1
|
Jarczak J, Bujko K, Ratajczak MZ, Kucia M. scRNA-seq revealed transcriptional signatures of human umbilical cord primitive stem cells and their germ lineage origin regulated by imprinted genes. Sci Rep 2024; 14:29264. [PMID: 39587190 PMCID: PMC11589151 DOI: 10.1038/s41598-024-79810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
A population of CD133+lin-CD45- and CD34+lin-CD45- very small embryonic-like stem cells (VSELs) has been identified in postnatal human tissues, including bone marrow (BM), mobilized peripheral blood (mPB) and umbilical cord blood (UCB). Under appropriate conditions, VSELs in vitro and in vivo differentiate into tissue-committed stem cells for all three germ layers. Molecular analysis of adult murine BM-purified VSELs revealed that these rare cells deposited during development in adult tissues (i) express a similar transcriptome as embryonic stem cells, (ii) share several markers characteristic for epiblast and migratory primordial germ cells (PGCs), (iii) highly express a polycomb group protein enhancer of zeste drosophila homolog 2 (Ezh2) and finally (iv) display a unique pattern of imprinting at crucial paternally inherited genes that promotes their quiescence. Here, by employing single-cell RNA sequencing we demonstrate for the first time that purified from UCB human VSELs defined by expression of CD34 or CD133 antigens and lack of lineage markers, including CD45 antigen express similar molecular signature as murine BM-derived VSELs. Specifically, unsupervised clustering revealed numerous subpopulations of VSELs including ones i) annotated to germline compartments, ii) regulated by parental imprinting, iii) responding to early developmental fate decisions, iv) transcription factors involved in differentiation and development, including homeobox family of genes, and v) expressing innate immunity and purinergic signaling genes.
Collapse
Affiliation(s)
- Justyna Jarczak
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland
- Stem Cell Institute at Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Ul. Banacha 1B, Warsaw, Poland.
| |
Collapse
|
2
|
Konopko A, Łukomska A, Kucia M, Ratajczak MZ. The Different Responsiveness of C3- and C5-deficient Murine BM Cells to Oxidative Stress Explains Why C3 Deficiency, in Contrast to C5 Deficiency, Correlates with Better Pharmacological Mobilization and Engraftment of Hematopoietic Cells. Stem Cell Rev Rep 2024:10.1007/s12015-024-10792-6. [PMID: 39340736 DOI: 10.1007/s12015-024-10792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The liver-derived circulating in peripheral blood and intrinsic cell-expressed complement known as complosome orchestrate the trafficking of hematopoietic stem/progenitor cells (HSPCs) both during pharmacological mobilization and homing/engraftment after transplantation. Our previous research demonstrated that C3 deficient mice are easy mobilizers, and their HSPCs engraft properly in normal mice. In contrast, C5 deficiency correlates with poor mobilization and defects in HSPCs' homing and engraftment. The trafficking of HSPCs during mobilization and homing/engraftment follows the sterile inflammation cues in the BM microenvironment caused by stress induced by pro-mobilizing drugs or myeloablative conditioning for transplantation. Therefore, to explain deficiencies in HSPC trafficking between C3-KO and C5-KO mice, we evaluated the responsiveness of C3 and C5 deficient cells to low oxidative stress. As reported, oxidative stress in BM is mediated by the activation of purinergic signaling, which is triggered by the elevated level of extracellular adenosine triphosphate (eATP) and by the activation of the complement cascade (ComC). In the current work, we noticed that BM lineage negative cells (lin-) isolated from C3-KO mice display several mitochondrial defects reflected by an impaired ability to adapt to oxidative stress. In contrast, C5-KO-derived BM cells show a high level of adaptation to this challenge. To support this data, C3-KO BM lin- cells were highly responsive to eATP stimulation, which correlates with enhanced levels of reactive oxygen species (ROS) generation and more efficient activation of intracellular Nlrp3 inflammasome. We conclude that the enhanced sensitivity of C3-KO mice cells to oxidative stress and better activation of the Nox2-ROS-Nlrp3 inflammasome signaling axis explains the molecular level differences in trafficking between C3- and C5-deficient HSPCs.
