1
|
Fajri ML, Kossowski N, Bouanane I, Bedu F, Poungsripong P, Juliano-Martins R, Majorel C, Margeat O, Le Rouzo J, Genevet P, Sciacca B. Designer Metasurfaces via Nanocube Assembly at the Air-Water Interface. ACS NANO 2024. [PMID: 39159194 PMCID: PMC11440645 DOI: 10.1021/acsnano.4c06022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The advent of metasurfaces has revolutionized the design of optical instruments, and recent advancements in fabrication techniques are further accelerating their practical applications. However, conventional top-down fabrication of intricate nanostructures proves to be expensive and time-consuming, posing challenges for large-scale production. Here, we propose a cost-effective bottom-up approach to create nanostructure arrays with arbitrarily complex meta-atoms displaying single nanoparticle lateral resolution over submillimeter areas, minimizing the need for advanced and high-cost nanofabrication equipment. By utilizing air/water interface assembly, we transfer nanoparticles onto templated polydimethylsiloxane (PDMS) irrespective of nanopattern density, shape, or size. We demonstrate the robust assembly of nanocubes into meta-atoms with diverse configurations generally unachievable by conventional methods, including U, L, cross, S, T, gammadion, split-ring resonators, and Pancharatnam-Berry metasurfaces with designer optical functionalities. We also show nanocube epitaxy at near ambient temperature to transform the meta-atoms into complex continuous nanostructures that can be swiftly transferred from PDMS to various substrates via contact printing. Our approach potentially offers a large-scale manufacturing alternative to top-down fabrication for metal nanostructuring, unlocking possibilities in the realm of nanophotonics.
Collapse
Affiliation(s)
| | | | - Ibtissem Bouanane
- Aix-Marseille Univ. CNRS, Université de Toulon, IM2NP, Marseille 13397, France
| | - Frederic Bedu
- Aix-Marseille Univ, CNRS, CINaM, Marseille 13288, France
| | | | | | | | | | - Judikael Le Rouzo
- Aix-Marseille Univ. CNRS, Université de Toulon, IM2NP, Marseille 13397, France
| | - Patrice Genevet
- Université Côte d'Azur, CNRS, CRHEA, 06560 Valbonne, France
- Colorado School of Mines, 1523 Illinois st. CoorsTek Center, Golden, Colorado 80401, United States
| | | |
Collapse
|
2
|
Uluç N, Glasl S, Gasparin F, Yuan T, He H, Jüstel D, Pleitez MA, Ntziachristos V. Non-invasive measurements of blood glucose levels by time-gating mid-infrared optoacoustic signals. Nat Metab 2024; 6:678-686. [PMID: 38538980 PMCID: PMC11052715 DOI: 10.1038/s42255-024-01016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
Non-invasive glucose monitoring (NIGM) represents an attractive alternative to finger pricking for blood glucose assessment and management of diabetes. Nevertheless, current NIGM techniques do not measure glucose concentrations in blood but rely on indirect bulk measurement of glucose in interstitial fluid, where glucose is diluted and glucose dynamics are different from those in the blood, which impairs NIGM accuracy. Here we introduce a new biosensor, termed depth-gated mid-infrared optoacoustic sensor (DIROS), which allows, for the first time, non-invasive glucose detection in blood-rich volumes in the skin. DIROS minimizes interference caused by the stratum corneum and other superficial skin layers by time-gating mid-infrared optoacoustic signals to enable depth-selective localization of glucose readings in skin. In measurements on the ears of (female) mice, DIROS displays improved accuracy over bulk-tissue glucose measurements. Our work demonstrates how signal localization can improve NIGM accuracy and positions DIROS as a holistic approach, with high translational potential, that addresses a key limitation of current NIGM methods.
Collapse
Affiliation(s)
- Nasire Uluç
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sarah Glasl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Francesca Gasparin
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tao Yuan
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Hailong He
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dominik Jüstel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Miguel A Pleitez
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
3
|
Cheng Q, Li T. Complex-frequency waves: beat loss and win sensitivity. LIGHT, SCIENCE & APPLICATIONS 2024; 13:40. [PMID: 38296959 PMCID: PMC10831086 DOI: 10.1038/s41377-024-01388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Recent experiments have demonstrated that synthesized complex-frequency waves can impart a virtual gain to molecule sensing systems, which can effectively restore information lost due to intrinsic molecular damping. The enhancement notably amplifies the signal of trace molecular vibrational fingerprints, thereby substantially improving the upper limit of sensitivity.
Collapse
Affiliation(s)
- Qingqing Cheng
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Respiratory Diseases and Critical Medicine, Quzhou Hospital Affiliated to Wenzhou Medical University, Quzhou, 324000, China
| | - Tao Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
4
|
Zhou H, Ren Z, Li D, Xu C, Mu X, Lee C. Dynamic construction of refractive index-dependent vibrations using surface plasmon-phonon polaritons. Nat Commun 2023; 14:7316. [PMID: 37952033 PMCID: PMC10640644 DOI: 10.1038/s41467-023-43127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
One of the fundamental hurdles in infrared spectroscopy is the failure of molecular identification when their infrared vibrational fingerprints overlap. Refractive index (RI) is another intrinsic property of molecules associated with electronic polarizability, but with limited contribution to molecular identification in mixed environments currently. Here, we investigate the coupling mode of localized surface plasmon and surface phonon polaritons for vibrational de-overlapping. The coupling mode is sensitive to the molecular refractive index, attributed to the RI-induced vibrational variations of surface phonon polaritons (SPhP) within the Reststrahlen band, referred to as RI-dependent SPhP vibrations. The RI-dependent SPhP vibrations are linked to molecular RI features. According to the deep-learning-augmented demonstration of bond-breaking-bond-making dynamic profiling in biological reaction, we substantiate that the RI-dependent SPhP vibrations effectively disentangle overlapping vibrational modes, achieving a 92% identification accuracy even for the strongly overlapping vibrational modes in the reaction. Our findings offer insights into the realm of light-matter interaction and provide a valuable toolkit for biomedicine applications.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117583, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117583, Singapore
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117583, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117583, Singapore
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, P. R. China.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117583, Singapore.
- NUS Suzhou Research Institute (NUSRI), Suzhou, Jiangsu, 215123, China.
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
5
|
Li G, Wen B, Yang J, Wu M, Zhou B, Ye X, Tang H, Zhou J, Cai J. Cost-Effective Nanophotonic Metasurfaces with Spatially Gradient Structures for Ultrasensitive Imaging-Based Refractometric Sensing. SMALL METHODS 2023:e2300873. [PMID: 37884469 DOI: 10.1002/smtd.202300873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 10/28/2023]
Abstract
Nanophotonic metasurfaces are widely utilized in various domains, such as biomedical, healthcare, and environmental monitoring, benefiting from their unique advantages of label-free, noninvasive, and real-time response. However, nanophotonic metasurfaces usually rely on sophisticated instruments, and expensive and time-consuming fabrication processes, which severely restricts their practical applications. Herein, a spatially gradient metasurface is integrated with an imaging-based sensing scheme, waiving the requirement of spectrometers and achieving an ultrahigh imaging-based sensitivity of 3321 pixels/refractive index unit superior to that characterized using conventional compact spectrometers. The metasurface is fabricated by nanoimprint lithography using a reusable cyclic olefin copolymer template featuring millions of unique nanostructures. Under the illumination of monochromatic light, the transmittance of different nanostructures on the metasurface differs, resulting in grayscale images with varied intensity distributions. Analyzing the intensity change of the metasurface's recorded image can obtain the covering medium's refractive index. Furthermore, through theory and experimentation, the high reliability of the proposed reusable and flexible template has been verified for nanophotonic metasurface fabrication which further reduces the fabrication cost of core sensing elements. Finally, with proper optimization of the metasurface structure and imaging system, this setup is expected to be applied to many emerging areas of point-of-care, real-time, and on-site biosensing.
