS/SMM to active MM. NK cells actively recognize aberrant plasma cells undergoing malignant transformation but are yet to proliferate during the elimination phase, a process that has not been revealed in the immune editing theory. They are potential effector cells that have been neglected in the therapeutic process. Herein, we characterized changes in NK cells regarding disease evolution and elucidated its role in the early clinical monitoring of MM. Additionally, we systematically explored dynamic changes in NK cells from treated patients who are in remission or relapse to explore future combination therapy strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Li Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaohuan Peng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Tao Ma
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhigang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Kostopoulos IV, Fotiou D, Gavriatopoulou M, Rousakis P, Ntanasis-Stathopoulos I, Panteli C, Malandrakis P, Migkou M, Angelis N, Kanellias N, Eleutherakis-Papaiakovou E, Theodorakakou F, Krevvata M, Terpos E, Dimopoulos MA, Tsitsilonis O, Kastritis E. Efficacy and immune modulation associated with the addition of IMiDs to Daratumumab backbone in multiple myeloma patients refractory to both drug classes: resetting synergistic activity. Blood Cancer J 2024; 14:26. [PMID: 38321005 PMCID: PMC10847500 DOI: 10.1038/s41408-024-00988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Grants
- Honoraria/ research support: Janssen, GSK, Pfizer, Sanofi.
- Honoraria/ research support: Karyopharm X4 Pharmaceuticals, GSK, Takeda, Janssen, Amgen, Celgene/Genesis, Sanofi;
- MK is a Janssen employee
- Honoraria/ research support: Amgen, BMS, ASTRAZeneca, EUSA Pharma, GSK, Janssen, Menarini/Stemline, Pfizer, Sanofi, Takeda;
- Honoraria/ research support: AbbVie, Amgen, Bristol Myers Squibb, BeiGene Inc, GSK, Janssen, Menarini, Regeneron, Sanofi, Takeda
Collapse
Affiliation(s)
- Ioannis V Kostopoulos
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Rousakis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysanthi Panteli
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Angelis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Foteini Theodorakakou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ourania Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
14
|
Byrns JS, Sanoff SL. In Reply to Best Practice for Induction of Immunosuppression in Patients Treated With Daratumumab Is to Be Determined. Am J Kidney Dis 2024; 83:116-117. [PMID: 37657636 DOI: 10.1053/j.ajkd.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 09/03/2023]
Affiliation(s)
- Jennifer S Byrns
- Department of Pharmacy, Duke University Hospital, Durham, North Carolina
| | - Scott L Sanoff
- Department of Medicine, Duke University Hospital, Durham, North Carolina
| |
Collapse
|
15
|
Gil‐Fernández JJ, García Ramírez P, Callejas Charavía M. Isatuximab-carfilzomib-dexamethasone immediately after failing of the quadruplet Daratumumab-bortezomib-lenalidomide-dexamethasone (Dara-VRD): Striking response with no washout in a newly diagnosed multiple myeloma. Clin Case Rep 2024; 12:e8449. [PMID: 38268620 PMCID: PMC10805998 DOI: 10.1002/ccr3.8449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Biochemical evolution of serum IgG-Kappa monoclonal component during the first line with VRD (x1), DARA-VRD (x4), and the second line with ISA-KD (x4).
Collapse
|
16
|
Ziccheddu B, Giannotta C, D'Agostino M, Bertuglia G, Saraci E, Oliva S, Genuardi E, Papadimitriou M, Diamond B, Corradini P, Coffey D, Landgren O, Bolli N, Bruno B, Boccadoro M, Massaia M, Maura F, Larocca A. Genomic and immune determinants of resistance to anti-CD38 monoclonal antibody-based therapy in relapsed refractory multiple myeloma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.04.23299287. [PMID: 38106151 PMCID: PMC10723485 DOI: 10.1101/2023.12.04.23299287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Anti-CD38 antibody therapies have transformed multiple myeloma (MM) treatment. However, a large fraction of patients inevitably relapses. To understand this, we investigated 32 relapsed MM patients treated with daratumumab, lenalidomide, and dexamethasone (Dara-Rd; NCT03848676 ). Whole genome sequencing (WGS) before and after treatment pinpointed genomic drivers associated with early progression, including RPL5 loss and APOBEC mutagenesis. Flow cytometry on 202 blood samples, collected every three months until progression for 31 patients, revealed distinct immune changes significantly impacting clinical outcomes. Progressing patients exhibited significant depletion of CD38+ NK cells, persistence of T cell exhaustion, and reduced depletion of T-reg cells over time. These findings underscore the influence of immune composition and daratumumab-induced immune changes in promoting MM resistance. Integrating genomics and flow cytometry unveiled associations between adverse genomic features and immune patterns. Overall, this study sheds light on the intricate interplay between genomic complexity and the immune microenvironment driving resistance to Dara-Rd.
Collapse
|
17
|
Maura F, Boyle EM, Coffey D, Maclachlan K, Gagler D, Diamond B, Ghamlouch H, Blaney P, Ziccheddu B, Cirrincione A, Chojnacka M, Wang Y, Siegel A, Hoffman JE, Kazandjian D, Hassoun H, Guzman E, Mailankody S, Shah UA, Tan C, Hultcrantz M, Scordo M, Shah GL, Landau H, Chung DJ, Giralt S, Zhang Y, Arbini A, Gao Q, Roshal M, Dogan A, Lesokhin AM, Davies FE, Usmani SZ, Korde N, Morgan GJ, Landgren O. Genomic and immune signatures predict clinical outcome in newly diagnosed multiple myeloma treated with immunotherapy regimens. NATURE CANCER 2023; 4:1660-1674. [PMID: 37945755 DOI: 10.1038/s43018-023-00657-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/20/2023] [Indexed: 11/12/2023]
Abstract
Despite improving outcomes, 40% of patients with newly diagnosed multiple myeloma treated with regimens containing daratumumab, a CD38-targeted monoclonal antibody, progress prematurely. By integrating tumor whole-genome and microenvironment single-cell RNA sequencing from upfront phase 2 trials using carfilzomib, lenalidomide and dexamethasone with daratumumab ( NCT03290950 ), we show how distinct genomic drivers including high APOBEC mutational activity, IKZF3 and RPL5 deletions and 8q gain affect clinical outcomes. Furthermore, evaluation of paired bone marrow profiles, taken before and after eight cycles of carfilzomib, lenalidomide and dexamethasone with daratumumab, shows that numbers of natural killer cells before treatment, high T cell receptor diversity before treatment, the disappearance of sustained immune activation (that is, B cells and T cells) and monocyte expansion over time are all predictive of sustained minimal residual disease negativity. Overall, this study provides strong evidence of a complex interplay between tumor cells and the immune microenvironment that is predictive of clinical outcome and depth of treatment response in patients with newly diagnosed multiple myeloma treated with highly effective combinations containing anti-CD38 antibodies.
Collapse
Affiliation(s)
- Francesco Maura
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| | - Eileen M Boyle
- Myeloma Research Program, NYU Langone, Perlmutter Cancer Center, New York, NY, USA
| | - David Coffey
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Kylee Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Dylan Gagler
- Myeloma Research Program, NYU Langone, Perlmutter Cancer Center, New York, NY, USA
| | - Benjamin Diamond
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Hussein Ghamlouch
- Myeloma Research Program, NYU Langone, Perlmutter Cancer Center, New York, NY, USA
| | - Patrick Blaney
- Myeloma Research Program, NYU Langone, Perlmutter Cancer Center, New York, NY, USA
| | - Bachisio Ziccheddu
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Anthony Cirrincione
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Monika Chojnacka
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Yubao Wang
- Myeloma Research Program, NYU Langone, Perlmutter Cancer Center, New York, NY, USA
| | - Ariel Siegel
- Myeloma Research Program, NYU Langone, Perlmutter Cancer Center, New York, NY, USA
| | - James E Hoffman
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Dickran Kazandjian
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Hani Hassoun
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily Guzman
- Genome Technology Center, NYU Langone, Perlmutter Cancer Center, New York, NY, USA
| | - Sham Mailankody
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Urvi A Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Carlyn Tan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Malin Hultcrantz
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Michael Scordo
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gunjan L Shah
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heather Landau
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David J Chung
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergio Giralt
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanming Zhang
- Cytogenetics Laboratory, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaldo Arbini
- Myeloma Research Program, NYU Langone, Perlmutter Cancer Center, New York, NY, USA
| | - Qi Gao
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mikhail Roshal
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander M Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Faith E Davies
- Myeloma Research Program, NYU Langone, Perlmutter Cancer Center, New York, NY, USA
| | - Saad Z Usmani
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Neha Korde
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Gareth J Morgan
- Myeloma Research Program, NYU Langone, Perlmutter Cancer Center, New York, NY, USA.