Collapse
Affiliation(s)
- Adrian Konopko
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland.
| | - Agnieszka Łukomska
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Kucia
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Hegde S, Giotti B, Soong BY, Halasz L, Berichel JL, Magen A, Kloeckner B, Mattiuz R, Park MD, Marks A, Belabed M, Hamon P, Chin T, Troncoso L, Lee JJ, Ahimovic D, Bale M, Chung G, D'souza D, Angeliadis K, Dawson T, Kim-Schulze S, Flores RM, Kaufman AJ, Ginhoux F, Josefowicz SZ, Ma S, Tsankov AM, Marron TU, Brown BD, Merad M. Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600383. [PMID: 38979166 PMCID: PMC11230224 DOI: 10.1101/2024.06.24.600383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs' survival and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.
Collapse
|
4
|
Janneh AH. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BIOCHEM 2024; 4:126-143. [PMID: 38894892 PMCID: PMC11185840 DOI: 10.3390/biochem4020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Müller L, Di Benedetto S. Aging brain: exploring the interplay between bone marrow aging, immunosenescence, and neuroinflammation. Front Immunol 2024; 15:1393324. [PMID: 38638424 PMCID: PMC11024322 DOI: 10.3389/fimmu.2024.1393324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Aging is a complex process characterized by a myriad of physiological changes, including alterations in the immune system termed immunosenescence. It exerts profound effects on both the bone marrow and the central nervous system, with significant implications for immunosenescence in neurological contexts. Our mini-review explores the complex relationship between bone marrow aging and its impact on immunosenescence, specifically within the context of neurological diseases. The bone marrow serves as a crucial hub for hematopoiesis and immune cell production, yet with age, it undergoes significant alterations, including alterations in hematopoietic stem cell function, niche composition, and inflammatory signaling. These age-related shifts in the bone marrow microenvironment contribute to dysregulation of immune cell homeostasis and function, impacting neuroinflammatory processes and neuronal health. In our review, we aim to explore the complex cellular and molecular mechanisms that link bone marrow aging to immunosenescence, inflammaging, and neuroinflammation, with a specific focus on their relevance to the pathophysiology of age-related neurological disorders. By exploring this interplay, we strive to provide a comprehensive understanding of how bone marrow aging impacts immune function and contributes to the progression of neurological diseases in aging individuals. Ultimately, this knowledge can hold substantial promise for the development of innovative therapeutic interventions aimed at preserving immune function and mitigating the progression of neurological disorders in the elderly population.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
6
|
Manshouri S, Seif F, Kamali M, Bahar MA, Mashayekh A, Molatefi R. The interaction of inflammasomes and gut microbiota: novel therapeutic insights. Cell Commun Signal 2024; 22:209. [PMID: 38566180 PMCID: PMC10986108 DOI: 10.1186/s12964-024-01504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/28/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammasomes are complex platforms for the cleavage and release of inactivated IL-1β and IL-18 cytokines that trigger inflammatory responses against damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs). Gut microbiota plays a pivotal role in maintaining gut homeostasis. Inflammasome activation needs to be tightly regulated to limit aberrant activation and bystander damage to the host cells. Several types of inflammasomes, including Node-like receptor protein family (e.g., NLRP1, NLRP3, NLRP6, NLRP12, NLRC4), PYHIN family, and pyrin inflammasomes, interact with gut microbiota to maintain gut homeostasis. This review discusses the current understanding of how inflammasomes and microbiota interact, and how this interaction impacts human health. Additionally, we introduce novel biologics and antagonists, such as inhibitors of IL-1β and inflammasomes, as therapeutic strategies for treating gastrointestinal disorders when inflammasomes are dysregulated or the composition of gut microbiota changes.