Collapse
Affiliation(s)
- Guohua Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Baohua Wen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Ji Yang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Mingxi Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Bin Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiangyi Ye
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jingxuan Cai
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
6
|
Li D, Xu C, Xie J, Lee C. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2377. [PMID: 37630962 PMCID: PMC10458771 DOI: 10.3390/nano13162377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is a breakthrough technique that exploits the field-enhancing properties of periodic nanostructures to amplify the vibrational signals of trace molecules. The fascinating properties of SEIRA technology have aroused great interest, driving diverse sensing applications. In this review, we first discuss three ways for SEIRA performance optimization, including material selection, sensitivity enhancement, and bandwidth improvement. Subsequently, we discuss the potential applications of SEIRA technology in fields such as biomedicine and environmental monitoring. In recent years, we have ushered in a new era characterized by the Internet of Things, sensor networks, and wearable devices. These new demands spurred the pursuit of miniaturized and consolidated infrared spectroscopy systems and chips. In addition, the rise of machine learning has injected new vitality into SEIRA, bringing smart device design and data analysis to the foreground. The final section of this review explores the anticipated trajectory that SEIRA technology might take, highlighting future trends and possibilities.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Junsheng Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| |
Collapse
|
7
|
Optoplasmonic biosensor for lung cancer telediagnosis: Design and simulation analysis. SENSORS INTERNATIONAL 2023. [DOI: 10.1016/j.sintl.2023.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
8
|
Pioz MJ, Espinosa RL, Laguna MF, Santamaria B, Murillo AMM, Hueros ÁL, Quintero S, Tramarin L, Valle LG, Herreros P, Bellido A, Casquel R, Holgado M. A review of Optical Point-of-Care devices to Estimate the Technology Transfer of These Cutting-Edge Technologies. BIOSENSORS 2022; 12:bios12121091. [PMID: 36551058 PMCID: PMC9776401 DOI: 10.3390/bios12121091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 06/07/2023]
Abstract
Despite the remarkable development related to Point-of-Care devices based on optical technology, their difficulties when used outside of research laboratories are notable. In this sense, it would be interesting to ask ourselves what the degree of transferability of the research work to the market is, for example, by analysing the relation between the scientific work developed and the registered one, through patent. In this work, we provide an overview of the state-of-the-art in the sector of optical Point-of-Care devices, not only in the research area but also regarding their transfer to market. To this end, we explored a methodology for searching articles and patents to obtain an indicator that relates to both. This figure of merit to estimate this transfer is based on classifying the relevant research articles in the area and the patents that have been generated from these ones. To delimit the scope of this study, we researched the results of a large enough number of publications in the period from 2015 to 2020, by using keywords "biosensor", "optic", and "device" to obtain the most representative articles from Web of Science and Scopus. Then, we classified them according to a particular classification of the optical PoC devices. Once we had this sampling frame, we defined a patent search strategy to cross-link the article with a registered patent (by surfing Google Patents) and classified them accordingly to the categories described. Finally, we proposed a relative figure called Index of Technology Transference (IoTT), which estimates to what extent our findings in science materialized in published articles are protected by patent.
Collapse
Affiliation(s)
- María Jesús Pioz
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- University of Nebrija, C/del Hostal, Campus Berzosa, 28248 Madrid, Spain
| | - Rocío L. Espinosa
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - María Fe Laguna
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Beatriz Santamaria
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Metch, Chem & Industrial Design Engineering Department, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Ana María M. Murillo
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Álvaro Lavín Hueros
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Sergio Quintero
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Luca Tramarin
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Luis G Valle
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Pedro Herreros
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Alberto Bellido
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Multiplex Molecular Diagnostics S.L. C/ Munner 10, 08022 Barcelona, Spain
| | - Rafael Casquel
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Miguel Holgado
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
9
|
Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Proc Natl Acad Sci U S A 2022; 119:e2209218119. [PMID: 36252031 PMCID: PMC9618089 DOI: 10.1073/pnas.2209218119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Optical sensors, with great potential to convert invisible bioanalytical response into readable information, have been envisioned as a powerful platform for biological analysis and early diagnosis of diseases. However, the current extraction of sensing data is basically processed via a series of complicated and time-consuming calibrations between samples and reference, which inevitably introduce extra measurement errors and potentially annihilate small intrinsic responses. Here, we have proposed and experimentally demonstrated a calibration-free sensor for achieving high-precision biosensing detection, based on an optically controlled terahertz (THz) ultrafast metasurface. Photoexcitation of the silicon bridge enables the resonant frequency shifting from 1.385 to 0.825 THz and reaches the maximal phase variation up to 50° at 1.11 THz. The typical environmental measurement errors are completely eliminated in theory by normalizing the Fourier-transformed transmission spectra between ultrashort time delays of 37 ps, resulting in an extremely robust sensing device for monitoring the cancerous process of gastric cells. We believe that our calibration-free sensors with high precision and robust advantages can extend their implementation to study ultrafast biological dynamics and may inspire considerable innovations in the field of medical devices with nondestructive detection.
Collapse
|
10
|
Han X, Shen X, Zhou Y, Wang L, Ren Q, Cai Y, Abdi-Ghaleh R. Terahertz Vibrational Fingerprints Detection of Molecules with Particularly Designed Graphene Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3422. [PMID: 36234549 PMCID: PMC9565571 DOI: 10.3390/nano12193422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In this research, an arc I-shaped graphene sensing structure with multi-resonance characteristics is proposed for the simultaneous detection of vibrational fingerprints with spectral separation in the terahertz range. The resonant frequencies of the sensor can be dynamically tuned by changing the gate voltage applied to the graphene arrays. The two vibrational fingerprints of lactose molecules (0.53 THz and 1.37 THz) in the transmission spectrum can be enhanced simultaneously by strictly optimizing the geometrical parameters of the sensor. More importantly, these two resonant frequencies can be tuned precisely to coincide with the two standard resonances of the lactose molecule. The physical mechanism of the sensor is revealed by inspection of the electric field intensity distribution, and the advantage of the sensor, which is its ability to operate at a wide range of incident angles, has been demonstrated. The sensing performance of the structure as a refractive index sensor has also been studied. Finally, a double arc I-shaped graphene sensor is further designed to overcome the polarization sensitivity, which demonstrates excellent molecular detection performance under different polarization conditions. This study may serve as a reference for designing graphene biosensors for molecular detection.