| | - Ola Landgren
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
18
|
Liu Z, Zhao X, Shen H, Liu X, Xu X, Fu R. Cellular immunity in the era of modern multiple myeloma therapy. Int J Cancer 2023; 153:1436-1447. [PMID: 37306091 DOI: 10.1002/ijc.34609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a relapsing clonal plasma cell malignancy and incurable thus far. With the increasing understanding of myeloma, highlighting the critical importance of the immune system in the pathogenesis of MM is essential. The immune changes in MM patients after treatment are associated with prognosis. In this review, we summarize currently available MM therapies and discuss how they affect cellular immunity. We find that the modern anti-MM treatments enhance antitumour immune responses. A deeper understanding of the therapeutic activity of individual drugs offers more effective treatment approaches that enhance the beneficial immunomodulatory effects. Furthermore, we show that the immune changes after treatment in MM patients can provide useful prognostic marker. Analysing cellular immune responses offers new perspectives for evaluating clinical data and making comprehensive predictions for applying novel therapies in MM patients.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xintong Xu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| |
Collapse
|
19
|
Bisht K, Fukao T, Chiron M, Richardson P, Atanackovic D, Chini E, Chng WJ, Van De Velde H, Malavasi F. Immunomodulatory properties of CD38 antibodies and their effect on anticancer efficacy in multiple myeloma. Cancer Med 2023; 12:20332-20352. [PMID: 37840445 PMCID: PMC10652336 DOI: 10.1002/cam4.6619] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND CD38 has been established as an important therapeutic target for multiple myeloma (MM), for which two CD38 antibodies are currently approved-daratumumab and isatuximab. CD38 is an ectoenzyme that degrades NAD and its precursors and is involved in the production of adenosine and other metabolites. AIM Among the various mechanisms by which CD38 antibodies can induce MM cell death is immunomodulation, including multiple pathways for CD38-mediated T-cell activation. Patients who respond to anti-CD38 targeting treatment experience more marked changes in T-cell expansion, activity, and clonality than nonresponders. IMPLICATIONS Resistance mechanisms that undermine the immunomodulatory effects of CD38-targeting therapies can be tumor intrinsic, such as the downregulation of CD38 surface expression and expression of complement inhibitor proteins, and immune microenvironment-related, such as changes to the natural killer (NK) cell numbers and function in the bone marrow niche. There are numerous strategies to overcome this resistance, which include identifying and targeting other therapeutic targets involved in, for example, adenosine production, the activation of NK cells or monocytes through immunomodulatory drugs and their combination with elotuzumab, or with bispecific T-cell engagers.
Collapse
Affiliation(s)
| | - Taro Fukao
- Sanofi OncologyCambridgeMassachusettsUSA
| | | | - Paul Richardson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma CenterDana Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Djordje Atanackovic
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterBaltimoreMarylandUSA
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Eduardo Chini
- Department of Anesthesiology and Perioperative MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Wee Joo Chng
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | | | - Fabio Malavasi
- Department of Medical SciencesUniversity of TurinTorinoItaly
- Fondazione Ricerca MolinetteTorinoItaly
| |
Collapse
|
20
|
Huang ZY, Jin XQ, Liang QL, Zhang DY, Han H, Wang ZW. Efficacy and safety of daratumumab in the treatment of relapsed/refractory multiple myeloma: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2023; 102:e35319. [PMID: 37747011 PMCID: PMC10519573 DOI: 10.1097/md.0000000000035319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Daratumumab as a monoclonal antibody has shown promising results in the treatment of relapsed/refractory multiple myeloma (RRMM). However, the efficacy and safety of daratumumab-based regimens compared to control regimens have not been fully established. METHODS The search was conducted using electronic databases (PubMed, Web of Science, Embase, and Cochrane Central Register of Controlled Trials databases) up to December 2022. We conducted a meta-analysis of randomized controlled trials that evaluated the efficacy and safety of daratumumab in the treatment of RRMM. Data were extracted from eligible studies and were presented as hazard ratio or risk ratio (RR) with 95% confidence interval (CI). RESULTS A total of 5 randomized controlled trials comprising 2003 patients were included in this meta-analysis. The results showed that daratumumab-based regimens significantly improved progression-free survival compared to control regimens (hazard ratio = 0.44, 95% CI 0.32-0.60, P < .00001). Additionally, daratumumab-based regimens significantly improved overall response rate compared to control regimens (RR = 1.25, 95% CI 1.16-1.36, P < .00001). the rate of minimal residual disease was also significantly higher in the daratumumab-based regimens (RR = 6.10, 95% CI 4.09-9.11, P < .00001). However, there was an increased risk of pneumonia, upper respiratory tract infections, and diarrhea in the daratumumab-based regimens. CONCLUSION Our results suggest that daratumumab-based regimens are effective in the treatment of RRMM, improving progression-free survival, minimal residual disease, and overall response rate. However, there is an increased risk of pneumonia, upper respiratory tract infections, and diarrhea. Further studies are needed to determine the long-term safety and efficacy of daratumumab in the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Zeng-Yi Huang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Qin Jin
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qi-Lian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ding-Yue Zhang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Han Han
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhen-Wei Wang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
21
|
Plano F, Gigliotta E, Corsale AM, Azgomi MS, Santonocito C, Ingrascì M, Di Carlo L, Augello AE, Speciale M, Vullo C, Rotolo C, Camarda GM, Caccamo N, Meraviglia S, Dieli F, Siragusa S, Botta C. Ferritin Metabolism Reflects Multiple Myeloma Microenvironment and Predicts Patient Outcome. Int J Mol Sci 2023; 24:ijms24108852. [PMID: 37240197 DOI: 10.3390/ijms24108852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy with a multistep evolutionary pattern, in which the pro-inflammatory and immunosuppressive microenvironment and genomic instability drive tumor evolution. MM microenvironment is rich in iron, released by pro-inflammatory cells from ferritin macromolecules, which contributes to ROS production and cellular damage. In this study, we showed that ferritin increases from indolent to active gammopathies and that patients with low serum ferritin had longer first line PFS (42.6 vs. 20.7 months and, p = 0.047, respectively) and OS (NR vs. 75.1 months and p = 0.029, respectively). Moreover, ferritin levels correlated with systemic inflammation markers and with the presence of a specific bone marrow cell microenvironment (including increased MM cell infiltration). Finally, we verified by bioinformatic approaches in large transcriptomic and single cell datasets that a gene expression signature associated with ferritin biosynthesis correlated with worse outcome, MM cell proliferation, and specific immune cell profiles. Overall, we provide evidence of the role of ferritin as a predictive/prognostic factor in MM, setting the stage for future translational studies investigating ferritin and iron chelation as new targets for improving MM patient outcome.
Collapse
Affiliation(s)
- Federica Plano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Emilia Gigliotta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Anna Maria Corsale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Carlotta Santonocito
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Manuela Ingrascì
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Laura Di Carlo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Antonino Elia Augello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Maria Speciale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Candida Vullo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Cristina Rotolo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Giulia Maria Camarda
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Nadia Caccamo
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90127 Palermo, Italy
| | - Serena Meraviglia
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90127 Palermo, Italy
| | - Sergio Siragusa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
22
|
Scalzo RE, Sanoff SL, Rege AS, Kwun J, Knechtle SJ, Barisoni L, Byrns JS. Daratumumab Use Prior to Kidney Transplant and T Cell-Mediated Rejection: A Case Report. Am J Kidney Dis 2023; 81:616-620. [PMID: 36623683 DOI: 10.1053/j.ajkd.2022.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/11/2022] [Indexed: 01/09/2023]
Abstract
There is growing interest in daratumumab in the solid organ transplant realm owing to the potential immunomodulatory effects on CD38-expressing cells, primarily plasma cells, as they have a key role in antibody production. In particular there is interest in use of daratumumab for desensitization and potential treatment for antibody-mediated rejection. However, ongoing investigation with daratumumab has shown potential immunologic concerns in vitro, with a significant increase in populations of CD4-positive cytotoxic T cells and CD8-positive helper T cells in both peripheral blood and bone marrow that could lead to acute T cell-mediated rejection in the solid organ transplant patient. To date, there are no published reports of an association with daratumumab use and T cell-mediated rejection in vivo. In this case report we present what is to our knowledge the first documented case of an early severe T cell-mediated rejection in a low-immunologic-risk living-donor kidney transplant recipient who received daratumumab for multiple myeloma maintenance prior to transplant.