Collapse
Affiliation(s)
- Shirin Manshouri
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran
| | - Farhad Seif
- Department of Photodynamic Therapy, Medical Laser Research Center, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Monireh Kamali
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran
| | - Mohammad Ali Bahar
- Department of Immunology, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | - Arshideh Mashayekh
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran.
| | - Rasol Molatefi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Pediatric Department of Bou Ali Hospital, Ardabil University of Medical Sciences, Ardabil, 56189-85991, Iran.
| |
Collapse
|
7
|
Ratajczak MZ, Bujko K, Brzezniakiewicz-Janus K, Ratajczak J, Kucia M. Hematopoiesis Revolves Around the Primordial Evolutional Rhythm of Purinergic Signaling and Innate Immunity - A Journey to the Developmental Roots. Stem Cell Rev Rep 2024; 20:827-838. [PMID: 38363476 PMCID: PMC10984895 DOI: 10.1007/s12015-024-10692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
A cell's most significant existential task is to survive by ensuring proper metabolism, avoiding harmful stimuli, and adapting to changing environments. It explains why early evolutionary primordial signals and pathways remained active and regulate cell and tissue integrity. This requires energy supply and a balanced redox state. To meet these requirements, the universal intracellular energy transporter purine nucleotide-adenosine triphosphate (ATP) became an important signaling molecule and precursor of purinergic signaling after being released into extracellular space. Similarly, ancient proteins involved in intracellular metabolism gave rise to the third protein component (C3) of the complement cascade (ComC), a soluble arm of innate immunity. These pathways induce cytosol reactive oxygen (ROS) and reactive nitrogen species (RNS) that regulate the redox state of the cells. While low levels of ROS and RNS promote cell growth and differentiation, supra-physiological concentrations can lead to cell damage by pyroptosis. This balance explains the impact of purinergic signaling and innate immunity on cell metabolism, organogenesis, and tissue development. Subsequently, along with evolution, new regulatory cues emerge in the form of growth factors, cytokines, chemokines, and bioactive lipids. However, their expression is still modulated by both primordial signaling pathways. This review will focus on the data that purinergic signaling and innate immunity carry on their ancient developmental task in hematopoiesis and specification of hematopoietic stem/progenitor cells (HSPCs). Moreover, recent evidence shows both these regulatory pathways operate in a paracrine manner and inside HSPCs at the autocrine level.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
- Department of Hematology, University of Zielona Gora, Multi-Specialist Hospital Gorzow Wlkp., Gorzow Wielkopolski, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
| | | | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Podszywalow-Bartnicka P, Neugebauer KM. Multiple roles for AU-rich RNA binding proteins in the development of haematologic malignancies and their resistance to chemotherapy. RNA Biol 2024; 21:1-17. [PMID: 38798162 PMCID: PMC11135835 DOI: 10.1080/15476286.2024.2346688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Post-transcriptional regulation by RNA binding proteins can determine gene expression levels and drive changes in cancer cell proteomes. Identifying mechanisms of protein-RNA binding, including preferred sequence motifs bound in vivo, provides insights into protein-RNA networks and how they impact mRNA structure, function, and stability. In this review, we will focus on proteins that bind to AU-rich elements (AREs) in nascent or mature mRNA where they play roles in response to stresses encountered by cancer cells. ARE-binding proteins (ARE-BPs) specifically impact alternative splicing, stability, decay and translation, and formation of RNA-rich biomolecular condensates like cytoplasmic stress granules (SGs). For example, recent findings highlight the role of ARE-BPs - like TIAR and HUR - in chemotherapy resistance and in translational regulation of mRNAs encoding pro-inflammatory cytokines. We will discuss emerging evidence that different modes of ARE-BP activity impact leukaemia and lymphoma development, progression, adaptation to microenvironment and chemotherapy resistance.