Collapse
Affiliation(s)
- Xiaobing Han
- College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Xueqin Shen
- College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Yuanguo Zhou
- College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Lin Wang
- School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
| | - Qiang Ren
- School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
| | - Yijun Cai
- Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China
| | - Reza Abdi-Ghaleh
- Department of Laser and Optical Engineering, University of Bonab, Bonab 5551761167, Iran
| |
Collapse
|
11
|
Ren Z, Zhang Z, Wei J, Dong B, Lee C. Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy. Nat Commun 2022; 13:3859. [PMID: 35790752 PMCID: PMC9256719 DOI: 10.1038/s41467-022-31520-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/03/2022] [Indexed: 12/19/2022] Open
Abstract
Infrared (IR) plasmonic nanoantennas (PNAs) are powerful tools to identify molecules by the IR fingerprint absorption from plasmon-molecules interaction. However, the sensitivity and bandwidth of PNAs are limited by the small overlap between molecules and sensing hotspots and the sharp plasmonic resonance peaks. In addition to intuitive methods like enhancement of electric field of PNAs and enrichment of molecules on PNAs surfaces, we propose a loss engineering method to optimize damping rate by reducing radiative loss using hook nanoantennas (HNAs). Furthermore, with the spectral multiplexing of the HNAs from gradient dimension, the wavelength-multiplexed HNAs (WMHNAs) serve as ultrasensitive vibrational probes in a continuous ultra-broadband region (wavelengths from 6 μm to 9 μm). Leveraging the multi-dimensional features captured by WMHNA, we develop a machine learning method to extract complementary physical and chemical information from molecules. The proof-of-concept demonstration of molecular recognition from mixed alcohols (methanol, ethanol, and isopropanol) shows 100% identification accuracy from the microfluidic integrated WMHNAs. Our work brings another degree of freedom to optimize PNAs towards small-volume, real-time, label-free molecular recognition from various species in low concentrations for chemical and biological diagnostics. Infrared spectroscopy with plasmonic nanoantennas is limited by small overlap between molecules and hot spots, and sharp resonance peaks. The authors demonstrate spectral multiplexing of hook nanoantennas with gradient dimensions as ultrasensitive vibrational probes in a continuous ultra-broadband region and utilize machine learning for enhanced sensing performance.
Collapse
|
12
|
Zhang Z, Lee Y, Haque MF, Leem J, Hsieh EY, Nam S. Plasmonic sensors based on graphene and graphene hybrid materials. NANO CONVERGENCE 2022; 9:28. [PMID: 35695997 PMCID: PMC9192873 DOI: 10.1186/s40580-022-00319-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/26/2022] [Indexed: 05/07/2023]
Abstract
The past decade has witnessed a rapid growth of graphene plasmonics and their applications in different fields. Compared with conventional plasmonic materials, graphene enables highly confined plasmons with much longer lifetimes. Moreover, graphene plasmons work in an extended wavelength range, i.e., mid-infrared and terahertz regime, overlapping with the fingerprints of most organic and biomolecules, and have broadened their applications towards plasmonic biological and chemical sensors. In this review, we discuss intrinsic plasmonic properties of graphene and strategies both for tuning graphene plasmons as well as achieving higher performance by integrating graphene with plasmonic nanostructures. Next, we survey applications of graphene and graphene-hybrid materials in biosensors, chemical sensors, optical sensors, and sensors in other fields. Lastly, we conclude this review by providing a brief outlook and challenges of the field. Through this review, we aim to provide an overall picture of graphene plasmonic sensing and to suggest future trends of development of graphene plasmonics.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yeageun Lee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Farhadul Haque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Juyoung Leem
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
- TomKat Center for Sustainable Energy, Stanford University, Stanford, CA, 94305, USA.
| | - Ezekiel Y Hsieh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - SungWoo Nam
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Shi X, Qin Z, Liang Z, Meng D, Li J, Zhang S, Dai R, Hou E, Xin W, Liu H, Xu H, Liu Y. Polarization-selective absorptive and transmissive metamaterials. OPTICS EXPRESS 2022; 30:20532-20542. [PMID: 36224795 DOI: 10.1364/oe.456849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 06/16/2023]
Abstract
A polarization sorting metamaterial with polarization filtering and absorption is proposed. When unpolarized incident light strikes the metamaterial, one polarization component is completely absorbed, and the other polarization component is completely transmitted. We achieved an absorption extinction ratio of up to 350 and a transmission extinction ratio of 425 simultaneously in the LWIR. Unlike the 50% energy utilization limit of other polarization absorbers due to the complete reflection of another polarization component, our proposed metamaterial can be composed of layered polarization selective absorption devices to achieve more than 90% energy utilization. Therefore our design can provide a new solution for real-time polarization detection.
Collapse
|
14
|
Anăstăsoaie V, Tomescu R, Kusko C, Mihalache I, Dinescu A, Parvulescu C, Craciun G, Caramizoiu S, Cristea D. Influence of Random Plasmonic Metasurfaces on Fluorescence Enhancement. MATERIALS 2022; 15:ma15041429. [PMID: 35207970 PMCID: PMC8874827 DOI: 10.3390/ma15041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
One of the strategies employed to increase the sensitivity of the fluorescence-based biosensors is to deposit chromophores on plasmonic metasurfaces which are periodic arrays of resonating nano-antennas that allow the control of the electromagnetic field leading to fluorescence enhancement. While artificially engineered metasurfaces realized by micro/nano-fabrication techniques lead to a precise tailoring of the excitation field and resonant cavity properties, the technological overhead, small areas, and high manufacturing cost renders them unsuitable for mass production. A method to circumvent these challenges is to use random distribution of metallic nanoparticles sustaining plasmonic resonances, which present the properties required to significantly enhance the fluorescence. We investigate metasurfaces composed of random aggregates of metal nanoparticles deposited on a silicon and glass substrates. The finite difference time domain simulations of the interaction of the incident electromagnetic wave with the structures reveals a significant enhancement of the excitation field, which is due to the resonant plasmonic modes sustained by the nanoparticles aggregates. We experimentally investigated the role of these structures in the fluorescent behaviour of Rhodamine 6G dispersed in polymethylmethacrylate finding an enhancement that is 423-fold. This suggests that nanoparticle aggregates have the potential to constitute a suitable platform for low-cost, mass-produced fluorescent biosensors.
Collapse
|
15
|
Han Q, Pang J, Li Y, Sun B, Ibarlucea B, Liu X, Gemming T, Cheng Q, Zhang S, Liu H, Wang J, Zhou W, Cuniberti G, Rümmeli MH. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens 2021; 6:3841-3881. [PMID: 34696585 DOI: 10.1021/acssensors.1c01172] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The early diagnosis of diseases plays a vital role in healthcare and the extension of human life. Graphene-based biosensors have boosted the early diagnosis of diseases by detecting and monitoring related biomarkers, providing a better understanding of various physiological and pathological processes. They have generated tremendous interest, made significant advances, and offered promising application prospects. In this paper, we discuss the background of graphene and biosensors, including the properties and functionalization of graphene and biosensors. Second, the significant technologies adopted by biosensors are discussed, such as field-effect transistors and electrochemical and optical methods. Subsequently, we highlight biosensors for detecting various biomarkers, including ions, small molecules, macromolecules, viruses, bacteria, and living human cells. Finally, the opportunities and challenges of graphene-based biosensors and related broad research interests are discussed.
Collapse
Affiliation(s)
- Qingfang Han
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Baojun Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Bergoi Ibarlucea
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
| | - Xiaoyan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden D-01171, Germany
| | - Qilin Cheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Shu Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
| | - Gianaurelio Cuniberti
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden 01062, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, Dresden 01062, Germany
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| | - Mark H. Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden D-01171, Germany
- College of Energy, Soochow, Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland
- Institute of Environmental Technology (CEET), VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| |
Collapse
|
16
|
Yan Z, Lu X, Du W, Lv Z, Tang C, Cai P, Gu P, Chen J, Yu Z. Ultraviolet graphene ultranarrow absorption engineered by lattice plasmon resonance. NANOTECHNOLOGY 2021; 32:465202. [PMID: 34352738 DOI: 10.1088/1361-6528/ac1af9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
We numerically demonstrate an ultraviolet graphene ultranarrow absorption in a hybrid graphene-metal structure. The full-width at half maximum of the absorption band being 9 nm in ultraviolet range is achieved based on the coupling of lattice plasmon resonances of the metallic nanostructure to the optical dissipation of graphene. The position, absorbance and linewidth of the hybridized narrow resonant mode tuned by controlling geometrical parameters and materials are systematically investigated. The proposed structure possesses high refractive index sensitivity of 288 nm/RIU and figure of merit of 72, and can also be used to detect small molecules layer of sub-nanometer thickness and refractive index with small changes, providing promising applications in ultra-compact efficient biosensors.