Collapse
Affiliation(s)
- Riley E Scalzo
- Department of Pharmacy, Massachusetts General Hospital, Boston, Massachusetts
| | - Scott L Sanoff
- Department of Medicine, Duke University Hospital, Durham, North Carolina
| | - Aparna S Rege
- Department of Surgery, Duke University Hospital, Durham, North Carolina
| | - Jean Kwun
- Department of Surgery, Duke University Hospital, Durham, North Carolina
| | - Stuart J Knechtle
- Department of Surgery, Duke University Hospital, Durham, North Carolina
| | - Laura Barisoni
- Department of Pathology, Duke University Hospital, Durham, North Carolina
| | - Jennifer S Byrns
- Department of Pharmacy, Duke University Hospital, Durham, North Carolina.
| |
Collapse
|
23
|
Pan S, Wang F, Jiang J, Lin Z, Chen Z, Cao T, Yang L. Chimeric Antigen Receptor-Natural Killer Cells: A New Breakthrough in the Treatment of Solid Tumours. Clin Oncol (R Coll Radiol) 2023; 35:153-162. [PMID: 36437159 DOI: 10.1016/j.clon.2022.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022]
Abstract
Natural killer (NK) cells can quickly and directly eradicate tumour cells without recognising tumour-specific antigens. NK cells also participate in immune surveillance, which arouses great interest in the development of novel cancer therapies. The chimeric antigen receptor (CAR) family is composed of receptor proteins that give immune cells extra capabilities to target specific antigen proteins or enhance their killing effects. CAR-T cell therapy has achieved initial success in haematological tumours, but is prone to adverse reactions, especially with cytokine release syndrome in clinical applications. Currently, CAR-NK cell therapy has been shown to successfully kill haematological tumour cells with allogeneic NK cells in clinical trials without adverse reactions, proving its potential to become an off-the-shelf product with broad clinical application prospects. Meanwhile, clinical trials of CAR-NK cells for solid tumours are currently underway. Here we will focus on the latest advances in CAR-NK cells, including preclinical and clinical trials in solid tumours, the advantages and challenges of CAR-NK cell therapy and new strategies to improve the safety and efficacy of CAR-NK cell therapy.
Collapse
Affiliation(s)
- S Pan
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - F Wang
- Department of Orthopedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine
| | - J Jiang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Z Lin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Z Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| | - T Cao
- Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - L Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Siddiqui BA, Chapin BF, Jindal S, Duan F, Basu S, Yadav SS, Gu AD, Espejo AB, Kinder M, Pettaway CA, Ward JF, Tidwell RSS, Troncoso P, Corn PG, Logothetis CJ, Knoblauch R, Hutnick N, Gottardis M, Drake CG, Sharma P, Subudhi SK. Immune and pathologic responses in patients with localized prostate cancer who received daratumumab (anti-CD38) or edicotinib (CSF-1R inhibitor). J Immunother Cancer 2023; 11:e006262. [PMID: 36948506 PMCID: PMC10040066 DOI: 10.1136/jitc-2022-006262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The prostate tumor microenvironment (TME) is immunosuppressive, with few effector T cells and enrichment of inhibitory immune populations, leading to limited responses to treatments such as immune checkpoint therapies (ICTs). The immune composition of the prostate TME differs across soft tissue and bone, the most common site of treatment-refractory metastasis. Understanding immunosuppressive mechanisms specific to prostate TMEs will enable rational immunotherapy strategies to generate effective antitumor immune responses. Daratumumab (anti-CD38 antibody) and edicotinib (colony-stimulating factor-1 receptor (CSF-1R) inhibitor) may alter the balance within the prostate TME to promote antitumor immune responses. HYPOTHESIS Daratumumab or edicotinib will be safe and will alter the immune TME, leading to antitumor responses in localized prostate cancer. PATIENTS AND METHODS In this presurgical study, patients with localized prostate cancer received 4 weekly doses of daratumumab or 4 weeks of daily edicotinib prior to radical prostatectomy (RP). Treated and untreated control (Gleason score ≥8 in prostate biopsy) prostatectomy specimens and patient-matched pre- and post-treatment peripheral blood mononuclear cells (PBMCs) and bone marrow samples were evaluated. The primary endpoint was incidence of adverse events (AEs). The secondary endpoint was pathologic complete remission (pCR) rate. RESULTS Twenty-five patients were treated (daratumumab, n=15; edicotinib, n=10). All patients underwent RP without delays. Grade 3 treatment-related AEs with daratumumab occurred in 3 patients (12%), and no ≥grade 3 treatment-related AEs occurred with edicotinib. No changes in serum prostate-specific antigen (PSA) levels or pCRs were observed. Daratumumab led to a decreased frequency of CD38+ T cells, natural killer cells, and myeloid cells in prostate tumors, bone marrow, and PBMCs. There were no consistent changes in CSF-1R+ immune cells in prostate, bone marrow, or PBMCs with edicotinib. Neither treatment induced T cell infiltration into the prostate TME. CONCLUSIONS Daratumumab and edicotinib treatment was safe and well-tolerated in patients with localized prostate cancer but did not induce pCRs. Decreases in CD38+ immune cells were observed in prostate tumors, bone marrow, and PBMCs with daratumumab, but changes in CSF-1R+ immune cells were not consistently observed with edicotinib. Neither myeloid-targeted agent alone was sufficient to generate antitumor responses in prostate cancer; thus, combinations with agents to induce T cell infiltration (eg, ICTs) will be needed to overcome the immunosuppressive prostate TME.
Collapse
Affiliation(s)
- Bilal A Siddiqui
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brian F Chapin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sonali Jindal
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fei Duan
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sreyashi Basu
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shalini S Yadav
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ai-Di Gu
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexsandra B Espejo
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michelle Kinder
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Curtis A Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John F Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rebecca S S Tidwell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Natalie Hutnick
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Marco Gottardis
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Charles G Drake
- Janssen Research & Development, Spring House, Pennsylvania, USA
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Urology, Columbia University Medical Center, New York, New York, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Immunotherapy Platform, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Shah B, Gray J, Abraham I, Chang M. Pharmacy considerations: Use of anti-CD38 monoclonal antibodies in relapsed and/or refractory multiple myeloma. J Oncol Pharm Pract 2023; 29:170-182. [PMID: 35726199 DOI: 10.1177/10781552221107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This article reviews current evidence for the approved anti-CD38 monoclonal antibodies, isatuximab and daratumumab, for the treatment of patients with relapsed and/or refractory multiple myeloma (RRMM) and the implications for pharmacists. DATA SOURCES We conducted a literature search on PubMed/Medline and other sources using the drug names and the terms CD38, multiple myeloma, and pharmacists. DATA SUMMARY Monoclonal antibodies targeting the CD38 transmembrane glycoprotein offer a promising treatment approach for patients with RRMM. Isatuximab and daratumumab bind to different epitopes on CD38. In this review, we describe the similarities and differences in their mechanism of action, regulatory labeling, and the current guidelines for isatuximab and daratumumab use in RRMM. We review the current evidence for the efficacy and safety of these agents in combination with pomalidomide or carfilzomib and dexamethasone from the landmark phase 3 clinical trials that led to their approval. We discuss key differences in the eligibility criteria between the clinical trials, and differences in dosing, administration, available formulations, and pre- and post-infusion medications for the two agents. We outline recent data from pharmacoeconomic analyses comparing the cost-effectiveness of isatuximab-based regimens with that of daratumumab-based regimens. A brief overview of other anti-CD38 agents in the pipeline for the treatment of patients with RRMM is presented. CONCLUSIONS Given that pharmacists play an integral role in driving cost-effective use of drugs without compromising efficacy and safety for the end user, educating pharmacists on the key differences between isatuximab and daratumumab can guide the selection of the appropriate anti-CD38 antibody.
Collapse
Affiliation(s)
- Bhavesh Shah
- 1836Boston Medical Center, One Boston Medical Center Place, Boston, MA, USA
| | - Joy Gray
- Tennessee Cancer Specialists, Knoxville, TN, USA
| | - Ivo Abraham
- University of Arizona Cancer Center and Center for Health Outcomes and PharmacoEconomic Research, Tucson, AZ, USA
| | | |
Collapse
|
26
|
Goldsmith SR, Streeter S, Covut F. Bispecific Antibodies for the Treatment of Multiple Myeloma. Curr Hematol Malig Rep 2022; 17:286-297. [PMID: 36029366 DOI: 10.1007/s11899-022-00675-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Advances in multiple myeloma therapies have greatly improved outcomes for patients living with the disease, although to date there is yet to be a cure. Cellular and immunotherapies, approved or in development, offer the promise of significantly advancing toward that possibility. The aim of this review is to provide a synopsis and commentary on the current and future states of bispecific agents aimed at harnessing the antineoplastic potential of T-cells in treating and eradicating myeloma. RECENT FINDINGS Numerous bispecific agents are in clinical development with some on the precipice of regulatory approval. While BCMA remains the principal target, some agents are directed at novel targets such as GPRC5D and FcRH5. The constructs vary in design and pharmacokinetics which has dosing and administration implications. The toxicity profiles of these agents generally reflect that of other immune therapies, including cytokine release syndrome and rarely neurotoxicity, although immunosuppression has also led to elevated infection risks. However, the toxicities are generally manageable and offset by unprecedented efficacy seen in such heavily pretreated cohorts. Bispecific agents are poised to significantly alter the treatment paradigms for myeloma. They provide a convenient "off-the-shelf" platform with often deep and durable responses. Toxicities are often limited in duration and severity. In the early-phase trials, many patients have been able to remain on treatment for extended periods, even among those with high-risk features. Upcoming trials are likely to explore earlier implementation of these agents in order to offer this therapeutic opportunity to broader cohorts.