Collapse
Affiliation(s)
- Paulina Podszywalow-Bartnicka
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Bujko K, Brzenziakiewicz-Janus K, Kucia M, Ratajczak MZ. Intracellular Complement (Complosome) is Expressed in Several Types of Human Adult Bone Marrow-Derived Stem Cells. Stem Cell Rev Rep 2024; 20:437-439. [PMID: 37917411 DOI: 10.1007/s12015-023-10650-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Affiliation(s)
- Kamila Bujko
- Laboratory of Regenerative Medicine at, Medical University of Warsaw, Warsaw, Poland
| | | | - Magda Kucia
- Laboratory of Regenerative Medicine at, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine at, Medical University of Warsaw, Warsaw, Poland.
- Department of Hematology, University of Zielona Gora, Multi-Specialist Hospital Gorzow Wlkp., Gorzow Wielkopolski, Poland.
- Stem Cell Institute at Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| |
Collapse
|
10
|
王 姗, 蔡 金, 史 爱, 曹 彦. [Effect of gut microbiota homeostasis on hematopoiesis in a neonatal rat model of necrotizing enterocolitis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:855-863. [PMID: 37668035 PMCID: PMC10484087 DOI: 10.7499/j.issn.1008-8830.2301082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/30/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVES To study the effect of gut microbiota on hematopoiesis in a neonatal rat model of necrotizing enterocolitis (NEC). METHODS Neonatal Sprague-Dawley rats were randomly divided into a control group and a model group (NEC group), with 6 rats in each group. Formula milk combined with hypoxia and cold stimulation was used to establish a neonatal rat model of NEC. Hematoxylin and eosin staining was used to observe the pathological changes of intestinal tissue and hematopoiesis-related organs. Routine blood tests were conducted for each group. Immunohistochemistry was used to observe the changes in specific cells in hematopoiesis-related organs. Flow cytometry was used to measure the changes in specific cells in bone marrow. 16S rDNA sequencing was used to observe the composition and abundance of gut microbiota. RESULTS Compared with the control group, the NEC group had intestinal congestion and necrosis, damage, atrophy, and shedding of intestinal villi, and a significant increase in NEC histological score. Compared with the control group, the NEC group had significantly lower numbers of peripheral blood leukocytes and lymphocytes (P<0.05), nucleated cells in the spleen, thymus, and bone marrow, and small cell aggregates with basophilic nuclei in the liver (P<0.05). The NEC group had significant reductions in CD71+ erythroid progenitor cells in the liver, CD45+ lymphocytes in the spleen and bone marrow, CD3+ T lymphocytes in thymus, and the proportion of CD45+CD3-CD43+SSChi neutrophils in bone marrow (P<0.05). There was a significant difference in the composition of gut microbiota between the NEC and control groups, and the NEC group had a significant reduction in the abundance of Ligilactobacillus and a significant increase in the abundance of Escherichia-Shigella (P<0.05), which replaced Ligilactobacillus and became the dominant flora. CONCLUSIONS Multi-lineage hematopoietic disorder may be observed in a neonatal rat model of NEC, which may be associated with gut microbiota dysbiosis and abnormal multiplication of the pathogenic bacteria Escherichia-Shigella.