Collapse
Affiliation(s)
- Zhendong Yan
- College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xue Lu
- College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China
| | - Wei Du
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Zhongquan Lv
- College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chaojun Tang
- Center for Optics and Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Pinggen Cai
- Center for Optics and Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Ping Gu
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Jing Chen
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Zi Yu
- College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
17
|
Du G, Bao X, Lin S, Pang H, Bannur Nanjunda S, Bao Q. Infrared Polaritonic Biosensors Based on Two-Dimensional Materials. Molecules 2021; 26:molecules26154651. [PMID: 34361804 PMCID: PMC8347072 DOI: 10.3390/molecules26154651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, polaritons in two-dimensional (2D) materials have gained intensive research interests and significant progress due to their extraordinary properties of light-confinement, tunable carrier concentrations by gating and low loss absorption that leads to long polariton lifetimes. With additional advantages of biocompatibility, label-free, chemical identification of biomolecules through their vibrational fingerprints, graphene and related 2D materials can be adapted as excellent platforms for future polaritonic biosensor applications. Extreme spatial light confinement in 2D materials based polaritons supports atto-molar concentration or single molecule detection. In this article, we will review the state-of-the-art infrared polaritonic-based biosensors. We first discuss the concept of polaritons, then the biosensing properties of polaritons on various 2D materials, then lastly the impending applications and future opportunities of infrared polaritonic biosensors for medical and healthcare applications.
Collapse
Affiliation(s)
- Guangyu Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China; (G.D.); (H.P.)
- Songshan Lake Materials Laboratory, Dongguan 523808, China;
| | - Xiaozhi Bao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China;
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan 523808, China;
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China; (G.D.); (H.P.)
| | - Shivananju Bannur Nanjunda
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging Technologies (Cen-Bio-SIM), Indian Institute of Technology Madras, Chennai 600036, India
- Correspondence: (S.B.N.); (Q.B.)
| | - Qiaoliang Bao
- Shenzhen Exciton Science and Technology Ltd., Shenzhen 518052, China
- Correspondence: (S.B.N.); (Q.B.)
| |
Collapse
|
18
|
Wang H, Liu Y, Rao G, Wang Y, Du X, Hu A, Hu Y, Gong C, Wang X, Xiong J. Coupling enhancement mechanisms, materials, and strategies for surface-enhanced Raman scattering devices. Analyst 2021; 146:5008-5032. [PMID: 34296232 DOI: 10.1039/d1an00624j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become one of the most sensitive analytical techniques for identifying the chemical components, molecular structures, molecular conformations, and the interactions between molecules. However, great challenges still need to be addressed until it can be widely accepted by the absolute quantification of analytes. Recently, many efforts have been devoted to addressing these issues via various electromagnetic (EM), chemical (CM), and EM-CM hybrid coupling enhancement strategies. In comparison with uncoupled SERS devices, they offer key advantages in terms of sensitivity, reproducibility, uniformity, stability, controllability and reliability. This review provides an in-depth analysis of coupled SERS devices, including coupling enhancement mechanisms, materials and approaches. Finally, we also discuss the remaining bottlenecks and possible strategies for the development of coupling-enhanced SERS devices in the future.
Collapse
Affiliation(s)
- Hongbo Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Amin M, Siddiqui O, Abutarboush H, Farhat M, Ramzan R. A THz graphene metasurface for polarization selective virus sensing. CARBON 2021; 176:580-591. [PMID: 33612849 PMCID: PMC7881294 DOI: 10.1016/j.carbon.2021.02.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/24/2021] [Accepted: 02/05/2021] [Indexed: 05/11/2023]
Abstract
We propose a novel method to exploit chirality of highly sensitive graphene plasmonic metasurfaces to characterize complex refractive indexes (RI) of viruses by detecting the polarization state of the reflected electric fields in the THz spectrum. A dispersive graphene metasurface is designed to produce chiral surface currents to couple linearly polarized incident fields to circularly polarized reflected fields. The metasurface sensing sensitivity is the result of surface plasmon currents that flow in a chiral fashion with strong intensity due to the underlying geometrical resonance. Consequently, unique polarization states are observed in the far-field with the ellipticity values that change rapidly with the analyte's RI. The determination of bimolecular RI is treated as an inverse problem in which the polarization states of the virus is compared with a pre-calculated calibration model that is obtained by full-wave electromagnetic simulations. We demonstrate the polarization selective sensing method by RI discrimination of three different types of Avian Influenza (AI) viruses including H1N1, H5N2, and H9N2 is possible. Since the proposed virus characterization method only requires determination of the polarization ellipses including its orientation at monochromatic frequency, the required instrumentation is simpler compared to traditional spectroscopic methods which need a broadband frequency scan.
Collapse
Affiliation(s)
- M Amin
- College of Engineering, Taibah University, Madinah, Saudi Arabia
| | - O Siddiqui
- College of Engineering, Taibah University, Madinah, Saudi Arabia
| | - H Abutarboush
- College of Engineering, Taibah University, Madinah, Saudi Arabia
| | - M Farhat
- Division of Computer, Electrical, and Mathematical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - R Ramzan
- National University of Computer and Emerging Sciences, Islamabad, Pakistan
| |
Collapse
|
20
|
Cynthia S, Ahmed R, Islam S, Ali K, Hossain M. Graphene based hyperbolic metamaterial for tunable mid-infrared biosensing. RSC Adv 2021; 11:7938-7945. [PMID: 35423319 PMCID: PMC8695080 DOI: 10.1039/d0ra09781k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Plasmonic biosensors, operating in the mid-infrared (mid-IR) region, are well-suited for highly specific and label-free optical biosensing. The principle of operation is based on detecting the shift in resonance wavelength caused by the interaction of biomolecules with the surrounding medium. However, metallic plasmonic biosensors suffer from poor signal transduction and high optical losses in the mid-IR range, leading to low sensitivity. Here, we introduce a hyperbolic metamaterial (HMM) biosensor, that exploits the strong, tunable, mid-IR localization of graphene plasmons, for detecting nanometric biomolecules with high sensitivity. The HMM stack consists of alternating graphene/Al2O3 multilayers, on top of a gold grating structure with rounded corners, to produce plasmonic hotspots and enhance sensing performance. Sensitivity and figure-of-merit (FOM) can be systematically tuned, by varying the structural parameters of the HMM stack and the doping levels (Fermi energy) in graphene. Finite-difference time-domain (FDTD) analysis demonstrates that the proposed biosensor can achieve sensitivities as high as 4052 nm RIU-1 (refractive index unit) with a FOM of 11.44 RIU-1. We anticipate that the reported graphene/Al2O3 HMM device will find potential application as a mid-IR, highly sensitive plasmonic biosensor, for tunable and label-free detection.
Collapse
Affiliation(s)
- Sarah Cynthia
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Rajib Ahmed
- School of Medicine, Stanford University Palo Alto California 94304 USA
| | - Sharnali Islam
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Khaleda Ali
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Mainul Hossain
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| |
Collapse
|
21
|
Miao X, Yan L, Wu Y, Liu PQ. High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot spots. LIGHT, SCIENCE & APPLICATIONS 2021; 10:5. [PMID: 33402668 PMCID: PMC7785746 DOI: 10.1038/s41377-020-00449-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 05/03/2023]
Abstract
Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots.