Collapse
Affiliation(s)
- Scott R Goldsmith
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| | - Shawn Streeter
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Fahrettin Covut
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Liu Z, Wang H, Li Y, Meng N, Liu H, Ding K, Fu R. PIM2 kinase regulates the expression of TIGIT and energy metabolism on NK cell in multiple myeloma patients.. [DOI: 10.21203/rs.3.rs-2159151/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Abstract
Background: PIM2 kinase play a vital role in the generation of plasma cell and bone loss in multiple myeloma(MM), which highly related to the tumor progression and as a potential therapy target in MM. In immune cell,PIM2 kinase involved in the regulation of lymphocyte like T cell and B cell, However, its role in NK cells remains unclear.
Methods: Single-cell RNA sequencing data were analysed the expression of PIM2 kinase in NK cells from MM patients and healthy donors.Immune checkpoint expression, cell apoptosis, and NK cell function had been evaluated through flow cytometry.Then, NCBI, UCSC, JASPAR and GEPIA database were used to predict promoter of TIGIT.NK-92 cells with ETS-1 knockdown were established by using sh-RNA. Kinase functional assay (ADP-Glo) were used to confirm PIM2 inhibitor from 160 kinds of natural flavonoids compound.Samples treated with or without drugs were analyzed using mass spectrometry and RNA-seq. The oxygen consumption rate (OCR), and the extracellular acidification rate (ECAR) were measured by assay kit.
Result: The PIM2 kinase was highly expressed in the NK cells from MM patients based on single-cell sequencing analysis and confirmed in clinical sample by PCR and flow cytometry.Inhibition of PIM2 kinase can increase the function of NK cells and down regulation TIGIT expression. Mechanism, we confirmed that ETS-1 which was directly binding to the promoter of TIGIT was up-regulated by PIM2 kinase, which can lead the strengthened transcription of TIGIT on NK cells.Furthermore, two novel natural flavonoids compound named Kaempferol and Quercetin dihydrate as PIM2 kinase inhibitors exhibiting higher efficiency at low dose in MM cells,while influence the expression of TIGIT and energy metabolism on NK-92 cells. For in vitro experiment,PIM2 kinase inhibitors can activate NK cell killing function and decrease TIGIT expression,while promoted the apoptosis of MM cells irrespective of adding BMSCs or not in co-culture systems BMSCs.
Conclusion: PIM2 kinase involved in the regulation of NK cell.Inhibiting PIM2 kinase could down-regulate the expression of TIGIT and improve energy metabolism to enhance NK cell anti myeloma cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong Fu
- Tianjin Medical University General Hospital
| |
Collapse
|
28
|
Leleu X, Martin T, Weisel K, Schjesvold F, Iida S, Malavasi F, Manier S, Chang-Ki Min, Ocio EM, Pawlyn C, Perrot A, Quach H, Richter J, Spicka I, Yong K, Richardson PG. Anti-CD38 antibody therapy for patients with relapsed/refractory multiple myeloma: differential mechanisms of action and recent clinical trial outcomes. Ann Hematol 2022; 101:2123-2137. [PMID: 35943588 PMCID: PMC9463192 DOI: 10.1007/s00277-022-04917-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022]
Abstract
CD38 is a transmembrane glycoprotein that functions both as a receptor and an ectoenzyme, playing key roles in the regulation of calcium signaling and migration of immune cells to tumor microenvironments. High expression on multiple myeloma (MM) cells and limited expression on normal cells makes CD38 an ideal target for the treatment of MM patients. Two monoclonal antibodies directed at CD38, isatuximab and daratumumab, are available for use in patients with relapsed and/or refractory MM (RRMM); daratumumab is also approved in newly diagnosed MM and light-chain amyloidosis. Clinical experience has shown that anti-CD38 antibody therapy is transforming treatment of MM owing to its anti-myeloma efficacy and manageable safety profile. Isatuximab and daratumumab possess similarities and differences in their mechanisms of action, likely imparted by their binding to distinct, non-overlapping epitopes on the CD38 molecule. In this review, we present the mechanistic properties of these two antibodies and outline available evidence on their abilities to induce adaptive immune responses and modulate the bone marrow niche in MM. Further, we discuss differences in regulatory labeling between these two agents and analyze recent key clinical trial results, including evidence in patients with underlying renal impairment and other poor prognostic factors. Finally, we describe the limited existing evidence for the use of isatuximab or daratumumab after disease progression on prior anti-CD38 mono- or combination therapy, highlighting the need for additional clinical evaluations to define optimal anti-CD38 antibody therapy selection and sequencing in RRMM.
Collapse
Affiliation(s)
- Xavier Leleu
- Service d'Hématologie Et Thérapie Cellulaire, CHU and CIC Inserm 1402, Poitiers Cedex, France.
| | - Thomas Martin
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Katja Weisel
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Department of Hematology, KG Jebsen Center for B Cell Malignancies, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University, Nagoya, Japan
| | - Fabio Malavasi
- Department of Medical Sciences, University of Torino Medical School, Fondazione Ricerca Molinette, Turin, Italy
| | - Salomon Manier
- Department of Hematology, CHU, Universite de Lille, Lille, France
| | - Chang-Ki Min
- Department of Hematology, College of Medicine, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Enrique M Ocio
- Hospital Universitario Marqués de Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| | - Charlotte Pawlyn
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Aurore Perrot
- Department of Hematology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Hang Quach
- Clinical Haematology Service, St Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Joshua Richter
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Mount Sinai, New York, NY, USA
| | - Ivan Spicka
- Department of Medicine, Department of Hematology, First Faculty of Medicine, Charles University and General Hospital, Prague, Czech Republic
| | - Kwee Yong
- Department of Haematology, University College, Hospitals NHS Foundation Trust, London, UK
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
29
|
Chong AS, Habal MV. From bench to bedside: reversing established antibody responses and desensitization. Curr Opin Organ Transplant 2022; 27:376-384. [PMID: 35950890 PMCID: PMC9474614 DOI: 10.1097/mot.0000000000001009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Basic transplant immunology has primarily focused on the definition of mechanisms, but an often-stated aspirational goal is to translate basic mechanistic research into future therapy. Pretransplant donor-specific antibodies (DSA) mediate hyperacute as well as early antibody-mediated rejection (AMR), whereas DSA developing late posttransplantation may additionally mediate chronic rejection. Although contemporary immunosuppression effectively prevents early cellular rejection after transplant in nonsensitized patients, it is less effective at controlling preexisting HLA antibody responses or reversing DSA once established, thus underscoring a need for better therapies. RECENT FINDINGS We here review the development of a bench-to-bedside approach involving transient proteasome inhibition to deplete plasma cells, combined with maintenance co-stimulation blockade, with CTLA-4Ig or belatacept, to prevent the generation of new antibody-secreting cells (ASCs). SUMMARY This review discusses how this treatment regimen, which was rationally designed and validated to reverse established DSA responses in mouse models, translated into reversing active AMR in the clinic, as well as desensitizing highly sensitized patients on the transplant waitlist.
Collapse
Affiliation(s)
- Anita S. Chong
- Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Marlena V. Habal
- Department of Medicine, Columbia University College of Medicine, New York, NY, USA
| |
Collapse
|
30
|
Xu Q, Liu X, Mohseni G, Hao X, Ren Y, Xu Y, Gao H, Wang Q, Wang Y. Mechanism research and treatment progress of NAD pathway related molecules in tumor immune microenvironment. Cancer Cell Int 2022; 22:242. [PMID: 35906622 PMCID: PMC9338646 DOI: 10.1186/s12935-022-02664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is the core of cellular energy metabolism. NAMPT, Sirtuins, PARP, CD38, and other molecules in this classic metabolic pathway affect many key cellular functions and are closely related to the occurrence and development of many diseases. In recent years, several studies have found that these molecules can regulate cell energy metabolism, promote the release of related cytokines, induce the expression of neoantigens, change the tumor immune microenvironment (TIME), and then play an anticancer role. Drugs targeting these molecules are under development or approved for clinical use. Although there are some side effects and drug resistance, the discovery of novel drugs, the development of combination therapies, and the application of new technologies provide solutions to these challenges and improve efficacy. This review presents the mechanisms of action of NAD pathway-related molecules in tumor immunity, advances in drug research, combination therapies, and some new technology-related therapies.