Collapse
Affiliation(s)
- 姗姗 王
- 南京医科大学生殖医学国家重点实验室,江苏南京211166
| | - 金洋 蔡
- 南京医科大学生殖医学国家重点实验室,江苏南京211166
| | | | | |
Collapse
|
11
|
Mas G, Man N, Nakata Y, Martinez-Caja C, Karl D, Beckedorff F, Tamiro F, Chen C, Duffort S, Itonaga H, Mookhtiar AK, Kunkalla K, Valencia AM, Collings CK, Kadoch C, Vega F, Kogan SC, Shiekhattar R, Morey L, Bilbao D, Nimer SD. The SWI/SNF chromatin-remodeling subunit DPF2 facilitates NRF2-dependent antiinflammatory and antioxidant gene expression. J Clin Invest 2023; 133:e158419. [PMID: 37200093 PMCID: PMC10313367 DOI: 10.1172/jci158419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/16/2023] [Indexed: 05/20/2023] Open
Abstract
During emergency hematopoiesis, hematopoietic stem cells (HSCs) rapidly proliferate to produce myeloid and lymphoid effector cells, a response that is critical against infection or tissue injury. If unresolved, this process leads to sustained inflammation, which can cause life-threatening diseases and cancer. Here, we identify a role of double PHD fingers 2 (DPF2) in modulating inflammation. DPF2 is a defining subunit of the hematopoiesis-specific BAF (SWI/SNF) chromatin-remodeling complex, and it is mutated in multiple cancers and neurological disorders. We uncovered that hematopoiesis-specific Dpf2-KO mice developed leukopenia, severe anemia, and lethal systemic inflammation characterized by histiocytic and fibrotic tissue infiltration resembling a clinical hyperinflammatory state. Dpf2 loss impaired the polarization of macrophages responsible for tissue repair, induced the unrestrained activation of Th cells, and generated an emergency-like state of HSC hyperproliferation and myeloid cell-biased differentiation. Mechanistically, Dpf2 deficiency resulted in the loss of the BAF catalytic subunit BRG1 from nuclear factor erythroid 2-like 2-controlled (NRF2-controlled) enhancers, impairing the antioxidant and antiinflammatory transcriptional response needed to modulate inflammation. Finally, pharmacological reactivation of NRF2 suppressed the inflammation-mediated phenotypes and lethality of Dpf2Δ/Δ mice. Our work establishes an essential role of the DPF2-BAF complex in licensing NRF2-dependent gene expression in HSCs and immune effector cells to prevent chronic inflammation.
Collapse
Affiliation(s)
- Gloria Mas
- Sylvester Comprehensive Cancer Center and
| | - Na Man
- Sylvester Comprehensive Cancer Center and
| | - Yuichiro Nakata
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Chuan Chen
- Sylvester Comprehensive Cancer Center and
| | | | | | | | | | - Alfredo M. Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Chemical Biology Program, Harvard University, Cambridge, Massachusetts, USA
| | - Clayton K. Collings
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Francisco Vega
- Sylvester Comprehensive Cancer Center and
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Scott C. Kogan
- Helen Diller Family Comprehensive Cancer Center and
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center and
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center and
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
12
|
Franczak S, Ulrich H, Ratajczak MZ. Hematopoietic stem cells on the crossroad between purinergic signaling and innate immunity. Purinergic Signal 2023:10.1007/s11302-023-09943-0. [PMID: 37184740 DOI: 10.1007/s11302-023-09943-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023] Open
Abstract
Hematopoiesis is regulated by several mediators such as peptide-based growth factors, cytokines, and chemokines, whose biological effects have been studied for many years. However, several other mediators have been identified recently that affect the fate of hematopoietic stem/progenitor cells (HSPC) as well as non-hematopoietic cells in the bone marrow microenvironment. These new mediators comprise members of purinergic signaling pathways and are active mediators of the soluble arm of innate immunity, the complement cascade (ComC). In this review, we will discuss the coordinated effects of these pathways in regulating the biology of HSPC. Importantly, both purinergic signaling and the ComC are activated in stress situations and interact with specific receptors expressed on HSPC. Evidence has accumulated indicating that some of the purinergic as well as ComC receptors could also be activated intracellularly by intrinsically expressed ligands. To support this recent evidence, our work indicates that the major mediator of purinergic signaling, adenosine triphosphate, and the cleavage product of the fifth component of the ComC (C5), C5a anaphylatoxin, can activate their corresponding receptors expressed on the outer mitochondrial membrane in an autocrine manner. We will also discuss recent evidence that these responses, mediated by purinergic signaling and the ComC network, are coordinated by activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 - reactive oxygen species - NLR family pyrin domain containing 3 (NLRP3) inflammasome (Nox2-ROS-NLRP3) axis.