Collapse
Affiliation(s)
- Xianglong Miao
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Lingyue Yan
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Peter Q Liu
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
22
|
Wang Y, Liu Z, Tang X, Huo P, Zhu Z, Yang B, Liu Z. Construction of a CsPbBr 3 modified porous g-C 3N 4 photocatalyst for effective reduction of CO 2 and mechanism exploration. NEW J CHEM 2021. [DOI: 10.1039/d0nj04018e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A P-CN/CsPbBr3 photocatalyst with a lamellar porous structure was prepared by a high temperature calcination and freeze drying method, and it exhibited superior CO2 reduction performance under the conditions of full spectrum irradiation.
Collapse
Affiliation(s)
- Yunqi Wang
- College of Science
- Beihua University
- Jilin
- P. R. China
| | - Zhixiang Liu
- School of Mechanical and Transportation Engineering
- Guangxi University of Science and Technology
- Liuzhou 45616
- P. R. China
| | - Xu Tang
- Institute for Advanced Materials, School of Materials Science
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Pengwei Huo
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Zhi Zhu
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Boting Yang
- College of Science
- Beihua University
- Jilin
- P. R. China
| | - Zhi Liu
- Department of Chemistry
- College of Science
- Shantou University
- Shantou
- P. R. China
| |
Collapse
|
23
|
Metamaterials-Enabled Sensing for Human-Machine Interfacing. SENSORS 2020; 21:s21010161. [PMID: 33383751 PMCID: PMC7795397 DOI: 10.3390/s21010161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
Abstract
Our modern lives have been radically revolutionized by mechanical or electric machines that redefine and recreate the way we work, communicate, entertain, and travel. Whether being perceived or not, human-machine interfacing (HMI) technologies have been extensively employed in our daily lives, and only when the machines can sense the ambient through various signals, they can respond to human commands for finishing desired tasks. Metamaterials have offered a great platform to develop the sensing materials and devices from different disciplines with very high accuracy, thus enabling the great potential for HMI applications. For this regard, significant progresses have been achieved in the recent decade, but haven’t been reviewed systematically yet. In the Review, we introduce the working principle, state-of-the-art sensing metamaterials, and the corresponding enabled HMI applications. For practical HMI applications, four kinds of signals are usually used, i.e., light, heat, sound, and force, and therefore the progresses in these four aspects are discussed in particular. Finally, the future directions for the metamaterials-based HMI applications are outlined and discussed.
Collapse
|
24
|
Wei J, Li Y, Wang L, Liao W, Dong B, Xu C, Zhu C, Ang KW, Qiu CW, Lee C. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat Commun 2020; 11:6404. [PMID: 33335090 PMCID: PMC7747747 DOI: 10.1038/s41467-020-20115-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/16/2020] [Indexed: 01/27/2023] Open
Abstract
Bulk photovoltaic effect (BPVE), featuring polarization-dependent uniform photoresponse at zero external bias, holds potential for exceeding the Shockley-Queisser limit in the efficiency of existing opto-electronic devices. However, the implementation of BPVE has been limited to the naturally existing materials with broken inversion symmetry, such as ferroelectrics, which suffer low efficiencies. Here, we propose metasurface-mediated graphene photodetectors with cascaded polarization-sensitive photoresponse under uniform illumination, mimicking an artificial BPVE. With the assistance of non-centrosymmetric metallic nanoantennas, the hot photocarriers in graphene gain a momentum upon their excitation and form a shift current which is nonlocal and directional. Thereafter, we demonstrate zero-bias uncooled mid-infrared photodetectors with three orders higher responsivity than conventional BPVE and a noise equivalent power of 0.12 nW Hz−1/2. Besides, we observe a vectorial photoresponse which allows us to detect the polarization angle of incident light with a single device. Our strategy opens up alternative possibilities for scalable, low-cost, multifunctional infrared photodetectors. Here, graphene-based plasmonic metamaterials are used to generate an artificial bulk photovoltaic effect, enabling the realization of mid-infrared photodetectors with enhanced responsivity and calibration-free polarization detection at room temperature.
Collapse
Affiliation(s)
- Jingxuan Wei
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Ying Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lin Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Wugang Liao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore
| | - Chunxiang Zhu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore. .,Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore, 117608, Singapore.
| |
Collapse
|
25
|
Sun Z, Fang Y. Hot-carrier generation from plasmons in an antenna-spacer-mirror nanostructure. OPTICS LETTERS 2020; 45:4357-4360. [PMID: 32735298 DOI: 10.1364/ol.400049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
By introducing Au-nanodisk antennas, we conveniently got hot carriers from decay of surface plasmons (SPs) on planar interface in an Au-antennas/TiO2-spacer/Au-mirror (ASM) structure without an additional phase-matching process for SP generation. The presence of hot carriers from SPs is distinguished by opposite photocurrents compared with a similar structure without an Au mirror. Analyzed by extinction spectra and electrodynamics simulations, reflection between an Au nanodisk layer and an Au mirror induces an optical response of cavity mode, which excites SPs on an Au-mirror interface and significantly enhances the light harvesting, thus leading to a relatively high hot-carrier density from SP decay. The peak of incident photon-to-electron conversion efficiencies at different wavelength also well matches the optical response of the structure.
Collapse
|
26
|
Klopfer E, Lawrence M, Barton DR, Dixon J, Dionne JA. Dynamic Focusing with High-Quality-Factor Metalenses. NANO LETTERS 2020; 20:5127-5132. [PMID: 32497434 DOI: 10.1021/acs.nanolett.0c01359] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Metasurface lenses provide an ultrathin platform in which to focus light, but weak light-matter interactions limit their dynamic tunability. Here we design submicron-thick, ultrahigh quality factor (high-Q) metalenses that enable dynamic modulation of the focal length and intensity. Using full-field simulations, we show that quality factors exceeding 5000 can be generated by including subtle, periodic perturbations within the constituent Si nanoantennas. Such high-Q resonances enable lens modulation based on the nonlinear Kerr effect, with focal lengths varying from 4 to 6.5 μm and focal intensities decreasing by half as input intensity increases from 0.1 to 1 mW/μm2. We also show how multiple high-Q resonances can be embedded in the lens response through judicious placement of the perturbations. Our high-Q lens design, with quality factors 2 orders of magnitude higher than existing lens designs, provides a foundation for reconfigurable, multiplexed, and hyperspectral metasurface imaging platforms.
Collapse
Affiliation(s)
- Elissa Klopfer
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Mark Lawrence
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - David R Barton
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jefferson Dixon
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
27
|
Zhang H, Tang Y, Liu Z, Zhu Z, Tang X, Wang Y. Study on optical properties of alkali metal doped g-C3N4 and their photocatalytic activity for reduction of CO2. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137467] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Ogawa S, Fukushima S, Shimatani M. Graphene Plasmonics in Sensor Applications: A Review. SENSORS 2020; 20:s20123563. [PMID: 32586048 PMCID: PMC7349696 DOI: 10.3390/s20123563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
Surface plasmon polaritons (SPPs) can be generated in graphene at frequencies in the mid-infrared to terahertz range, which is not possible using conventional plasmonic materials such as noble metals. Moreover, the lifetime and confinement volume of such SPPs are much longer and smaller, respectively, than those in metals. For these reasons, graphene plasmonics has potential applications in novel plasmonic sensors and various concepts have been proposed. This review paper examines the potential of such graphene plasmonics with regard to the development of novel high-performance sensors. The theoretical background is summarized and the intrinsic nature of graphene plasmons, interactions between graphene and SPPs induced by metallic nanostructures and the electrical control of SPPs by adjusting the Fermi level of graphene are discussed. Subsequently, the development of optical sensors, biological sensors and important components such as absorbers/emitters and reconfigurable optical mirrors for use in new sensor systems are reviewed. Finally, future challenges related to the fabrication of graphene-based devices as well as various advanced optical devices incorporating other two-dimensional materials are examined. This review is intended to assist researchers in both industry and academia in the design and development of novel sensors based on graphene plasmonics.