Collapse
Affiliation(s)
- QinChen Xu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yiwei Xu
- Marine College, Shandong University, 264209, Weihai, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Qin Wang
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China.
| |
Collapse
|
31
|
Soekojo CY, Chng WJ. The Evolution Of Immune Dysfunction In Multiple Myeloma. Eur J Haematol 2022; 109:415-424. [PMID: 35880386 DOI: 10.1111/ejh.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This review discusses the role of immune dysfunction at the different stages of MM. METHODS Narrative review RESULTS: Multiple myeloma (MM) is a complex disease and immune dysfunction has been known to play an important role in disease pathogenesis, progression, and drug resistance. MM is known to be preceded by asymptomatic precursor states and progression from the precursor states to MM is likely related to a progressive impairment of the immune system. CONCLUSIONS An understanding of the role of the immune system in the progression of MM is important to guide the development of immunotherapeutic strategies for this disease.
Collapse
Affiliation(s)
- Cinnie Yentia Soekojo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System
| |
Collapse
|
32
|
Gao Y, Li L, Zheng Y, Zhang W, Niu B, Li Y. Monoclonal antibody Daratumumab promotes macrophage-mediated anti-myeloma phagocytic activity via engaging FC gamma receptor and activation of macrophages. Mol Cell Biochem 2022; 477:2015-2024. [DOI: 10.1007/s11010-022-04390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
|
33
|
Venglar O, Bago JR, Motais B, Hajek R, Jelinek T. Natural Killer Cells in the Malignant Niche of Multiple Myeloma. Front Immunol 2022; 12:816499. [PMID: 35087536 PMCID: PMC8787055 DOI: 10.3389/fimmu.2021.816499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.
Collapse
Affiliation(s)
- Ondrej Venglar
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Julio Rodriguez Bago
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Benjamin Motais
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Roman Hajek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Jelinek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| |
Collapse
|
34
|
SAR442085, a novel anti-CD38 antibody with enhanced antitumor activity against multiple myeloma. Blood 2022; 139:1160-1176. [PMID: 35201323 DOI: 10.1182/blood.2021012448] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
Anti-CD38 monoclonal antibodies (mAbs) represent a breakthrough in the treatment of multiple myeloma (MM), yet some patients fail to respond or progress quickly with this therapy, highlighting the need for novel approaches. In this study we compared the preclinical efficacy of SAR442085, a next-generation anti-CD38 mAb with enhanced affinity for activating Fcγ receptors (FcγR), with first-generation anti-CD38 mAb daratumumab and isatuximab. In surface plasmon resonance and cellular binding assays, we found that SAR442085 had higher binding affinity than daratumumab and isatuximab for FcγRIIa (CD32a) and FcγRIIIa (CD16a). SAR442085 also exhibited better in vitro antibody-dependent cellular cytotoxicity (ADCC) against a panel of MM cells expressing variable CD38 receptor densities including MM patients' primary plasma cells. The enhanced ADCC of SAR442085 was confirmed using NK-92 cells bearing low and high affinity FcγRIIIa (CD16a)-158F/V variants. Using MM patients' primary bone marrow cells, we confirmed that SAR442085 had an increased ability to engage FcγRIIIa, resulting in higher natural killer (NK) cell activation and degranulation against primary plasma cells than preexisting Fc wild-type anti-CD38 mAbs. Finally, using huFcgR transgenic mice that express human Fcγ receptors under the control of their human regulatory elements, we demonstrated that SAR442085 had higher NK cell-dependent in vivo antitumor efficacy and better survival than daratumumab and isatuximab against EL4 thymoma or VK*MYC myeloma cells overexpressing human CD38. These results highlight the preclinical efficacy of SAR442085 and support the current evaluation of this next-generation anti-CD38 antibody in phase I clinical development in patients with relapsed/refractory MM.
Collapse
|
35
|
Wang Y, Xu L, Zhao W, Chen X, Wen L, Duan W, Yu X, De Zhou F, Liu Y, Hao J, Huang X, Lu J, Ge Q. T cell landscape and dynamics in immunoglobulin light chain amyloidosis before and after daratumumab-based therapy. Clin Transl Med 2021; 11:e582. [PMID: 34845849 PMCID: PMC8630449 DOI: 10.1002/ctm2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 11/07/2022] Open
Abstract
Amyloid light-chain (AL) is characterized by the presence of small, poorly proliferating plasma cell clones with the production and deposition of light chains into tissues. T cell changes within the tumour microenvironment in AL are poorly understood. By sequencing at a single-cell level of CD3+ T cells purified from bone marrow (BM) and blood of newly diagnosed AL patients before and after a combination of daratumumab with cyclophosphamide, bortezomib, and dexamethasone (Dara-BCD), we analysed the transcriptomic features of T cells and found an expansion, activation and type I cytokine upregulation in BM and circulating T cells after the treatment. More prominent changes were shown in CD8+ T cells. In particular, we found the presence of CD8+ BM resident memory T cells (TRM ) with high expression of inhibitory molecules in AL patients at diagnosis. After Dara-BCD, these TRM cells were quickly activated with downregulation of suppressive molecules and upregulation of IFNG expression. These data collectively demonstrate that Dara-based therapy in patients with AL amyloidosis promotes anti-tumour T cell responses. The similar transcriptomic features of BM and circulating T cells before and after therapy further provide a less invasive approach for molecular monitoring of T cell response in AL amyloidosis.
Collapse
Affiliation(s)
- Yujia Wang
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | - Lushuang Xu
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | - Weijia Zhao
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | | | - Lei Wen
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
| | - Wenbing Duan
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
| | - Xiao‐Juan Yu
- Renal DivisionDepartment of MedicineInstitute of NephrologyPeking University First Hospital, & Renal Pathology CenterPeking UniversityBeijingChina
- Renal Pathology CenterInstitute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of CKD Prevention and TreatmentMinistry of Education of ChinaBeijingChina
| | - Fu‐ De Zhou
- Renal DivisionDepartment of MedicineInstitute of NephrologyPeking University First Hospital, & Renal Pathology CenterPeking UniversityBeijingChina
- Renal Pathology CenterInstitute of NephrologyPeking UniversityBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of CKD Prevention and TreatmentMinistry of Education of ChinaBeijingChina
| | - Yang Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
| | - Jie Hao
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
| | - Jin Lu
- Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's Hospital & Institute of HematologyBeijingChina
- Collaborative Innovation Center of HaematologySoochow UniversitySuzhouJiangsuChina
| | - Qing Ge
- Department of ImmunologySchool of Basic Medical SciencesPeking University. NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
- Department of Integration of Chinese and Western MedicineSchool of Basic Medical SciencesPeking UniversityBeijingChina
- National Key Laboratory of Human Factors EngineeringChina Astronauts Research and Training CenterBeijingChina
| |
Collapse
|
36
|
Kang L, Li C, Yang Q, Sutherlin L, Wang L, Chen Z, Becker KV, Huo N, Qiu Y, Engle JW, Wang R, He C, Jiang D, Xu X, Cai W. 64Cu-labeled daratumumab F(ab') 2 fragment enables early visualization of CD38-positive lymphoma. Eur J Nucl Med Mol Imaging 2021; 49:1470-1481. [PMID: 34677626 DOI: 10.1007/s00259-021-05593-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Abnormal CD38 expression in some hematologic malignancies, including lymphoma, has made it a biomarker for targeted therapies. Daratumumab (Dara) is the first FDA-approved CD38-specific monoclonal antibody, enabling successfully immunoPET imaging over the past years. Radiolabeled Dara however has a long blood circulation and delayed tumor uptake which can limit its applications. The focus of this study is to develop 64Cu-labeled Dara-F(ab')2 for the visualization of CD38 in lymphoma models. METHODS F(ab')2 fragment was prepared from Dara using an IdeS enzyme and purified with Protein A beads. Western blotting, flow cytometry, and surface plasmon resonance (SPR) were performed for in vitro assay. Probes were labeled with 64Cu after the chelation of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Small animal PET imaging and quantitative analysis were performed after injection of 64Cu-labeled Dara-F(ab')2, IgG-F(ab')2, and Dara for evaluation in lymphoma models. RESULTS Flow cytometry and SPR assay proved the specific binding ability of Dara-F(ab')2 and NOTA-Dara-F(ab')2 in vitro. Radiolabeling yield of [64Cu]Cu-NOTA-Dara-F(ab')2 was over 90% and with a specific activity of 4.0 ± 0.6 × 103 MBq/μmol (n = 5). PET imaging showed [64Cu]Cu-NOTA-Dara-F(ab')2 had a rapid and high tumor uptake as early as 2 h (6.9 ± 1.2%ID/g) and peaked (9.5 ± 0.7%ID/g) at 12 h, whereas [64Cu]Cu-NOTA-Dara reached its tumor uptake peaked at 48 h (8.3 ± 1.4%ID/g, n = 4). In comparison, IgG-F(ab')2 and HBL-1 control groups found no noticeable tumor uptake. [64Cu]Cu-NOTA-Dara-F(ab')2 had significantly lower uptake in blood pool, bone, and muscle than [64Cu]Cu-NOTA-Dara and its tumor-to-blood and tumor-to-muscle ratios were significantly higher than controls. CONCLUSIONS [64Cu]Cu-NOTA-Dara-F(ab')2 showed a rapid and high tumor uptake in CD38-positive lymphoma models with favorable imaging contrast, showing its promise as a potential PET imaging agent for future clinical applications.