Collapse
Affiliation(s)
- Stephanie Franczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Henning Ulrich
- Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| |
Collapse
|
13
|
Ratajczak MZ, Adamiak M, Abdelbaset-Ismail A, Bujko K, Thapa A, Chumak V, Franczak S, Brzezniakiewicz-Janus K, Ratajczak J, Kucia M. Intracellular complement (complosome) is expressed in hematopoietic stem/progenitor cells (HSPCs) and regulates cell trafficking, metabolism and proliferation in an intracrine Nlrp3 inflammasome-dependent manner. Leukemia 2023:10.1038/s41375-023-01894-0. [PMID: 37055506 DOI: 10.1038/s41375-023-01894-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland.
| | - Mateusz Adamiak
- Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland
| | - Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Kamila Bujko
- Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland
| | - Arjun Thapa
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Vira Chumak
- Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland
| | - Stephanie Franczak
- Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland
| | | | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Magdalena Kucia
- Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
14
|
West EE, Kemper C. Complosome - the intracellular complement system. Nat Rev Nephrol 2023:10.1038/s41581-023-00704-1. [PMID: 37055581 PMCID: PMC10100629 DOI: 10.1038/s41581-023-00704-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The complement system is a recognized pillar of host defence against infection and noxious self-derived antigens. Complement is traditionally known as a serum-effective system, whereby the liver expresses and secretes most complement components, which participate in the detection of bloodborne pathogens and drive an inflammatory reaction to safely remove the microbial or antigenic threat. However, perturbations in normal complement function can cause severe disease and, for reasons that are currently not fully understood, the kidney is particularly vulnerable to dysregulated complement activity. Novel insights into complement biology have identified cell-autonomous and intracellularly active complement - the complosome - as an unexpected central orchestrator of normal cell physiology. For example, the complosome controls mitochondrial activity, glycolysis, oxidative phosphorylation, cell survival and gene regulation in innate and adaptive immune cells, and in non-immune cells, such as fibroblasts and endothelial and epithelial cells. These unanticipated complosome contributions to basic cell physiological pathways make it a novel and central player in the control of cell homeostasis and effector responses. This discovery, together with the realization that an increasing number of human diseases involve complement perturbations, has renewed interest in the complement system and its therapeutic targeting. Here, we summarize the current knowledge about the complosome across healthy cells and tissues, highlight contributions from dysregulated complosome activities to human disease and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Erin E West
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA.
| |
Collapse
|
15
|
Thapa A, Ratajczak J, Kucia M, Ratajczak MZ. External Liver-Derived Complement and Intrinsic Present in Hematopoietic Stem/Progenitor Cells Complosome Modulate Cell Metabolism and Response to Stress. Stem Cell Rev Rep 2023:10.1007/s12015-023-10533-1. [PMID: 36976465 PMCID: PMC10366307 DOI: 10.1007/s12015-023-10533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) express receptors for complement cascade (ComC) cleavage fragments C3a and C5a and may respond to inflammation-related cues by sensing pathogen-associated molecular pattern molecules (PAMPs) released by pathogens as well as non-infectious danger associated molecular pattern molecules (DAMPs) or alarmin generated during stress/tissue damage sterile inflammation. To facilitate this HSPCs are equipped with C3a and C5a receptors, C3aR and C5aR, respectively, and express on the outer cell membrane and in cytosol pattern recognition receptors (PPRs) that sense PAMPs and DAMPs. Overall, danger-sensing mechanisms in HSPCs mimic those seen in immune cells, which should not surprise as hematopoiesis and the immune system develop from the same common stem cell precursor. This review will focus on the role of ComC-derived C3a and C5a that trigger nitric oxide synthetase-2 (Nox2) complex to release reactive oxygen species (ROS) that activate important cytosolic PRRs-Nlrp3 inflammasome, which orchestrates responsiveness of HSPCs to stress. Moreover, recent data indicate that in addition to circulating in peripheral blood (PB) activated liver-derived ComC proteins, a similar role plays ComC expressed and intrinsically activated in HSPCs known as "complosome". We postulate that ComC triggered Nox2-ROS-Nlrp3 inflammasome responses, if they occur within non-toxic to cells' "hormetic range of activation", positively regulate HSCs migration, metabolism, and proliferation. This sheds a new light on the immune-metabolic regulation of hematopoiesis.