Collapse
|
29
|
Ye M, Crozier KB. Metasurface with metallic nanoantennas and graphene nanoslits for sensing of protein monolayers and sub-monolayers. OPTICS EXPRESS 2020; 28:18479-18492. [PMID: 32680046 DOI: 10.1364/oe.394564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Biomolecule sensing plays an important role in both fundamental biological studies and medical diagnostic applications. Infrared (IR) spectroscopy presents opportunities for sensing biomolecules as it allows their fingerprints to be determined by directly measuring their absorption spectra. However, the detection of biomolecules at low concentrations is difficult with conventional IR spectroscopy due to signal-to-noise considerations. This has led to recent interest on the use of nanostructured surfaces to boost the signals from biomolecules in a method termed surface enhanced infrared spectroscopy. So far, efforts have largely involved the use of metallic nanoantennas (which produce large field enhancement) or graphene nanostructures (which produce strong field confinement and provide electrical tunability). Here, we propose a nanostructured surface that combines the large field enhancement of metallic nanoantennas with the strong field confinement and electrical tunability of graphene plasmons. Our device consists of an array of plasmonic nanoantennas and graphene nanoslits on a resonant substrate. We perform systematic electromagnetic simulations to quantify the sensing performance of the proposed device and show that it outperforms designs in which only plasmons from metallic nanoantennas or plasmons from graphene are utilized. These investigations consider the model system of a representative protein-goat anti-mouse immunoglobulin G (IgG) - in monolayer or sub-monolayer form. Our findings provide guidance for future biosensors for the sensitive quantification and identification of biomolecules.
Collapse
|
30
|
Dai Z, Hu G, Ou Q, Zhang L, Xia F, Garcia-Vidal FJ, Qiu CW, Bao Q. Artificial Metaphotonics Born Naturally in Two Dimensions. Chem Rev 2020; 120:6197-6246. [DOI: 10.1021/acs.chemrev.9b00592] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qingdong Ou
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Lei Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Fengnian Xia
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Francisco J. Garcia-Vidal
- Departamento de Fisica Teorica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049, Spain
- Donostia International Physics Center (DIPC), Donostia−San Sebastian E-20018, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
31
|
Ullah Z, Witjaksono G, Nawi I, Tansu N, Irfan Khattak M, Junaid M. A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1401. [PMID: 32143388 PMCID: PMC7085581 DOI: 10.3390/s20051401] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/15/2023]
Abstract
Exceptional advancement has been made in the development of graphene optical nanoantennas. They are incorporated with optoelectronic devices for plasmonics application and have been an active research area across the globe. The interest in graphene plasmonic devices is driven by the different applications they have empowered, such as ultrafast nanodevices, photodetection, energy harvesting, biosensing, biomedical imaging and high-speed terahertz communications. In this article, the aim is to provide a detailed review of the essential explanation behind graphene nanoantennas experimental proofs for the developments of graphene-based plasmonics antennas, achieving enhanced light-matter interaction by exploiting graphene material conductivity and optical properties. First, the fundamental graphene nanoantennas and their tunable resonant behavior over THz frequencies are summarized. Furthermore, incorporating graphene-metal hybrid antennas with optoelectronic devices can prompt the acknowledgment of multi-platforms for photonics. More interestingly, various technical methods are critically studied for frequency tuning and active modulation of optical characteristics, through in situ modulations by applying an external electric field. Second, the various methods for radiation beam scanning and beam reconfigurability are discussed through reflectarray and leaky-wave graphene antennas. In particular, numerous graphene antenna photodetectors and graphene rectennas for energy harvesting are studied by giving a critical evaluation of antenna performances, enhanced photodetection, energy conversion efficiency and the significant problems that remain to be addressed. Finally, the potential developments in the synthesis of graphene material and technological methods involved in the fabrication of graphene-metal nanoantennas are discussed.
Collapse
Affiliation(s)
- Zaka Ullah
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
| | - Gunawan Witjaksono
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
| | - Illani Nawi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
| | - Nelson Tansu
- Center for Photonics and Nanoelectronics, Department of Electrical and Computer Engineering, Lehigh University, 7 Asa Drive, Bethlehem, PA 18015, USA
| | - Muhammad Irfan Khattak
- Department of Electrical Communication Engineering, University of Engineering and Technology Peshawar, Kohat campus, Kohat 26030, Pakistan
| | - Muhammad Junaid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
| |
Collapse
|
32
|
Yang J, Liu Z, Wang Y, Tang X. Construction of a rod-like Bi 2O 4 modified porous g-C 3N 4 nanosheets heterojunction photocatalyst for the degradation of tetracycline. NEW J CHEM 2020. [DOI: 10.1039/d0nj01922d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The solar-powered semiconductor photocatalytic technology for pollutant degradation has been widely studied for its potential to alleviate the current environmental crisis.
Collapse
Affiliation(s)
- Jie Yang
- College of Civil Engineering and Architecture
- Zhejiang University of Water Resources and Electric Power
- Hangzhou 310018
- P. R. China
| | - Zhixiang Liu
- School of Mechanical and Transportation Engineering
- Guangxi University of Science and Technology
- Liuzhou 45616
- P. R. China
| | - Yemei Wang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Xu Tang
- Institute for Advanced Materials
- School of Materials Science
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
33
|
Yan Y, Tang X, Ma C, Huang H, Yu K, Liu Y, Lu Z, Li C, Zhu Z, Huo P. A 2D mesoporous photocatalyst constructed by the modification of biochar on BiOCl ultrathin nanosheets for enhancing the TC-HCl degradation activity. NEW J CHEM 2020. [DOI: 10.1039/c9nj05219d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possible separation and transfer of charge carriers in the 15C/BiOCl materials over the TC-HCl degradation process.
Collapse
|
34
|
Wu J, Wang Y, Liu Z, Yan Y, Zhu Z. Preparation of noble metal Ag-modified BiVO4 nanosheets and a study on the degradation performance of tetracyclines. NEW J CHEM 2020. [DOI: 10.1039/d0nj03080e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A noble metal Ag-modified BiVO4 (Ag-BVO) composite photocatalyst was synthesized by photodeposition technology.
Collapse
Affiliation(s)
- Junda Wu
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yunqi Wang
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Zhixiang Liu
- School of Mechanical and Transportation Engineering
- Guangxi University of Science and Technology
- Liuzhou 545616
- P. R. China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Zhi Zhu
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
35
|
Ji R, Zhu Z, Ma W, Tang X, Liu Y, Huo P. A heterojunction photocatalyst constructed by the modification of 2D-CeO2 on 2D-MoS2 nanosheets with enhanced degrading activity. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02238d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new 2D/2D heterojunction of MoS2/CeO2 is successfully prepared by a facile hydrothermal method.