Collapse
Affiliation(s)
- Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China. .,Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA.
| | - Cuicui Li
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China.,Department of Nuclear Medicine, Beijing Friendship Hospital, Beijing, 100050, China
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China
| | - Logan Sutherlin
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA
| | - Lin Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China
| | - Kaelyn V Becker
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA
| | - Nan Huo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, 27 Tai-Ping Rd, Beijing, 100850, China
| | - Yongkang Qiu
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dawei Jiang
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA. .,Department of Medical Molecular Biology, Beijing Institute of Biotechnology, 27 Tai-Ping Rd, Beijing, 100850, China.
| | - Xiaojie Xu
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA.
| |
Collapse
|
37
|
Janakiram M, Arora N, Bachanova V, Miller JS. Novel Cell and Immune Engagers in Optimizing Tumor- Specific Immunity Post-Autologous Transplantation in Multiple Myeloma. Transplant Cell Ther 2021; 28:61-69. [PMID: 34634499 DOI: 10.1016/j.jtct.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/07/2021] [Accepted: 10/03/2021] [Indexed: 11/18/2022]
Abstract
Autologous stem cell transplantation (ASCT) is an important component of treatment of multiple myeloma (MM). The post-ASCT setting offers a unique opportunity to increase myeloma specific immunity through enhancement of T and NK cell responses. The vast array of therapeutics being developed for MM, including cell-based therapies, dendritic vaccines, bispecific antibodies, and IL-15 agonists, provide the opportunity to increase tumor-specific immunity. Maintenance therapies, including immunomodulatory drugs, proteasome inhibitors, and daratumumab, exhibit a significant anti-myeloma response by modulating the immune system. Lenalidomide promotes an antitumoral immune microenvironment, whereas daratumumab can potentially cause NK cell fratricide. Thus, understanding the effects of commonly used maintenance drugs on the immune system is important. In this review, we look at current and emerging therapeutics and their integration post-ASCT in the context of immune reconstitution to improve clinical responses in patients with MM. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Murali Janakiram
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.
| | - Nivedita Arora
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Veronika Bachanova
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
38
|
Mohan M, Maatman TC, Schinke C. The Role of Monoclonal Antibodies in the Era of Bi-Specifics Antibodies and CAR T Cell Therapy in Multiple Myeloma. Cancers (Basel) 2021; 13:4909. [PMID: 34638393 PMCID: PMC8507719 DOI: 10.3390/cancers13194909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) remains largely incurable despite enormous improvement in the outcome of patients. Over the past decade, we have witnessed the "era of monoclonal antibody (moAb)", setting new benchmarks in clinical outcomes for relapsed and newly diagnosed MM. Due to their excellent efficacy and relative safe toxicity profile, moAbs in combination with immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs) have become the new backbone of upfront anti-MM therapy. Yet, most patients will eventually relapse and patients who become refractory to IMiDs, PIs and moAbs have a dismal outcome. Emerging T-cell directing therapies, such as bispecific antibody (bsAb) and chimeric antigen receptor T cells (CAR T) have shown unprecedented responses and outcomes in these heavily pretreated and treatment-refractory patients. Their clinical efficacy combined with high tolerability will likely lead to the use of these agents earlier in the treatment course and there is great enthusiasm that a combination of T cell directed therapy with moAbs can lead to long duration remission in the near future, possibly even without the need of high dose chemotherapy and stem cell transplantation. Herein, we summarize the role of naked moAbs in MM in the context of newer immunotherapeutic agents like bsAb and CAR T therapy.
Collapse
Affiliation(s)
- Meera Mohan
- Divicion of Hematology/Oncology, Froedtert Clinical Cancer Center, Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA;
| | - Theresa Camille Maatman
- Divicion of Hematology/Oncology, Froedtert Clinical Cancer Center, Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA;
| | - Carolina Schinke
- Myeloma Center, Division of Hematology/Oncology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
39
|
Szudy-Szczyrek A, Ahern S, Kozioł M, Majowicz D, Szczyrek M, Krawczyk J, Hus M. Therapeutic Potential of Innate Lymphoid Cells for Multiple Myeloma Therapy. Cancers (Basel) 2021; 13:4806. [PMID: 34638291 PMCID: PMC8507621 DOI: 10.3390/cancers13194806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a recently identified family of lymphocyte-like cells lacking a specific antigen receptor. They are part of the innate immune system. They play a key role in tissue homeostasis and also control inflammatory and neoplastic processes. In response to environmental stimuli, ILCs change their phenotype and functions, and influence the activity of other cells in the microenvironment. ILC dysfunction can lead to a wide variety of diseases, including cancer. ILC can be divided into three subgroups: ILC Group 1, comprising NK cells and ILC1; Group 2, including ILC2 alone; and Group 3, containing Lymphoid Tissue inducers (LTi) and ILC3 cells. While Group 1 ILCs mainly exert antitumour activity, Group 2 and Group 3 ILCs are protumorigenic in nature. A growing body of preclinical and clinical data support the role of ILCs in the pathogenesis of multiple myeloma (MM). Therefore, targeting ILCs may be of clinical benefit. In this manuscript, we review the available data on the role of ILCs in MM immunology and therapy.
Collapse
Affiliation(s)
- Aneta Szudy-Szczyrek
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland; (M.K.); (D.M.)
| | - Sean Ahern
- Department of Haematology, University Hospital Galway, H91 TK33 Galway, Ireland; (S.A.); (J.K.)
- National University of Ireland, H91 TK33 Galway, Ireland
| | - Magdalena Kozioł
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland; (M.K.); (D.M.)
| | - Daria Majowicz
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland; (M.K.); (D.M.)
| | - Michał Szczyrek
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Janusz Krawczyk
- Department of Haematology, University Hospital Galway, H91 TK33 Galway, Ireland; (S.A.); (J.K.)
- National University of Ireland, H91 TK33 Galway, Ireland
| | - Marek Hus
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland; (M.K.); (D.M.)
| |
Collapse
|
40
|
Chimeric Antigen Receptor-Engineered Natural Killer (CAR NK) Cells in Cancer Treatment; Recent Advances and Future Prospects. Stem Cell Rev Rep 2021; 17:2081-2106. [PMID: 34472037 PMCID: PMC8410173 DOI: 10.1007/s12015-021-10246-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
Natural Killer (NK) cells are critical members of the innate immunity lymphocytes and have a critical role in host defense against malignant cells. Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR) redirects the specificity of the immune cell against a target-specific antigen. ACT has recently created an outstanding opportunity for cancer treatment. Unlike CAR-armored T cells which hadnsome shortcomings as the CAR-receiving construct, Major histocompatibility complex (MHC)-independency, shorter lifespan, the potential to produce an off-the-shelf immune product, and potent anti-tumor properties of the NK cells has introduced NK cells as a potent alternative target for expression of CAR. Here, we aim to provide an updated overview on the current improvements in CAR NK design and immunobiology and describe the potential of CAR-modified NK cells as an alternative “off-the-shelf” carrier of CAR. We also provide lists for the sources of NK cells in the process of CAR NK cell production, different methods for transduction of the CAR genetic sequence to NK cells, the differences between CAR T and CAR NK, and CAR NK-targeted tumor antigens in current studies. Additionally, we provide data on recently published preclinical and clinical studies of CAR NK therapy and a list of finished and ongoing clinical trials. For achieving CAR NK products with higher efficacy and safety, we discuss current challenges in transduction and expansion of CAR NK cells, CAR NK therapy side effects, and challenges that limit the optimal efficacy of CAR NK cells and recommend possible solutions to enhance the persistence, function, safety, and efficacy of CAR NK cells with a special focus on solid tumors.
Collapse
|
41
|
Wang H, Fang K, Yan W, Chang X. T-Cell Immune Imbalance in Rheumatoid Arthritis Is Associated with Alterations in NK Cells and NK-Like T Cells Expressing CD38. J Innate Immun 2021; 14:148-166. [PMID: 34428762 DOI: 10.1159/000516642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CD38+ NK (CD3- CD16+ CD38+ CD56+) cells were increased in rheumatoid arthritis (RA), which suppressed Treg cell differentiation. This study explored how CD38+ NK cells regulated CD4+ T-cell differentiation into Treg cells in RA. METHODS Proportions of CD38+ NK cells and their counterpart CD38+ NK-like T (CD3+ CD16+ CD38+ CD56+) cells were measured in RA and rats with collagen-induced arthritis (CIA). CD38+ NK cells and CD38+ NK-like T cells were cocultured with CD4+ T cells, respectively. RESULTS A significantly increased proportion of CD38+ NK cells and a decreased proportion of CD38+ NK-like T cells were detected in RA and CIA blood and synovial fluids. When CD4+ T cells were cocultured with CD38+ NK cells, mammalian target of rapamycin (mTOR) signaling was activated, and Th1/Th2 and Th17/Treg ratios were increased. When CD38+ NK cells were pretreated with anti-CD38 antibody, Treg cell proportion was increased, and Th1/Th2 and Th17/Treg ratios were decreased. CD38+ NK-like T cells showed the opposite results. CD38+ NK cells and CD38+ NK-like-T cells activated differential gene expressions and pathways in CD4+ T cells and initiated Th1 and Th2 cell differentiation by differential gene nodes. CONCLUSIONS This study suggest that the high CD38+ NK cell proportion and low CD38+ NK-like T cell proportion in RA suppress Treg cell differentiation by stimulating mTOR signaling in CD4+ T cells, which consequentially disturbs the immune tolerance.