Collapse
Affiliation(s)
- Arjun Thapa
- Stem Cell Program at Division of Hematology, Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Janina Ratajczak
- Stem Cell Program at Division of Hematology, Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Program at Division of Hematology, Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
16
|
Agarwood Pill Enhances Immune Function in Cyclophosphamide-induced Immunosuppressed Mice. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
17
|
Proteomic Analysis of Murine Bone Marrow Very Small Embryonic-like Stem Cells at Steady-State Conditions and after In Vivo Stimulation by Nicotinamide and Follicle-Stimulating Factor Reflects their Germ-Lineage Origin and Multi Germ Layer Differentiation Potential. Stem Cell Rev Rep 2023; 19:120-132. [PMID: 35986128 PMCID: PMC9823037 DOI: 10.1007/s12015-022-10445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 01/29/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are a dormant population of development early stem cells deposited in adult tissues that as demonstrated contribute to tissue/organ repair and regeneration. We postulated developmental relationship of these cells to migrating primordial germ cells (PGCs) and explained the quiescent state of these cells by the erasure of differently methylated regions (DMRs) at some of the paternally imprinted genes involved in embryogenesis. Recently, we reported that VSELs began to proliferate and expand in vivo in murine bone marrow (BM) after exposure to nicotinamide (NAM) and selected pituitary and gonadal sex hormones. In the current report, we performed proteomic analysis of VSELs purified from murine bone marrow (BM) after repeated injections of NAM + Follicle-Stimulating Hormone (FSH) that in our previous studies turned out to be an effective combination to expand these cells. By employing the Gene Ontology (GO) resources, we have performed a combination of standard GO annotations (GO-CAM) to produce a network between BM steady-state conditions VSELs (SSC-VSELS) and FSH + NAM expanded VSELs (FSH + NAM VSELs). We have identified several GO biological processes regulating development, organogenesis, gene expression, signal transduction, Wnt signaling, insulin signaling, cytoskeleton organization, cell adhesion, inhibiting apoptosis, responses to extra- and intracellular stimuli, protein transport and stabilization, protein phosphorylation and ubiquitination, DNA repair, immune response, and regulation of circadian rhythm. We report that VSELs express a unique panel of proteins that only partially overlapped with the proteome of BM - derived hematopoietic stem cells (HSCs) and hematopoietic mononuclear cells (MNCs) and respond to FSH + NAM stimulation by expressing proteins involved in the development of all three germ layers. Thus, our current data supports further germ-lineage origin and multi germ layer differentiation potential of these cells.
Collapse
|
18
|
The Nox2-ROS-Nlrp3 Inflammasome Signaling Stimulates in the Hematopoietic Stem/Progenitor Cells Lipogenesis to Facilitate Membrane Lipid Raft Formation. Stem Cell Rev Rep 2023; 19:92-103. [PMID: 36441489 PMCID: PMC9823029 DOI: 10.1007/s12015-022-10481-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
Abstract
Proliferation, metabolism, and migration of hematopoietic stem/progenitor cells (HSPCs) are coordinated by receptors expressed on outer cell membranes that are integrated into microdomains, known as membrane lipid rafts (MLRs). These structures float freely in the cell membrane bilayer and are enriched in cholesterol and sphingolipids for their functional integrity. Receptors, if expressed in MLRs, have prolonged occupancy on the cell surface and enhanced signaling power. Based on this, we have become interested in the regulation of synthesis of MLRs components in HSPCs. To address this, we tested the effect of selected factors that promote proliferation or migration and their potential involvement in the synthesis of MLRs components in HSPCs. Based on our previous research showing that HSPCs from Nox2-KO and Nlrp3-KO mice display a profound defect in MLRs formation, we focused on the role of Nox2-ROS-Nlrp3 inflammasome in regulating lipogenesis in HSPCs. We found that while at steady state conditions, Nox2-derived ROS is required for a proper expression of enzymes regulating lipogenesis, during inflammation, this effect is augmented by Nlrp3 inflammasome. Thus, our data sheds new light on the regulation of lipogenesis in HSPCs and the involvement of the Nox2-ROS-Nlrp3 inflammasome axis that differently regulates lipogenesis at steady state conditions and in response to inflammation, modulating MLRs-mediated responsiveness of these cells to external stimuli.