Collapse
Affiliation(s)
- Rong Ji
- Institute of the Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P.R. China
| | - Zhi Zhu
- Institute of the Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P.R. China
| | - Wei Ma
- Jiangsu United Chemical Co., Ltd
- Zhenjiang 212013
- P.R. China
| | - Xu Tang
- Institute for Advanced Materials
- School of Materials Science
- Jiangsu University
- Zhenjiang 212013
- P.R. China
| | - Yang Liu
- School of Physics
- Jilin Normal University
- Siping 136000
- P.R. China
| | - Pengwei Huo
- Institute of the Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P.R. China
| |
Collapse
|
36
|
Mao JW, Chen ZD, Han DD, Ma JN, Zhang YL, Sun HB. Nacre-inspired moisture-responsive graphene actuators with robustness and self-healing properties. NANOSCALE 2019; 11:20614-20619. [PMID: 31641724 DOI: 10.1039/c9nr06579b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Moisture-responsive actuators based on graphene oxide (GO) have attracted intensive research interest in recent years. However, current GO actuators suffer from low mechanical strength. Inspired by the robustness of nacre's structure, moisture-responsive actuators with high mechanical strength and self-healing properties were successfully developed based on GO and cellulose fiber (CF) hybrids. The hybrid paper demonstrated significantly improved tensile strength, ∼20 times higher than that of pure GO paper, and self-healing properties. A broken paper can be well cured under moist conditions, and the mechanical properties of the self-healed hybrid paper can still maintain similar tensile strength to the pristine one. After controllable ultraviolet light photoreduction treatment, a hybrid paper with a photoreduction gradient along the normal direction was prepared, which can act as a moisture-responsive actuator. A maximum bending curvature of ∼1.48 cm-1 can be achieved under high relative humidity (RH = 97%). As a proof-of-concept, a butterfly-like actuator that can deform itself with moisture actuation was demonstrated. Our approach may pave a new way for designing robust and self-healable graphene actuators.
Collapse
Affiliation(s)
- Jiang-Wei Mao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Zhao-Di Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Dong-Dong Han
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Jia-Nan Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yong-Lai Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China. and State Key Lab of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| |
Collapse
|
37
|
Gao G, Zhu Z, Zheng J, Liu Z, Wang Q, Yan Y. Ultrathin magnetic Mg-Al LDH photocatalyst for enhanced CO2 reduction: Fabrication and mechanism. J Colloid Interface Sci 2019; 555:1-10. [DOI: 10.1016/j.jcis.2019.07.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
|
38
|
Graphene-Based Biosensors for Detection of Composite Vibrational Fingerprints in the Mid-Infrared Region. NANOMATERIALS 2019; 9:nano9101496. [PMID: 31635170 PMCID: PMC6836266 DOI: 10.3390/nano9101496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022]
Abstract
In this study, a label-free multi-resonant graphene-based biosensor with periodic graphene nanoribbons is proposed for detection of composite vibrational fingerprints in the mid-infrared range. The multiple vibrational signals of biomolecules are simultaneously enhanced and detected by different resonances in the transmission spectrum. Each of the transmission dips can be independently tuned by altering the gating voltage applied on the corresponding graphene nanoribbon. Geometric parameters are investigated and optimized to obtain excellent sensing performance. Limit of detection is also evaluated in an approximation way. Besides, the biosensor can operate in a wide range of incident angles. Electric field intensity distributions are depicted to reveal the physical insight. Moreover, another biosensor based on periodic graphene nanodisks is further proposed, whose performance is insensitive to the polarization of incidence. Our research may have a potential for designing graphene-based biosensor used in many promising bioanalytical and pharmaceutical applications.
Collapse
|
39
|
|
40
|
All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry. Sci Rep 2019; 9:13641. [PMID: 31541128 PMCID: PMC6754409 DOI: 10.1038/s41598-019-49395-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/21/2019] [Indexed: 11/08/2022] Open
Abstract
Dielectric metasurfaces have opened promising possibilities to enable a versatile platform in the miniaturization of optical elements at visible and infrared frequencies. Due to high efficiency and compatibility with CMOS fabrication technology, silicon-based metasurfaces have a remarkable potential for a wide variety of optical devices. Adding tunability mechanisms to metasurfaces could be beneficial for their application in areas such as communications, imaging and sensing. In this paper, we propose an all-silicon reconfigurable metasurface based on the concept of glide symmetry. The reconfigurability is achieved by a phase modulation of the transmitted wave activated by a lateral displacement of the layers. The misalignment between the layers creates a new inner periodicity which leads to the formation of a metamolecule with a new sort of near-field interaction. The proposed approach is highly versatile for developing multifunctional and tunable metadevices at optical frequencies. As a proof of concept, in this paper, we design a bifunctional metadevice, as well as a tunable lens and a controllable beam deflector operating at 1.55 μm.
Collapse
|
41
|
Liu YQ, Chen ZD, Mao JW, Han DD, Sun X. Laser Fabrication of Graphene-Based Electronic Skin. Front Chem 2019; 7:461. [PMID: 31316971 PMCID: PMC6610329 DOI: 10.3389/fchem.2019.00461] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Graphene is promising for developing soft and flexible electronic skin. However, technologies for graphene processing is still at an early stage, which limits the applications of graphene in advanced electronics. Laser processing technologies permits mask-free and chemical-free patterning of graphene, revealing the potential for developing graphene-based electronics. In this minireview, we overviewed and summarized the recent progresses of laser enabled graphene-based electronic skins. Two typical strategies, laser reduction of graphene oxide (GO) and laser induced graphene (LIG) on polyimide (PI), have been introduced toward the fabrication of graphene electronic skins. The advancement of laser processing technology would push forward the rapid progress of graphene electronic skin.
Collapse
Affiliation(s)
- Yu-Qing Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Zhao-Di Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Jiang-Wei Mao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Dong-Dong Han
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Xiaoying Sun
- College of Communication Engineering, Jilin University, Changchun, China
| |
Collapse
|
42
|
Chiu NF, Kuo CT, Chen CY. High-affinity carboxyl-graphene oxide-based SPR aptasensor for the detection of hCG protein in clinical serum samples. Int J Nanomedicine 2019; 14:4833-4847. [PMID: 31308661 PMCID: PMC6613200 DOI: 10.2147/ijn.s208292] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The use of functionalized graphene oxide (fGO) has led to a new trend in the sensor field, owing to its high sensitivity with regards to sensing characteristics and easy synthesis procedures. METHODS In this study, we developed an ultra-sensitive carboxyl-graphene oxide (carboxyl-GO)-based surface plasmon resonance (SPR) aptasensor using peptides to detect human chorionic gonadotropin (hCG) in clinical serum samples. The carboxyl-GO based SPR aptasensor provided high affinity and stronger binding of peptides, which are great importance to allow for a non-immunological label-free mechanism. Also, it allows the detection of low concentrations of hCG, which are in turn considered to be important clinical parameters to diagnose ectopic pregnancies and paraneoplastic syndromes. RESULTS The high selectivity of the carboxyl-GO-based SPR aptasensor for hCG recombinant protein was verified by the addition of the interfering proteins bovine serum albumin (BSA) and human serum albumin (HSA), which did not affect the sensitivity of the sensor. The carboxyl-GO-based chip can enhance the assay efficacy of interactions between peptides and had a high affinity binding for a ka of 17×106 M-1S-1. The limit of detection for hCG in clinical serum samples was 1.15 pg/mL. CONCLUSION The results of this study demonstrated that the carboxyl-GO-based SPR aptasensor had excellent sensitivity, affinity and selectivity, and thus the potential to be used as disease-related biomarker assay to allow for an early diagnosis, and possibly a new area in the field of biochemical sensing technology.