Collapse
Affiliation(s)
- Hongxing Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Clinical Laboratory of Qilu Hospital, Shandong University, Jinan, China
| | - Kehua Fang
- Clinical Laboratory of The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weining Yan
- Joint Surgery Department of The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Engineering Technology Center for Major Disease Marker, Qingdao, China
| |
Collapse
|
42
|
Identifying CD38+ cells in patients with multiple myeloma: first-in-human imaging using copper-64-labeled daratumumab. Blood Adv 2021; 4:5194-5202. [PMID: 33095874 DOI: 10.1182/bloodadvances.2020002603] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022] Open
Abstract
18F-Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is one of the most widely used imaging techniques to detect multiple myeloma (MM). Intracellular FDG uptake depicts in vivo metabolic activity, which can be seen in both malignant and nonmalignant cells, resulting in limited sensitivity and specificity. Our group showed preclinically that tracing MM dissemination using a CD38-directed human antibody, daratumumab, that is radioconjugated with 64Cu via the chelator DOTA (64Cu-daratumumab), led to improved sensitivity and specificity over that of FDG. Here, we report the results of a phase 1 trial designed to (1) assess the safety and feasibility of 64Cu-daratumumab PET/CT and (2) preliminarily evaluate and characterize the ability of 64Cu-daratumumab to accurately detect or exclude MM lesions. A total of 12 daratumumab-naive patients were imaged. Prior to the injection of 15 mCi/5 mg of 64Cu-daratumumab, patients were treated with 0 (n = 3), 10 (n = 3), 45 (n = 3), or 95 mg (n = 3) of unlabeled daratumumab to assess its effect on image quality. No significant adverse events were observed from either unlabeled daratumumab or 64Cu-daratumumab. Of the dose levels tested, 45 mg unlabeled daratumumab was the most optimal in terms of removing background signal without saturating target sites. 64Cu-daratumumab PET/CT provided safe whole-body imaging of MM. A trial comparing the sensitivity and specificity of 64Cu-daratumumab PET/CT with that of FDG PET/CT is planned. This trial was registered at www.clinicaltrials.gov as #NCT03311828.
Collapse
|
43
|
Tabata R, Sato N, Yamauchi N, Guo YM, Nakamura H, Nagata A, Song-Gi C, Minami Y, Yuda J. Cytomegalovirus reactivation in patients with multiple myeloma administered daratumumab-combination regimens. Ann Hematol 2021; 101:465-467. [PMID: 33864134 DOI: 10.1007/s00277-021-04525-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Rikako Tabata
- Department of Hematology, National Cancer Center Hospital East, 6-5-1, Kashiwano-ha, Kashiwa, Chiba, 277-8577, Japan
| | - Nobue Sato
- Department of Pharmacy, National Cancer Center Hospital East, Chiba, Japan
| | - Nobuhiko Yamauchi
- Department of Hematology, National Cancer Center Hospital East, 6-5-1, Kashiwano-ha, Kashiwa, Chiba, 277-8577, Japan
| | - Yong-Mei Guo
- Department of Hematology, National Cancer Center Hospital East, 6-5-1, Kashiwano-ha, Kashiwa, Chiba, 277-8577, Japan
| | - Hirotaka Nakamura
- Department of Hematology, National Cancer Center Hospital East, 6-5-1, Kashiwano-ha, Kashiwa, Chiba, 277-8577, Japan
| | - Akihito Nagata
- Department of Hematology, National Cancer Center Hospital East, 6-5-1, Kashiwano-ha, Kashiwa, Chiba, 277-8577, Japan
| | - Chi Song-Gi
- Department of Hematology, National Cancer Center Hospital East, 6-5-1, Kashiwano-ha, Kashiwa, Chiba, 277-8577, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, 6-5-1, Kashiwano-ha, Kashiwa, Chiba, 277-8577, Japan
| | - Junichiro Yuda
- Department of Hematology, National Cancer Center Hospital East, 6-5-1, Kashiwano-ha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
44
|
Kim MY, Brennan DC. Therapies for Chronic Allograft Rejection. Front Pharmacol 2021; 12:651222. [PMID: 33935762 PMCID: PMC8082459 DOI: 10.3389/fphar.2021.651222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Remarkable advances have been made in the pathophysiology, diagnosis, and treatment of antibody-mediated rejection (ABMR) over the past decades, leading to improved graft outcomes. However, long-term failure is still high and effective treatment for chronic ABMR, an important cause of graft failure, has not yet been identified. Chronic ABMR has a relatively different phenotype from active ABMR and is a slowly progressive disease in which graft injury is mainly caused by de novo donor specific antibodies (DSA). Since most trials of current immunosuppressive therapies for rejection have focused on active ABMR, treatment strategies based on those data might be less effective in chronic ABMR. A better understanding of chronic ABMR may serve as a bridge in establishing treatment strategies to improve graft outcomes. In this in-depth review, we focus on the pathophysiology and characteristics of chronic ABMR along with the newly revised Banff criteria in 2017. In addition, in terms of chronic ABMR, we identify the reasons for the resistance of current immunosuppressive therapies and look at ongoing research that could play a role in setting better treatment strategies in the future. Finally, we review non-invasive biomarkers as tools to monitor for rejection.
Collapse
Affiliation(s)
| | - Daniel C. Brennan
- Department of Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
45
|
Díaz-Tejedor A, Lorenzo-Mohamed M, Puig N, García-Sanz R, Mateos MV, Garayoa M, Paíno T. Immune System Alterations in Multiple Myeloma: Molecular Mechanisms and Therapeutic Strategies to Reverse Immunosuppression. Cancers (Basel) 2021; 13:cancers13061353. [PMID: 33802806 PMCID: PMC8002455 DOI: 10.3390/cancers13061353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A common characteristic of multiple myeloma (MM) is the dysfunction of patients’ immune system, a condition termed immunosuppression. This state is mainly due to alterations in the number and functionality of the principal immune populations. In this setting, immunotherapy has acquired high relevance in the last years and the investigation of agents that boost the immune system represent a field of interest. In the present review, we will summarize the main cellular and molecular alterations observed in MM patients’ immune system. Furthermore, we will describe the mechanisms of action of the four immunotherapeutic drugs approved so far for the treatment of MM, which are part of the group of monoclonal antibodies (mAbs). Finally, the immune-stimulating effects of several therapeutic agents are described due to their potential role in reversing immunosuppression and, therefore, in favoring the efficacy of immunotherapy drugs, such as mAbs, as part of future pharmacological combinations. Abstract Immunosuppression is a common feature of multiple myeloma (MM) patients and has been associated with disease evolution from its precursor stages. MM cells promote immunosuppressive effects due to both the secretion of soluble factors, which inhibit the function of immune effector cells, and the recruitment of immunosuppressive populations. Alterations in the expression of surface molecules are also responsible for immunosuppression. In this scenario, immunotherapy, as is the case of immunotherapeutic monoclonal antibodies (mAbs), aims to boost the immune system against tumor cells. In fact, mAbs exert part of their cytotoxic effects through different cellular and soluble immune components and, therefore, patients’ immunosuppressive status could reduce their efficacy. Here, we will expose the alterations observed in symptomatic MM, as compared to its precursor stages and healthy subjects, in the main immune populations, especially the inhibition of effector cells and the activation of immunosuppressive populations. Additionally, we will revise the mechanisms responsible for all these alterations, including the interplay between MM cells and immune cells and the interactions among immune cells themselves. We will also summarize the main mechanisms of action of the four mAbs approved so far for the treatment of MM. Finally, we will discuss the potential immune-stimulating effects of non-immunotherapeutic drugs, which could enhance the efficacy of immunotherapeutic treatments.