Collapse
|
19
|
Makaremi S, Asgarzadeh A, Kianfar H, Mohammadnia A, Asghariazar V, Safarzadeh E. The role of IL-1 family of cytokines and receptors in pathogenesis of COVID-19. Inflamm Res 2022; 71:923-947. [PMID: 35751653 PMCID: PMC9243884 DOI: 10.1007/s00011-022-01596-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022] Open
Abstract
A global pandemic has erupted as a result of the new brand coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has been consociated with widespread mortality worldwide. The antiviral immune response is an imperative factor in confronting the recent coronavirus disease 2019 (COVID-19) infections. Meantime, cytokines recognize as crucial components in guiding the appropriate immune pathways in the restraining and eradication of the virus. Moreover, SARS-CoV-2 can induce uncontrolled inflammatory responses characterized by hyper-inflammatory cytokine production, which causes cytokine storm and acute respiratory distress syndrome (ARDS). As excessive inflammatory responses are contributed to the severe stage of the COVID-19 disease, therefore, the pro-inflammatory cytokines are regarded as the Achilles heel during COVID-19 infection. Among these cytokines, interleukin (IL-) 1 family cytokines (IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38) appear to have a strong inflammatory role in severe COVID-19. Hence, understanding the underlying inflammatory mechanism of these cytokines during infection is critical for reducing the symptoms and severity of the disease. Here, the possible mechanisms and pathways involved in inflammatory immune responses are discussed.
Collapse
Affiliation(s)
- Shima Makaremi
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Kianfar
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Mohammadnia
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran. .,Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
20
|
Garg V, Chandanala S, David-Luther M, Govind M, Prasad RR, Kumar A, Prasanna SJ. The Yin and Yang of Immunity in Stem Cell Decision Guidance in Tissue Ecologies: An Infection Independent Perspective. Front Cell Dev Biol 2022; 10:793694. [PMID: 35198558 PMCID: PMC8858808 DOI: 10.3389/fcell.2022.793694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of immune system and inflammation on organ homeostasis and tissue stem cell niches in the absence of pathogen invasion has long remained a conundrum in the field of regenerative medicine. The paradoxical role of immune components in promoting tissue injury as well as resolving tissue damage has complicated therapeutic targeting of inflammation as a means to attain tissue homeostasis in degenerative disease contexts. This confound could be resolved by an integrated intricate assessment of cross-talk between inflammatory components and micro- and macro-environmental factors existing in tissues during health and disease. Prudent fate choice decisions of stem cells and their differentiated progeny are key to maintain tissue integrity and function. Stem cells have to exercise this fate choice in consultation with other tissue components. With this respect tissue immune components, danger/damage sensing molecules driving sterile inflammatory signaling cascades and barrier cells having immune-surveillance functions play pivotal roles in supervising stem cell decisions in their niches. Stem cells learn from their previous damage encounters, either endogenous or exogenous, or adapt to persistent micro-environmental changes to orchestrate their decisions. Thus understanding the communication networks between stem cells and immune system components is essential to comprehend stem cell decisions in endogenous tissue niches. Further the systemic interactions between tissue niches integrated through immune networks serve as patrolling systems to establish communication links and orchestrate micro-immune ecologies to better organismal response to injury and promote regeneration. Understanding these communication links is key to devise immune-centric regenerative therapies. Thus the present review is an integrated attempt to provide a unified purview of how inflammation and immune cells provide guidance to stem cells for tissue sculpting during development, organismal aging and tissue crisis based on the current knowledge in the field.
Collapse
|