Collapse
Affiliation(s)
- Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei11677, Taiwan
| | - Chia-Tzu Kuo
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei11677, Taiwan
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City10449, Taiwan
- Department of Medicine, Mackay Medical College, Taipei252, Taiwan
| |
Collapse
|
43
|
Zhang Q, Zhen Z, Yang Y, Gan G, Jariwala D, Cui X. Hybrid phonon-polaritons at atomically-thin van der Waals heterointerfaces for infrared optical modulation. OPTICS EXPRESS 2019; 27:18585-18600. [PMID: 31252799 DOI: 10.1364/oe.27.018585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Surface phonon polaritons (SPhPs) in polar dielectrics are potential candidates for infrared nanophotonics due to their low optical loss and long phonon life-time. However, the small confinement factors of bulk SPhPs, limits their applications that require small footprint and strong light-matter interaction. Here, we report that ultrathin van der Waals dielectrics (e.g., MoS2 and h-BN) on Silicon Carbide enable ultra-confined dielectric tailored surface phonon polaritons (d-SPhPs) where the confinement factor can exceed 100. By creating a heterostructure of these vdW dielectrics with graphene, the d-SPhPs can hybridize with graphene plasmons which can be electrically tuned. By subwavelength patterning of the vdW dielectrics, these hybrid polaritons can be localized into ultra-small antenna volumes (λ03/vantenna 3~1003) with high-quality factor resonances (Q~85). Further, electric gating of graphene enables active tunability of these localized resonances which results in an electro-optic modulator with modulation depth exceeding 95%. Our report of manipulating and controlling ultra-confined SPhPs in van der Waals heterostructures, serves as a possible route for non-plasmonic platforms for infrared photodetectors, modulators and sensors.
Collapse
|
44
|
Cetin AE, Topkaya SN. Photonic crystal and plasmonic nanohole based label-free biodetection. Biosens Bioelectron 2019; 132:196-202. [DOI: 10.1016/j.bios.2019.02.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 11/27/2022]
|
45
|
Refractive Index Sensing of Monolayer Molecules Using Both Local and Propagating Surface Plasmons in Mid-Infrared Metagrating. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface-enhanced infrared absorption spectroscopy (SEIRA) is attractive for molecular sensing due to its high sensitivity and access to molecular fingerprint absorptions. In this paper, we report on refractive index sensing of monolayer molecules in a spectral band outside the molecular fingerprint region. In a metagrating composed of a three-layer metal-insulator-metal structure, both propagating surface plasmon resonances (PSPs) and local surface plasmon resonances (LSPRs) are exited from free-space in a broad band of 3 to 9 µm, and their sensing properties are characterized. In response to a self-assembled monolayer of octadecanethiol (ODT) molecules, both PSPs and LSPRs exhibit redshifts in wavelength. The shifts of LSPRs are larger than those of PSPs, as originated from their stronger spatial confinement and larger field enhancement. Our proposed mid-infrared molecular sensor is immune to frequency variations of plasmon resonance and more tolerant to sample feature size variation.
Collapse
|
46
|
Bouchal P, Dvořák P, Babocký J, Bouchal Z, Ligmajer F, Hrtoň M, Křápek V, Faßbender A, Linden S, Chmelík R, Šikola T. High-Resolution Quantitative Phase Imaging of Plasmonic Metasurfaces with Sensitivity down to a Single Nanoantenna. NANO LETTERS 2019; 19:1242-1250. [PMID: 30602118 DOI: 10.1021/acs.nanolett.8b04776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Optical metasurfaces have emerged as a new generation of building blocks for multifunctional optics. Design and realization of metasurface elements place ever-increasing demands on accurate assessment of phase alterations introduced by complex nanoantenna arrays, a process referred to as quantitative phase imaging. Despite considerable effort, the widefield (nonscanning) phase imaging that would approach resolution limits of optical microscopy and indicate the response of a single nanoantenna still remains a challenge. Here, we report on a new strategy in incoherent holographic imaging of metasurfaces, in which unprecedented spatial resolution and light sensitivity are achieved by taking full advantage of the polarization selective control of light through the geometric (Pancharatnam-Berry) phase. The measurement is carried out in an inherently stable common-path setup composed of a standard optical microscope and an add-on imaging module. Phase information is acquired from the mutual coherence function attainable in records created in broadband spatially incoherent light by the self-interference of scattered and leakage light coming from the metasurface. In calibration measurements, the phase was mapped with the precision and spatial background noise better than 0.01 and 0.05 rad, respectively. The imaging excels at the high spatial resolution that was demonstrated experimentally by the precise amplitude and phase restoration of vortex metalenses and a metasurface grating with 833 lines/mm. Thanks to superior light sensitivity of the method, we demonstrated for the first time to our knowledge the widefield measurement of the phase altered by a single nanoantenna while maintaining the precision well below 0.15 rad.
Collapse
Affiliation(s)
- Petr Bouchal
- Institute of Physical Engineering, Faculty of Mechanical Engineering , Brno University of Technology , Technická 2 , 616 69 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , 612 00 Brno , Czech Republic
| | - Petr Dvořák
- Institute of Physical Engineering, Faculty of Mechanical Engineering , Brno University of Technology , Technická 2 , 616 69 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , 612 00 Brno , Czech Republic
| | - Jiří Babocký
- Institute of Physical Engineering, Faculty of Mechanical Engineering , Brno University of Technology , Technická 2 , 616 69 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , 612 00 Brno , Czech Republic
| | - Zdeněk Bouchal
- Department of Optics , Palacký University , 17. listopadu 1192/12 , 771 46 Olomouc , Czech Republic
| | - Filip Ligmajer
- Institute of Physical Engineering, Faculty of Mechanical Engineering , Brno University of Technology , Technická 2 , 616 69 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , 612 00 Brno , Czech Republic
| | - Martin Hrtoň
- Institute of Physical Engineering, Faculty of Mechanical Engineering , Brno University of Technology , Technická 2 , 616 69 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , 612 00 Brno , Czech Republic
| | - Vlastimil Křápek
- Institute of Physical Engineering, Faculty of Mechanical Engineering , Brno University of Technology , Technická 2 , 616 69 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , 612 00 Brno , Czech Republic
| | - Alexander Faßbender
- Physikalisches Institut , Universität Bonn , Nussallee 12 , 53115 Bonn , Germany
| | - Stefan Linden
- Physikalisches Institut , Universität Bonn , Nussallee 12 , 53115 Bonn , Germany
| | - Radim Chmelík
- Institute of Physical Engineering, Faculty of Mechanical Engineering , Brno University of Technology , Technická 2 , 616 69 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , 612 00 Brno , Czech Republic
| | - Tomáš Šikola
- Institute of Physical Engineering, Faculty of Mechanical Engineering , Brno University of Technology , Technická 2 , 616 69 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , 612 00 Brno , Czech Republic
| |
Collapse
|
47
|
Tang X, Yu Y, Ma C, Zhou G, Liu X, Song M, Lu Z, Liu L. The fabrication of a biomass carbon quantum dot-Bi2WO6 hybrid photocatalyst with high performance for antibiotic degradation. NEW J CHEM 2019. [DOI: 10.1039/c9nj04764f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel biomass carbon quantum dots@Bi2WO6 photocatalyst was prepared by a dialysis-assisted hydrothermal method for the photocatalytic degradation of antibiotics.
Collapse
Affiliation(s)
- Xu Tang
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yang Yu
- Institute of the Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Changchang Ma
- Institute of the Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Guosheng Zhou
- School of the Environment and Safety Engineering
- Institute of Environmental Health and Ecological Security
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xinlin Liu
- School of Energy and Power Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Minshan Song
- School of Science
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Ziyang Lu
- School of the Environment and Safety Engineering
- Institute of Environmental Health and Ecological Security
- Jiangsu University
- Zhenjiang 212013
- China
| | - Lei Liu
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| |
Collapse
|