Collapse
Affiliation(s)
- Andrea Díaz-Tejedor
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Mauro Lorenzo-Mohamed
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Noemí Puig
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Ramón García-Sanz
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - María-Victoria Mateos
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Teresa Paíno
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-812; Fax: +34-923-294-743
| |
Collapse
|
46
|
Palladini G, Milani P, Malavasi F, Merlini G. Daratumumab in the Treatment of Light-Chain (AL) Amyloidosis. Cells 2021; 10:cells10030545. [PMID: 33806310 PMCID: PMC7998921 DOI: 10.3390/cells10030545] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic light-chain (AL) amyloidosis is caused by a small B cell, most commonly a plasma cell (PC), clone that produces toxic light chains (LC) that cause organ dysfunction and deposits in tissues. Due to the production of amyloidogenic, misfolded LC, AL PCs display peculiar biologic features. The small, indolent plasma cell clone is an ideal target for anti-CD38 immunotherapy. A recent phase III randomized study showed that in newly diagnosed patients, the addition of daratumumab to the standard of care increased the rate and depth of the hematologic response and granted more frequent organ responses. In the relapsed/refractory setting, daratumumab alone or as part of combination regimens gave very promising results. It is likely that daratumumab-based regimens will become new standards of care in AL amyloidosis. Another anti-CD38 monoclonal antibody, isatuximab, is at an earlier stage of development as a treatment for AL amyloidosis. The ability to target CD38 on the amyloid PC offers new powerful tools to treat AL amyloidosis. Future studies should define the preferable agents to combine with daratumumab upfront and in the rescue setting and assess the role of maintenance. In this review, we summarize the rationale for using anti-CD38 antibodies in the treatment of AL amyloidosis.
Collapse
Affiliation(s)
- Giovanni Palladini
- Amyloidosis Research and Treatment Center, Foundation “Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo”, 27100 Pavia, Italy; (G.P.); (P.M.)
- Department of Molecular Medicine, University of Pavia, 10121 Pavia, Italy
| | - Paolo Milani
- Amyloidosis Research and Treatment Center, Foundation “Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo”, 27100 Pavia, Italy; (G.P.); (P.M.)
- Department of Molecular Medicine, University of Pavia, 10121 Pavia, Italy
| | - Fabio Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, Center for Experimental Research and Medical Studies (CeRMS), University of Turin, Fondazione Ricerca Molinette, 10121 Turin, Italy;
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation “Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo”, 27100 Pavia, Italy; (G.P.); (P.M.)
- Department of Molecular Medicine, University of Pavia, 10121 Pavia, Italy
- Correspondence:
| |
Collapse
|
47
|
Elotuzumab spares dendritic cell integrity and functionality. J Cancer Res Clin Oncol 2021; 147:2167-2170. [PMID: 33651141 PMCID: PMC8164573 DOI: 10.1007/s00432-021-03572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 11/24/2022]
|
48
|
Zaninoni A, Giannotta JA, Gallì A, Artuso R, Bianchi P, Malcovati L, Barcellini W, Fattizzo B. The Immunomodulatory Effect and Clinical Efficacy of Daratumumab in a Patient With Cold Agglutinin Disease. Front Immunol 2021; 12:649441. [PMID: 33732266 PMCID: PMC7956980 DOI: 10.3389/fimmu.2021.649441] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
Daratumumab is a monoclonal antibody directed against the transmembrane glycoprotein CD38 expressed on plasma cells and lymphoplasmocytes, with a proven efficacy in multiple myeloma. Here we show its clinical efficacy in a patient with cold agglutinin disease (CAD) relapsed after multiple lines of therapy. CAD is caused by cold reactive autoantibodies that induce complement mediated hemolysis and peripheral circulatory symptoms. The disease is also characterized by the presence of monoclonal IgM gammopathy and of a lymphoid bone marrow infiltration that benefits from B-cell targeting therapies (i.e., rituximab) but also from plasma cell directed therapies, such as proteasome inhibitors. In the patient described, we also show that daratumumab therapy influenced the dynamics of several immunoregulatory cytokine levels (IL-6, IL-10, IL-17, IFN-γ, TNF-α, TGF-β) indicating an immunomodulatory effect of the drug beyond plasma cell depletion. In addition, we provide a literature review on the use of daratumumab in autoimmune conditions, including multi-treated and refractory patients with autoimmune hemolytic anemia (both CAD and warm forms), Evans syndrome (association of autoimmune hemolytic anemia and immune thrombocytopenia) and non-hematologic autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Anna Zaninoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Juri A Giannotta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Anna Gallì
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Paola Bianchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Luca Malcovati
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Wilma Barcellini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Bruno Fattizzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
49
|
Cho H, Kim KH, Lee H, Kim CG, Chung H, Choi YS, Park SH, Cheong JW, Min YH, Shin EC, Kim JS. Adaptive Natural Killer Cells Facilitate Effector Functions of Daratumumab in Multiple Myeloma. Clin Cancer Res 2021; 27:2947-2958. [PMID: 33602683 DOI: 10.1158/1078-0432.ccr-20-3418] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the different roles of heterogeneous natural killer (NK)-cell subpopulations in multiple myeloma and to identify NK-cell subsets that support the robust anti-myeloma activity of daratumumab via antibody-dependent cellular cytotoxicity (ADCC). EXPERIMENTAL DESIGN We performed single-cell RNA sequencing of NK cells from patients with newly diagnosed multiple myeloma (NDMM) and delineated adaptive NK cells in their bone marrow (BM). We further characterized the distinct immunophenotypic features and functions of adaptive NK cells by multicolor flow cytometry in 157 patients with NDMM. RESULTS Adaptive NK cells exhibit a significantly lower level of CD38 expression compared with conventional NK cells, suggesting that they may evade daratumumab-induced fratricide. Moreover, adaptive NK cells exert robust daratumumab-mediated effector functions ex vivo, including cytokine production and degranulation, compared with conventional NK cells. The composition of adaptive NK cells in BM determines the daratumumab-mediated ex vivo functional activity of BM NK cells in patients with NDMM. Unlike conventional NK cells, sorted adaptive NK cells from the BM of patients with NDMM exert substantial cytotoxic activity against myeloma cells in the presence of daratumumab. CONCLUSIONS Our findings indicate that adaptive NK cells are an important mediator of ADCC in multiple myeloma and support direct future efforts to better predict and improve the treatment outcome of daratumumab by selectively employing adaptive NK cells.
Collapse
Affiliation(s)
- Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoyoung Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Seok Choi
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - June-Won Cheong
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo Hong Min
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Jin Seok Kim
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Malavasi F, Faini AC, Morandi F, Castella B, Incarnato D, Oliviero S, Horenstein AL, Massaia M, van de Donk NWCJ, Richardson PG. Molecular dynamics of targeting CD38 in multiple myeloma. Br J Haematol 2021; 193:581-591. [PMID: 33570193 DOI: 10.1111/bjh.17329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Multiple functions of CD38 need exploring to expand clinical application of anti-CD38 antibodies in multiple myeloma (MM). We investigated membrane dynamics of MM cells and subsequent events when CD38 is targeted by therapeutic antibodies. Human MM cells (BF01) were co-cultured in vitro with therapeutic antibody (or control immunoglobulin G) and analysed using gene expression profiling. Microvesicles from antibody-exposed cells were analysed for differential gene and microRNA (miRNA) expression, and for phenotypic characterisation. Exposure of BF01 cells to anti-CD38 antibody resulted in CD38 membrane redistribution, upregulation of metabolism-related genes and downregulation of genes involved in cell cycle processes. Microvesicles derived from antibody-exposed cells showed increased CD73 and CD39 expression, presence of programmed death-ligand 1 and significant up-/down-modulation of miRNAs. Microvesicles accumulated around immunoglobulin Fc receptor-positive (FcR+ ) cells. Upon internalisation, natural killer cells displayed significantly increased expression of genes related to activation and immune response, and downregulation of genes involved in the cell cycle. Cells may use microvesicles to transmit signals distally as part of a survival strategy. Microvesicles are equipped on their surface with enzymatic machinery leading to production of tolerogenic adenosine. Further, they are internalised in FcR+ cells with significant functional modifications. These observations have relevance for improving anti-CD38 therapeutic antibodies through targeting this mechanism and its sequelae.
Collapse
Affiliation(s)
- Fabio Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, Center for Experimental Research and Medical Studies (CeRMS), University of Turin, and Fondazione Ricerca Molinette, Turin, Italy
| | - Angelo C Faini
- Laboratory of Immunogenetics, Department of Medical Sciences, Center for Experimental Research and Medical Studies (CeRMS), University of Turin, and Fondazione Ricerca Molinette, Turin, Italy
| | - Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, Istituto Giannina Gaslini, Genova, Italy
| | - Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), University of Turin, Turin, Italy
| | - Danny Incarnato
- Department of Life Science and Systems Biology, University of Turin, and Italian Institute for Genomic Medicine (IIGM) Candiolo, Turin, Italy
| | - Salvatore Oliviero
- Department of Life Science and Systems Biology, University of Turin, and Italian Institute for Genomic Medicine (IIGM) Candiolo, Turin, Italy
| | - Alberto L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, Center for Experimental Research and Medical Studies (CeRMS), University of Turin, and Fondazione Ricerca Molinette, Turin, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), University of Turin, Turin, Italy
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Location VUmc, Amsterdam, The Netherlands
| | | |
Collapse
|